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Abstract

This paper approaches the unsupervised learning problem by gradient descent in the space
of probability density functions. A main result shows that along the gradient flow induced
by a distribution-dependent ordinary differential equation (ODE), the unknown data dis-
tribution emerges as the long-time limit. That is, one can uncover the data distribution
by simulating the distribution-dependent ODE. Intriguingly, the simulation of the ODE is
shown equivalent to the training of generative adversarial networks (GANs). This equiva-
lence provides a new “cooperative” view of GANs and, more importantly, sheds new light
on the divergence of GANs. In particular, it reveals that the GAN algorithm implicitly
minimizes the mean squared error (MSE) between two sets of samples, and this MSE fitting
alone can cause GANs to diverge. To construct a solution to the distribution-dependent
ODE, we first show that the associated nonlinear Fokker-Planck equation has a unique
weak solution, by the Crandall-Liggett theorem for differential equations in Banach spaces.
Based on this solution to the Fokker-Planck equation, we construct a unique solution to the
ODE, using Trevisan’s superposition principle. The convergence of the induced gradient
flow to the data distribution is obtained by analyzing the Fokker-Planck equation.
Keywords: unsupervised learning, generative adversarial networks, distribution-dependent
ODEs, gradient flows, nonlinear Fokker-Planck equations

1. Introduction

A central theme in machine learning is to uncover the underlying distribution of observed
data points. Mathematically, this can be stated as

min d(p, pa), (1)

pEP(RY)

where P(R?) is the set of probability density functions on R%, pq € P(R?) is the unknown
data distribution, and d(-,-) is a metric (or semi-metric) on P(R%). Unlike traditional
parameter fitting by maximum likelihood methods, generative adversarial networks (GANs)
in Goodfellow et al. (2014) view (1) as a two-player non-cooperative game: a generator
actively produces samples similar to the real data and a discriminator strives to distinguish
between the real and fake samples.
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In theory, GANs take the form of a min-max game where the discriminator chooses
D : R — [0,1] to maximize its chance of differentiating real samples from fake ones, while
the generator, who observes its opponent’s choice D, selects G : R* — R? (for a fixed
n < d) to neutralize the effect of D. In Goodfellow et al. (2014), this minimax problem is
shown equivalent to (1) with d(-,-) = JSD(-, ), the Jensen-Shannon divergence; further, the
generator’s optimal strategy G* : R — R? exists and it reveals the data distribution pq.

What is not answered by the theory of GANs is whether (and how) an initial guess
po € P(R?) (or, an initial G : R® — RY) can evolve gradually towards pq € P(R?) (or,
G* : R" — R%). The GAN algorithm (Goodfellow et al., 2014, Algorithm 1) serves to find
this “path to pq” numerically: by using two artificial neural networks to represent the func-
tions G and D, it updates their parameters repetitively, through a recursive optimization
performed sequentially by the two players. While the GAN algorithm has brought sig-
nificant improvements to artificial intelligence applications (see e.g., Denton et al. (2015),
Vondrick et al. (2016), Ledig et al. (2017), Wiese et al. (2020)), it is not as stable as we
wish—while a “path” can always be computed, it often diverges away from pq.

Attempts to improve the stability of GANs are numerous, such as modifying training
procedures (e.g., Salimans et al. (2016), Heusel et al. (2017), Arjovsky and Bottou (2017)),
adding regularizing terms (e.g., Gulrajani et al. (2017), Miyato et al. (2018)), or using
different metrics d(-,-) (e.g., Wasserstein distance in Arjovsky et al. (2017), maximum mean
discrepancy in Li et al. (2017) and Birtkowski et al. (2018), characteristic function distance
in Ansari et al. (2020)). All the studies approached the stability issue at the algorithmic
level, i.e., by inspecting the details of the recursive optimization procedures.

In this paper, we give a complete characterization of the “path to pq” at the theo-
retic level. In a nutshell, this “path” will be characterized as a gradient flow in the space
P(RY), whose evolution is governed by a distribution-dependent ordinary differential equa-
tion (ODE); see Theorem 7 and Proposition 8, the main results of this paper. This theoretic
characterization has important practical implications.

First, it sheds new light on the divergence of GANs. By the gradient-flow identification
of GANs, we are able to decompose the GAN algorithm and discover an unapparent fact: the
algorithm implicitly minimizes the mean squared error (MSE) between two sets of samples
in R?. While the MSE fitting demands point-wise similarity (i.e., the i"* sample in one set is
similar to the i** sample in the other set), what we actually need is only set-wise similarity
(i.e., the distribution on R? of the samples in one set is similar to that of the samples in
the other set). As it imposes too stringent a criterion, the MSE fitting may keep producing
inferior G : R” — R%, such that pq is never approached. This observation suggests a new
potential route to alleviate instability: replacing the MSE fitting in the GAN algorithm by
a measure of set-wise similarity; see Section 3.3 for detailed explanations.

Our main results, in addition, yield a new interpretation for GANs: the non-cooperative
game between the generator and discriminator can be equivalently viewed as a cooperative
game between a navigator and a calibrator. The navigator aims to navigate across the space
P(R?) following the aforementioned distribution-dependent ODE, and the calibrator serves
to “calibrate” the ODE’s dynamics. To the best of our knowledge, a possible “cooperative”
view of GANs was only briefly touched on in Goodfellow (2016). We materialize this idea
with great specifics: the two players collaborate precisely to simulate an ODE that ensures
smooth sailing to pq; see the discussion below Proposition 8 for details.
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1.1 Our Methodology

As in Goodfellow et al. (2014), we take d(-,-) = JSD(-,-) in (1). Our first observation is
that J(p) := JSD(p, pq) is strictly convex on P(RY), which suggests that (1) can potentially
be solved by (deterministic) gradient descent in P(R?). By taking the “gradient of .J at
p € P(RY)” to be Vg—‘;(p, ) : R — RY, where g—z : P(R?) x R? — R is the linear functional
derivative of J (Definition 4) and V is the usual gradient operator in R¢, we derive the
gradient-descent ODE for (1), which is given by

aYy = —

1 <Vth(Yt) _ Vpa(Y2) + V' (V)

1 v )
2\ p"(%) pa(Yr) + p¥e(Yy) > dt, p" = po € P(R). (2)

This ODE is distribution-dependent in a distinctive way. Unlike a typical McKean-Vlasov
stochastic differential equation (SDE) that depends explicitly on £(Y}), the law of the state
process Y at time ¢, (2) depends on the density p¥* € P(R?) of Y; and its gradient Vp'?.
The classical framework of interacting particle systems, crucial for the existence of solutions
to McKean-Vlasov SDEs, does not easily accommodate this kind of dependence.

In view of this, we take an unconventional approach motivated by Barbu and Rockner
(2020): by finding a weak solution u(t, y) to the nonlinear Fokker-Planck equation associated
with ODE (2), one can in turn construct a solution Y to (2), made specifically from u(¢,y).

To solve the nonlinear Fokker-Planck equation, i.e., (25) below, we transform it into a
nonlinear Cauchy problem in a suitable Banach space, i.e., (36) below. By showing that the
involved operator is “accretive” (Lemma 14), we are able to find a weak solution u(t,y) by
Crandall-Liggett’s theorem for partial differential equations (PDEs) in Banach spaces; see
Proposition 17. The uniqueness of solutions is also established by generalizing Brézis and
Crandall (1979), which characterizes u(t,y) as the unique weak solution in Theorem 21.

By substituting u(t,-) for the density p¥*(-) in (2), we obtain a standard ODE without
distribution dependence, i.e., (49) below. To construct a solution to (2), we aim at finding
a process Y such that (i) ¢t — Y; satisfies the above standard ODE, and (ii) the density
of Y; exists and coincides with wu(t,-), i.e., p¥*(-) = u(t,:) € P(RY) for all ¢ > 0. Thanks
to the superposition principle of Trevisan (2016), we can choose a probability measure P
on the canonical path space, so that the canonical process Y;(w) := w(t) fulfills (i) and (ii)
above. This immediately gives a solution to (2) (Proposition 25) and it is in fact unique up
to time-marginal distributions under suitable regularity conditions (Proposition 28).

Let us stress that while (2) takes the form of an ODE, it is nontrivial to find a suitable
notion of solutions, due to two kinds of randomness intertwined at time 0; see the second
paragraph in Section 5. Ultimately, we define a solution to (2) using a random selection
of deterministic paths, represented by a probability measure P on the canonical path space
(Definition 22). This formulation perfectly fits Trevisan’s superposition principle, and is
reminiscent of L.C. Young’s generalized curves in the deterministic theory and weak solu-
tions to SDEs (despite our restriction to the path space with only P varying).

With the unique solution Y to ODE (2) characterized, it is time to check if our “gra-
dient descent” idea for (1) works. Two key findings stem from a detailed analysis of the
transformed Fokker-Planck equation (i.e., (36) below). First, along the path of Y, the map
t — J(p¥*) = JSD(p"?, pq) is nonincreasing (Proposition 30), i.e., p** moves closer to pq
continuously over time. Second, p¥tn — pq in L' (R%), at least along a sequence {t,} in time
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with ¢, 1 oo (Corollary 32). Putting these together gives the ultimate convergence result:
p¥* — pq in LY(R?) as t — oo; see Theorem 7. That is to say, we can uncover pq along the
gradient flow {p¥*}i>0 in P(R?), specified by the gradient-descent ODE (2).

Algorithm 1 is designed to simulate ODE (2). Intriguingly, it is shown equivalent to the
GAN algorithm (Proposition 8), which yields the “cooperative” view of GANs mentioned
above: the generator and discriminator now take the roles of a navigator and calibrator,
respectively, working closely to simulate ODE (2); see the exposition in Section 3.1.

1.2 Relations to the Literature

We work with the general space P(R?) under the total variation distance, which differs from
the classical setting—7P2(R?) under the second-order Wasserstein distance Wy, where Py (R%)
is the set of elements in P(R%) with finite second moments. There are two main reasons for
our non-standard setup. First, working with Py(RY) implicitly assumes pq € P2(R%), while
pd, as the underlying data distribution, generally lies in P(RY). Second, using the total
variation distance ensures the “right” kind of convergence. As we chose JSD(-,-) in the first
place to measure the distance between densities, it should be kept consistently throughout
our analysis. As shown in Remark 2, convergence in P(R%) under JSD(-, ) is equivalent to
that under total variation (or, under L'(R%)). Hence, “p¥* — pq in L*(R?)” in Theorem 7
implies “JSD(p*, pq) — 0”. That is, convergence to pq € P(RY) is not only achieved, but
achieved under the desired distance function originally chosen.

Working with P(R?) (under total variation) deprives us of the full-fledged theory of
P2(R%) (under W), developed in e.g., Ambrosio et al. (2005), Cardaliaguet et al. (2015),
Carmona and Delarue (2018a), and Delarue et al. (2019). First, it is unclear how to define
the “gradient” of J(p) = JSD(p, pq) in P(R?), as the standard Lions and Wasserstein deriva-
tives are only defined in P2(R?) (or in P, (R%) for g € [1,00), which consists of elements in
P(R?) with finite ¢ moments). Since V% admits a gradient-type property (Proposition 5)
and it is well-defined in P(R?) without relying on the Py(R%) structure (Lemma 6), we take
it to be the proper “gradient” in P(R%). While V‘;—i is more general, it coincides with the

Lions and Wasserstein derivatives when restricted to Pa(IRY); see Section 2.2. On the other
hand, to compute the evolution ¢ +— J(p**) and show its convergence to J(pq) = 0, we do
not employ any Ito-type formula or compactness argument (which are unique to Pg(Rd)),
but rely on the aforementioned analysis of the transformed Fokker-Planck equation (Propo-
sition 30 and Corollary 32); see Remarks 31 and 33 for details.

Gradient flows have recently been used in many implicit generative models; see e.g.,
Gao et al. (2019), Gao et al. (2020), Ansari et al. (2021), and Mroueh and Nguyen (2021).
Their algorithms are advocated as alternatives to GANs—in particular, the minimization
part of GANSs is replaced by a kind of gradient descent. Contrary to the common practice
“modifying GANs to form a gradient-flow algorithm”, Proposition 8 shows that the GAN
algorithm itself, without any modification, already computes gradient flows. What sets us
apart is a subtle difference in algorithm design. While our gradient-flow algorithm (i.e.,
Algorithm 1) resembles those in Gao et al. (2019) and Gao et al. (2020), we particularly
coordinate the estimation of D with the gradient-descent update of G, so that the zero-sum
game setup of GANs can be recovered. The algorithms in Gao et al. (2019) and Gao et al.
(2020), by contrast, represent non-zero-sum games.
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In the recent development of gradient-flow algorithms mentioned above, a common (yet
unnoticed) issue is the “inconsistent use of distance functions”: one proposes to solve (1)
with a specific choice of d(-,-) (e.g., an f-divergence), but carries out theoretic proofs under
a different distance function (e.g., W,). This can be problematic: even if Wh(p*t, pq) — 0
is proved, since the metric W, is not equivalent to an f-divergence, p** need not converge
to pq under an f-divergence, the desired distance function initially chosen. As noted above,
Theorem 7 settles this issue, as the target distance function (i.e., JSD(:,-)) is equivalent to
the actual distance function in use (i.e., the total variation distance).

1.3 Organization of the Paper and Notation

Section 2 formulates a proper “gradient” in P(R?) and derives the gradient-descent ODE
(2). Section 3 presents the main results (Theorem 7 and Proposition 8) and discusses their
implications, including the identification of GANs with gradient flows and the cause of
divergence of GANs. Section 4 derives the nonlinear Fokker-Planck equation associated
with ODE (2) and establishes the existence of a unique weak solution u(t,y). Based on
u(t,y), Section 5 constructs a solution ¢ — Y; to ODE (2) and shows that it is unique up to
time-marginal distributions. Section 6 proves Theorem 7, i.e., the density of Y; converges
to pq, as t — oo. Appendices collect some proofs.

Throughout the paper, P(R%) denotes the set of all probability density functions on
R4, For any g € [1,00), let P,(R?) be the subset of P(R?) that contains density functions
with finite ¢** moments. We denote by pq the probability measure on R? induced by the
underlying data distribution pq € P(R?). For any R%valued random variable Y, we denote
by p¥ € P(R?) the density function of Y (if it exists). Consider the second-order Wasserstein
distance Wa(py, p2) == (inf{E[| X1 — X2|?] : pX1 = p1, p*2 = po})V/2, for p1, po € Po(RY).

Given n € N, S C R", and a measure v on R", we let LP(S,v), p € [1,00), be the set of
f:S — R with Hinp(s,y) = [¢|f|Pdv < oo, and L>(S,v) be the set of f: S — R that are
bounded v-a.e. Also, we denote by W1P(S,v) the set of f : S — R whose weak derivatives
of first order exist and lie in L”(S,v), and by Wol’p(S, v) the closure of C2°(S) (the set of
infinitely differentiable f : S — R with compact supports) under the WP(S, v)-norm. For
p =2, we write H'(S,v) = WLH2(S,v) and H}(S,v) = WOI’2(S, v). When v is the Lebesgue
measure (denoted by Leb), we shorten the notation to LP(S), WP(S), and H'(S), etc. We
denote by V the Euclidean gradient operator with respect to (w.r.t.) y € R™.

Let X be an arbitrary collection of f : S — R. For any u : [0,00) — X, we will often
abuse the notation by writing u(¢,-) = (u(t))(-) € X for all ¢t > 0 and treat u(t,y) = (u(t))(y)
as a generic function on [0,00) x S.

2. Preliminaries

We study (1) with d(-,-) therein taken to be the Jensen-Shannon divergence, i.e.,

_ 1 _|lp+ 1 o+ _
JSD(p, p) == §DKL <P Hp2p> + §DKL (P /)2,0) . Vp,pe P(Rd)7 3)
where Dxgp, denotes the Kullback-Leibler divergence, defined by
_ p(x _
Dra(plp)i= [ ot (45 ) do. p.p e PR, ()
R p(z)

5
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As shown in Endres and Schindelin (2003) and Theorem 1 in Osterreicher and Vajda (2003),
\/JSD(:,-) defines a metric on P(R?), so that JSD(-,-) is a semi-metric. The problem (1)
can now be stated as

minimize J(p) := JSD(p, pq) over P(RY). (5)

Remark 1 For any p,p € P(RY), 0 < JSD(p,p) < In(2). This follows directly from

Draplp) = [ oty (45 ) o= - [ <>(<g )as=o.

o 0 [£12) o o o (4 -

where we used the fact In(z) < x — 1 VYa > 0 in the first inequality.

Remark 2 The metric \/JSD(-,-) on P(R?) is equivalent to the total variation distance

/Ap(:lr)dac—/Aﬁ(x)dx

This follows from TV (p,p) = 3|p — Pl ey (Lemma 34) and the estimate

TV(p,p) := sup Vp,p € P(RY). (6)

AeB(R9)

1 _ _ _
o <2‘p - pHLl(]Rd)> < QJSD(p, ) < ln( )Hp - pHLl(Rd)a Vp,p € P(Rd)a (7)

where ¢ 1 [0,1] — Ry is strictly increasing with $(0) = 0; see Theorem 2 (with 8 = 1
therein) in Osterreicher and Vajda (2003).

Remark 3 For any fived p € P(R?), JSD(-, p) : P(R?) — R is strictly convex. Indeed, by
Nielsen and Nock (2014) (see Table I therein), JSD(-,-) can be expressed as

JSD(p1, p2) =/ f <p1> pady, Vp1,p2 € P(RY), (8)
Rd P2

with f:[0,00) = R given by f(z) := 1 [(z + 1) ln(mﬂ) +zInz]. For any p1, p2, p € P(RY)
and A € (0,1), from (8) and the stmct convexity of f, we quickly obtain JSD(Ap; + (1 —
A)p2,p) < ANISD(p1,p) + (1 — X\) ISD(pa2, p), i.e., JSD(-, p) is strictly conver.

2.1 Gradient Descent for Functions on P(R%)

For a strictly convex f : R? — R, it is well-known that the global minimizer y* € R?% of
f, if it exists, can be found efficiently by (deterministic) gradient descent in the space R
Specifically, for any initial point y € R%, the ODE

dY, = =V f(Y)dt, Yp=yeR, (9)

converges to y* ast — co. Given that JSD(-, pq) : P(R?) — R is strictly convex (Remark 3),
it is natural to ask if its minimizer, i.e., pq € P(]Rd), can also be found by gradient descent,
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now in the space P(R?). The ultimate question is how we should modify ODE (9) to
accommodate a function defined on P(R?)—particularly, how its gradient should be defined.

Given a strictly convex G : P(R?) — R, we expect that the corresponding gradient-
descent ODE takes the form

dY; = ~9,G(p", Y)dt, p" = po € P(RY), (10)

where 9,G(p¥*,-) : R? — R? denotes the “gradient of G at p¥* € P(RY)”, which remains to
be defined. As Yj is specified by a density po € P(R?) (but not as a fixed state y € R? in
(9)), Y; is a random variable, with density p** € P(R?), for all + > 0. That is, (10) is now
a distribution-dependent ODE. At any time ¢ > 0, given the current density p** € P(RY),
—0,G(p",-) : R? — R? dictates the direction along which each y € R? (i.e., a realization of
Y:) moves forward. Specifically, if we discretize ODE (10) with a fixed time step € > 0, a
realization y € R? of ¥; is transported to

y =y —e0,G(p",y) € RY, (11)

which represents a realization of Y;y.. It is highly nontrivial, however, to define the “gra-
dient” 9,G(p**,-). As the domain P(R?) of G is not even a vector space, differentiation
cannot be easily defined in the usual Fréchet or Gateaux sense.

A natural idea is to rely on the convexity of P(R%): for any p, p € P(R?), we can move
from p to p along the line segment {(1 — \)p+ A\p: A € [0,1]} in P(R?) and study how G
changes along the way. This leads to the notion of a linear functional derivative.

Definition 4 A linear functional derivative of G : P(RY) — R is a function % : P(R?) x
R? — R that satisfies

1
6p)~Glo) = [ [ S - Vot M) pdudr, ppe PED. (12

Under appropriate growth and continuity conditions of %, (12) implies

G(p+e(p—p) = G(p) :/R 0G5 9) (5= p)(y)dy.

I
im .57

e—0 g

That is, %(p, -) can be viewed as the “gradient of G” if one moves along straight lines in

P(R?) from one density to another.

The evolution of densities in ODE (10), nonetheless, is much more involved. At any
time ¢ > 0, —OPG(th, ) : R4 — R? serves as a vector field that moves any current point
y € R? to a new location. Put differently, the transportation in (11) is of the general form

gi=y+efly) = ([ +€)(y) €RY, for some £ : R — RY, (13)

where I denotes the identity map on RY. Under (13), an initial probability measure x on
R? is transformed into the pushforward measure

pE() = p (I +6)71()) - (14)

As the next result shows, when p is induced by a density p € P(R%), ,ug also has a density
pg € P(R?); moreover, when one moves (nonlinearly) in P(R%) from p to pg, the appropriate
“gradient of G' at p € P(RY)” turns out to be a simple functional of %(p, ).

7
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Proposition 5 Let G : P(R?) — R has a linear functional derivative % : P(RY) xRY — R.
Consider p € P(R?) and the measure u(-) := [ p(y)dy on R If p is of CL(R?), for any
¢ € C2(R%RY), the measure p in (14) has a density pt € P(RY), fore > 0 small. Moreover,
if %—g(p, ) is locally integrable on RY and SUP\¢[0,1] \%—f((l —N)p+Ap, ) — %—g(p, )| — 0 locally
uniformly as p — p uniformly, then
3
limg S12) = G0) _ /Rd V(;f(p, y) - E(y)du(y). (15)

e—0 £

Proposition 5, whose proof is relegated to Section A.2, conveys important messages.
First, when every y € RY moves along the direction £(y) € R? (as in (13)), the original
density p € P(RY) is recast into p¢ € P(R?). Furthermore, as (15) demonstrates, V‘;—f(p, Y)

specifies how moving along £(y) changes the value of G. That is, V%—g(p, ) R — R4

is the proper “gradient of G at p € P(RY)” for the transportation in (13), which is the
discretization of an ODE like (10). As a result, from now on we will write (10) as

Be.
dy; = —V(;T)(py%Yt)dt, p*0 = py € P(RY). (16)

2.2 Connection to the Lions and Wasserstein Derivatives

If we restrict ourselves to the subset Pa(R?) of P(R?), our gradient V% in fact coincides
with the Lions and Wasserstein derivatives in the literature under suitable conditions. Let
us briefly recall the definitions of these two kinds of derivatives in Py(R).

In a probability space (2, F,P) where P is an atomless measure, every R%valued random
variable Y € L?(Q,F,P) has a density A= Pg(Rd). Hence, we can associate to each
G : P2(R?) — R a lifted function g : L?(Q, F,P) — R defined by g(Y) := G(p"). As
Fréchet differentiation is well-defined in the Banach space L?(Q2, F,P), the “derivative of G
at pg € Po(R%)” can be defined as Dg(Yp), the Fréchet derivative of g at Yy € L?(Q, F,P)
with p¥0 = pg. By identifying L?(£2, F,P) with its dual (as it is reflexive), we have Dg(Yp) €
L?(Q, F,P). Thanks to Proposition 5.25 in Carmona and Delarue (2018a), this map Dy :
L2(Q, F,P) — L*(Q), F,P) can be identified with a Borel function &,, : R? — R% i.e.,
Dg(Y) =&, (Y) as. for all Y € L?(Q, F,P) with p¥ = pg. This Borel function &, is then
called the Lions derivative of G : P2(R?) — R at py € Po(R?) (Carmona and Delarue,
2018a, Definition 5.22), and we will denote it by 8£G(p0, )= (4)-

On the other hand, when P3(R?) is equipped with the Wasserstein distance W, we can
borrow the idea from convex analysis to define the subdifferential (and superdifferential)
of G : P2(R?) — R at each p € Po(R?); see e.g., Definition 5.62 in Carmona and Delarue
(2018a) and Definition 10.1.1 in Ambrosio et al. (2005). The Wasserstein derivative of G
at p € P2(R), denoted by 8ZVG(p, -), is then defined as the unique element (if it exists) that
resides in both the sub- and superdifferential of G' at p € Pa(RY).

Now, consider G : P2(R?) — R such that V%(p, 1) is well-defined for all p € Po(R?).
By Proposition 5.48 and Theorem 5.64 in Carmona and Delarue (2018a), under additional
continuity and growth conditions on V%(p, -), if the Lions derivative 8§G (p,-) exists and
is continuous, then all three kinds of derivatives in discussion coincide, i.e.,
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Despite this, V%(p, -) is more general in that it can be defined on P(R?), without the need

of the Py(RY) structure. It thus suits our study particularly; see the last two paragraphs in
Section 2.3.

2.3 Problem Formulation

We aim at solving the problem (5) through ODE (16), with G(+) therein taken to be J(-) =
JSD(+, pa). The first task is to find the linear functional derivative ‘g—‘], which is characterized
explicitly in the next result (whose proof is relegated to Appendix A.3).

Lemma 6 J: P(R%) — R, defined in (5) has a linear functional derivative given by

6 _1 2p(y)
Sp v =5 (pd(y) +p(y)

Thanks to (18), once we replace G by J in ODE (16), we obtain ODE (2). Our goal
is show that this distribution-dependent ODE has a (unique) solution Y and the induced
density flow {p'*};>¢ converges in P(R?) to the data distribution pq.

Let us stress that we will work with the general space P(R?) (under the total variation
distance), instead of its subset Po(R?) (under the W, distance), although the latter is more
tractable with a comprehensive theory well-developed (see e.g., Ambrosio et al. (2005)).
Such a non-standard setup is essential to our study, for two reasons.

First, working with Py(R%) implicitly assumes pq € Po(R?), while pg, as the underlying
data distribution, generally lies in P(R%). Second, using the total variation distance ensures
that our study is consistent inherently. Since we chose in the first place to measure the
distance between densities by JSD(:,-) in (3), such a distance function should be kept
consistently throughout our analysis. Particularly, the desired convergence “p¥* — pq”
should be established as JSD(p¥*, pq) — 0. As convergence in JSD is equivalent to that in
total variation (Remark 2), using the total variation distance is a valid, consistent choice.

) , YpePRY and y € RY. (18)

3. Main Results and Contributions

We will impose the following standing assumption on pq € P(R%).

Assumption 6.1 pg >0 on R?, Inpg € L (RY) N HY(RY, puq).

loc

The local boundedness of In pgq ensures that the weighted Sobolev space W1P(R?, 11q) is

2
a Banach space for all p > 1. Also, Inpg € H'(R?, p1q) entails f]Rd W’%dd'dy < 00, i.e., the
Fisher information of uq (relative to the Lebesgue measure) is finite.
Let us present below the main theoretic result of this paper.

Theorem 7 There exists a solution Y to ODE (2) such that n(t) := p¥* € P(RY) fulfills
1 € C([0,00); L'(RY),  1/pa € LT([0,00) x RY), and V1 € Ly ([0,00) x RY).  (19)

Moreover, for any such a solution Y, p¥* — pq in L'(R?) as t — oc.
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Theorem 7 constructs an “amenable” solution Y to the gradient-descent ODE (2), such
that p¥* evolves continuously in ¢, bounded by a multiple of pq, and its (weak) derivative
is locally integrable. Moreover, its density flow {p** }>0 leads us to the data distribution
pd- This suggests that one can uncover pgq by simulating ODE (2) and a corresponding
algorithm is developed in Section 3.1 below. The proof of Theorem 7, based on all the
developments in Sections 4, 5, and 6, is relegated to the end of Section 6.

It is worth noting that gradient flows have recently been used in many implicit generative
models (see Gao et al. (2019), Gao et al. (2020), Ansari et al. (2021), and Mroueh and
Nguyen (2021), among others). Several mathematical issues, however, persist in this line
of research. A common, and perhaps most critical, one is the “inconsistent use of distance
functions”: one proposes to minimize the distance (e.g., an f-divergence) between the
current density p; and pq along a gradient flow, but carries out theoretic proofs (partially
or entirely) under a different distance function (e.g., Wh).

As the choice of a distance function may not be arbitrary but dependent on the actual
data set (see McCulloch and Wagner (2020)), this can be problematic: even if Wa(py, pq) —
0 is proved, simply because the metric W» is not equivalent to an f-divergence, p; need
not get close to pq under an f-divergence. That is, convergence under the desired distance
function (i.e., the initially chosen one) remains in question. Also, the use of W, readily
requires pq to lie in Po(R?), where W; is well-defined, while pq generally belongs to P(R?).

Theorem 7, remarkably, overcomes all the mathematical issues. By taking the tar-
get distance function to be the Jensen-Shannon divergence (i.e., JSD in (3), a specific
f-divergence), we work directly with the general space P(R%). The actual distance function
in use is the total variation distance (i.e., the L' distance), which is equivalent to JSD.
Hence, “p¥* — pq in L'(R%)” established in Theorem 7 readily implies “JSD(p**, pq) — 0”
along the same gradient flow. That is, convergence to pq € P(R?) is not only achieved, but
achieved under the originally chosen target distance function.

This does not come at no cost. Working generally in P(R%) (under total variation)
deprives us of the full-fledged gradient-flow theory in Po(R?) (under W), as elaborated in
Ambrosio et al. (2005). The first major challenge is the existence of a solution to ODE (2).
While we can view (2) as a degenerate McKean-Vlasov SDE without the diffusion term,
the involved distribution-dependence is unusual. A McKean-Vlasov SDE typically involves
L(Y:), the law of the state process Y at time ¢. In general, an interacting particle system can
be constructed so that the particles’ empirical measure approximates £(Y;), which leads to
a solution to the SDE in the limit. This classical framework does not easily accommodate
other forms of distribution-dependence. Specifically, (2) depends not on L(Y;) explicitly,
but rather on the Radon-Nikodym derivative of £(Y;) w.r.t. the Lebesgue measure (i.e.,
p¥t € P(R?)) and its Euclidean derivative (i.e., Vp'*). To overcome this, we first derive
the nonlinear Fokker-Planck equation associated with (2) and show that it has a unique
weak solution u, by the Crandall-Liggett theorem for differential equations in Banach spaces
(Section 4). Next, from this function u, we build a solution {Y;};>0 to (2) that satisfies
(19), using the superposition principle for SDEs (Section 5).

Another hurdle to Theorem 7 is the lack of suitable stochastic calculus. In P(R%) (under
total variation), the dynamics of ¢t — JSD(p¥*, pq) does not follow from the standard Ito
formula for a flow of measures, which is established only in Py (R) (under Ws). We instead

10
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carry out a detailed analysis of the nonlinear Fokker-Planck equation, which reveals how
p¥t evolves in P(RY) (Section 6).

3.1 Simulating ODE (2)

To simulate ODE (2), one quickly realizes the challenge that its dynamics depends on pyq,
which is unknown and simply what we intend to uncover. To circumvent this, we choose
not to estimate p'* € P(RY) in (2) explicitly, but to find a function G; : R® — R? (for
a fixed n < d) such that G¢(Z) approximates Y;, where Z is a fixed R"-valued random
variable (independent of t) that can be easily simulated (e.g., the multivariate Gaussian).
By substituting p&+(%) for p** in (2), a direct calculation shows that (2) takes the form

VD(Yy)
2(1 = Dy(Yr))

pa(y)
pay) + p& @ (y)

dy, = dt, where Dy(y) := vy € RY. (20)

Remarkably, when Gy is given, one can estimate D; without the knowledge of pgq or p&t(%).

Indeed, by Proposition 1 in Goodfellow et al. (2014), D, is the unique maximizer, among
all D : R? — [0,1], of Eye,,[In D(y)] + E, .z [In(1— D (Gi(2)))]. Therefore, it can be
numerically approximated through data sampling.

In Algorithm 1 below, we take G : R — R? and D : R? — [0, 1] to be artificial neural
networks and update their parameters (denoted by 6 and 6p) recursively; namely, (G, D)
represents the time-varying (Gy, D) introduced above. Specifically, (i) we follow the first
half of Algorithm 1 in Goodfellow et al. (2014) to estimate D with G given (Lines 2-4); (ii)
plug D into (20) to simulate Y over a small time step € > 0, resulting in the new points
{y@}m (Lines 5-6); (iii) update G' by reducing the mean squared error (MSE) between
{G(z)}m, and {yP}7, (Line 7). In (22), {G(2()}7, represents the realizations of Y; at
some ¢ > 0. Through ODE (20), {G(2()} | are transferred to the points {y®}7, which
represent the realizations of Y;y.. Hence, the purpose of (iii) above is to modify G so that
{G(z%) ™, can properly represent Y; ., instead of the previous Y;.

Algorithm 1 is a specific, straightforward way to simulating ODE (2). Modifications can
potentially be made based on more sophisticated simulation techniques for ODEs.

3.2 Connection to GANs

GANSs in Goodfellow et al. (2014) encode the competition between a generator and a dis-
criminator. The generator produces fake data points by sampling G(Z), where Z is a fixed
random variable with a (simple) density p? € P(R") and G : R® — R? is a (complicated)
function chosen by the generator. To each data point y € R? (which can be real or fake),
the discriminator assigns D(y) € [0, 1], her subjective probability of y being real, where
D:R? - [0, 1] is chosen by the discriminator. The resulting min-max game is given by

min max {Eyps[n DY) +Ez.,z[In(1-D(G(2)))] }. (24)

Thanks to Theorem 1 in Goodfellow et al. (2014), this minimax problem is equivalent to
ming.gn_,ga JISD(pF@), pg) and it admits a minimizer G* such that p& (%) = py. The GAN
algorithm (i.e., Algorithm 1 in Goodfellow et al. (2014)) is proposed to find G* (and thus
pd) numerically, through recursive optimization between the two players.

11
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Algorithm 1 Simulating ODE (2)
Require: m e N, e >0
1: for number of training iterations do
2: e Sample minibatch of m noise samples {2(1), ey z(m)} from noise prior pZ.
3: e Sample minibatch of m examples {z(1, ..., (™} from the data distribution pq.
4: e Update D : RY — [0, 1] by ascending its stochastic gradient:

Voo =30 [0 10 (1~ b (6:))]. @)

1=

5: e Sample minibatch of m noise samples {2(1), e z(m)} from noise prior pZ.
o Set Y = {y), .. 4™} by

VD(G(z))
2(1— D(G(z0))) "

y 9= GzD) + Vi=1,2,..,m. (22)

7 e Update G : R” — R? by descending its stochastic gradient:
1 ¢ i i
Vag 1y DIGE) - 5P (23)

8: end for

Somewhat surprisingly, Algorithm 1 above, designed to simulate ODE (2), is equivalent
to the GAN algorithm in Goodfellow et al. (2014).

Proposition 8 Algorithm 1 above is equivalent to the GAN algorithm (i.e., Algorithm 1
in Goodfellow et al. (2014)), up to an adjustment of the learning rates.

Proof As the update of D in (21) is the same as that in the first half of the GAN algorithm,
it suffices to show that the update of G via (22)-(23) is equivalent to that in the second half
of the GAN algorithm. By a direct calculation of (23), we get

1 & ; 2 -
VQGEZ‘G(Z())_ EZ W) - Vo G(z17)
i=1 -1

_m;<2(1—D(G(z(i)))) > Vo, G(z") = eV, — Zln (1 - D(G(zM))),

where the second equality follows from (22). The result follows by noting that the right-
hand side above is precisely the update of G specified in the GAN algorithm multiplied by
e > 0; see the last equation in (Goodfellow et al., 2014, Algorithm 1). |

Proposition 8 yields an intriguing interpretation for GANs: the non-cooperative game
between the generator and discriminator can be equivalently viewed as a cooperative game

12
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between a navigator and a calibrator. The navigator aims to sail across the space P(R%)
following ODE (2). At any initial location in P(R?) (represented by an initial G : R™ — R%),
he finds that he cannot set off right away, as the dynamics of (2) involves the unknown
pd- The calibrator comes into play to “calibrate” the dynamics of (2)—mnamely, estimate
D : R? — [0,1] in (20) using (21), which is the discriminator’s optimization in the GAN
algorithm. Once the calibration is done, the navigator travels a short distance in P(R%)
following (2), updates G : R™ — R? to reflect his new location, and asks the calibrator to
re-calibrate. This corresponds to (22)-(23), equivalent to the generator’s optimization in the
GAN algorithm (by Proposition 8). To the best of our knowledge, a possible “cooperative”
view of GANSs was only briefly touched on, without details, at the end of p. 21 in Goodfellow
(2016). Proposition 8 materializes this idea with great specifics: the two players cooperate
precisely to simulate the gradient-descent ODE (2).

Proposition 8 also contrasts with a common practice in implicit generative modeling.
Many algorithms have replaced the minimization part of a given GAN algorithm by a kind
of gradient descent. For example, Gao et al. (2019), Ansari et al. (2021), and Gao et al.
(2020) replace the minimization part of f-GAN by gradient descent in the Wasserstein space
Py(R?), and Mroueh and Nguyen (2021) replaces the minimization part of MMD GAN by
gradient descent on a statistical manifold. The resulting gradient-flow algorithms are then
advocated as alternatives (and improvements) to the initially-given GAN algorithms. Con-
trary to the common practice “modifying GANs to form a gradient-flow algorithm”, Propo-
sition 8 shows that the (vanilla) GAN algorithm itself, without any modification, already
computes gradient flows. As detailed in Section 3.3 below, this gradient-flow identifica-
tion of GANs crucially reveals an unapparent fact: the (vanilla) GAN algorithm implicitly
involves an MSE fitting, which can cause or aggravate the divergence of GANs.

Note that Algorithm 1 resembles the gradient-flow algorithms in Gao et al. (2019) and
Gao et al. (2020), but a subtle difference sets them apart. In Algorithm 1, the estimation
of D (or equivalently, p&(%) /pq) is coordinated with the gradient-descent update of G, so
that the zero-sum game (24) of GANs can be recovered. In Gao et al. (2019) and Gao
et al. (2020), as the estimation of p&(%)/pq and the update of G are attached to different
objectives, their algorithms represent non-zero-sum games.

3.3 Implication for the Divergence of GANs

Mathematically, the recursive optimization in the GAN algorithm may compute either the
desired min-max game value (24) or the corresponding max-min game value. If it computes
the latter, the algorithm easily diverges in the form of mode collapse, i.e., the generator
keeps producing G : R” — R? that maps many distinct z € R™ to similar y € R? and fails
to recover the entirety of pg; see Section 5.1.1 of Goodfellow (2016). Beyond this typical
“max-min game” diagnosis, our gradient-flow analysis zooms in on the GAN algorithm and
points to an additional cause for the divergence of GANSs.

By the proof of Proposition 8, the update of G in the GAN algorithm can be decom-
posed into two steps: generating new points {y®}7, along ODE (2) (i.e., (22)) and fitting
{G(z)}™, to {yD}™, by minimizing the MSE (i.e., (23)). While the MSE fitting demands
point-wise similarity (i.e., G(z(") is close to y*), for i = 1,2, ...,m), what we truly need is
only set-wise similarity (i.e., the distribution of {G(2(")}™, is similar to that of {y®}7,).

13
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#(2) #(1) £3) 7(4) 7(6)  £(5) #(1) #(2) 7#3) 7(4)z(5) 7(6)

o) y@ YO @y y® e Y@ ) (DO y®

AN
AR/ AR /AR

LD L@ L(3),(4),0) L(6) () L2 L(3),(4),0) 2(6)

(a) Point-wise similarity (b) Set-wise similarity

Figure 1: An initial G : R — R maps samples {z(}8_, of Z to {x(W}S_,. Two distinct G : R — R
serve to relocate {z(V}%_, to approximate {y(¥}%_ | the new points obtained in (22),
under the criterion of point-wise similarity and set-wise similarity, respectively. The red
circles represent () := G(z("), i =1, ..., 6.

In Figure 1 (with n = d = 1), for an initial G : R — R and samples {z()}5_ of Z, each
@ = G(2) is transported to y® via (22). Our goal is to modify G such that {z(V}¢_,
becomes similar to {y(i)}?zl. To achieve point-wise similarity, the MSE fitting (23) moves
each z() = G(z(i)) toward y(. But since the distance from 2 to 4 can be quite large,
the movement of (Y will stop halfway, once the gradient updates Vo, in (23) come to a halt
near a local minimizer or saddle point in the parameter space for . In Figure 1(a), (@
stops halfway at (") := G(z()) before reaching 39 (except i = 4, for which (¥ and y*
are close), where G is the updated G obtained from (23). As the distribution of {#("}5_,
is distinct from that of {y(i) 8 |, we go astray from the gradient flow toward pq.

The takeaway is that the MSE fitting alone can cause GANs to diverge. When p&(%)
is distinct from pq, the term Z(IV_Dilgl(/;)) in ODE (20) can be large, so that G(z() and 3
in (22) can be far apart. In this case, as explained above, the MSE fitting (23) tends to
drive us away from the gradient flow toward pq. More precisely, the updated G moves
p&2) off the gradient flow, such that it does not move closer to pq in any reasonable sense.
As the updated p©%) remains distinct from pgq, the same argument above indicates that
another training iteration is unlikely to help: it will simply update p&(%) again to another
distribution distinct from pq. That is, Algorithm 1 (equivalent to the GAN algorithm) will
generate indefinitely one distribution after another, all of which stay distinct from pq. This
is reminiscent of mode collapse in Figure 2 of Metz et al. (2017), where p%%) rotates among

several distributions distinct from pgq and never converges.

In fact, if (9 = G(2()) is allowed to move toward a nearby y?), with j possibly different
from ¢, the update of G can be made more effective. In Figure 1(b), as each 2 only needs
to travel a short distance to a nearby y\@), it is likely to reach (or get very close to) y\),
before the gradient updates Vj,, come to a halt near a local minimizer or saddle point. The
resulting distribution on R of {G(2(?)}5_, is then very similar to that of {y("}_ . This
suggests a new potential route to encourage convergence of GANs: replacing the MSE (a

14
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measure of point-wise similarity) in (23) by a measure of set-wise similarity. This warrants
a detailed analysis in itself and will be left for future research.

4. The Nonlinear Fokker-Planck Equation

If there is a solution Y to ODE (2) (which remains to be proved), a heuristic calculation
shows that the density flow u(t,-) := p**(-) € P(R?), t > 0, satisfies the nonlinear Fokker-
Planck equation
0 1 Vou(t \% Vou(t

u(t,y):2le<< 'LL( 73/) pd(y)+ u( 7y)

ot u(t,y)  paly) +ult,y) ) u(t,y)) ;o u(0,y) =po(y). (25

In view of this, we will construct a solution to (2) in a backward manner. In this section, we
will establish the existence of a unique solution u to (25). The function v will then be used,
in Section 5 below, to construct a solution Y to (2). This backward method was recently
introduced in Barbu and Réckner (2020), for a McKean-Vlasov SDE depending on p't. As
we will see, our case is markedly more involved than Barbu and Réckner (2020), due to the
additional dependence on Vp'* in (2).

4.1 Preparations

For any fixed density flow {p;}i>0 in P(R?), whenever p;(-) is weakly differentiable, we
introduce the infinitesimal generator

1 <V,0t(t, y)  Vpa(y) + Vou(t,y)
2\ pult,y) pa(y) + pe(t,y)

Thanks to integration by parts, we define a weak solution to (25) as follows.

Lyo(t,y) = — > -V, Ve Cl’l((O, 00) X ]Rd). (26)

Definition 9 We say u : [0,00) — P(R?) is a weak solution to the nonlinear Fokker-Planck
equation (25), if u(t,-) is weakly differentiable for a.e. t > 0 such that

| [t + uepttm) ute. vt =0, Vo e CL(0.00) xR (2)

Remark 10 As we assume ¢(t,-) € C2(R?) in (27), using integration by parts twice gives

_ 1Vpa(y) + Vpi(y) 1
/Rd (‘Cu(t,)so(t?y)) U(t,y)dy - /]Rd <2 pd(y) + pt(y) : VSO + 2A90>u(t7 y)dy

Hence, (27) can be equivalently stated as
/0 /R ) <‘Pt(tay) + Eu(t,.)so(t,y)) u(t,y)dydt =0, Yo e CL2((0,00) x RY), (28)

where the generator Ept is defined, for any fized density flow {p;}i>0 in P(RY), by

B _ 1Vpa(y) + Vpu(y)
Lop(t,y) = 2 paly) + pe(y)

That is to say, the Fokker-Planck equation (25) is equivalent (in the weak sense) to

Oy~ iy (L VPay) + Vu(t,y)
or V) =4 (2 pa(y) +u(t,y)

1
Vot 5Ap, Vpe CY2 (R, x RY). (29)

) + gAultn) u0.0) =) (30)
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To find a weak solution u to (25), or equivalently (30), let us turn (30) into a more
amenable PDE. As pg > 0 (Assumption 6.1), we consider the ansatz

v(t,y) = ., Y(t,y) € [0,00) x R%

It follows that u; = pque, so that

L (Tlea

Voulto)) 15,
pdt+u

1 1
SAu=—Zdiv(V -
u>—|—2 u 2d1V< (pa + u) 1t o 5

~ paV(1+v)+(1+v)Vpq
1+

= —% div <V,0d
1 . 1
=3 div(paVIn(l +v)) = 3 (paAln(l +v)+ Vpq - Vin(l +v)).

Hence, (30) can be written in terms of v as

1
vt = 5Au (L + ), v(0) = po/pa- (31)
where the operator A, is defined by
Ay, =A+Vinpg-V. (32)

Remark 11 Thanks to integration by parts,
/ (Apgw)edpg :/ (Aw + Vinpg - Vw)pduq = —/ Vw - Vedpa, Yw,p € C2(RY).
Rd Rd R

That is, we can view A, as the “Laplacian” in the weighted Sobolev space WLQ(Rd, pd)-
In light of Remark 11, we define weak solutions to (31) as below.

Definition 12 We say v : [0,00) — L' (R%, 1q) is a weak solution to (31) w.r.t. pq, if

& 1
/0 /Rd <v(t,y)s0t(t, y) + 5 (1 +o(t, y))AudsO(t,y)> duadt =0, Vi € C2((0,00) xRY).
(33)
Note that a weak solution to (31) is defined not under the standard Lebesgue integration
on R? (in contrast to (27) and the classical definition of weak solutions), but under the
integration w.r.t. uq, the probability measure on R? induced by pq € P(R?).

Now, let us recast the transformed Fokker-Planck equation (31) as a nonlinear Cauchy
problem in the Banach space L'(R?, q). Specifically, under the condition

po < Bpq for some (>0, (34)

we define the operator A : D(A) € LY(R?, jug) — LY(R?, pq) by

1 1 1
Av = _iA”d In(l+4v) = —iAIn(l +v) — §V1npd -Vin(l+v), (35)
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where
D(A) := {v e LR pa) N HY(R?, piq) : 0 <w < B, Av € L'(RY, pa)}

and the differentiation in (35) is understood in the weak sense. Then, (31) can be expressed
as the Cauchy problem

v+ Av =0, v(0)=po/pa. (36)

Remark 13 Condition (34) states that the Radon-Nikodym derivative of the initial proba-
bility measure (induced by py € P(RY)) w.r.t. the underlying measure pq is bounded. This
covers all bounded and compactly supported py € P(RY). Also, note that 3 > 1 necessarily.
Our first finding is that both operators A and —A,, are “accretive” in L' (RY, pig).

To properly state this property, we will denote by I the identity map on L'(R%, uq) (i.e.,
I(v) = v forallv € L'(RY, 11q)) in the next result, whose proof is relegated to Appendix B.1.

Lemma 14 (i) The operator A : D(A) — L'(R%, uq) is accretive. That is,

||U1 — UQHLl(Rd,,ud) < ”(I+ )\A)Ul — (I + )‘A)UQHLl(Rd,,ud)? Yy, v9 € D(A), A> 0.

(ii) The operator —A,, : D(=A,,) — LY(R%, pg), with
D(=A,,) = {w € LB ) 0 HY(RY, 1) - — A0 € L' (R, o)},
is accretive. That is, for all wi,ws € D(—=Ay,) and X > 0,
s — w3 gy < 1T = A = (T = Ay w2l s -
As shown in Section 4.2 below, the accretiveness of A and —A,,; will play a crucial role

in proving the existence of a unique weak solution to (36). To get a glimpse of the potential
use of the accretiveness, let us look at the equation (I + AA)v = f.

Definition 15 For any A > 0 and f € L' (R?, jug), we say v € D(A) is a weak solution to
(I +XA)v=f wrt. uq if

L (vp) + 510+ o)) ) dia = [ S)ot)da, o € CHRY. (31)
Rd Rd

Corollary 16 For any A > 0 and f € L'(R?, puq), (I + AA)v = f has at most one weak
solution v € D(A) w.r.t. pq. Such a solution, if it exists, satisfies f]Rd vdpug = fRd fdug.

Proof The uniqueness part follows from Lemma 14 (i). Let v € D(A) be the unique weak

solution to (I +AA)v = f w.r.t. uq. Since C2(R?) is dense in H{ (R?, uq), (37) in fact holds
for all ¢ € HJ(R?, pq). Taking p =1 € H}(R?, pq) in (37) yields [povdpa = [pa fdpa. W

17



HUANG AND ZHANG

4.2 Existence and Uniqueness

Thanks to the accretiveness of A in Lemma 14, we can invoke the Crandall-Liggett theorem
to identify a sufficient condition, i.e., (38) below, for (31) to admit a weak solution w.r.t. pq.
To properly state the result, we denote by D(A) the closure of D(A) under the L'(R?, j1q)-
norm. Also, for any A > 0, we introduce the range of I + AA in L'(R?, 11q), defined by

R(I+)A) :={f € L*(R%, uq) : (I + AA)v = f has a weak solution v € D(A) w.r.t. uq}.

By Corollary 16, for each f € R(I + AA), the corresponding weak solution v € D(A) is
unique. Hence, we will constantly write v = (I + AA)~1f.

Proposition 17 Let pg € P(R?) satisfy (34). If

D(A) C R(I+MA) for A > 0 small enough, (38)

there exists a weak solution v : [0,00) — D(A) to (31) w.r.t. ug (cf. Definition 12). More-
over, v is continuous (i.e., v € C([0,00); LY(R%, 1uq))) and satisfies

t —n
v(t) = lim <I+nA> v(0) in LY(RY pq), VWt >0, (39)

n—00

where the convergence is uniform in t on compact intervals.

Proof By definition, {v € L'(R%, uq) : v € CX(R?), 0 < v < B} € D(A). As CX(RY) is
dense in L'(R?, pq), we have {v € L'(R?, 1q) : 0 < v < 8} € D(A). By (34), this implies
po/pa € D(A). Due to the accretiveness of A in Lemma 14 (i), (Barbu, 2010, p.99, (3.5))
is satisfied with w = 0; that is, A is w-accretive with w = 0, in the terminology of Barbu
(2010). Under the w-accretiveness of A, (38), and po/pg € D(A), the Crandall-Liggett
theorem (see e.g., Theorem 4.3 in Barbu (2010)) asserts that (36), or equivalently (31), has
a unique mild solution v € C([0,00); L'(R%, uq)) (in the sense of Definition 4.3 in Barbu
(2010))), which fulfills (39). Note that the operator (I +¢cA)~! : D(A) — D(A) is well-
defined for € > 0 small, thanks to (38) and Corollary 16, so that the right-hand side of (39)
is well-defined. It remains to show that the mild solution v is a weak solution w.r.t. uq.

As stated below Theorem 4.3 in Barbu (2010), the mild solution v € C([0, 00); L*(R%, 11q))
satisfies the following: for ¢ > 0 small enough, by taking v° := pg/pq and v* = (I +
eA)~ =t € D(A) for all i € N, we have

v(t) = il_r% ve(t) in LY(RY, yq), uniformly in ¢ on compact intervals, (40)

where v, : [0,00) — LY(R? ugq) is defined by v.(t) := v'~! for t € [(i — 1)e,ic), i € N.
Observe from the construction of v, that

ve(t+€,y) —ve(t, y)
&

1
- §A”d In(1+v.)(t+¢,y) =0.
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Hence, for any ¢ € ol ’2((0, o0) x RY), by using the calculation in Remark 11 twice, we get

ve(t+€,y) — ve(t, 1
0:/Rd( < ( ?/2 e( y)¢(t+5,y)—2ln(l—i—vg)(t—i—s,y)Audgo(t—i—e,y)) dug

_ /Rd <(vs<p)(t tey) = wp)by) ety —ety)

9 9

1
-3 In(1+ve)(t+&,y)Apu,p(t + e, y))dud.

Integrating the above equation over t € (0, 00) yields

o0 t4ey) — ot 1
L7 L (ot 2EEEDZ D e+ ) Aol + 20 )
0 R

= i/og /Rd(vecp)(t,y)dﬂddt-

Ase — 0, by ¢ € C22((0,00) xR and 0 < v. < 8 Ve > 0 small (as v, € D(A) by construc-
tion), the left-hand side tends to [;° [pa (ver + 5 In(1 + v)Au @) duadt and the right-hand
side vanishes. That is, (33) is satisfied, i.e., v is a weak solution to (31) w.r.t. pgq. [ |

To establish the sufficient condition (38), we need to show that as A > 0 is small enough,
there exists a weak solution v € D(A) to (I + AA)v = f w.r.t. pg, for any f € D(A). To
this end, we consider the change of variable w := In(1 + v) and rewrite (I + AA)v = f as

A A A
—§Aﬂdw:—EAw—gvmpd-Vw:f—i—l—e“’. (41)

To find a weak solution to (41), we use the method of subsolutions and supersolutions,
motivated by Evans (Evans, 1998, Section 9.3). Notably, the arguments therein needs to be
extended from the integration w.r.t. Leb over a bounded domain to the integration w.r.t.
pq over R?. The detailed derivation is relegated to Appendix B.2 and it leads to, in fact, a
stronger version of (38).

Lemma 18 D(A) C R(I + AA) for all A > 0. That is, for any A > 0 and f € D(A), there
exists a weak solution v € D(A) to (I + NA)v = f w.r.t. pq.

We now present the existence result for the nonlinear Fokker-Planck equation (25).

Corollary 19 If py € P(R?) satisfies (34), then the following hold.

(i) There exists a weak solution v € C([0,00); L'(R%, pq)) to (31) w.r.t. uq (see Defini-
tion 12). Moreover, 0 < v < 8, with § > 0 as in (34), and satisfies (39).

(i) There exists a weak solution u : [0,00) — P(RY) to (25) (see Definition 9), given by
u(t) := pqu(t) Yt >0, withv:[0,00) — LY(R?, puq) taken from (i). (42)

Moreover, u is continuous in the sense that u € C([0, 00); L*(R?)).
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Proof By Lemma 18 and Proposition 17, we obtain (i) immediately. For each ¢ > 0,
thanks to Corollary 16, v"(t) := (I + £ A)~"v(0) is well-defined and satisfies [pq 0" (t)dpq =
Jga v(0)dpq for all n € N. Since v™(t) — v(t) in L'(R?, pg) (recall (39)) and py = u(0) =

pav(0), we get
[ v0dus = [ o@dna= [ puy=1. (43)

Using (42) again then gives [pa u(t)dy = [pa pav(t)dy = [ga v(t)duq = 1. This, along with
u(t) = pqu(t) > 0, shows that u(t) € P(RY). Now, for any {t,} in [0,00) with ¢, — ¢ >0,

/]Rd |u(ty)—u(t)|dy —/ |pav(tn)—pav(t)|dy —/ |v(ty,)—v(t)|duqg — 0 asn — oo, (44)

where the convergence 1s due to v € C([0,00); LY(R?, 11q)). Hence, u € C(]0, 00); L' (R%)).
Finally, for any ¢ € C2%((0,00) x R%), observe from (42) and integration by parts that

1
/ / ot + Euu)@ udydt = / / (uw PATY gy ( “ ch) + uAs@) dydt
R pd +u 2
= / / <vcpt - 7(1 +v)div (1V<p> + vAap) dpqdt
R4
/ / <v<pt V(p) duqdt = / / <vg0t — fVIn(l +v) - V(p) dpqdt
Rd 1+ ) Rd

= / / (vgpt + —In(1+ U)Aud(p> dpqdt = 0, (45)
0 R4 2

where the fifth equality stems from Remark 11 and the last equality holds as v satisfies (37).
As such, u satisfies (28), and thus (27) by Remark 10, and is then a weak solution to (25). B

To establish the uniqueness of solutions v to (31), we observe that (31) is an initial-value
problem that involves the modified Laplacian A,,,, which is applied to v through a nonlinear
function (i.e., In(1 + v)). In view of this, the uniqueness arguments in Brézis and Crandall
(1979), for initial-value problems where the usual Laplacian A is applied in a nonlinear way,
are expected to be useful. In Appendix B.3, a delicate plan is carried out to generalize the
arguments in Brézis and Crandall (1979) to our setting where A and the Lebesgue measure
are replaced by A, and pq. It ultimately shows the following.

Proposition 20 If v1,vs € C([0,00); LY(R?, p1q)) N L ([0,00) x RY, puq) are weak solutions
to (31) w.r.t. uq, then

o
/ / (v1 — va)pdugdt =0, Ve € CH2((0,00) x RY). (46)
0o Jre
Now, we are ready to present the main result of this section.

Theorem 21 Let py € P(RY) satisfy (34). Then, u : [0,00) — P(RY) in (42) is the unique
weak solution to the Fokker-Planck equation (25) among the class of functions

¢ = {n € C(0,00); L*(R) : n/pa € LT([0,00) x R }. (47)
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Specifically, if @ : [0,00) — P(RY) is a weak solution to (25) that belongs to C, then u(t,-) =
u(t,-) Leb-a.e. on R for all t > 0.

Proof We know from Corollary 19 that u : [0,00) — P(RY) given in (42) is a weak
solution to (25) and it belongs to C. Suppose that there exists another weak solution
@ : [0,00) — P(R?) to (25) that belongs to C. Then, © := @/pq is nonnegative and bounded.
By the same calculation in (44) (with u, v replaced by @, 7), we see that @ € C(R; L' (R%))
implies © € C(Ry; L'(R%, uq)). Moreover, by repeating the arguments in (45), but in a
backward manner, we see that “u fulfills (28)” (as u is a weak solution to (25)) implies “0
fulfills (33)”, i.e., ¥ is a weak solution to (31) w.r.t. uq. Now, in view of 4 = pqv and (42),
we conclude from Proposition 20 that

| [ @ edyit = [ [ (0= v)gduadi =0, ¥ € C12((0,00) x B,
0 R4 0 R4

where v is given as in Corollary 19 (i). This implies @(t,-) = u(t,-) Leb-a.e. on RY, for
Leb-a.e. t > 0. In the following, we show that this equality can be strengthened to hold for
all t > 0. Recall u € C([0,00); L}(R?)) from Corollary 19. For any ¢ > 0, this implies that

s—t

tim | (o) sy@—/w Jult,y)dy W € Cy(RY). (48)

Similarly, as @ € C(]0,00); L*(R%)), (48) also holds with u replaced by @. Now, take {t,}
in [0, 00) such that t,, — t and @(t,, ) = u(t,,-) Leb-a.e. on R for all n € N. Then, for any
(RS Cb(Rd)v

Rdw(y)ﬂ(t,y)dy = lim [ (y)ultn, y)dy = lim [ o(y)u(tn, y)dy —/ Y(y)u(t,y)dy,

Rd Rd

which readily shows @(t, ) = u(t,-) Leb-a.e. on R, [ ]

5. Solutions to Density-Dependent ODE (2)

In this section, we focus on constructing a solution ¥ to ODE (2). The unique weak
solution u : [0,00) — P(RY) to the Fokker-Planck equation (25) (Theorem 21) already gives
important clues: as mentioned above (25), if (2) admits a solution Y, the density flow
{p¥t}1>0 should (heuristically) coincide with {u(t)};>0. The question now is how we can
actually construct such a solution Y from the knowledge of {u(t)}+>0.

To answer this, the first challenge is what constitutes a “solution” to (2). As opposed
to standard ODEs, (2) involves two different levels of randomness at time 0 and they
trickle down as time passes by (through the otherwise deterministic dynamics), leaving Y;
a random variable for all + > 0. To see this, we follow the idea “p¥* = u(t) for all ¢t > 07,
where u : [0,00) — P(R?) is the unique weak solution to (25), and rewrite (2) as

_ 1 (VutY)  Vpa(Yi) + Vu(t, V)
=3 ( u(t, Yy) pa(Yz) + ul(t,Yr)

) dt, p* = py € P(RY). (49)
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Clearly, there is the randomness of the initial point y € R?, stated explicitly through
po € P(R?). Once an initial point y € R? is sampled, because the coefficient of the ODE
in (49) is not necessarily Lipschitz, there can be multiple continuous paths w : [0,00) — R?
with w(0) = y such that ¢ — Y; := w(t) solves the ODE (with the initial condition Yy = y).
In other words, there remains the randomness of which continuous path to pick among those
who solve the ODE in (49) (with Yy = y fixed). In fact, these two levels of randomness can
be jointly expressed by a probability measure P defined on the space of continuous paths

(2, F) = (C([0, 00); RY), B(C([0, 00); RY))),
where B(C(]0,00); R?)) denotes the Borel o-algebra of C([0, 00); RY).
Definition 22 A process Y : [0,00) x Q — RY is said to be a solution to (2) if
YVi(w) :=w(t) V(t,w) € [0,00) x €, (50)
and there exists a probability measure P on (Q, F) under which

(i) the density function n; € P(R?) of Y; : Q@ — R? exists and is weakly differentiable for
all t > 0, and ng = pp Leb-a.e.;

(ii) the collection of paths

oy L[ (Tnes)  Vpalwls) + In(wle))
{""GQ' =)~ [ <77s(w(8)) pa(@(3)) + 7s(w(s)) )‘”20}

has probability one.

Remark 23 In Definition 22, P serves to sample continuous paths w : [0,00) — R? from
the set in (ii), i.e., among those who fulfill ODE (2), in a way that the density of w(0)
coincides with py € P(R?).

To show that a solution to (2) exists (in the sense of Definition 22), we will resort to Tre-
visan’s superposition principle (Theorem 2.5 in Trevisan (2016)). To this end, appropriate
integrability needs to be checked first.

Lemma 24 Let pg € P(RY) satisfy (34). Then, the weak solution v € C([0,00); L' (R, uq))
to (31) w.r.t. ug, specified as in Corollary 19 (i), satisfies

/0 V0132 gyt < (1 + B)5°. (51)

Proof Recall that v is constructed using the Crandall-Liggett theorem (see Proposition 17)
and thus satisfies (40), which involves v, : [0,00) — L'(R? uq) defined by v.(t) := (I +
eA)~=Dy(0) for t € [(i —1)e,ie) and i € N. By writing z; = v.(i¢) for i € NU{0}, we have
(I +eA)z; = z;— for i € N. Let us multiply this equation by z; and integrate it w.r.t. ugq.
By Remark 11, we get

/ z?d,ud + g VIH(I + ZZ) -Vzidug = / zZi—12idpg, Vi e N.
R4 R4 R4
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Thanks to 0 < z; < 3 (as z; € D(A)) and Young’s inequality, the above yields

12 € 12 Lo e Lo 2 :
”Z’L”LQ(Rd’ud) + m”VZ,||L2(Rd#d) § §||ZZ_1||L2(Rd,,ud) + §|’Z7,”L2(Rd”ud)7 Vi € N.

That is to say,

eIVl gt gy < (14 B) (ot Baqga g = il ) o Vi€ N,

By summing up the above relation over all i € N, we have

o0

/€ vas(t)||%2(Rd7Md)dt = Z€||VZ¢||%2(Rd,Md) <1+ ﬁ)”ZOH%‘Z(Rdm) < (1+ )8,
i=1

where the last inequality follows from 0 < zy < f3, as zg = v:(0) = v(0) = po/pg € D(A);
see the proof of Proposition 17. As the above estimate holds for all € > 0 small enough, we
conclude that for any fixed £ > 0 small,

| IV 0t < (14 BB Ve € (0. (52)

This shows that for any j € {1,...,d}, {9y,v:}-c(0,q is bounded in L*((£, 00) xR% Leb ®p1q);
hence, 0,,v. converges weakly along a subsequence (without relabeling) to some n; €
L%((8,00) x R% Leb®puq). We claim that for Leb-a.e. t > &, the weak derivative Oy, v(t, )
exists and equals n;(t,-) € L?*(R%, j1q). For any 1) € L™((£,00)) compactly supported and
@ € C(R?), we deduce from (40), the bounded convergence theorem, and integration by
parts that

/E w/ﬂ&d vy, dydt = ;136/6 ¢/Rd Vetpy, dydt = _;E%/e @D/Rd Oy, vepdydt
= —lim/ / ayj%%d,uddt: —/ / nj%duddt: —/ 1/1/ n;pdydt.
20/ Jrd pd e Jrd " pd £ R4

Note that the fourth equality above follows from v¥p/pq € L?((£,00) x R Leb®puq) and
dy,ve — n;j weakly in L*((g, 00) x RY Leb®puq). By taking v € L®((£,00)) in the above
equation as ¥(t) = sgn( [ra(v(t)py, +nj(t)e)dy)1E(t) with E C (&, 00), we see that

/ v(t)py,dy = —/ n;(t)pdy for Leb-a.e. t > €.
R4 R4

As ¢ € C(R?) is arbitrary, this readily shows that for Leb-a.e. t > &, the weak derivative
Oy, v(t,-) is mi(t,-) € L?*(R%, p1q), i.e., the claim is proved. As a result,

oo

| IV B gt = [ 0O gyt < [ it 1900 g,

o > 2 2
ghggf/g V0 |2zt < (1+ )52,
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where the first inequality stems from 9, v (t,-) — n;(t,-) weakly in L?(R4, uq) for Leb-a.e.
t>¢andall j € {1,2,...,d} and the norm || - [| ;2 (ga ) being weakly lower semicontinuous,
the second inequality is due to Fatou’s lemma, and the last inequality holds because of (52).
As € > 0 can be chosen to be arbitrarily small, the desired result follows. |

A solution Y to (2) can now be constructed.
Proposition 25 Let py € P(R?) satisfy (34). Then, there exists a solution Y to (2).

Proof Let u : [0,00) — P(R?) be specified as in Theorem 21. Consider the collection of
probabilities v = {14 };>0 on RY, with dv;(y) := u(t,y)dy for all t > 0. Recall that u satisfies
(48), which directly implies that v is narrowly continuous. Also, as u is a weak solution
to the Fokker-Planck equation (25), v solves (2.2) in Trevisan (2016) in the weak sense.
Hence, to apply the “superposition principle” (Theorem 2.5 in Trevisan (2016)), it remains
to verify (2.3) in Trevisan (2016), which in our case takes the form

Va(t, y Vpa(y) + Vu(t,y)

//Rd ~ pay) +ulty)

Indeed, “a;” and “b;” in (2.3) of Trevisan (2016) correspond to the diffusion and drift
Vulty) _ Vpa(y)+Vulty)
u(t,y) pa(y)+ulty)
strength of u = pqv and v > 0 (see (42)), a direct calculation shows

J.

where the last inequality follows from Hélder’s inequality. Consequently,
Vu(t y ~ Vpa(y) + Vu(t,y)
.

/ /Rd a(y) +ult,y)

where the finiteness follows from Lemma 24. That is, (53) is satisfied.

Now, consider the coordinate mapping process Y in (50). Thanks to Theorem 2.5 of
Trevisan (2016), there exists a probability P on (€2, F) such that (i) Po (Y;)~! = 1; for all
t >0, and (ii) for any f € C%2((0,00) x R%), the process

tHf@Mm—ﬂ&MW—/(éf (7“ ““*wﬁwwyawm@ (54)

0 u pa+u

u(t,y)dydt < oo, VT > 0. (53)

coefficients in (49), which are zero and —% ( ) respectively. Now, on

Vu Vpg+ Vu
— = ————ud
u pd+u

dug </ |Vl dpg < HVUHB(Rd a)’

1+v

T
‘u(t,y)dydt < / V0 ()22 gyt < 00, VT >0,
0 b

is a local martingale under P. Note that (i) readily implies p'* = u(t) € P(R%) under P for
all t > 0, i.e., Definition 22 (i) is satisfied. For each i € {1,2,...,d}, by taking f(t,y) = v
for y = (y1, 2, ..., ya) € R? in (54), we see that

0 M) = o) - @O+ [

Oy, u _ Oy pa + Oy, u
U pPd+u

) (s

is a local martingale under P. By the same arguments on p. 315 of Karatzas and Shreve
(1991), we find that the quadratic variation of M® is constantly zero, i.e., <M(i)>t =0 for
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all t > 0, thanks to the lack of a diffusion coefficient in (49). As M® is a local martingale
with zero quadratic variation under P, Mt(l) =0 for all t > 0 P-a.s. That is,

t
(w(t))i = (w(0)); — ;/0 <az;u - 8%23 1 iyﬂ) (s,w(s))ds, for P-a.e. w € Q.

Because this holds for all i € {1,2,...,d}, we conclude that

1 [ /Vu Vpq+ Vu
w(t) =w(0) — 2/0 <u — pd-l-u> (s,w(s))ds, for P-a.e. w € €,

which shows that Definition 22 (ii) is also satisfied. Hence, Y is a solution to (2). [ |

Remark 26 In the proof above, the probability P on (Q, F) can be decomposed into the two
levels of randommness discussed above Definition 22. Let {Qy}yeRd be a reqular conditional
probability for F given Yo = w(0); that is, {Qy },cra is a set of probability measures on (Q, F)
such that for any A € F, y — Qy(A) is Borel and Q,(A) =P(A | Yy =y) for po(z)dz-a.e.
y € R Such {Qy}yerae indeed exists in the path space (2, F); see e.g., Theorem 5.5.18 in
Karatzas and Shreve (1991). Thus, we can express P as

PA) = [ mQ, Ay, VA€ F (59)

This explicitly shows that the randomness of the initial point y € R is governed by py €
P(RY). Once an initial point y € R? is sampled, the randomness of picking a solution to
the ODE in (49) (with Yy =y fized) is dictated by the probability measure Q.

Remark 27 In view of Definition 22 and Proposition 25, the way we construct a solution
to (2)—using a random selection of deterministic paths—is in line with L.C. Young’s theory
of generalized curves and close to the formulation in Ambrosio (2004). By taking po = 1
in (55) (i.e., replacing the density po € P(R?) by the Lebesque measure), one recovers the
form of (5.3) in Ambrosio (2004).

On the strength of the uniqueness result for the nonlinear Fokker-Planck equation (25)
(see Theorem 21), the uniqueness of solutions to (2) can be established accordingly. Recall
the class of functions C in (47).

Proposition 28 Let Y be a solution to (2) such that n(t,y) := p*t(y) satisfies
neC and Vne L ([0,00) x RY). (56)

Then, n(t,-) = u(t,-) Leb-a.e. on R? for all t > 0, where u : [0,00) — P(RY) is the unique
weak solution to the Fokker-Planck equation (25) specified as in (42).
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Proof Let P be the probability measure on (2, F) associated with Y (see Definition 22)
and E be the expectation under P. For any T > 0 and compact subset K of RY, by
Fubini-Tonelli’s theorem,

T
E[/ E vﬁd—i_vn‘(tnh(ytdt] //’Vn Wl‘ndydt
0

n pd+n pd+ 1N
/ /\v \+‘

where the finiteness follows from (19) and Assumption 6.1. Now, for any ¢ € C2((0, 00) x
R?), whenever 7' > 0 is large enough, we have

T 1 Vn  Vpq+Vn
0= (T, Yr) — ¢(0,Y :/ <a S v (—)) t,Y;)dt,
o(T,Yr) — ¢(0,Y0) O Ve o (t,Y)

where the first equality is due to ¢(T,-) = ¢(0,-) = 0 and the second equality follows from
(2). Taking expectation on both sides and using Fubini’s theorem (applicable due to (57))

yield
0= / / (&gcp — ,v (Vn Vit Vn)) ndydt.
R4 pa +n

In view of (26), taking T" — oo in the above shows that 7 fulfills (27), i.e., n is a weak
solution to the nonlinear Fokker-Planck equation (25). Thanks to n € C, we conclude from
Theorem 21 that 7(t,-) = u(t,-) Leb-a.e. on R? for all ¢ > 0. [ |

4 dydt < oo, (57)

Remark 29 The uniqueness in Proposition 28 is weaker than the standard uniqueness of
weak solutions to an SDE. The latter requires the law (or, the finite-dimensional distri-
bution) of every solution Y to an SDE to be identical, while the former requires only the
marginal distribution of Y; to be the same for all t > 0.

The weaker notion of uniqueness in Proposition 28 well serves our purpose. Since we
intend to uncover the data distribution pq € P(R?) through gradient descent in P(R%)
(governed by a solution Y to (2)), we are curious about whether the marginal distribution
pYt converges to pq as t — co. An affirmative answer is provided in the next section.

6. Convergence to Data Distribution pg

This section is devoted to the main convergence theorem of this paper: for an appropriate
solution Y to (2), p** — pq in L'(R?) as t — co. As the first step towards the final result,
we show that the gradient descent feature encoded in (2) indeed works out: the distance
between p'* and pq, i.e., J(p¥*) = JSD(p'?, pq), decreases over time.

Proposition 30 Let Y be a solution to (2) such that n(t,y) := p*t(y) satisfies (19). Then,
for any 0 <1 < to,

J(p¥t2) = J(p") /t2/

)| P (y)dydt < 0. (58)
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Proof AsY is a solution to (2) that fulfills (19), by Proposition 28, we have p¥* = u(t) €
P(R?) for all ¢ > 0, where u : [0,00) — P(R?) is the unique weak solution to the Fokker-
Planck equation (25) specified as in (42). Recall u € C(]0,00); L'(R%)) from Corollary 19.
Also, by Remark 2, J(-) = JSD(-, pq) is continuous under the L!(R%)-norm. Hence, we may
assume without loss of generality that t1,t5 € Q.

As J(-) = JSD(-, pa), by (8) and the fact u = pqv from (42), we have

1
J(p") = J(u(t)) =1n2 + 2/ v(t)Inov(t) — (1 +v(t)) In(1 +v(t))dug, Vt>0,
R4
On the other hand, by Lemma 6,

V(S;](Yt )_} @_V(Pd+u) _} @_ Vv _1 Vv
5pp =9\ patu ) 2\ v 1+v) 2v(l+v)

Thus, (58) can be rewritten as

[/Rdv(t)lnv(t)—(1+v(t))1n(1+v(t))d,ud} /t/R VOt (59)

dv1+v

Now, recall that v is constructed using the Crandall-Liggett theorem (see Proposition 17)
and thus satisfies (40), which involves v, : [0,00) — L'(R? uq) defined by v.(t) := (I +
eA)~=Dy(0) for t € [(i —1)e,ie) and 7 € N. By writing z; = v.(i¢) for i € NU{0}, we have
(I+eA)z; = zj— for i € N. For any 7 € (0, 1), let us multiply the equation z;_1 —z; = €¢Az;
by ln(7+zl) and integrate it w.r.t. puq. This yields

Ytz € Ytz
i—1— %) 1 dug = — In(1 i) V1 d
/Rd(z 1 z)n<1+Zi> Liq 2/]Ran( + 2;) Vn<1+Zi) Lid

€ (1 —9)|Vz)?
_ Q/Rd BT e (60)

Note that the integrand on the left hand side can be written as F;_1 — F; + R;, with

Fi:=(y+zi)ln(y+z) — (1 + 2z) In(1 + 2), (61)

R; := f(zi—1,2:) where f(a,b):=(y+a)ln <’ZIZ> +(1+a)ln (iig)

Observe that f(a,b) < 0 for all a,b > 0. Indeed, by direct calculations, f,(a,b) < 0 and
fo(a,b) > 0 for a > b, and fy(a,b) > 0 and fy(a,b) < 0 for a < b; this readily shows that f
is maximized as a = b, giving the value f(a,a) =0. With R; = f(zi—1,2;) <0, (60) implies

€ (1—79)|Vz]?
Fit— F)dua > < J
/Rd< | — F)dug 2/Rd o

Fix § > 0. As t1,t5 € Q, there exists 0 < € < ¢ small enough such that t1,ts are both
integer multiples of €. Set i1 := t1/e to ig := to/e. Summing up the previous inequality
from ¢ =41 + 1 to i = iy leads to

|sz|
F; dug — d >— d
/Rd dua / 1 z /d S g

1=i1+1
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By (61), z; = v:(ie), and the definition of v., the above can be stated in terms of v as

[ / (7 + ve(8) In(y + v2(8)) — (1 + v2(8)) In(1 +va<t>>dud} -

tate v 2 v 2
J R L ol g (. T T
tite JRra ( + (1)) (1 + ve(2))? t14+6 Jr ( + (1)) (1 + ve(2))?
(62)
where the last inequality holds as the integrand is nonnegative (recall v € (0, 1) and v. > 0).
By the proof of Lemma 24 (under (52) particularly), we know that Vv, converges weakly

to Vo, along a subsequence, in L?([t; + 6, t2] x R?, Leb® j1q). This, along with (40), implies

V. o Vv
VY +oe(l+v:) v +o(l+o)

Since the L2([t; + 6, t2] x R Leb ® pq)-norm is weakly lower semicontinous, we have

2 t 2
lim inf / / ng ) rduadt > / / VOO g
=0 Jyys) (v +ve()(1+v ntsd (v +vu(t)(d+o(t))

Hence, as ¢ — 0 in (62), by (40), the boundedness of v., and the above inequality, we obtain

weakly in L2([t1 + 6, 12] x R, Leb @ pg).

t=to

[ /R (o) Iy + 0(t) — (1 -+ v(t)) In(1 + v(t))dud]t )

|VU( )7
=73 /t1+6/ (v +v(t (t))Qduddt.

As § > 0 is arbitrary, the above relation also holds for 6 = 0. Then, as v — 0, by using the
dominated convergence theorem on the left-hand side and Fatou’s lemma on the right-hand
side, we obtain (59), as desired. [ |

Remark 31 It it tempting to conclude from Ité’s formula for a flow of measures (see e.g.,
Theorem 4.14 in Carmona and Delarue (2018b)) and the identity (17) that (58) holds, and
in fact with an equality. Indeed, this approach is taken in Theorem 2.9 of Hu et al. (2021),
where a similar equality (instead of an inequality) is established for the minimization of a free
energy functional. Note that Theorem 4.14 in Carmona and Delarue (2018b) and Theorem
2.9 in Hu et al. (2021) both require the smaller space Pa (Rd) and appropriate continuity and
growth conditions under the 2-nd Wasserstein distance. As these requirements are not met
in our case, we take a fairly different approach in Proposition 30: we analyze t — J(p*t)
through PDE (31), relying particularly on the approximation of v in (40).

By Proposition 30, p** moves closer to pgq continuously over time. The question now is
whether p¥* will in fact converge to pq. This indeed holds, at least along a subsequence.

Corollary 32 Let Y be a solution to (2) such that n(t,y) := p *(y) satisfies (19). Then,
there exists {tn}nen in [0,00) with t, 1 oo such that p¥tn — pq in L'(RY).
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Proof As argued at the beginning of the proof of Proposition 30, p¥* = u(t) = pqv(t) €
P(R?) for all t > 0, where u and v are specified as in Corollary 19. In view of (51), there
exists {tn}nen in [0,00) with ¢, T oo such that [|[Vu(tn)| 12 ) — 0. This, along with
0 < wv(t) < B for all t > 0, implies that the sequence {v(t,)}nen is bounded in H'(RY, uq).
Hence, v, converges weakly in H'(R?, 11q), possibly along a subsequence (without relabel-
ing), to some vy € HY(R?, pq). Note that “v(t,) — veo weakly in H'(RY, puq)” readily
implies “Vu(t,) — Vs weakly in L2(R%, 114)”. As we already know Vu(t,) — 0 strongly
in L2(R%, p1q), we must have Vus, = 0, i.e., vs is constant on R?. On the other hand, by
Sobolev embedding, we have v(t,) — v strongly in L%OC(Rd, tq). By the uniform bound-
edness of {v(t,)}nen, this can be upgraded to “v(t,) — vso strongly in LP(R?, uq), for all
p € [1,00)”. Recall from (43) that [pqv(t,)duq = 1 for all n € N. This, together with
Up — Voo in LY(R? pug) and e being constant on RY, entails vy, = 1. It follows that

1Y — pallpray = lutn) = pallpway = [0(tn) = Ul g1 (ra ) — 0. u

Remark 33 In the language of dynamical systems (see e.q., Section 4.3 in Henry (1981)),
Corollary 32 states that the “omega limit set”, defined by

0 :={pe PR :3{s,} in[0,00) with s, T 0o s.t. p¥*n — p in L}(RY)},

must contain pq. A result of this kind, in Step 1 in the proof of (Hu et al., 2021, Theorem
2.11), was obtained by a compactness argument, applicable under Lipschitz and growth con-
ditions on a McKean-Viasov SDE. As no such conditions are met in our case, compactness
is elusive and we instead rely on (51), a property of the solution v to PDE (31).

Now, we are ready to prove Theorem 7, the main theoretic result of this paper.

Proof [Proof of Theorem 7] By Proposition 30, ¢ + J(p¥*) > 0 is nonincreasing. This
implies £ := limy_,00 J(p**) > 0 is well-defined; moreover, for any {s,}nen in [0,00) with
5, T 00, we have lim, oo J(p¥*n) = £. In view of Corollary 32, there exist {t,}nen in
[0, 00) with t,, 1 oo such that p¥n — pgq in L!'(R?). Thanks to the continuity of J(-) under
the L'(R%)-norm (see Remark 2), we get £ = lim,, o J(p¥n) = J(pq) = 0. Now, for any
{8n}nen in [0, 00) with s, T 0o, we have

lim JSD(p**", pq) = lim J(p¥*n) = £ =0.

n—oo n—oo
By Remark 2 again, this implies p¥>n — pq in L'(R?). As the sequence {s, }nen is arbitrar-
ily picked, we conclude that p** — pq in L'(R?) as t — oo. |
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Appendix A. Proofs for Section 2

A.1 An Auxiliary Result
Lemma 34 For any p, 5 € P(RY), TV(p, 7) = o — 11 g
Proof Consider A, := {x € R?: p(z) > p(z)} and observe from (6) that

V(. p) = max{ [ (ola) = pla)) . [ 5t) = plo) s,

By a direct calculation,

[ o =stan e =3 [ o) —ptanao (1= [ erie) = (1= [ otwrac) |
= 5{ [ 0o st [ o) = ooz} = 5o plises

As we similarly have [,.(p(z) — p(z))dz = §|p — PllL1(ray, the desired result follows. M

A.2 Proof of Proposition 5

Given ¢ € C%(R%RY), there exists § € C2(R%R) such that VO = ¢, For any € > 0,
consider 1 : R? — R defined by ¢(z) = 3|22 + ef(x) for all z € R% As V¢ is bounded
(by & € C%2(R%R?)), we can take ¢ > 0 small enough such that ¢ is strictly convex, or
equivalently, det(I +eV¢) > 0. This in turn implies that Vi = I 4+ &£ is one-to-one, such
that the inverse (I +&€)~! is well-defined. Hence, by Lemma 5.5.3 in Ambrosio et al. (2005),

the measure x& in (14) has a density 0% € P(R%), which is given by

pE(y) = p (I +2€) 71 (1)) /det(1d +V), ¥y € RY, (63)
where Id denotes the d x d identity matrix. It can be shown that (y,&) — pg(y) is C! on

4 % [0,1] and satisfies pS(y) |e—o= p(y) and apE(y le—o= —V - (p(y)&(y)) (see equation

(10.4.7) in Ambrosio et al. (2005)). Now, by (12)

- G(pf) — pE—p
;I—If(l) € e—>0/ /]Rd 6p Mo+ ek, y )T(y)dyd)\
. pt (y)
:EL%/O /}(5,0((1 = NP+ Ak y) =5 e () dyd, (64)

where £q(y) € [0,¢] is obtained from the mean value theorem, and K C R? is the compact

aps( ) apf(

support of £. The contlnulty of n (y,e) implies that

Since pg —=>p umformly, ((1 — )\) o+ )\pé, y), as a function of (A, y), converges uniformly

|e=co(y) 18 bounded on K.

to g(p, y) on [0,1] x K as € — 0 by assumption. Dominated convergence theorem then
allows us to exchange the limit with the integral, yielding

&) —
iy S0 [0 )9 e = [ 95 (50) - ctiaty)

e—0

where the last equality is due to integration by parts.
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A.3 Proof of Lemma 6

Recall from (8) that we can write J(p) = JSD(p, pa) = [pa f ( ) pa(y)dy, where f(x) =
3[(x+1) ln(xH)—i—xln z], Vx € [0,00), is a convex function satlsfylng 0< f(z) <B2(x+1).
Fix p, p € P(R?). For any A € [0,1], set py := (1 — N)p+ Ap € P(RY), and define

gy = f <Z§> (p—p)-

Using the convexity of f, one can show that g is increasing in A € [0, 1] and integrable on
R? if A € (0,1). Indeed, the monotonicity is implied from %g,\ = f" (&) (p Pd) > 0, and

Pa
the integrability is a consequence of the relation

)G, B I(E), e

(P + pa)-

Now, let 0 < A1 < Ay < 1. By the fundamental theorem of calculus and Fubini’s theorem,

J(pr.) — J(px,) —/R [f (pAQ((yZ/))> - f (ml(y)ﬂ pa(y)dy

d
A2
// ar(y d)\dy—/ / y)dydA.
R4 J )\ A1

Letting Ay — 0 and Ay — 1 yields

- /o1 /Rd 9a(w)dyd) = /01 /Rd I (223) (P(y) = p(y))dyd»,

where the integral over A may be interpreted as an improper integral if either f]Rd go(y)dy =

—00 Or [pa 91(y)dy = co. This readily implies 2 5 L (p,y) = f/(pd(y ) = %ln (ﬁ(gjw)).

Appendix B. Proofs for Section 4
B.1 Derivation of Lemma 14

Lemma 35 Let E C R be convexr and g : E— R be a concave, strictly increasing function
such that for any v : R? — R with v(R?) C E, the following hold:

(i) if v € HY(RY, ug), then g(v) € HE(RY, pg);
(ii) if v € LY (RY, pg), then 1/(g,)(v) € L*(RY, puq) (where gy is the right derivative of g).
Then, the operator —A,,g : D(—Au,9) — LY (RY, pig), with
D(=Ap,9) = {v € LI(RY, jia) N HERY pg) : 0(RY) € B, —Ay9(v) € LR )},
is accretive in LY(R?, pg). That is, for any vi,ve € D(—=A,,9) and X >0,

[01 = V2]l L1 ra gy < (101 = ADpug(01)) = (V2 = Ay g(V2)) | L (R ) -
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Proof Fix vi,v2 € D(—A,,g9) and A > 0. Set f; := v; — AA,,g(v;) for i = 1,2. For any
© € HY(R?, ug) N L=®(R?, 11q), by multiplying the equation v; — AL 9(vi) = fi by ¢ and
using integration by parts as in Remark 11, we get

[ wedna+n [ Vo) Vedua= [ fipdua, i=1.2
Rd Rd Rd
Note that under integration by parts, the boundary term for the second integral above

vanishes because g(v;) € H}(RY, uq) by condition (i). Let us write v := vy — vg, h :=
g(v1) — g(ve) and f := f1 — fo. We obtain from the above equation (by subtraction) that

[ oedua ) [ Vb Vodua= [ fedua (65)
R Rd Rd
Now, for each € > 0, consider the function

Xe(®) = Lgjg1<cy®/e + 1{z/>eysgn(z)  for x € R,

which is a bounded, continuous, and weakly differentiable approximation of the sgn(-) func-
tion. Taking ¢ = x:(h) € HY (R, piq) N L>®(R%, pq) in (65) yields

/ oxe () dpa + A / VA2 X (h) djug = / Fre (h) dysa.
Rd Rd Rd

As x. is nondecreasing, the middle integral above is nonnegative. Consequently, we have

h
Wl + [ (o2 =10 i < [ e 0 < Il

where we used the fact sgn(v) = sgn(h). Finally, observe that the integral on the left-hand
side above converges to zero as € — 0. Indeed,

1
/ dpg < / 2[v[dpa < 25/ ; dpa — 0,
{Ihl<e} {Ihl<e} Rre g% (max(vi,v2))

where the second inequality follows from |h| = |g(v1) — g(v2)| > |v1 — v2l|g/ (max(vy,v2)),
thanks to the concavity of g, and the convergence follows from condition (ii). We therefore
conclude that [[v][ 1 (gra ) < |l 21(Ra ), as desired. [ |

h
v= = ol
€

Proof [Proof of Lemma 14] Applying Lemma 35 with E = [0, ] and g(z) = 11In(1 + )

(resp. E =R and g(z) = z) yields (i) (resp. (ii)). [ |

B.2 Derivation of Lemma 18

Let (-,-) denote the inner product in L?(R%, pq). For any A > 0, consider the bilinear form

A A
Blw, ¢] := 2/Rd Vw - Vdug = —Q/Rd(Audw)wdud, VY w,p € Hy(RY, pa),

where the last equality follows from Remark 11.
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Definition 36 We say w € H(R?, juq) N L®(RY, 1q) is a
(i) weak solution to (41) w.r.t. uq if Blw, @] = (f +1 —e¥, @) for all p € HY(RY, pq);
(ii) weak subsolution to (41) w.r.t. puq if Blw, @] < (f+1—e, @) Vo € HE(R?, uq), ¢ > 0;

(iii) weak supersolution to (41) w.r.t. uq if Blw, o] > (f + 1 — e¥, ) Vo € HY(RY, ug),
¢ > 0.

The proof below relies on the construction of a weak solution w* to (41) through a
sequence of weak sub- and supersolutions.
Proof [Proof of Lemma 18] As f € D(A), we have 0 < f < 3. It can then be verified
directly that wy = 0 is a weak subsolution and W = In(1+ /) is a weak supersolution to (41)
w.r.t. pg. Starting from w, and wy, we will construct recursively a sequence {w,,, Wy }nen
such that w,, and w,, for each n € N, are the unique weak solutions in H}(RY, uq) w.r.t.

1q to the linear PDEs

A A
aWwy, — §Awn - §vlnpd : vﬂn =ow, +1— el 4 f; (66)
o AL A _ _ w
aw,, — §Awn - §v1npd -V, = awp—1 +1—e"""1 + f, (67)

where the constant « is chosen to satisfy a > 1+ 3, so that z — g(z) := ax — e” is strictly
increasing on (—oo, In(1 4+ 3)].

First, given that wy, wg € L>®(R%, 11q), the existence of unique solutions wy,w; €
HY(RY, 1g) to (66)-(67) w.r.t. uq follows directly from the Lax-Milgram theorem applied
to the bilinear form a(w,¢) + Bw,¢|. Moreover, we claim that w;,w; again belong to
LOO(Rd, tq) under the relation wy < w; < w; < Wy pg-a.e. As wy is a weak supersolution
to (41) w.r.t. uq, we have

A A — A A
aw, — §Aﬁ1 — §V1npd -Vwy =awp+1—€e" + f < awy — §Awo — §V1npd - Vg

in the weak form. Setting w := w1 —wo € H} (RY, 11q), we get aw — %Afw— %Vln pa-Vw <0
in the weak form. That is, a(w,p) + Blw,¢] < 0, for all ¢ € H}(R?, uq), ¢ > 0. Taking
p=w" e H&(Rd, fq) in the ineqaulity leads to the following implication:

A
/ <aw2 + ]Vw|2> dug <0 = w <0 pg-ae. (68)

{w>0} 2
We then conclude w; < Wy pq-a.e. Similarly, by the weak subsolution property of w,, we
may again use (68) (with w := wy, —w;) to get w; > wy pq-a.e. Finally, thanks to w, < wy,

A A
SAw; — §Vlnpd-Vw1 =owy+1—e®+f

aw, —
- 2

= A A
<awy+1—e" + f =aw —§AE1—§Vlnpd-V@1.
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Applying (68) again (with w := w; — W) gives w; < W; pg-a.e. This finishes the proof of
our claim that wy < w; < w; < Wy pg-a.e. As the same arguments above hold true for
each iterate n € N, we obtain w,, | < w,, < W, <W,_1 pug-a.e. for all n € N.

Now, for each n € N, thanks to w,,_; < w,,

A A
OWp 1 — §Awn+1 - §V1npd Vw, = ow, +1—e¥n + f

>ow, ;+1—e -1+ f=oaw, — %Awn - ngnpd -Vuw,,

Hence, applying (68) (with w := w,, —w,,,,) gives w,, < w, ; pg-a.e. A similar argument
shows Wy, 41 < W, pq-a.e. That is, {w,, }nen is monotonically increasing, {wy, }nen is mono-
tonically decreasing, and all the functions are [0, In(1+ 3)]-valued. Thus, w* := limy,,_,cc Wy,
pg-a.e. is well-defined. We claim that w* is a weak solution to (41) w.r.t. piq.!

Note that the operator L := (af — %(A+V In pg-V))~! is continuous from L?(R?, uq) to
HY(RY, 1g). Indeed, given f € L2(RY, 114), by taking the test function ¢ = w € H}(RY, ug)
in the weak form of aw — %(Aw + Vinpq - Vw) = f, we deduce from Remark 11 that

A 1 «
0l et + 3 IVl = [ 0 < e M s+ 5101

where the inequality follows from Young’s inequality. It follows that

. 1
min )\)HWH?{g(Rd,Md) < aHf”ZLz(Rd,Md)y (69)

which implies the desired continuity of L. Now, by rewriting (67) as w, = L(aw,—1 + 1 —
e®n=1 + f), we conclude from w* = lim, o Wy, fiq-a.e., the bounded convergence theorem,
and the continuity of L that W, — W := L(aw* + 1 —e*" + f) in H}(R?, uq). By passing
to a subsequence (without relabeling), we have w, — W pg-a.e., which entails w* = w
ig-a.e. Hence, we have w* € H(}(Rd,ud) and w* = L(aw* + 1 — ¥ + f), i.e. w* is a weak
solution to (41) w.r.t. pq. By a direct calculation, v := e*" — 1 € H(R?, uq) is a weak
solution to (I + AA)v = f w.r.t. pg. Finally, as w* = lim,,_,o W, by construction satisfies
0 <w* <In(l+ ), v fulfills 0 < v < B and thus lies in D(A). [ |

B.3 Proof of Proposition 20

Fix ¢ > 0. By Remark 11, we may conclude from Lax-Milgram’s theorem that for any
f € L*(RY, juq), there is a unique weak solution w € H}(R?, uq) to (eI — A, )w = f wor.t.
pa- That is, the operator Tc := (eI — A,,) "% : L2H(RY, pug) — H(RY, j1q) is well-defined. As
Inpg € HY(R?, p1q) (by Assumption 6.1), let us take {b,} in C>°(R%) such that b, — V In pq
in L2(R%, j1q). Then, for each f € L?(R%, iq), we consider the smoothed problem

(eI — A} Jw=f with Al :=A+b,-V, (70)

and denote by I'?' f := (el — Azd)_lf the unique weak solution w € H}(R?, j1q) w.r.t. pq.

1. One could alternatively show that lim, .o w,, is a weak solution to (41) w.r.t. pa.
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Step 1: We show that for any f € L®(R?, uq),
I2f—=Tof in LYRY, pa). (71)
Take {fi} in C(R%) such that fr — f in L'(R%, uq). Without loss of generality, we may
assume |fi| < ||f|lpoo(mre, ). For each k € N, by noting I'Y i, € C*(R%), we conclude from
the maximum principle (Krylov, 1996, Theorem 2.9.2) that
. 1 1
T2 fiell Loo (R ug) < g”kaLOC(]Rd,ud) < ngHLOO(Rd,ud)' (72)
Now, in view of (70) and (32), the equation (eI — AJj )I'? fx = fi can be written as
(EI - Aud - (bn - Vlnpd) . V)F?fk = fk

Let us multiply this equation by I'? f;, and integrate it w.r.t. uq. With the aid of Remark 11,
Young’s inequality, (72), and Holder’s inequality, we get

el fill 2y + IVTL fill 2 = /Rd Jil'2 fedpa + /]Rd L2 fi(bn — VInpa) - VIT frdpa
1 € 1 1 n
< %ka’H%Q(p,d) + 5T FellZ2(ugy + ngHLOO(ud)an = Vnpall 2 IVTZ frll2ugy  (73)

1 2 Eipmre 12 1 2 2 1 ne 2
< %HfHLOO(Md) + S ITE fellz2g,q) + @Hf”po(ud)”bn = VInpalzegu + 5 IVIE fellze -

It follows that
1

n n 1
elT2 fill 22y + IVTE frll72 () < g”f”%oo(ud) + ;2||f||%oo(#d)|’bn — VI pal[fa(,, < oo

This shows that {I'” fx}xen is bounded in H}(R?, 1q). Hence, by passing to a subsequence
(without relabeling), T fi, converges to some 1w weakly in Hg(R?, uq) as k — oo. This
implies that if we let k& — oo in the weak form of (eI — AJ )I'?fr = fr, we will get
(eI — A} ) = f in the weak form, which indicates @ = I'7 f. That is, we have I'? fy — T f
weakly in H}(RY, 114) as k — oo. By taking the test function ¢ = I'"f € H}(RY, uq) in
the weak form of (eI — AJ, )I'7f = f, we can repeat the gradient estimate (73), with f
replaced by f, thereby obtaining

n n 1 1
e[|I' fH%z(ud) + || VT2 f||%2(ud) < g||f||%oo(#d) + ?anioo(#d)nbn - Vlnpd\\%z(ﬂd)‘ (74)
By subtracting the equation (e — A, )T f = f from (eI — A} )IZf = f, we get
e(L2f —Tef) —ATZf —Tef) = VInpa - VIZf =T f) + (VInpa — by) - VIZf = 0.

This implies (e — A,,) T2 f=Tof) = (by—Vnpq) -VI7f,ie Te((by—Vinpg) - VITf) =
I'tf—T.f. AsT.0 =0 trivially, we deduce from Lemma 14 (ii) that

elTef = TefllLrrapug) < (00 = Vinpa) - VIT fll g,
< an — Vlnpd”LQ(Rd#d)HVF?f||L2(Rd7Md) — 0 asn— oo, (75)
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where the convergence follows from b, — VInpq in L2(R% uq) and the boundedness of
{VT? flnen in L2(R?, uq) (thanks to (74)). This readily gives (71).

Step 2: Let v1,vs € C([0,00); LY(RY, p1q)) N LL([0, 00) x RY, 114) be two weak solutions
to (31) w.r.t. pug. By setting v := v; —v2 and h :=1In %iz;, we aim to show that (I';v); =
3(eTeh — h) in the weak form, i.e.

/Oo/ <z/1tI‘gv + 1z/;(sreh - h)> dpadt =0 Y € C°((0,00) x RY). (76)
0 JRrd 2

By construction, we have v(0) = 0 and v; = $A, h in the weak form, i.e.

> 1
/0 /Rd <”¢t + QhA;w) dpadt =0, Vo € C2°((0,00) x RY), (77)

where we use the calculation in Remark 11 twice. For any 1 € C°((0,00) x R%), define
o(t, ) :==T2y(t,-) for all t > 0. That is, (¢, -) is the solution to the (linear) smoothed prob-
lem (70) (with f(-) = ¥(t,-) € C°(R?)), which implies ¢(t,-) € C*(R?). By differentiating
the equation (eI — A}, )I'Z9(t,-) = (¢, -) with respect to ¢, we observe that

om o L fam
G P(t:) = 200 =12 (e ) ). Yme (78)

As a result, p € C((0,00) x R?). We will further show that ¢ is compactly supported.
Let supp(v)) C (0,00) x R? be the compact support of 1), H C (0,00) be a bounded open
interval containing the projection of supp(z) onto (0,00), and B C RY be an open ball
containing the projection of supp(y) onto R?. For each t € H, consider the Dirichlet
problem (e — A} Jw(-) = ¥(t,-) in B and w = 0 on 9B, and denote by ¢(t,-) € C*°(B)
the unique solution. Now, we extend the domain of ¢ to (0,00) x R? by setting 4(t,y) := 0
whenever ¢t € (0,00) \ H or y € B°. Then, ¢ is compactly supported and for any ¢ > 0,
Q(t,+) € HE(RY, uq) satisfies (eI—-A} )p(t, ) = (t, ) on R?. By the uniqueness of solutions
to (70) in H}(RY, u1q), we must have ¢(t,-) = (¢, -) for all ¢ > 0. Consequently, ¢ = I'"¢) is
compactly supported with supp(¢) € H x B for all n € N. With ¢ =T € C°((0,00) x
R9), we obtain from (77) that

oo 1
[T (s gh, (o) Y duadi = 0. o € 02(0.00) xR, (19)
0o Jrd
In view of (32), (70), and the equation (eI — AJj )['?1) = 1), we have
Bpa(T2) = A2 (1) = (b — Vi pa) - VI = T — ¢ — (b, — V'l pa) - VT2
This, together with (I'?4); = ')y (by (78) with m = 1), allows us to rewrite (79) as
e 1 i 1
/ / (vr?wt + Lhgerny — w)>duddt _ / / L by — Vi pa) - V™ dpradt.
0 R4 2 0 R4 2

As h is bounded and supp(VIZvy) C H x E for all n € N, we see that the right-hand
side above vanishes as n — oo, by using Holder’s inequality and arguing as in (75) for the
convergence. It follows that as n — oo, the previous equation becomes

/ h / <vrswt + h(erp - w)) dpiadt = 0, (0)
0 ]Rd 2
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where the convergence of the left-hand side follows from the boundedness of v and h,
supp(I'?¢) C H x E for all n € N, and (71). Finally, observe that I'; is symmetric in the
sense that

(T.f,9) = (f.Teg), Vf,g€ L*R? pa). (81)

Indeed, by taking the test function ¢ € H'(R?, juq) as T.g (resp. I'.f) in the weak form of
f=(l—Au)I.f (resp. g = (el — A, )Teg), we get

<f> Fz—:Q) = 5<st7 FeQ) + <Vrsfa VF€g> = <g7 F€f>7 (82)

where we use the calculation in Remark 11. Hence, (80) is equivalent to (76), as desired.
Step 3: Now we set out to prove (46). Define ¢° : [0,00) — R by

G (8) i= (Lev(0),0(6)) = eIT0) ) + IVTe0(8) o (33)
where the last equality follows by taking f = g = v(¢) in (82). Rearranging the equation
(el — Ay )Teh(t) = h(t) yields A, (T'ch(t)) = el'-h(t) — h(t). By a direct calculation, this

in turn implies (el — A, )(el'ch—h) = Ay h, ie. To(Ay h) = el'ch— h. Hence, by recalling
(Tev)y =Tevy and vy = %Audh, we have

(¢°) = ((Tev),v) + (Tev, v;) = <;(5F5h - h),v> + <ng, ;Audh>
- <;(5F6h - h),v> + <v, HEW h)>
= (eT.h — h,v) = (eh,Tv) — (h,v) < e(h, ),

where the third and fifth equalities follow from (81) and the inequality is due to hv =

ln(ﬁ—;’é)(vl — v9) > 0. This, together with ¢=(0) =0 (as v(0) = 0), gives

t € t )
(1) < /0 (h(5), Tev(s))ds < 5ol o g /0 (14 Pt (3) 2z ) s

1 t
< §||U||L00(Rd’“d) <€t+/0 ga(s)ds> ,

where the second inequality follows from |h| < |v| (due to concavity of In(-) and v; > 0) and
Young’s inequality, and the third inequality stems from (83). Then, by (83) and Gronwall’s
inequality,

et t
Tty + 1903ty = 67(0) < 5 ol o 50 <2uv||Lw(Rd,ud)) ,

where the right-hand side above converges to 0 as ¢ — 0. This implies el'cv, VI'.v — 0
in L?(R%, p1q), uniformly in ¢ on compact intervals. Thus, taking any test function ¢ €
C2°((0,00) x R?) in the weak form of v = (eI — A,,)T.v gives

/ / vedugdt = / / (eTcvp + VIv - V) dugdt — 0 ase — 0,
0 JRd 0 JR4

which gives (46).
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