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Abstract

We study patterns observed right after the loss of stability of mixing in the Kuramoto model of

coupled phase oscillators with random intrinsic frequencies on large graphs, which can also be random.

We show that the emergent patterns are formed via two independent mechanisms determined by the shape

of the frequency distribution and the limiting structure of the underlying graph sequence. Specifically, we

identify two nested eigenvalue problems whose eigenvectors (unstable modes) determine the structure

of the nascent patterns. The analysis is illustrated with the results of the numerical experiments with the

Kuramoto model with unimodal and bimodal frequency distributions on certain graphs.

1 Introduction

Models of interacting dynamical systems come up in different areas of science and technology. Modern ap-

plications ranging from neuroscience to power grids emphasize models with spatially structured interactions

defined by graphs. Identifying dynamical mechanisms underlying pattern formation in such networks is an

interesting problem with many important applications. In this paper, we study patterns emerging near the

loss of stability of mixing in the Kuramoto model (KM) with random intrinsic frequencies on large graphs.

We show that by varying the frequency distribution and the graph structure, one can generate a rich variety

of spatiotemporal patterns and identify a precise mathematical mechanism underlying pattern formation in

this model.

The KM is one of the most widely used models in the theory of synchronization. In this paper, we study

the KM on graphs, which is formulated as follows. Let (Γn) be a sequence of graphs and consider

✓̇i = !i +K(↵nn)
�1

nX

j=1

anij sin(✓j � ✓i), i 2 [n] := {1, 2, . . . , n}, (1.1)
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where ✓i : R
+ ! T := R/2⇡Z stands for the phase of oscillator i; !i, i 2 [n], are independent random

intrinsic frequencies drawn from the distribution with density g(!), and K is the strength of coupling. (anij)
is an n⇥n symmetric (weighted) adjacency matrix of graph Γ

n. The scaling sequence ↵n is either identically

equal to 1 if (Γn) is a sequence of dense graphs, or ↵n & 0 subject to condition n↵n ! 1 if (Γn) is a

sequence of sparse graphs with edge density O(n↵n). For more details on the KM on sparse graphs we refer

an interested reader to [15].

Suppose (Γn) is a convergent sequence of graphs whose limiting behavior is described by a symmetric

graphon W 2 L2([0, 1]2) (cf. [15]). Then under fairly general assumptions, the dynamics of (1.1) for large

n can be approximated by the Vlasov equation

@tf(t, ✓,!, x) + @✓ {V (t, ✓,!, x)f(t, ✓,!, x)} = 0, (1.2)

where f(t, ✓,!, x) is a probability density function in (✓,!) 2 T⇥R of an oscillator at point x 2 I := [0, 1]
at time t 2 R

+. The velocity field is defined as follows

V (t, ✓,!, x) = ! +
K

2i

⇣

(t, x)e�i✓ � (t, x)e�i✓
⌘

, (1.3)

where

(t, x) =

Z

T

ei✓
Z

R

(W f(t, ✓,!, ·)) (x)d!d✓, (1.4)

is called a (local) order parameter. The following self-adjoint compact operator on L2([0, 1]) will play an

important role

(W�) (x) :=

Z

I

W (x, y)�(y)dy, I := [0, 1]. (1.5)

Rigorous justification of the Vlasov equation (1.2) in the context of the KM with all–to–all coupling was

given in [14]. It is based on the classical theory for kinetic equations (cf. [16, 1, 9]). For the KM on dense

graphs, the Vlasov equation was further justified in [12, 4]. For the KM on sparse graphs with unbounded

degree, the results in [12, 4] continue to hold when combined with [15, Theorem 4.1].

Equation (1.2) has a steady state solution

fmix =
g(!)

2⇡
. (1.6)

It describes the regime when all phases are uniformly distributed over T, which corresponds to mixing.

Numerical experiments show that mixing is stable for small |K|. In his classical work on synchronization,

Kuramoto identified the critical value Kc = 2 (⇡g(0))�1
marking the loss of stability of mixing [13]. This

formula assumes all–to–all coupling (i.e., W ⌘ 1) and continuous even unimodal density g(!). Kuramoto’s

findings started a new area of research, which culminated in a rigorous analysis of the loss of stability of

mixing in the KM with all–to–all coupling in [2]. For the KM on graphs, bifurcations of the mixing state

were analyzed in [4, 5]. Interestingly, the analysis of the spatially extended model along with the pitchfork

bifurcation at positive value of K leading to synchronization reveals the possibility of a bifurcation for

K < 0. For instance, it was shown that for a network with nonlocal nearest-neighbor coupling there is a

bifurcation to so–called twisted states at a certain K�

c < 0 [5, 7]. Thus, network structure plays a role in the

loss of stability of mixing and affects the emerging patterns.
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From the beginning, the studies of the KM have been mainly focused on the transition to synchronization,

i.e., on the pitchfork bifurcation of mixing. This turned out to be a challenging problem. The main technical

obstacle to the bifurcation analysis was the presence of continuous spectrum on the imaginary axis. It was

overcome in [2] with the help of the generalized spectral theory. The method of [2] was further applied to

the analysis of Andronov–Hopf bifurcation in [3] and was extended to the KM on graphs in [4, 5]. The

technical difficulty of the bifurcation analysis for a long time obstructed its pattern formation aspect, which

is perhaps even more interesting from the nonlinear science point of view. The examples in [7] already give

a glimpse into pattern formation capacity of spatially extended KM. In this note, we develop this theme

further. We show that the combination of frequency distribution and graph structure provides a flexible

mechanism for controlling spatiotemporal patterns arising at the loss of stability of mixing in the KM on

graphs. Surprisingly, the contributions of the frequency distribution and the graph structure are independent

from each other, which results in a variety of possible patterns obtained by combining features controlled

by these two (vector–valued) parameters (Figures 2-5). Furthermore, we show that asymmetric frequency

distribution results in asymmetric chimera like patterns (Figure 7). To keep the presentation simple, we

restrict to linear stability analysis, which is sufficient to relate bifurcations to patterns. Readers interested

in the analysis beyond linear stability are referred to [5] for the treatment of the pitchfork bifurcation in the

KM on graphs. The Andronov–Hopf bifurcation is analyzed similarly by extending the results in [3] to the

spatially extended model following the lines of [5].

The outline of the paper is as follows. In the next section, we perform a linear stability analysis of

mixing. This is done for completeness, as the stability of mixing in the KM on graphs was already analyzed

in [4, 5]. To complement the presentation in [4], this time we adapt the approach based on the theory

for Volterra equations from [8] to the KM on graphs. It affords a quick derivation of the equation for the

critical values of K and provides a nice geometric picture of the loss of stability of mixing in the KM. After

locating the instabilities, we compute the unstable modes, which determine the bifurcating patterns. As

shown in [4] the loss of stability in the KM on graphs is captured by two nested eigenvalue problems. The

first one is obtained via the Fourier transform of the linearized system and is the same as in the stability

analysis of the KM with all–to–all coupling [2, 8]. We refer to this problem as the principal problem. The

second one is that for W (cf. (1.5)) and is called a secondary eigenvalue problem. It turns out that each

problem is responsible for specific features of the bifurcating solutions: the principal modes determine the

local structure of the emerging patterns, whereas the secondary modes capture their spatial organization.

In particular, the principal eigenvalue problem determines whether mixing loses stability via a pitchfork

or an Andronov–Hopf bifurcation. The former results in stationary patterns, whereas the latter produces

patterns traveling with a nonzero speed. However, it is the secondary eigenvalue problem that decides the

actual pattern. Depending on the form of the eigenfunctions corresponding to the critical eigenvalue of

the secondary problem, one can observe spatially uniform clusters or patterns with more complex spatial

organization like twisted states. Importantly, the two spectral problems are independent in the sense that

one is determined by the shape of the frequency distribution while the other - by the graph structure. After

deriving the necessary analytical tools in Section 2, we turn to the detailed discussion of the bifurcating

patterns in the KM with unimodal and bimodal g in Section 3. To this end, we compare solutions bifurcating

from the mixing state in the KM on all–to–all and nonlocal nearest–neighbor graphs. These examples clearly

demonstrate the contributions of the principal and secondary unstable modes to the structure of the emerging

patterns.
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2 Linear stability

In this section, we rewrite (1.2) in Fourier variables and linearize the resultant system about the mixing

steady state. Then we reduce the problem of stability to the Volterra equation for vector–valued functions

and derive the equation for the eigenvalues of the linearized operator. Here, we extend the method in [8]

to the KM on graphs. Then we compute the corresponding eigenvalues following [5]. This information is

sufficient to explain the patterns emerging at the loss of stability of mixing, which is the main focus of this

paper. For more details on stability analysis of mixing in the KM on graphs, we refer an interested reader to

[4, 5].

We start by applying the Fourier transform in (✓,!)

u(t, l, ⇠, x) =

Z

T

Z

R

eil✓ei⇠!f(t, ✓,!, x)d!d✓, (l, ⇠, x) 2 Z⇥ R⇥ I (2.1)

to (1.2). Note that by the definition of f,

g(!) =

Z

T

f(t, ✓,!, x)d✓ 8(x, t) 2 I ⇥ R
+. (2.2)

Thus, by Fubini’s theorem,

u(t, 0, ⇠, x) =

Z

R

ei⇠!g(!)d! =: (Fg)(⇠), (2.3)

where Fg stands for the Fourier transform in ! throughout this paper.

Following [8], we assume

Fg 2 Ca(R) = {� 2 C(R) : k�ka = sup
t2R

eat|�(t)| < 1} for some a > 0. (2.4)

Further, since f is real, u(t, l, ⇠, x) = u(t,�l,�⇠, x) it is sufficient to consider1

@tu(t, 1, ⇠, x) = @⇠u(t, 1, ⇠, x) +
K

2

⇣

(t, x)(Fg)(⇠)� (t, x)u(t, 2, ⇠, x)
⌘

, (2.5)

@tu(t, l, ⇠, x) = l@⇠u(t, l, ⇠, x) +
Kl

2

⇣

(t, x)u(t, l � 1, ⇠, x)� (t, x)u(t, l + 1, ⇠, x)
⌘

, (2.6)

for � 2. Note that  defined in (1.4) can be rewritten as

(t, x) =

Z

I

W (x, y)u(t, 1, 0, y)dy. (2.7)

The equilibrium fmix corresponds to umix = (Fg, 0, 0, . . . ) in the Fourier space for l 2 {0, 1, 2, . . . }.

The linearization of about umix is thus given by

@tu(t, 1, ⇠, x) = @⇠u(t, 1, ⇠, x) +
K

2
(t, x)(Fg)(⇠), (2.8)

@tu(t, l, ⇠, x) = l@⇠u(t, l, ⇠, x), l � 2. (2.9)

1Note that ∂tu(t, 0, ξ, x) = 0, (ξ, x) 2 R⇥ I by (2.3).
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Equations in (2.9) describe pure transport. Thus, stability is decided by (2.8), which we rewrite as

@t� = T�. (2.10)

T is viewed as a linear operator densely defined on L2 ([0, 1];Ca(R)) .

Integrating (2.8) along characteristics and recalling (2.7), we have

u(t, 1, ⇠, x) = u0(1, ⇠ + t, x) +
K

2

Z t

0
(Wu(s, 1, 0, ·)) (Fg)(⇠ + (t� s))ds, (2.11)

By plugging ⇠ = 0 in (2.11), we obtain the following Volterra equation

u(t, x) = u0(t, x) +
K

2

Z t

0
(Wu(s, ·)) (Fg)(t� s)ds, (2.12)

where by abuse of notation u(t, x) := u(t, 1, 0, x). We recast (2.12) in a more general form

ν(t) +

Z t

0
A(t� s)ν(s)ds = φ(t), (2.13)

where A : R+ ! L(H) and φ,ν : R ! H. By L(H) we denote the space of linear bounded operators on

H. For the problem at hand, H = L2([0, 1]),

A(t) =
�K

2
(Fg)(t)W and φ(t) = u0(t, ·), ν(t) = u(t, ·). (2.14)

From now on, we will use the bold font to denote vector–valued functions along with operators.

Theorem 2.1. [11, Theorems 1 & 2] Let A : R
+ ! L(H) be strongly measurable and kA(·)k 2

L1
loc(R

+;R), where k · k stands for the operator norm. Then there exists a strongly measurable resolvent

R : R+ ! L(H)

R(t) = A(t)�

Z t

0
R(t� s)A(s)ds = A(t)�

Z t

0
A(t� s)R(s)ds. (2.15)

For any φ 2 L1
loc(R

+,H) the unique solution of (2.13) can be expressed as

ν(t) = φ(t)�

Z t

0
R(t� s)φ(s)ds. (2.16)

Moreover, R 2 L1(R+;L(H)) if and only if I+ (LA)(z) is invertible as a bounded operator on H for all

z 2 C with <z � 0. Here,

LA(z) =

Z t

0
e�zt

A(t)dt. (2.17)

Remark 2.2. For (2.12) following the lines of the analysis in the finite–dimensional case [10, Theorem 3.1],

the resolvent can be obtained constructively as a Neumann series

Rh = �
1X

j=1

k⇤j ⇤ (W j
h), k(t) =

K

2
(Fg)(t),
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or in expanded form

(Rh)(t, x) = �

1X

j=1

Z t

0
(k⇤j(t� s)

�
W

jh(s, ·)
�
(x)ds.

Here, k ⇤ a stands for the convolution of two functions (k ⇤ a)(t) =
R t

0 k(t� s)a(s)ds. Similarly,

k⇤j ⇤ a = k ⇤ (k ⇤ · · · ⇤ (k⇤
| {z }

j times

a) . . . ).

The data in (2.12) clearly satisfy the assumptions of Theorem 2.1. Our next goal is to understand invert-

ability of M(z) = I+ (LA)(z). By (2.14), M(z) is invertible unless z is a root of

G(z) =
2

Kµ
, G(z) := L (Fg) (z), µ 2 Spec(W )/{0}. (2.18)

Below, we will need the following observation

G(z) =

Z
1

0
(Fg)(t)e�tzdt =

Z
1

0

Z
1

�1

ei(⇠+t)⌘e�tzg(⌘)d⌘dt =

Z
1

�1

g(⌘)

z � i⌘
d⌘, (2.19)

where we used Fubini’s theorem.

Equation (2.18) will be used to compute the eigenvalues of T . The corresponding eigenfunctions can be

found by extending the corresponding results of the theory for Volterra equations on a finite–dimensional

space (cf. [10, Theorem 2.1]) to the problem at hand. For simplicity of presentation, we will compute the

eigenfunctions directly using the results in [4].

Let z = � be a root of (2.18) corresponding to µ 2 Spec(W ). By Lemma 3.2 in [4] (see also [8,

Lemma 27]), � is an eigenvalue of T . The corresponding eigenfunction is

w� = Fv�, (2.20)

where

v�(!, x) =
K

2

g(!)

�� i!

Z

I⇥R

W (x, y)v(�, y)dyd�. (2.21)

By integrating both sides of (2.21) with respect to !, we have

V =
K

2
G(�)WV,

where we used (2.19). V (x) =
R

R
v(�, x)d� is an eigenfunction of W corresponding to

µ =
K

2
G(�).

We conclude that

w�(⌘, x) =

Z

R

ei⌘!g(!)

�� i!
d! V (x) (2.22)
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is an eigenfunction of T corresponding to eigenvalue �. Here, we dropped the factor Kµ/2 since eigen-

functions are defined up to a multiplicative constant.

Thus,

v�(!, x) =
�
F
�1w�(·, x)

�
(!) = Υ�(!)V (x), Υ�(!) :=

g(!)

�� i!
. (2.23)

Remark 2.3. The separable structure of v� has important implications for pattern formation. Υ and V are

determined by the intrinsic frequency distribution g and the graph limit W respectively. Equation (2.23)

shows that the frequency distribution and the graph structure shape the unstable modes independently from

each other.

Below we will need to know the structure of

Υ0 = lim
�!0+0

Υ� = lim
�!0+0

g(!)

�� i!
.

For (Fg) 2 Ca(R), Υ0 can be viewed as a tempered distribution. Indeed, for any � from the Schwartz space

S(R), by Sokhotski–Plemelj formula (cf. [17]), we have

hΥ0,�i = lim
�!0+0

Z
1

�1

g(!)�(!)

�� i!
d! = ⇡g(0)� i P.V.

Z
1

�1

g(!)

!
d!.

Thus, as an element of S0(R), Υ0 can be written as

Υ0 = ⇡g(0)� � iPg,0, (2.24)

where � stands for the delta function and

hPg,↵,�i = P.V.

Z
1

�1

g(! + ↵)�(! + ↵)

!
d!.

Similarly, we compute

Υ±iy∗ := lim
�(0+0)±iy∗

g(!)

�� i!
= ⇡g(±y⇤)�±y∗ � iPg,±y∗ , (2.25)

where �� = �(·+ �).

3 Bifurcations and patterns

Next we turn to the bifurcations in the KM (1.1) and the corresponding patterns. To illustrate the typical

scenarios realized in this model we will consider unimodal (U) and bimodal (B) g 2 Ca(R) combined with

all–to-all (aa) and nonlocal nearest-neighbor connectivity (nn). We will code the corresponding models by

(Xy) where X 2 {U,B} and y 2 {aa, nn}.
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a

Re z

Im

Ku

z

b

Re z

Im

Kb

z

Figure 1: The critical curves generated by a unimodal (a) and bimodal (b) intrinsic frequency distribution.

As a first step, we locate the bifurcations in (1.1) by solving (2.18). To this end, recall (2.19) and note

that G is analytic in Π := {z 2 C : <z > 0} and is continuous in Π̄. By Sokhotski–Plemelj formula,

lim
y!±1

lim
x!0+0

G(x+ iy) = lim
y!±1

✓

⇡g(y)� i P.V.

Z
1

�1

g(s)ds

y � s

◆

= 0. (3.1)

Thus, G maps the imaginary axis to a bounded closed curve. As in [8], we use the Argument Principle

[17] to conclude that (2.18) has a root in Π if and only if

2(Kµ)�1 2 G(Π). (3.2)

In Figure 1, we plot G(@Π) for symmetric unimodal and bimodal g. The critical curve G(@Π) always

intersects the real axis at the origin (cf. (3.1)). In addition, it has another point of intersection with the real

axis at

Ku = G(0) > 0, (3.3)

if g is unimodal. In the bimodal case, there is a point of double intersection

Kb = G(±iy⇤) > 0. (3.4)

Having understood the qualitative features of the critical curves for the unimodal and bimodal densities,

we now turn to bifurcations.

(Uaa) We start with the all–to–all coupling first. In this case, W ⌘ 1, the largest eigenvalue of W is µ = 1,
and the corresponding eigenfunction is constant [4]. Since the critical curve G(@Π) is bounded,

2K�1 /2 Π for K � 1. Thus, there are no roots of (2.18) for large K. As we decrease K, 2K�1 hits

G(@Π) when

2K�1 = G(0) = ⇡g(0).

Note that the corresponding root of (2.18) is z = 0. Thus, at Kc = 2/(⇡g(0)) the system undergoes

a pitchfork bifurcation. The emerging pattern is determined by the unstable mode v0, which has a

singularity at ! = 02. This implies that the emerging pattern contains a stationary cluster. Further,

2For φ vanishing in a neighborhood of the origin hΥ0,φi is a regular functional.
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1 500 1000
0

2

MIXING

SYNCHRONOUS

1 500 1000
0

2

Figure 2: The pitchfork bifurcation leading to the formation of spatially homogeneous synchronous solution

in the KM with all–to–all coupling and unimodal g. 1 stands for the time asymptotic value of the L2–norm

of the local order parameter (1.4). The data presented in this plot was obtained after a long transient time.

Further, the L2–norm of the local order parameter was averaged over a certain time interval to smoothen the

data. The same method was used in all subsequent computations of the order parameter.

since V ⌘ 1, the bifurcating solution is uniform in space. We conclude that the instability leads to the

formation of a stationary coherent cluster (see Figure 2). This is a classical scenario of the onset of

synchronization.

(Baa) Next we discuss the case of the bimodal density and all–to–all coupling. In this case 2K�1 hits

G(@Π) at the point of double intersection of the critical curve with the real axis:

2K�1 = G(0) = ⇡g(±y⇤).

The roots of (2.18) z = ±iy⇤. The system undergoes Andronov–Hopf bifurcation at Kc = 1/ (⇡g(y⇤))3

The eigenfunctions v±iy∗ have singularities at ! = ±y⇤ respectively (cf. (2.25)), while V is still

constant. Thus, the emerging pattern consists of two spatially homogeneous clusters rotating with

constant speed in opposite directions (see Figure 3).

(Unn) It remains to consider the nonlocal nearest–neighbor coupling (see [4, §5.2] for the definition of

W in this case). The new feature here is that along with the largest positive eigenvalue µ+ = 1
(corresponding to V + ⌘ 1), there can be one or more negative eigenvalues (see [4] for a detailed dis-

cussion). Suppose µ� < 0 is the smallest negative eigenvalue of W . The corresponding eigenspace

is spanned by V �

1,2 = e±2⇡iqx for some q 2 N. Thus, there are two bifurcation points

K+
c = 2/(⇡µ+g(y⇤)) > 0 and K�

c = 2/(⇡µ�g(0)) < 0.

3The KM with all–to–all coupling and bimodal frequency distribution was discussed in [8], but the Andronov–Hopf bifurcation

was not identified there.
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Υ0 component of the unstable mode v0 is the same for the bifurcations at K�

c and K+
c . This implies

that the bifurcating patterns gravitate towards stationary clusters. However, the spatial organization

is different. The pattern emerging at K+
c is uniform in space, whereas those emerging at K�

c are

organized as q–twisted states (see Figure 4).

A new feature of this example is that in addition to positive eigenvalues of W there are negative

eigenvalues. Denoting the largest postive and smallest negative eigenvalues of W by µ+ and µ� <
0 respectively (see [4] for explicit formulae of the eigenvalues of W ). For µ+ the corresponding

eigenfunction is constant as in the all–to–all coupling case. For µ�, the eigenfunctions are linear

combinations of so–called q–twisted states: e±2⇡iqx for the appropriare q 2 N. Thus, in the unimodal

case the mixing state bifurcates into a spatially homogeneous solutions at K+ = 2/(⇡µ+g(0)) > 0
and into a twisted state at K� = 2/(⇡µ�g(0)) < 0 (see Figure 4). In the bimodal case, the mixing

state bifurcates into a two-cluster at K+ = 2/(⇡µ+g(y⇤)) > 0 and into a pair of twisted states at

K� = 2/(⇡µ�g(y⇤)) < 0 (see Figure 4).

(Bnn) The only difference of this case with the one that we just discussed is that the principal unstable

modes v±iy∗ are localized around ! = ±y⇤. Thus, the stationary patterns in (Unn) turn into rotating

ones: rotating clusters at K+
c and twisted states traveling in opposite directions at K�

c (see Figure 5).

This concludes the description of the bifurcation scenarios in the KM with symmetric unimodal and

bimodal frequency distribution on complete and nonlocal nearest–neighbor graphs. Breaking the symmetry

of the distribution (see Figure 6) results in new patterns including chimera like patterns shown in Figure 7.

They can be understood using the techniques of this paper. The situation is even more interesting for the

second–order KM, which will be covered in the future work [6]. The complete and nonlocal nearest–

neighbor graphs were used in this paper as representative examples. The analysis of this paper applies

without any changes to the KM on a variety of convergent graph sequences including Erdős–Rényi, small-

world, and power–law graphs (cf. [7, 15]).
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Figure 4: Bifurcations in the KM with nonlocal nearest–neighbor coupling and unimodal frequency distri-

bution. The pitchfork bifurcation at K�

c < 0 leads to formation of a 2–twisted state. At K+
c > 0 the system

undergoes a bifurcation leading to synchronization.
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Figure 5: Bifurcations in the KM with nonlocal nearest–neighbor coupling and bimodal frequency distribu-

tion. The Andronov–Hopf bifurcation at K+
c > 0 leads to formation of 2–cluster, whereas the bifurcation at

K�

c < 0 results in a pair of 2–twisted states traveling in opposite directions.
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Figure 6: The critical curve for asymmetric bimodal distribution.
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Figure 7: The bifurcation diagrams for the KM with asymmetric bimodal distribution (see Figure 6). The

coupling is all–to–all in a and nonlocal nearest–neighbor in b. To elucidate the structure of these patterns,

we separated the oscillators into two groups depending on the sign of the intrinsic frequency.
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