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Abstract

Transformers have improved the state-of-the-art in various natural language pro-
cessing and computer vision tasks. However, the success of the Transformer model

has not yet been duly explained. Current explanation techniques, which dissect

either the self-attention mechanism or gradient-based attribution, do not necessarily
provide a faithful explanation of the inner workings of Transformers due to the fol-
lowing reasons: first, attention weights alone without considering the magnitudes

of feature values are not adequate to reveal the self-attention mechanism; second,
whereas most Transformer explanation techniques utilize self-attention module,
the skip-connection module, contributing a significant portion of information flows

in Transformers, has not yet been sufficiently exploited in explanation; third, the

gradient-based attribution of individual feature does not incorporate interaction

among features in explaining the model’s output. In order to tackle the above

problems, we propose a novel Transformer explanation technique via attentive

class activation tokens, aka, AttCAT, leveraging encoded features, their gradients,
and their attention weights to generate a faithful and confident explanation for

Transformer’s output. Extensive experiments are conducted to demonstrate the
superior performance of AttCAT, which generalizes well to different Transformer

architectures, evaluation metrics, datasets, and tasks, to the baseline methods. Our

code is available at: https://github.com/giangyao1988/AttCAT.

1 Introduction

Transformers have advanced the state-of-the-art on a variety of natural language processing tasks [1,
2] and see increasing popularity in the field of computer vision [3, 4]. The main innovation behind the
Transformer models is the stacking of multi-head self-attention layers to extract global features from
sequential tokenized inputs. However, the lack of understanding of their mechanism increases the risk
of deploying them in real-world applications [5, 6, 7, 8, 9]. This has motivated new research on
explaining Transformers output to assist trustworthy human decision-making [10, 11, 12, 13, 14, 15,
16, 17].

The self-attention mechanism [18] in Transformers assigns a pairwise score capturing the relative
importance between every two tokens or image patches as attention weights. Thus, a common
practice is to use these attention weights to explain the Transformer model’s output by exhibiting the
importance distribution over the input tokens [6]. The baseline method, shown as RawAtt in Figure
2, utilizes the raw attention weights from a single layer or a combination of multiple layers [10].
However, recent studies [11, 12, 13] question whether highly attentive inputs significantly impact
the model outputs. Serrano et al. [11] demonstrate that erasing the representations accorded high
attention weights do not necessarily lead to a performance decrease. Jain et al. [12] suggest that
“attention is not explanation” by observing that attention scores are frequently inconsistent with other
feature importance indicators like gradient-based measures. Abnar et al. [13] argue that the contextual
information from tokens gets more similar as going deeper into the model, leading to unreliable
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Figure 1: An illustration of Transformer architecture. The left panel shows a simple three-layer
Transformer model. Each layer consists of a self-attention module and a skip connection module
(shown in the right panel). The input is a sequence of tokens with two added special tokens, i.e.,
[CLS] and [SEP]. The third token, ‘like’ (x, ), contributes mostly to the positive sentiment prediction
since its attention weighted output is the largest. Size of the colored circles illustrate the value of the
scalar or the norm of the corresponding vector. Arrows within the circles demonstrate the directions of
the vectors.

explanations using the raw attention weights. The authors propose two methods to combine the
attention weights across multiple layers to cope with this issue. Their attention rollout method, shown as
Rollout in Figure 2, reassigns the important scores to the tokens through the linear combination of
attention weights across the layers tracing the information flow in Transformer. However, the
rollout operation canceled out the accumulated important scores as some deeper layers have almost
uniformly distributed attention weights. The attention flow method is formulated as a max-flow
problem by dissecting the graph of pairwise attentions. While it somewhat outperforms the rollout
method in specific scenarios, it is not ready to support large-scale evaluations [15].

Recently, Bastings et al. [19] advocate using saliency method as opposed to attention as explanations.
Although some gradient-based methods [20, 21, 22, 23] have been proposed to leverage salience
for explaining Transformer’s output, most of them still focus on the gradients of attention weights,
i.e., Grads and AttGrads as shown in Figure 2. They suffer from a similar limitation to the above-
mentioned attention-based methods. Layer-wise Relevance Propagation (LRP) method [24, 25],
which is also considered as a type of saliency method, propagates relevance scores from the output
layer to the input. There has been a growing body of work on using LRP to explain Transformers
[14, 15]. Voita et al. [14] use LRP to capture the relative importance of the attention heads within
each Transformer layer (shown as PartialLRP in Figure 2). However, this approach is limited by only
providing partial information on each self-attention head’s relevance; no relevance score is propagated
back to the input. To address this problem, Chefer et al. [15] provide a comprehensive treatment of
the information propagation within all components of the Transformer model, which back-propagates
the information through all layers from the output back to the input. This method further integrates
gradients from the attention weights, shown as TransAtt in Figure 2. However, TransAtt relies on the
specific LRP rules that is not applicable for other attention modules, e.g., co-attention. Thus it can
not provide explanations for all transformer architectures [26].

As such, the existing Transformer explanation techniques are not completely satisfactory due to three
major issues. First, most attention-based methods disregard the magnitudes of the features. The
summation operation (Eq. 2 shown in Figure 1) demonstrates both attention weights (the green circles)
and the feature (the blue circles) contribute to the weighted outputs (the red circles). In other words,
since the self-attention mechanism involves the computation of queries, keys, and values, reducing it
only to the derived attention weights (inner products of queries and keys) is not ideal. Second, besides
the self-attention mechanism, skip connection as another major component in Transformer is not
even considered in current techniques. The latter enables the delivery and integration of information by
adding an identity mapping from inputs to outputs, trying to solve the model optimization problem from
the perspective of information transfer [27]. Moreover, Lu et al. [28] find that a significant
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Figure 2: A summary of the existing explanation methods and our methods: CAT and AttCAT.
The Transformer consists of several layers denoted as Layer (1),---,(l),---, (L). Boa and Bh
represent the gradients of attention weights o and outputs h, respectively. R is calculated based on
layer-wise relevance propagation (LRP). E denotes the explanation method. E |,means averaging
among multi-head attentions in each layer.

portion of information flow in BERT goes through the skip connection instead of the attention heads
(i.e., three times more often than attention on average). Thus, attention alone, without considering
the skip connection, is not sufficient to characterize the inner working mechanism of Transformers.
Third, the individual feature attribution-based approaches [15, 14, 29, 30] cannot capture the pairwise
interactions of feature since gradients or relevance scores are calculated independently for each
individual feature. For example, the gradients directly go through the Transformer layers from the
output to the specific input (the token ‘like”), shown in Figure 1.

We propose Attentive Class Activation Tokens (AttCAT) to generate token-level explanations leverag-
ing features, their gradients, and their self-attention weights. Inspired by GradCAM [31], which uses
gradient information flowing into the last convolutional layer of the Convolutional Neural Network
(CNN) to understand the importance of each neuron for the decision of interest, our approach
quan-tifies the impact of each token to the class-specific output via its gradient information. We
further leverage the self-attention weights to capture the global contextual information of each token
since it determines the relative importance of a single token concerning all other tokens in the input
sequence. By disentangling the information flow across the Transformer layers for a specific
token into the information from itself via a skip connection and the interaction information among all
the tokens via a self-attention mechanism, we integrate the impact scores, which are generated using
AttCAT, from multiple layers to give the final explanation.

A summary of the baseline methods and our AttCAT method is shown in Figure 2, demonstrating
their main similarities and differences. The RawAtt and Rollout [13] methods simply use the attention

weights (a). The Grads method leverages the gradients of attention weights (Ba') from the last
Transformer layer, while the AttGrads method [22] integrates the attention weights (a) and their
gradients (Ba) from all Transformer layers. The PartialLRP method [14] applies LRP only on the
last Transformer layer (R'). Differently, the TransAtt method [26] integrates the relevance scores (R)
from LRP and the gradients of attention weights (a). We use CAT, a new gradient-based attribution
method leveraging the features (h) and their gradients (@h), as our in-house baseline method. We
further integrate attention weights (o) with CAT as the proposed AttCAT method.

We state our contributions as follows:

* We propose a novel Transformer explanation technique, AttCAT, leveraging the features,
their gradients together with attention weights to generate the so-called impact scores to
quantify the influence of inputs on the model’s outputs.

e Our AttCAT exploits both the self-attention mechanism and skip connection to explain the
inner working mechanism of Transformers via disentangling information flows between
intermediate layers.



e Furthermore, our class activation based method is capable of discriminating positive and
negative impacts toward the model’s output using the directional information of the gradients.

¢ Finally, we conduct extensive experiments on different Transformer architectures, datasets,
and Natural Language Processing (NLP) tasks, demonstrating a more faithful and confident
explanation than the baseline methods using several quantitative metrics and qualitative
visualizations.

2 Preliminaries

2.1 Self-Attention Mechanism

The encoders in Transformer model [1] typically stack L identical layers. Each contains two sub-
layers: (a) a multi-head self-attention module and (b) a feed-forward network module, coupled with
layer normalization and skip connection. As illustrated in Figure 1, each encoder computes the output

hg') RY of the i-th token combining the previous encoder’s corresponding output h“i_l) from the

skip connection and a sequence output h{'~1) = {h“l_l), cee, h(i'_l), - h(n'_l)} RY through
self-attention mechanism:

|
a(hi' M)k (h/")T

o) j := softmax ; @R, (1)
- wo Xn o (1-1) (I-1)p
hi=WwW ai,jV (hj )+ hY , (2)

i=1

where al ; is the attention weight assigned to the j-th token for computing h(i'). d denotes the
dimension of the vectors. Here, Q(-), K(-), and V (-) are the query, key, and value transformations:

Q(h) := Wh, K(h):=WKh, V(h):=w"Vh, (W wK, wV)mRred, (3)

respectively. We drop the bias parameters in these equations for simplicity. For multi-head attentions,
we concatenate the output from each head.

2.2 Class Activation Map

GradCAM [31] is one the most successful CAM-based methods using the gradient information
flowing into the last convolutional layer of CNN to understand the importance of each neuron
for the decision of interest. In order to obtain the class discriminative localization map for the
explanation, Grad-CAM first computes the gradient of the score for class c, i.e., y© before the softmax,
concerning feature maps A¥ of a convolutional layer as ﬁ. Then, these flowing back gradients are

global-average-pooled to obtain the neuron importance wéight ka:
Cc

w=E oy (4)

where E denotes the global-average-pooling. The weight w reflects a partial linearization of the
CNN downstream from A and captures the importance of feature map k for a target class c. Then a
weighted combination of forward activation maps is obtained by:

!
X
GradCAM® = RelU  wCSA* | (5)
k

where ReLU() is applied to filter out the negative values since we are only interested in the features
that positively influence the class of interest.

3 Problem Formulation

The objective of a token-level explanation method for Transformer is to generate a separate score
for each input token in order to answer the question: Given an input text and a trained Transformer



model, which tokens mostly influence the model’s output? There is no standard definition of influence
in literature [32]. Some works use the term ‘importance’, whereas others use the term ‘relevance’
depending on the explanation methods being used. Here we note that the token influence should
reflect not only the magnitude of impact but also its directionality. As such, we define a new concept,
Impact Score, to measure both Magnitude of Impact and Directionality. The former addresses the
question “Which input tokens contribute mostly to the output?”. And the latter addresses the question
“Given an input token, have positive or negative contributions been made to the output?”
Formally, we define the Impact Score generated by our AttCAT method as follows:

Definition 1 (Impact Score) Given a pre-trained Transformer T (-), an input token x, and our
explanation method Eattcat (). Impact Score is define as:

[Eaticar (T, Magnitude of Impact,

Sign(Eacttcat(T(x))), Directionality. (6)

Impact Score(EAttcaT (T (x))) =

Remark 1 (Magnitude of Impact) The magnitude of impact indicates how much contribution has
been made by each token. A sort function can be applied to the array of scores for the input tokens to
retrieve the most impactful tokens on the output.

Remark 2 (Directionality) The sign reveals whether each token makes a positive or negative
impact on the output.

4 Attentive Class Activation Tokens

4.1 Disentangling Information Flows in Transformer

To interpret the inner working mechanism of Transformers, it is essential to understand how the
information of each input token flows through each intermediate layer and finally reaches the output.
Some previous works [13, 22] use heuristics to treat high attention weights and/or their gradients as
indicators of important information flows across layers. Others [15, 14] apply LRP aiming to dissect
the information flows via layer-wise back-propagation. However, these approaches either rely on the
simple-but-unreliable assumption of linear combination of the intermediate layers or ignore the major
components of Transformer, i.e., the magnitudes of the features and the skip connection.

From Figure 1, we observe that the output sequence of the Transformer model has a one-to-one
correspondence to its input sequence. The skip connection is a shortcut that bridges the input and
output of the self-attention operation. We note that the Transformer encoder intuitively is an operator
that adds the representation of token interactions (via self-attention mechanism) onto the original
representation of the token (via skip connection). Therefore, from a perspective of information flow,
we can specify the i-th token’s information at the (I)-th layer as:

Information(x}) = Information(x'™?) + Interaction()l("l,xr':/li , (7)

where Information(xl"l) represents the information contained in the i-th token at the (I-1)-th layer,
and Interaction(>i("1, )d;/li) reflects the summation of all pairwise interaction between the i-th token
and all other tokens (n/i).

This observation motivates us to interpret the inner working mechanism of Transformers via dis-
entangling the information flow Transformer. Thus, considering Eq. 7 as a recurrence relation,
the final representation of the i-th token then consists of the original information (the input) plus
token interactions between the i-th token and all other tokens at different layers. Since the CNN’s
last convolutional layer also encodes both high-level semantics and detailed spatial information,
corresponding to the original information and the interactions herein, the way GradCAM used for
explaining a CNN model’s output inspired us to design Attentive Class Activation Tokens (AttCAT)
to understand the impact of each token on a Transformer model’s output.

4.2 Class Activation Tokens

For a pre-trained Transformer, we can always find its output h' at I-th layer. Assume h' has n
columns, each column corresponds to an input token (including the paddings, i.e., [CLS] and [SEP]).



We write its columns separately as hI ) h hI As h L is the output of i-th token from the
last Transformer layer L, to |nterpret the |mpact of i-th token to the final output y© for class ¢, it
would be straightforward if we have a linear relationship between y© and h' as follows:
Xn
yo= w¢-hb, (8)
I

where wic is the linear coefficient vector for h LI Inspired by GradCAM [31], we obtain the token
important weights as:

oy ¢
ah:’
where w illustrates a partial linearization from hiL and captures the importance of i-th token to a
target class c. Class Activation Tokens (CAT) is then obtained through a weighted combination:

W?: hiLz (9)

CAT! = Bh;,'®h; ! (10)

where B is the Hadamard product. CATLi denotes the impact score of the i-th token at L-th layer
towards class c. Note that we do not apply ReLU() to filter out the negative scores here since we also
care about the directionality of the impact score.

4.3 Attentive CAT

While CAT explains the model’s output according to the attribution of each individual token’s encoder
output (Eq. 8), it does not consider the interaction among tokens, which is revealed via the self-
attention mechanism. The self-attention mechanism [18] assigns a pairwise similarity score between
every two tokens as the attention weight, encoding the important interaction information of these
tokens. Therefore, we integrate self-attention weights with CAT to further incorporate the token
interaction information for better quantifying the impact of each token on the Transformer model’s
output. Our Attentive CAT (AttCAT) at L-th layer for i-th token is then formulated as:

AttCAT} = En(al - CAT}), (12)
where aiL denotes the attention weights of the i-th token at L-th layer. E ,; (-) means averaging over
multiple heads.

Recall that Eq. 7 represents a recurrence relation, we can always find the output of I-th layer and

assign it as y'i. We can use Eq. 9, 10, and 11 to formulate Att CAT' ,idenoting the impact score for i-
th token at I-th layer.

Finally, different from the Rollout and TransAtt methods that apply the rollout operation, we sum
AttCAT! over all Transformer layers as the final impact score of i-th token as follows:
XL
AttCAT; = AttCAT/. (12)
j=1

We empirically demonstrate that the summation is a more effective way than Rollout in Figure 5.

5 Experiments

5.1 Desirable Properties of an Explanation Technique

We first introduce two desirable properties of an explanation method: faithfulness and confidence,
along with metrics to systematically evaluate the performance of various explanation techniques.

Faithfulness quantifies the fidelity of an explanation technique by measuring if the tokens identified
indeed impact the output. We adopt two metrics from prior work to evaluate the faithfulness of
word-level explanations: the area over the perturbation curve (AOPC) [33, 34] and the Log-odds
scores [35, 34]. These two metrics measure local fidelity by deleting or masking the top k% scored
words and comparing the probability change on the predicted label.

Confidence A token can receive several saliency scores, indicating its contribution to the prediction
of each class. The tokens with higher impact scores of the predicted class c should also have lower



impact scores for the remaining classes. In other words, the explanation techniques should be highly
confident in recognizing the most impact tokens of the desired class (usually the predicted class).
On the other hand, these tokens should have the most negligible impact on other classes. We use
Kendall-t correlation, the statistic measuring the strength of association between the ranked scores of
different classes, to evaluate the confidence of an explanation method.

5.2 Experiment Settings

Transformer models: BERT [2] is one of the most representative Transformer models with impres-
sive performance across a variety of NLP tasks, e.g., sentiment analysis and question answering.
We use the BERT, ., model and some variants (i.e., DistillBERT [36] and RoBERTa [37]) in our
experiments. Our method can be generally applied to other Transformer architectures with minor

modifications. The pre-trained models from Huggingface® are used for validating our explanation
method and comparing it to others. More details of these Transformer models and their prediction
performance are presented in Appendix A.

Datasets: We evaluate the performance using the following exemplar tasks: sentiment analysis on
SST2 [38] , Amazon Polarity, Yelp Polarity [39], and IMDB [40] data sets; natural language
inference on MNLI [41] data set; paraphrase detection on QQP [42] data set; and question answering on
SQuADvV1 [43] and SQUADvV2 [44] data sets. More details of these data sets are described in
Appendix B.

Baseline methods: Several baseline explanation methods for Transformer have been compared
through our experiments, including the attention-based methods (i.e., RawAtt and Rollout [13]),
the attention gradient-based methods (i.e., Grads and AttGrads [22]), the LRP-based methods (i.e.,
PartialLRP [14] and TransAtt [15]). CAT without incorporating attention weights is an ablation
version of AttCAT. Figure 2 summarizes and compares these methods with formulations.

5.3 Evaluation Metrics

AOPC: By deleting top k% words, AOPC calculates the average change of the prediction probability
on the predicted class over all test examples as follows:

(Y Ixi) = p(yI%), (13)
1

where N is the number of examples, y is the predicted label, p(y]|-) is the probability on the predicted
class, and S‘(ik is constructed by removing the k% top-scored words from x;. To avoid choosing
an arbitrary k, we remove 0, 10, 20, - - - , 100% of the tokens in order of decreasing saliency, thus
arriving at %9, X109, - - ., 2190 Higher values of AOPC are better, which means the deleted words are
more impactful on the model’s output.

LOdds: Log-odds score is calculated by averaging the difference of negative logarithmic probabilities
on the predicted class over all test examples before and after masking k% top-scored words with zero
paddings,

LOdds(k) =

1ok
7 jog RVIG ), (14)
N plYIx)
The notations are the same as in Eq. 13 with the only difference that )('f is constructed by replacing
the top k% word with the special token [PAD] in x;. Lower LOdds scores are better.

Kendal correlation: We use the Kendal-t to evaluate confidence of an explanation method, formally:

1 X
Kendal correlation = — Kendall-t(S(xi)c, S(xi)c/c), (15)
i=1
where S (x;) denotes an array of the token index in order of the decreasing saliency (or attribution, or
relevance, or impact) scores for a test example. A lower Kendal correlation demonstrates the
explanation method is more confident in generating the saliency scores for predicting the class c.

Thttps://huggingface.co/
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Figure 3: AOPC and LOdds scores of different methods in explaining BERT against the corruption
rate k on Amazon data set. Higher AOPC and lower LOdds scores are better. The x-axis demonstrates
removing or masking the k% of the tokens in order of decreasing saliency.

SST2 QQP MNLI Amazon Yelp IMDB
Method AOPCT [ LOdds] | AOPC | LOdds | AOPC [ LOdds | AOPC [ LOdds | AOPC [ LOdds | AOPC [ LOdds
RawAtt 0.331 -0.885 | 0.143 0.149 | 0.138 0.235 | 0.384 -1.729 | 0.394 -2.017 | 0.298 -1.245
Rollout 0.286 -0.641 | 0.139 0.262 | 0.151 0.321 | 0.324 -1.303 | 0.277 -1.055 | 0.331 -1.323

Grads 0.335 -0.252 [ 0.141 0.184 | 0.156 0.139 | 0.316 -1.820 | 0.414 -1.994 | 0.304 -1.227
AttGrads 0.351 -0.603 | 0.143 0.113 | 0.159 0.114 | 0.346 -1.941 | 0.439 -2.054 | 0.310 -1.267

PartialLRP | 0.341 -0.922 | 0.142 0.137 | 0.138 0.231 | 0.418 -2.019 | 0.424 -2.199 | 0.312 -1.321

TransAtt 0.354 -1.038 | 0.145 0.114 | 0.130 0.214 | 0.415 -1.889 | 0.434 -2.508 | 0.421 -2.137
CAT 0.352 -1.115 | 0.134 0.121 | 0.157 0.121 | 0.409 -2.157 | 0.421 -2.587 | 0.406 -3.052
AttCAT 0.371 -1.319 | 0.139 0.073 | 0.164 0.008 | 0.457 -2.332 | 0473 -3.169 | 0.528 -3.671

Table 1: AOPC and LOdds scores of different methods in explaining BERT on different data sets.
Higher AOPC and lower LOdds scores are better. Best results are in bold face.

Precision@K: Inspired by the original Precision@K used in recommender system [45], we design a
novel Precision@K to evaluate the explanation performance on SQUAD data sets. For each test
example, we count the number of tokens in the answer that appear in the K top-scored tokens as
Precision@K. Therefore, higher Precision@K scores are better.

6 Results and Discussions

6.1 Quantitative Evaluations

The quantitative evaluations in this Section demonstrate our AttCAT method outperforms the baseline
methods on the vast majority of different data sets and tasks. Table 1 depicts the results of various
explanation methods and data sets. We report the average AOPC and LOdds scores over k values.
Due to computation costs, we experiment on a subset with 2,000 randomly selected samples for
the Amazon, Yelp, and IMDB data sets. Entire test sets are used for other data sets. AttCAT
achieves the highest AOPC and lowest LOdds scores in most settings, demonstrating that the most
impactful tokens for model prediction have been deleted or replaced. Among all the compared
methods, the attention-based methods (i.e., RawAtt and Rollout) perform worst since attention
weights alone without considering the magnitudes of feature values are not adequate to analyze the
inner working mechanism of Transformers. Remarkably, AttCAT also outperforms TransAtt, a recent
work representing a strong baseline method. The performance of CAT, shown here as an ablation
study, drops markedly, corroborating the effectiveness of using self-attention weights in AttCAT.

We also report the AOPC and LOdds scores of different methods in explaining BERT by deleting or
masking bottom k% words on different data sets in Appendix Table 5. Our AttCAT achieves the
lowest AOPC and highest LOdds, demonstrating that AttCAT efficiently captures the most impactful
tokens for model predictions.

Figure 3 illustrates how the evaluation metrics, namely AOPC and LOdds, change over the varying
corruption rates (via removing or masking the k% top-scored words). Our AttCAT method achieves
the highest AOPC and the lowest LOdds scores within a corruption rate k of 50% or less, further
demonstrating that AttCAT has detected the most impactful words for model predictions.
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scores of SQUADvV1 and SQUADvV2 are 3.72 operations (ours), respectively. Best viewed in and

3.84, respectively. color.

Method STTZ | QQP | MINLI | Amazon | Yelp | TMDB

Grads 0.150 [ 0.236] 0.169 0.146 0.1747 0.098

AttGrads 0.116 0.198 | 0.156 0.148 0.132 0.064

PartialLRP | 0.955 | 0.949] 0.935 0.965 09527 0.858

TransAtt 0.336 0.222 0.339 0.152 0.121 0.043

CAT 0.10T | 0.3737 0.339 0.095 0107 0.056

AttCAT 0.018 0.349| 0.017 0.015 0.008 | 0.023

Table 2: Kendal-t correlation of different explanation methods in explaining BERT on varying data
sets. Lower scores are better. Only class-specific methods are selected. Best results are in bold face.

Table 2 shows the Kendal-t based confidence score of the different explanation techniques for BERT
tested using various data sets. We do not report the confidence scores of the attention-based methods
since they are class agnostic. AttCAT achieves the best performance on most data sets; different
classes observe distinctively sorted tokens, leading to much lower Kendal correlations. In other
words, our AttCAT is highly confident in recognizing the most impactful tokens for predicting the
class of interest.

We show the Precision@K scores for the SQUAD data sets in Figure 4. Here k is set to 20. Our
results clearly demonstrate that AttCAT is superior to other methods and generalizes well to various
BERT architectures on SQUAD data sets. The higher score means that AttCAT can capture more
impactful answer tokens in the TOP-20 sorted tokens, proving its capability to generate more faithful
explanations. The results of varying k values are shown in Appendix Figure 8, 9, 10, 11.

6.2 Qualitative Visualizations

Lastly, we show a heatmap of the normalized impact scores generated by AttCAT in Figure 5. The
first 12 rows (LO-L11) show the impact scores of each token from different BERT layers. The darker
shaded token represents a higher score, as shown in the legend. The signs of scores indicate their
directionalities. This heatmap also justifies the effectiveness of the summation operation we used
in Eq. 12. As shown in the figure, the impact scores become uniform and less impactful as the
layer goes deeper, which is consistent with the observation from [13] where the authors argue that
the embeddings are more contextualized and tend to carry similar information in the deeper layers.
Thus, the rollout operation used in [13, 15] will attenuate the impact scores at shallower layers (i.e.,
LO-L9) since they are multiplied by scores at the deeper layers (i.e., L10-L11). As shown in the
row of ‘Rollout’ in the figure, the rollout operation only gives minimal impact scores of the tokens,
indicating essentially no information has been captured for the explanation. While the summation
operation (ours), shown as the row of ‘Sum’, generates a faithful explanation incorporating the impact
scores from each layer. In term of Impact Score, the token ‘not” with the highest positive impact



[CLS] jwhich| nfl team represented [the| afc @t super bowl 50 ? [SEP] super bowl 50 was an american football game to determine the
champion of the national football league ( nfl ) for the 2015 season . the american football conference ( afc ) champion |denver broncos
defeated the national football conference ( nfc ) champion carolina panthers 24 — 10 to earn their third super bowl title . the game was
played on february 7 , 2016 , at levi ' s stadium in the san francisco bay area at santa clara , california . as this was the 50th super
bowl , the league emphasized the " golden anniversary " with various gold - themed initiatives , as well as temporarily suspend ##ing the
tradition of naming each super bowl game with roman nu ##meral ##s ( under which the game would have been known as " super bowl
I "), so that the logo could prominently feature the |arabie| nu ##meral ##s 50 . [SEP]

(a) A visualization of the impact scores generated by AttCAT on a showcase example in SQUAD.

(a) AttCAT [CLS] i really dian ' t- this movie I some of the actors were good ., but overall the movie was boring . [SEP)
(b) TransAtt [CLS] i really didn ' [ like this movie . some of the actors were good , but overall the movie was boring . [SEFP]
(c) RawAtt [CLS] i really didn ' t like this movie . some of the actors were good , but overall the movie was boring . [SEP]
(d) Rollout [CLS] [i [FESIT [Sian| i 1 e [ [Favisl |} [Saie) [oF i) [25ier) [ere) [5aaa] ) [Buf [6versii el [mavie) [Was) Baring B (scr1

(b) Visualizations of the impact scores generated by the selected methods on a showcase example in SST2.

Figure 6: Visualization examples. The green shade indicates an important positive impact whereas
the read shade means otherwise. Darker colors represent higher impact scores. Best viewed in color.
More examples are shown in Appendix.

score (0.72) contributes mostly to the negative sentiment of this sentence, whereas the token ‘like’
with the highest negative impact score (-0.37) contributes inversely.

The ground truth answer of the question answering example shown in Figure 6a is “denver brconcos".
AttCAT successfully captures these two tokens with the darkest green shades, corresponding to
highest impact scores. The example from SST2 shown in Figure 6b has a negative sentiment. Both
AttCAT and TransAtt capture the most impactful tokens, such as ‘boring’, ‘didn’, and ‘t’, which
contribute mostly to the negative sentiment prediction. Besides the tokens explaining the negative
sentiment, our AttCAT method also identified some other tokens that contribute inversely to the
negative sentiment, e.g., ‘like’ and ‘really’ (shown in dark shade of red), whereas TransAtt is not
capable of differentiating positive and negative contributions. RawAtt gives more attention on some
irrelevant tokens, i.e., ‘overall’, ‘but’, and the punctuations. Rollout only generates some uniformly
distributed important scores for the tokens.

7 Conclusion

This work addresses the major issues in generating faithful and confident explanations for Trans-
formers via a novel attentive class activation tokens approach. AttCAT leverages the features, their
gradients, and corresponded attention weights to define the so-called impact scores, which quantify
the impact of inputs on the model’s outputs. The impact score can give both magnitude and direction-
ality of the input tokens’ impact. We conduct extensive experiments on different Transformer models
and data sets and demonstrate that our AttCAT achieves the best performance among strong baseline
methods using quantitative metrics and qualitative visualizations.

Even though our current AttCAT approach is mainly designed for BERT architectures on NLP tasks, it
can be naturally extended to Vision Transformer architectures on computer vision tasks as the
future work. Since there are various versions of Transformer architectures, e.g., ViT [3] and Swin
Transformer [4], which are much different from Transformers used on NLP tasks, it opens up new
avenues to extend our AttCAT to explain these models prediction.
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