An Unpooling Layer for Graph Generation

Yinglong Guo
School of Mathematics
University of Minnesota
Minneapolis, MN 55455

Abstract

We propose a novel and trainable graph unpool-
ing layer for effective graph generation. The
unpooling layer receives an input graph with fea-
tures and outputs an enlarged graph with desired
structure and features. We prove that the output
graph of the unpooling layer remains connected
and for any connected graph there exists a series
of unpooling layers that can produce it from a 3-
node graph. We apply the unpooling layer within
the generator of a generative adversarial network
as well as the decoder of a variational autoen-
coder. We give extensive experimental evidence
demonstrating the competitive performance of
our proposed method on synthetic and real data.

1 INTRODUCTION

Graph data appear in many application areas, such as
chemistry (Duvenaud et al., 2015), biology (Maere et al.,
2005) and social recommendation (Fan et al., 2019).
Common tasks that arise with graph data include regression
and classification of either graph nodes or whole graphs and
graph generation, which is useful for molecule generation
and drug discovery. Graph neural networks (GNNs) have
successfully generalized standard methods and architec-
tures of neural networks to graph data and have achieved
great success in many common tasks.

The task of graph generation is challenging due to its vast
search space and the complexity of the graph structure.
Furthermore, as we clarify next, it is hard to generalize
basic procedures of deep generative networks in image
generation to graph generation. For image data, a generative
neural network, which may take the form of the decoder
of a variational auto-encoder (VAE) or the generator of
a generative adversarial network (GAN), usually first
converts the input to a small intermediate image and then

Proceedings of the 26™ International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

Dongmian Zou
Division of Natural and Applied Sciences
Duke Kunshan University
Jiangsu, China 215316

Gilad Lerman
School of Mathematics
University of Minnesota
Minneapolis, MN 55455

applies convolutional-transpose layers (Zeiler et al., 2010;
Radford et al., 2016) or unpooling layers (Pu et al., 2016)
to upsample and refine the image. In the graph domain, it is
hard to form a similar convolution-transpose or unpooling
layer in order to upsample graphs. Indeed, convolution
and message passing do not change the structure of the
underlying graph and there is no natural way of building
structure for an unpooled graph. We are unaware of
any graph generation work that follows the same idea of
image generation and produces intermediate graphs and
upsamples them to obtain the desired graph.

Inspired by image generation, we propose a novel unpooling
layer for graph data that is similar to the unpooling operator
for images. By incorporating this layer, one can build a deep
graph generative network that utilizes intermediate graph
structures.

1.1 Related Work

Graph neural networks. There is already a vast amount
of recent work on GNNs. Many of those works focus on
regression or classification tasks of nodes or whole graphs.
A common building block of a GNN is the message-passing
neural network (MPNN) layer, which was first proposed
for predicting molecular properties (Scarselli et al., 2008;
Duvenaud et al., 2015) and was immediately extended to
other applications. More recently, different variants and
extensions of the MPNN layer have been proposed within
GNNs. For example, graph convolutional networks (GCN5s)
(Kipf and Welling, 2017) use a first-order approximation
of the spectral convolution to derive a simple propaga-
tion rule for node classification, graph attention networks
(Velickovic et al., 2018) use self-attention to assign different
weights to different nodes in a neighborhood, and graph
isomorphism networks (Xu et al., 2019) adopt multilayer
perceptrons (MLPs) after message passing to enhance
expressivity. These networks are simple to implement and
also follow a message-passing scheme.

Graph pooling and unpooling. The common idea of pool-
ing layers in 2D convolutional neural networks has been
generalized to graph-based data in order to produce smaller
graphs. A graph pooling layer was first proposed by Bruna
et al. (2014) and later extended in various works (Defferrard
et al., 2016; Ying et al., 2018; Ma et al., 2019; Lee et al.,

An Unpooling Layer for Graph Generation

2019). Pooling layers are widely used in classification and
regression on graphs since they downsample the graph while
summarizing the aggregated presence of encoded features.

Unlike the convolution-transpose or unpooling operation
for images, there is no obvious way to define a trainable
unpooling procedure for graphs. Some works (Jin et al.,
2018, 2019; Bongini et al., 2021) sequentially expand
graphs by adding one node at a time. While their operations
can be considered as unpooling, they cannot be regarded
as the inverse operation of common pooling, since graph
pooling is not generally done by removing one node at a
time. Among all works related to graph pooling, Gao and Ji
(2019) is the only one that seeks to define graph unpooling.
They proposed Graph-UNet to combine pooling and
unpooling processes in an encoder-decoder architecture. A
Graph-UNet first pools an input graph into a smaller graph,
encodes its global features and then applies the exact inverse
process to perform the unpooling procedure. Since this
operation deterministically depends on the pooling layers in
the encoder, it is not suitable to be used for graph generation.

Graph generation. Faez et al. (2021) nicely survey graph
generation models and categorized them as follows: auto-
regressive (AR) (Youetal.,2018b; Bongini etal.,2021; Ahn
et al., 2021), VAE (Simonovsky and Komodakis, 2018; Jin
et al., 2018; Samanta et al., 2020; Guo et al., 2021), GAN
(De Cao and Kipf, 2018), reinforcement learning (RL) (You
et al., 2018a), and normalized flow (Madhawa et al., 2019;
Shi et al., 2020; Zang and Wang, 2020; Luo et al., 2021).
Another recent category is diffusion models (Jo et al., 2022).
There are two types of graph generation strategies: one-shot
and sequential, where the former generates the output graph
at once and the latter generates it in a node-by-node and
edge-by-edge fashion. Most existing methods that leverage
the one-shot strategy, such as De Cao and Kipf (2018); Si-
monovsky and Komodakis (2018); Zang and Wang (2020),
produce a vectorized adjacency matrix, which does not uti-
lize any graph structure during generation. On the other
hand, methods that sequentially generate graphs typically
use the graph structure. For example, You et al. (2018b); Shi
et al. (2020); Luo et al. (2021) predict the next node or edge
based on the features extracted from the existing graph.

Molecule generation is the most common application in
this area as molecules can be naturally represented as
graphs with features. However, molecules need to be
chemically valid and this validity issue does not arise in
general graph generation. Many methods (De Cao and
Kipf, 2018; Simonovsky and Komodakis, 2018; Samanta
et al., 2020; Zang and Wang, 2020) generate molecules at
one-shot by producing an adjacency matrix that captures the
molecular graph structure. Mahmood et al. (2021) propose
the masked graph model (MGM) that generates graphs at
one-shot by sampling masked sub-graphs of the respective
complete graph. This method suggests a new graph
generation category. On the other hand, it is also possible
to sequentially generate molecules. For example, Jin et al.
(2018, 2019) first generate a junction-tree as the scaffolding
and then complete the graph. The junction-tree is generated

MPNN,
Unpool 1
Unpool 2 g MPNN, §

Figure 1: Demonstration of possible outputs of the proposed
unpooling layer. Left: input graph, middle: two potential
outputs of the unpooling layer, right: further application of
an MPNN layer. The colors of nodes represent their features.

recursively from the root, one node at a time. Some other
recent models (Shi et al., 2020; Ahn et al., 2021; Luo et al.,
2021) apply node-by-node and edge-by-edge sequential
generation. Bongini et al. (2021) break the graph generation
into three subproblems: node classification (which leads
to node expansion), edge classification, and edge addition,
where three separate GNNs are trained for each subproblem.

1.2 This Work

We propose a novel unpooling layer that effectively lever-
ages the features and structure of a given graph to form an
enlarged graph with learned features and structure. One
may apply additional layers, such as MPNN layers, to
further refine the features of nodes and edges in the graph.
Figure 1 demonstrates two possible outputs of the unpooling
layer with a followup MPNN layer for a given input graph.
By incorporating unpooling layers in deep graph generative
networks, we can generate a graph at one shot. In the
experiments, we incorporate unpooling layers within both
the generator of GAN and the decoder of VAE. We demon-
strate in a synthetic setting how the unpooling layers reveal
useful intermediate graph structures. We believe that the
incorporation of such structures results in the competitive
performance which is evident in all numerical experiments.

Our proposed unpooling layer (UL) leads to one-shot
generation that utilizes the graph structure during gen-
eration. Among all existing methods, only the masked
graph model (MGM) of Mahmood et al. (2021) applies
one-shot generation that utilizes the graph structure during
generation. Nevertheless, the implementation of our
method is very different from Mahmood et al. (2021). In
particular, the proposed unpooling layer enlarges the graph
at each intermediate step, whereas Mahmood et al. (2021)
sample the graph in masked subgraphs. As mentioned
earlier, the graph generation category of MGM is rather
different from the common categories. Furthermore, MGM
was implemented and applied for molecule generation

Yinglong Guo, Dongmian Zou, Gilad Lerman

and not general graph generation. Therefore, in terms of
methodology our proposed strategy is distinguished from
the many previous graph generation methods.

We emphasize the following contributions of our work:

* We propose a novel unpooling layer that produces an
enlarged graph with learnable structure. It can be inserted
into GANs and VAEs. The resulting generation frame-
work is distinguished in its ability to both generate graphs
at one shot and utilize the graph structures for generation.

* We show that the unpooling layer is valid and expressive.
That is, the unpooled graph remains connected and any
connected graph can be generated by a series of unpooling
layers from a 3-nodes graph.

* We test the unpooling layer within both GANs and
VAEs on a random graph dataset, a protein dataset and
two molecule datasets and demonstrate competitive
performance.

1.3 Structure of the Rest of the Paper

Section 2 details our proposed methodology; §3 provides
theoretical guarantees of connectivity and expressivity;
§4 reports numerical results on synthetic and real data of
protein and molecule generation; and §5 concludes this
work and discusses its limitations.

2 METHODOLOGY

Section 2.1 clarifies the construction of the unpooling
layer and §2.2 explains how to use such layers for graph
generation and how we update the parameters for the
unpooling layers.

2.1 Unpooling Layer

Given an input graph (with features), the unpooling layer
first unpools some of its nodes by replacing them with two
“children” nodes and then learns a graph structure for the
new set of nodes (in the output graph) and further learns
new features.

Notation. We use the following notation for the input graph
and its features. Itsnode setis V = [N] := {1,--- , N};its
edge set is E, where its members are of the form {i, j} for
some i, j € V; its number of edges is M = |E|; its node
feature matrix is X € RV *? where its i-th row, x;, is the d-
dimensional feature of node ¢; and its edge feature matrix is
W € RM>¢ where for edge {i,j} € F, its corresponding
row of W is the e-dimensional feature of that edge, which
we denote by w; ;. Similarly, we use the following notation
for the output graph and its features: V' is its node set, £°
isits edge set and Y and U are the feature matrices for the
output nodes and edges, respectively. We remark that the
size of V° lies in [|V| 4 1, 2|V|] and depends on the hyper-
parameters that determine which nodes should be unpooled.

The input and output graphs of the unpooling layers with

their features are respectively denoted by
G=(V,E,X,W) and G° = (V°,E°, Y ,U).

We will refer to them as featured graphs and to (V, E') and

(V°, E°) as graphs.

An overview of the unpooling layer. The unpool-
ing layer determines the output graph in a stochastic
manner. Ideally, it should produce probabilities of
every possible output graph based on the input graph
by using trainable parameters, @p. That is, it would
output a probability mass function, p, on the sample
space G° = ﬂ(V",EO) unpooled from G}, where
p(G;0p) € [0,1]I%°]. In this ideal case, the unpooling layer
then randomly draws an output graph, (V°, E°), according
to this probability mass function. The drawn probability of
this sample point, which we denote by

P(V?, E°|G;0p), 6]
can then be used to update the parameters @p during
training. Therefore, the unpooling layer can ideally refine
the probability distribution p(G;0p) in order to obtain
graphs that minimize the training loss function.

Since the sample space G° is huge, we cannot explicitly
produce the probabilities of all possible output graphs. In
practice, we use several multi-layered perceptrons (MLPs)
to produce probabilities to determine if nodes should be
unpooled and if edges between unpooling children nodes
should be included in the output graph. The product of all
these probabilities for nodes and edges gives the probability
of the entire output graph in (1) (assuming these events are
independent), which is used during training.

After forming the output graph, the unpooling layer also
produces the node and edge features using two MLPs that
exploit the input featured graph and possibly the output
graph, that is,

Y = MLP-Y(G;0y), U = MLP-W (V°, E°,G; 0w).

Detailed mechanism of the unpooling layer. The unpool-
ing layer contains seven MLPs that serve different purposes,
which we introduce below and in the supplementary materi-
als §A. For the formation of the unpooling layer We use the
following three node sets that partition the input node set:
(1) the set of nodes I/, that are unchanged in the unpooling
layer; (2) the set of nodes I, that are determined to be un-
pooled in the unpooling layer; and (3) the set of nodes I;. that
requires a probabilistic decision whether to unpool or not.

With the specified node sets, we describe the procedure
of generating the output graph in the unpooling layer
according to 3 steps, which we demonstrate in Figure 2.

Step 1. Generating the output nodes and node features
((a) in Figure 2) We first probabilistically determine which
nodes in I will be unpooled. For each node i € I, we
determine the probability of unpooling it, p,(z;), by an
MLP as follows: p,(x;) = MLP-R(z;). Then we draw
uniform random variables U; ~ UJ[0,1] and form the
following sets I,, and I, of unpooled nodes and unchanged
(or stable) nodes: I,, := I, U{i € I/ : U; < p.(x;)} and
Ii:=Iu{iel : U;>p(x;)}.

An Unpooling Layer for Graph Generation

00 09
b ©
©©e0 e
©O @0 e

(a) (b)

@0 00 @00

0 00 00
© $ ©
S-Sl &
(©) (d

Figure 2: Demonstration of the steps of the unpooling layer: (a) unpool and generate children nodes; (b) build intra-links
within pairs of children nodes; (c) build inter-links involving children nodes; (d) build features for the edges. Right: The

output graph.
Input T T T T Output
z~p(2) T—i

logP

logP

Total log P

Figure 3: Demonstration of a generative neural network with unpooling and MPNN layers. The central row shows the input
latent vector, an initial layer that creates a 3-node graph, a series of MPNN and unpooling layers, and the output featured graph
(the features are represented by colors). The top row shows the intermediate hidden featured graphs outputted at every layer.
The initial layer and the unpooling layers generate log probabilities. The generative GNN accumulates them to obtain the
total log probability (shown in the bottom row); it uses it in the REINFORCE algorithm to train the unpooling layers (see (3)).

We remark that if we want to generate the output graph with
a fixed number of nodes, we could choose I = (? for the
unpooling layer.

The set of nodes of the output graph V° is the union of the
nodes in I (with different indices) and a set of nodes of
size 2|I,,| representing the unpooled nodes from I,,. For
eachnode i € I,, we denote by f(7) the index of this node
in the output graph. For each node ¢ € I,, we denote by
f1(i) and f5(i) the indices of the two unpooled nodes in the
output graph. The output node features are generated by an
MLP and two projection operators Ps, and Pg,, which are
defined in detail in §C.2
Yyri) = MLP-y(PSI:BZ-), fori € I.

Y§6) = NILP-y(PSj:IC,*)7 forie I, j =1,2.

Step 2. Building output edges. We sequentially generate
the set £° of edges in the output graph following the next
two substeps. We initiate this set by E° := ().

Step 2.1. Building intra-links ((b) in Figure 2). For each

node 7 € I,, we determine whether to generate an edge
that connects the children nodes f; (i) and fo () based on a
probability, which we denote by p.(x;). This probability is
produced using an MLP as follows: p..(x;) = MLP-IA(x;).
Then we draw uniform random variable U; ~ U|[0, 1] and if
U; < pe(x;), we add this edge to the output graph, that is,

E° = E°U{{f1(i), f(0)}}-

Step 2.2. Building inter-links ((c) in Figure 2). For each
edge {i,j} € F in the input graph, we determine the edges
for the corresponding nodes in the output graph according
to the following three different cases: (1) 7,5 € Is: we
include the edge { f(¢), f(j)} in the output graph; (2) i € I,
and j € I,: we probabilistically determine what are the
edges between f(i) and {f1(5), f2(y)}; and 3) ¢,5 € I.:
we probabilistically determine what are the edges between

{f1(9), f2(i)} and { f1(j), fo(4)}-

For each edge {i,j} € E, we introduce node sets Ny
and Ny; 41, in order to uniformly handle the above
cases. For {i,j} € E andi € V, we form Ny; j}

Yinglong Guo, Dongmian Zou, Gilad Lerman

as follows: If i € I, then Ny; 51, = {f(i)} and if
i € I, then Ny; ;y; is a nonempty subset of the chil-
dren nodes of 7, which we probabilistically determine as
follows. We use an MLP to calculate two probabilities:
(p1,p2) = MLP-IE(y¢, (i), Y £, (), Wi, j, ;). We then draw
a uniform random variable U ~ UJ0, 1] and determine
Ny 43,5 as follows:

{f1(@)}, it U < py;
Nigijyve =S A1), f2(8)}, if U > p1+po;
{f2(9)}, otherwise.

For {i,j} € Eand j € V we similarly define Ny; ;3 ;,
while swapping ¢ and j. The edges in the output graph are
updated as follows:

E°=FE°U {{]ﬁl} ke N{i,j},i7 le N{z,]},]} (2)

We need to take extra care to ensure connectivity and ex-
pressivity of the output graph. We first form two additional
MLPs, MLP-C and MLP-IE-A to calculate probabilities.
We then probabilistically form some additional edges.
These details are a bit technical and can be fully understood
after getting familiar with our theory for connectivity and
expressivity (see §3 and the proofs in the supplementary
materials §D). Therefore we leave these details to §A of the
supplementary materials (see Step 2b and Step 2d in §A).

Step 3. Constructing the edge features ((d) in Figure 2).
For each edge {k,l} € E°, we construct the edge feature
uy,; by an MLP as follows:

uj,; = MLP-u(LeakyReLU(y;, + u1)).

Summary. We described a probabilistic construction of
G° = (V°,E°, Y ,U). It contains seven MLPs to produce
various probabilities and features for the nodes and edges of
G°. The parameters in those seven MLPs form the training
parameters of the unpooling layer. The overall probability
P(V°, E°|G; 0p) is the product of all the probabilities in the
first two steps and is used to update the training parameters
in the unpooling layer, while using the REINFORCE
algorithm introduced below.

2.2 Graph Generation and Training

We use the unpooling layer within a generative GNN, which
can be either a generator of a GAN or a decoder of a VAE.
We describe here its basic mechanism and demonstrate
it in Figure 3. Complete details of implementation are in
both §4 and the supplementary materials. The generative
GNN first maps a given latent vector into a featured 3-nodes
graph, whose structure is probabilistically determined by
an MLP and its edge features are determined by another
MLP (details are in the supplementary materials). Next, it
applies a GCN (such as MPNN) to update the node features
for this initial featured graph. It then sequentially applies
unpooling layers, where each of them is followed by a GCN
(such as MPNN), which further updates the node features.
The final output is the generated graph.

The parameters used for generating features in the un-
pooling layer can be updated during training following the
common framework of GAN or VAE. The major challenge

in using the unpooling layers for graph generation is that the
graph generation process is not differentiable. To overcome
this, we follow REINFORCE with baseline (Weaver and
Tao, 2001; Sutton and Barto, 2018) to update all the graph
generation parameters in the unpooling layer.

In order to explain this procedure with more details, we need
the following notation. We denote by G a generative GNN
(a generator of a graph GAN or the decoder of a graph VAE)
with several unpooling layers that takes a latent vector and
produces a generated graph. We denote by m the number
of unpooling layers of G, by Uy, U, - - -, Uy, the unpooling
layers and by (V°, EY), - - -, (V,2, E9,) the generated inter-
mediate graphs. Let 8 denote all the parameters of G, which
include the parameters of the MLPs in the unpooling layers.
In view of (1), the total log probability of the unpooling
layer Uy, is log P(V}2, E7). We define the total log probabil-
ity of the generator G as loglP := >, log P(V}?, E}) and
note that log P depends on 8. We denote the learning rate
by « and the reward for the generated graph by r. Note that
this reward depends on the specific generation task, e.g., it
can be the likelihood predicted by the discriminator or the
chemical property which one aims to optimize.

We update 6 as follows

0111 =0, + a(VelogPlg,)(r — Er), 3)
where we approximate Er by the sample mean. In our
experiments we incorporate the unpooling layers within
a GAN and a VAE. For a GAN, we set the reward r to be
D(G(z;0)), where D is the GAN’s discriminator, in order
to compete with the discriminator. For a VAE, we choose
the reward r to be the negative of the reconstruction error in
order to minimize the reconstruction error.

3 THEORETICAL GUARANTEES

We establish the connectivity and expressivity of the un-
pooling layer. All proofs are in the supplementary materials.

3.1 Guarantee of Connectivity of the Output Graph

The following proposition implies that if the input graph
is connected, then the unpooling layer will produce a
connected graph. This is an important property in molecule
generation since otherwise the output molecule will be
invalid. Adjacency matrix-based generators cannot ensure
connectivity.

Proposition 3.1. Given an unpooling layer and any
connected input graph G, the output graph, G°, of this
unpooling layer is connected.

3.2 Guarantee of Expressivity for the Unpooling Layer

It is important to know whether a series of unpooling layers
can produce any connected graph. For instance, in molecule
generation, a good generative model should contain all valid
molecules in the set of possible output. Some previous work
(e.g., Jinetal. (2018)) cannot produce some valid molecular

An Unpooling Layer for Graph Generation

structures and is thus not fully expressive. Fortunately,
we are able to produce any connected graph by applying
certain unpooling layers to an input graph with three nodes
(our implementation of the graph generative model starts
with a 3-nodes graph). We first formulate a theorem on the
expressivity of a single unpooling layer and then formulate
the desired corollary when starting with a 3-nodes graph
and using a series of unpooling layers.

Theorem 3.2. Given a connected graph G° with N nodes
and an integer K € [[N/2],N — 1], there exist an
unpooling layer and an input graph G with K nodes so that
G° is the corresponding output.

Corollary 3.3. Given a connected graph G° with N nodes,
there exist a 3-nodes graph G and [log,(N/3)] unpooling
layers, so that G° is the output of this series of unpooling
layers acting on G.

We remark that the proof of Theorem 3.2 naturally provides
a “pooling” procedure on the graph structure which can be
regarded as the inverse operation of our unpooling layer.
This validates the name “unpooling”.

4 EXPERIMENTS

We demonstrate the effectiveness of the unpooling layer
for molecule generation. We describe the two datasets in
§4.1, the evaluation metrics in §4.2 and the details of the
implemented methods in §4.3. We then report the results in
§4.4, while comparing with benchmark methods. All imple-
mented codes are provided in the supplementary materials.

4.1 Datasets

Waxman random graph dataset. The dataset contains
randomly generated Waxman graphs (Waxman, 1988).
More precisely, we first created 20,000 graphs with 12
nodes and node features uniformly drawn from [0, 1]°.
For each graph, we connected nodes ¢ and j € [12] with
probability qe*Sdij , where ¢ = 0.65, s = 0.3 and d;; is the
Euclidean distance between their features. We do not assign
edge features. Next, for each graph we compute the largest
connected subgraph as long as it has at least 5 nodes. The
final set contains these subgraphs with at least 5 nodes (the
ones with less nodes are discarded). Thus the number of
nodes ranges from 5 to 12 and the node features are the x and
y coordinates. On average, each graph contains 9.2 nodes
and 10.3 edges. There are 18,910 graphs in this dataset.

Protein dataset. We use the protein dataset introduced in
Guoetal. (2021), which is a benchmark for graph generation
(Du et al., 2021). All the graphs contain 8 nodes and their
node features are their 3D coordinate vectors. There are no
edge features. On average, each graph contains 8 nodes and
19.3 edges. There are 76,000 graphs in the datasets, where
we use 38,000 for training and 38,000 for testing.

Molecule datasets. We use two common datasets for
molecule generation: QM9 (Ramakrishnan et al., 2014)

and ZINC (Sterling and Irwin, 2015). QM9 contains 130k
molecules and each molecule consists of up to 9 heavy atoms
among carbon (C), oxygen (O), nitrogen (N) and fluorine
(F). In §4.3 we explain how we choose the hyperparameters
of the unpooling layers so that the generator will generate
molecules with the number of atoms ranging between 6 and
9. On average, each graph contains 8.8 nodes and 9.4 edges.

ZINC contains about 250k molecules, where each molecule
consists of 9 to 38 heavy atoms among carbon (C), oxygen
(0), nitrogen (N), sulfur (S), fluorine (F), chlorine (CI),
bromine (Br), iodine (I) and phosphorus (P). For simplicity,
we only take molecules with 11 - 36 heavy atoms (99.8%
of ZINC). On average, each graph contains 23.2 nodes and
24.9 edges.

For both QM9 and ZINC, we include the following node
features: atom type, chiral specification of an atom (un-
specified, clockwise or counter-clockwise) and the formal
charge of an atom (0, +1 or -1). We use bond type (single,
double or triple) as edge features. The node and edge
features are represented as one-hot vectors.

4.2 Evaluation Metrics

In the numerical experiments of the Waxman random graph
and protein datasets, we evaluate the similarity of the gener-
ated data and source data by comparing the distributions of
some graph properties in the generated graphs and source
data. We use the following graph properties for comparison:
average node connectivity, average clustering coefficient,
edge density and node features. For both datasets, we report
the Kullback-Leibler divergence and Wasserstein distance
between the distributions of the source and generated
data. For the Waxman random graph dataset we further
demonstrate the distributions of the four properties for
the source and generated data, while considering several
methods for graph generation.

In the numerical experiments of molecule generation, we
compare the different generators by generating 10,000
molecules and applying the following metrics: validity
(the ratio between the number of generated valid molecules
and all generated graphs); uniqueness (the ratio between
the number of unique valid molecules and generated valid
molecules); and novelty (the ratio between the number
of unique valid molecules which are different from all
molecules in the dataset and the total number of generated
unique valid molecules). We also report the geometric mean
of the above three metrics (G-mean).

4.3 Implementation Details

We implemented a GAN with the unpooling layers (UL
GAN), a GAN with an adjacency matrix-based generator
(Adj GAN) and a VAE with the unpooling layers (UL VAE).
For simplicity, we just describe here the implementation for
molecule generation using the QM9 dataset. Indeed, the
implementations of Adj GAN, UL GAN and UL VAE for
the other applications are similar. Additional details are in

Yinglong Guo, Dongmian Zou, Gilad Lerman

the supplementary materials.

Discriminator for Adj GAN and UL GAN. It takes an in-
put graph and uses two MPNN layers with 128 units to gen-
erate a graph G = (V, E, X, W). Tt then aggregates the
node features (the rows {x; } jcv of X) to produce the fol-
lowing single feature vector for the graph:

h(G) =Y o(lini(z;)) © tanh(ling(z;));
jev

where o is logistic sigmoid, © is element-wise multiplica-
tion and lin; and lin, are two layers with 128 units. Then it
applies a layer ling with 256 units. A final layer with a single
unit then produces the output, where its activation function
is tanh. A batch normalization and leaky ReLU activation
function are used after the two MPNNs and liny, liny, ling
layers.

Encoder for UL VAE. It has the same architecture as the
above discriminator, except that the final layer maps into
a 256-dimensional vector with a linear activation function.
This vector further splits to two 128-dimensional vectors:
z, and z,. It then generates the following latent vector:
z =z, + exp(3z,) ® x, where ~ N(0,1).

Generator for Adj GAN. It contains four linear layers with
128,256, 256, 512 units with batch normalization and leaky
ReLU activation function. The last layer generatesa 9 x 11
tensor (matrix) for the node features and 9 x 9 x 4 tensor for
the edge features. We use a hard Gumbel softmax to produce
the one-hot feature vectors for the nodes and edges.

Generator for UL GAN and decoder for UL VAE. It takes
a 128-dimensional vector and outputs a graph. The genera-
tor contains the following layers: an initial MLP layer that
takes the random noise vector and creates a 3-nodes graph
with 256-dimensional node features; an MPNN layer with
128 units; an unpooling layer that maps the 3-nodes graph
to a 4-or-5-nodes graph; an MPNN layer with 128 units; an
unpooling layer that maps the 4-or-5-nodes graph to a 6-to-
9-nodes graph; an MPNN layer with 64 units; a linear layer
with 64 hidden units and two final layers that produces node
and edge features in R'? and R?, respectively. A skip con-
nection, which takes the input vector, is added to the node
features after each unpooling layer. Finally, a hard Gumbel
softmax generates the desired one-hot features. The dimen-
sion of the edge features in all intermediate graphs is 32. The
log probabilities from this sampling process are added to ob-
tain the total log probability when updating the parameters
according to (3).

Training process. For UL GAN and Adj GAN, the loss
function corresponds to Wasserstein GAN with gradient
penalty Gulrajani et al. (2017). For UL VAE, the loss func-
tion is the sum of the reconstruction errors of node features
and edge features and the Kullback-Leibler divergence be-
tween the latent vector and a standard Gaussian. We use the
Adam optimizer with a learning rate 2 x 10~* for the gen-
erator and a learning rate 10~ for the discriminator with a
training batch size of 64. During the training process, we
evaluate the model every 500 iterations and we report the re-

==+ Source dataset

”\ — GePN
I —— graphVAE
; graphRNN

SGD

ADJ GAN
—— graphAF
—— ULVAE

ULGAN (NS)
—— ULGAN

10 -
+++ Source dataset
—— GCPN

—— graphVAE 8-
graphRNN
SGD
ADJ GAN 2z
—— graphAF 2
— ULVAE 8
ULGAN (NS)
— ULGAN

015 02 025 03 035 04 045 05 0.55
Edge density

q 0 15 20 25 3.0 35
Node connectivity

=+ Source dataset
—— graphVAE
—— graphRNN
SGD
ADJ GAN

== Source dataset 6 -
— GCPN
—— graphVAE 5
graphRNN
SGD
ADJ GAN 2
—— graphAF 2
— ULVAE A
ULGAN (NS)
—— ULGAN

—— graphAF

—— ULVAE
ULGAN (NS)

—— ULGAN

02 03 04 05 06 07 0 02 0.4 06 08 10
Cluster coefficient Node feature

Figure 4: Distributions of the four graph properties for the
generated and source data using the Waxman random graph
dataset. The graph properties include average node connec-
tivity (top left), average clustering coefficient (bottom left),
edge density (top right), and node features (bottom right).

sult with optimal validity before a mode collapse occurs. In
each training step, we alternatively minimize the loss func-
tion and update the parameters according to the policy gra-
dient procedure in (3).

4.4 Results

For all datasets, we generate 10,000 samples for evaluation.
For the Waxman random graph and protein datasets, we
compared Adj GAN, UL GAN and UL VAE with our imple-
mentations of the following baseline methods: GraphVAE
(Simonovsky and Komodakis, 2018), GraphRNN You et al.
(2018b), GCPN (You et al., 2018a), GraphAF (Shi et al.,
2020) and SGD-VAE (Guo et al., 2021). Since GraphAF,
GraphVAE and GCPN were designed for molecule gener-
ation, we adapted them to general graph generation. We
remark that GCPN is not able to produce numeric node
features and we thus do not report the node feature metrics
for it. In order to test the effect of skips connections, we
implemented for the random graph dataset a version of UL
GAN that has no skip connections from the input vector and
we refer to it as UL GAN (NS).

Figure 4 demonstrates the distributions of the four graph
properties of both the source data and the different gener-
ating methods for the Waxman random graph dataset. For
all four properties, the distribution obtained by UL GAN
seems to be the closest to the source data. Table 1 reports the
8 evaluation metrics for the Waxman random graph dataset.
We note that UL GAN outperforms the other methods
in most of the metrics, except for Wasserstein distance
between average clustering coefficients, where GraphRNN
achieves the smallest metric. Nevertheless, ULGAN
achieves the smallest KL divergence and its distribution

An Unpooling Layer for Graph Generation

Table 1: Results for the Waxman random graph dataset. We report the KL divergence and Wasserstein distance with respect
to the following quantities: edge density (kl edge dense and wd edge dense), average node connectivity (kI conn and wd
conn), average clustering coefficient (kl clust and wd clust) and node features (kI node feat and wd node feat).

Methods kledgedense klclust klconn klnodefeat wdedgedense wdclust wdconn wd node feat
GraphVAE 4.009 6.127 2.363 5.088 0.118 0.140 0.315 0.183
GraphRNN 0.592 0.034 0.373 0.717 0.052 0.019 0.217 0.135
GCPN 0.402 0.292 0.096 N/A 0.043 0.086 0.116 N/A
GraphAF 0.507 0.249 0.460 0.382 0.032 0.079 0.503 0.163
SGD-VAE 1.493 0.321 0.448 0.378 0.122 0.070 0.294 0.131
ADJ GAN 1.128 1.081 0.247 0.196 0.065 0.097 0.178 0.088
UL VAE 0.092 0.408 0.108 0.635 0.010 0.099 0.105 0.132
UL GAN (NS) 0.100 0.098 0.088 0.147 0.011 0.076 0.046 0.056
UL GAN 0.001 0.023 0.034 0.145 0.004 0.027 0.011 0.042

Table 2: Results for the protein dataset. We report the same quantities summarized in the caption of Table 1.

Methods kledgedense klclust klconn klnodefeat wdedgedense wdclust wdconn wdnode feat
GraphVAE 2.497 0.343 3.228 9.771 0.065 0.020 0.758 10.590
GraphRNN 0.082 0.337 0.163 2.818 0.013 0.071 0.165 4.473
GCPN 1.567 4.943 7.358 N/A 0.483 0.508 2.292 N/A
GraphAF 1.942 1.659 1.987 2.603 0.043 0.163 1.543 17.217
SGD-VAE 1.035 1.228 0.975 10.195 0.169 0.311 1.549 10.698
ADJ GAN 6.176 4.600 7.145 0.730 0.086 0.050 0.815 6.705
UL VAE 0.492 0.889 0.791 0.181 0.041 0.072 0.373 4.344
UL GAN 0.074 0.224 0.101 0.095 0.011 0.009 0.127 3.142

seems to be closer to the source data according to Figure 4.
The better performance of UL GAN over Adj GAN and of
UL VAE over GraphVAE indicates the clear advantage of
using the unpooling layer over a standard adjacency-based
method. We further note that the improvement of UL GAN
over UL GAN (NS) is not significant. This indicates that
even without the skip connection our model performs really
well and that its main advantage is due to the unpooling
layer and not the skip connection.

Table 2 reports the evaluation metrics for the protein
dataset. We note that UL GAN outperforms the other
baseline methods in all the metrics. Also, the adjacency
matrix-based methods (GraphVAE and Adj GAN) perform
poorly in this dataset while their unpooling-layer-based
counterparts (UL VAE and UL GAN) perform much better.

For QM9, we compare UL VAE, UL GAN, Adj GAN,
MoIGAN (De Cao and Kipf, 2018), CharacterVAE
(G6émez-Bombarelli et al., 2018), GrammarVAE (Kusner
et al., 2017), Graph VAE (Simonovsky and Komodakis,
2018), GraphAF (Shi et al., 2020), GraphDF (Luo et al.,
2021), MoFlow (Zang and Wang, 2020), Spanning tree
(Ahn et al., 2021), and MGM (Mahmood et al., 2021). For
ZINC, we compare UL GAN, Adj GAN, CharacterRNN
(Segler et al., 2018), LatentGAN (Prykhodko et al., 2019),
junction tree VAE (JT VAE) (Jin et al., 2018), GraphAF (Shi
et al., 2020), GraphDF (Luo et al., 2021), MoFlow (Zang
and Wang, 2020), and Spanning tree (Ahn et al., 2021).
We do not report results of UL VAE for ZINC because its
training was slow and we do not have results for its counter-

part, GraphVAE. For Adj GAN, UL GAN and UL VAE, we
report the means based on 100 runs of generating 10k sam-
ples. The results of the other baseline methods are copied
from their original papers. Standard deviations for our im-
plementations are included in the supplementary materials.

Table 3 and Table 4 report validity, uniqueness, novelty
and their geometric mean for QM9 and ZINC, respectively.
For QM9, UL GAN improves significantly from Adj GAN.
Its performance is overall competitive when compared to
other state-of-the-art approaches. In particular, UL GAN
achieves the third-highest geometric mean. UL VAE signifi-
cantly outperforms its adjacency-matrix-based counterpart,
GraphVAE. For ZINC, UL GAN achieves perfect unique-
ness and novelty scores. In terms of validity, it outperforms
Adj GAN, whose validity and uniqueness scores are poor.
We thus note that our unpooling layer is able to generate
graphs of moderate sizes, while adjacency-matrix genera-
tors are only suitable for small graphs. Although some other
methods achieve better validity, the overall performance of
UL GAN is comparable with state-of-the-art methods.

Figure 5 studies the latent space structure of UL GAN for
QM. It picks two latent vectors 2z and z; corresponding
to a string-like molecule and a molecule with a ring,
respectively. Then, it forms a series of latent vectors
zy = tz; + (1 — t)zg and shows their corresponding
molecules. We note that as ¢ increases the molecular
structures are changing from string-like to ring-like ones.

Yinglong Guo, Dongmian Zou, Gilad Lerman

F4) 0.9zp + 0.1z; 0.7z + 0.32;

N, oH
NN /k/H PN
= NH, N,

Ny NH,

‘. H
_—0 ‘ N,
NN HO\/N/ ~ // N
o

¢
3
)

=0

T

N
OH NH,

0.5zp + 0.5z,

o,
HO. o
O
N~ o
HO' H

= A

0.3zp + 0.72; 0.1zp + 0.92; z;

OH

o N RN . . ¢

H HO,
OQ@NH

OH
Ol
N
H
H
ct N

.
D L= FI

Figure 5: Demonstration of gradual change between two different molecular properties when applying UL GAN for QM9.
Left: 3 string-like molecules (with latent vector zp), Right: 3 molecules with rings (with latent vector z;). We gradually
change the latent vector (on top) and notice the gradual change of the 3 molecules from having string-like structure to having

ring-like structure.

Table 3: Validity, uniqueness, novelty and their geometric
mean (G-mean) for molecule generation using QMO9.
Scores for the competing methods (listed above the middle
line) were copied from their original papers.

Method Valid Unique Novel G-mean
CharacterVAE 0.103 0.675 0.900 0.397
GrammarVAE 0.602 0.093 0.809 0.356
GraphVAE 0.557 0.760 0.616 0.639
MolGAN 0981 0.104 0.942 0.458
GraphAF 0.670 0945 0.888 0.825
GraphDF 0.827 0976 0.981 0.925
MoFlow 0962 0.992 0.980 0.978
Spanning tree 1.00 0.968 0.727 0.889
MGM 0.886 0978 0.518 0.766
UL VAE 0.735 0940 0.949 0.869
Adj GAN 0.941 0.139 0.886 0.488
UL GAN 0907 0.826 0.949 0.893

S CONCLUSION AND LIMITATIONS

We introduced a novel unpooling layer that can enlarge
a given graph. We have proved that this unpooling layer
generates connected graphs and its range covers all possible
connected graphs. We utilized such layers within GANs
and VAEs and tested their performance for graph, protein
and molecule generation. Our unpooling-based generation
outperforms other methods for graph and protein generation
and is competitive for molecule generation. In particular, a
significant improvement was noticed in comparison to other
methods that are based on adjacency matrices, such as Adj
GAN, MolGAN and Graph VAE.

The unpooling layer can be used for other purposes. In
future work, we plan to apply it to generic graph recon-
struction, while considering the particular applications of
recommender systems and graph anomaly detection. We
also plan to apply it to conditional graph generation, that is,

Table 4: Validity, uniqueness, novelty and their geometric
mean (G-mean) for molecule generation using ZINC.
Scores for the first three methods were copied from
Polykovskiy et al. (2020) and scores for other competing
methods (listed above the middle line) were copied from
their original papers.

Method Valid Unique Novel G-mean
CharRNN 0.975 1.00 0.842 0.936
LatentGAN 0.897 0997 0.950 0.947
JT VAE 1.00 1.00 0914 0.970
GraphAF 0.680 0.991 1.00 0.877
GraphDF 0.890 0.992 1.00 0.959
MoFlow 0.818 1.00 1.00 0.935
Spanning tree 0.995 1.00 0.999 0.998
Adj GAN 0.109 0.196 1.00 0.277
UL GAN 0.871 1.00 1.00 0.955

generating graphs with some desired properties.

The unpooling layer has some limitations. First, its training
requires relatively large computational resources, since it
relies on various probabilities in order to determine the
graph structure. Second, it becomes difficult to optimize
several unpooling layers within the generative model
because the log probabilities are added and backpropagated
in all the unpooling layers.

Our work has practical applications of societal impact, such
as drug discovery. However, our main focus has been on
general graph generation and in order to have a stronger
impact on drug discovery we need to carefully specialize the
method for this purpose. For example, we need to improve
the druglikeness, or other desired chemical properties, of
the generated molecules.

An Unpooling Layer for Graph Generation

Acknowledgements

This work was partially supported by NSF award DMS
2124913 and the Kunshan Municipal Government research
funding.

References

Ahn, S., Chen, B., Wang, T., and Song, L. (2021). Span-
ning tree-based graph generation for molecules. In
International Conference on Learning Representations.

Bongini, P., Bianchini, M., and Scarselli, F. (2021). Molec-
ular generative graph neural networks for drug discovery.
Neurocomputing, 450:242-252.

Brock, A., Donahue, J., and Simonyan, K. (2019). Large
scale GAN training for high fidelity natural image
synthesis. ArXiv, abs/1809.11096.

Bruna, J., Zaremba, W., Szlam, A., and Lecun, Y. (2014).
Spectral networks and locally connected networks
on graphs. In International Conference on Learning
Representations (ICLR2014), CBLS, April 2014.

De Cao, N. and Kipf, T. (2018). MolGAN: An implicit
generative model for small molecular graphs. ICML 2018
workshop on Theoretical Foundations and Applications
of Deep Generative Models.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016).
Convolutional neural networks on graphs with fast local-
ized spectral filtering. In Advances in Neural Information
Processing Systems.

Du, Y., Wang, S., Guo, X., Cao, H., Hu, S, Jiang, J., Varala,
A., Angirekula, A., and Zhao, L. (2021). Graphgt:
Machine learning datasets for graph generation and
transformation. In NeurIPS 2021.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bom-
barell, R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P.
(2015). Convolutional networks on graphs for learning
molecular fingerprints. In Cortes, C., Lawrence, N., Lee,
D., Sugiyama, M., and Garnett, R., editors, Advances
in Neural Information Processing Systems, volume 28.
Curran Associates, Inc.

Ertl, P. and Schuffenhauer, A. (2009). Estimation of syn-
thetic accessibility score of drug-like molecules based
on molecular complexity and fragment contributions.
Journal of cheminformatics, 1(1):1-11.

Faez, F., Ommi, Y., Baghshah, M. S., and Rabiee, H. R.
(2021). Deep graph generators: A survey. IEEE Access,
9:106675-106702.

Fan, W.,Ma, Y., Li, Q.,He, Y., Zhao, E., Tang, J., and Yin, D.
(2019). Graph neural networks for social recommenda-
tion. In The World Wide Web Conference, pages 417-426.

Gao, H. and Ji, S. (2019). Graph U-Nets. In International
Conference on Machine Learning (ICML 2019), pages
2083-2092. PMLR.

Gilmer, J., Schoenholz, S. S., Riley, P. E., Vinyals, O., and
Dahl, G. E. (2017). Neural message passing for quantum

chemistry. In International conference on machine
learning, pages 1263-1272. PMLR.

Gomez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Herndndez-Lobato, J. M., Sdnchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P, and Aspuru-Guzik, A. (2018). Automatic chemical
design using a data-driven continuous representation of
molecules. ACS central science, 4(2):268-276.

Guimaraes, G. L., Sanchez-Lengeling, B., Outeiral,
C., Farias, P. L. C., and Aspuru-Guzik, A. (2017).
Objective-reinforced generative adversarial networks
(ORGAN) for sequence generation models. arXiv
preprint arXiv:1705.10843.

Gulrajani, 1., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. (2017). Improved training of Wasserstein
GANSs. In Advances in Neural Information Processing
Systems, pages 5769—-5779.

Guo, X., Du, Y, and Zhao, L. (2021). Deep generative
models for spatial networks. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 505-515.

Jin, W., Barzilay, R., and Jaakkola, T. (2018). Junction tree
variational autoencoder for molecular graph generation.
In International Conference on Machine Learning, pages
2323-2332. PMLR.

Jin, W, Yang, K., Barzilay, R., and Jaakkola, T. (2019).
Learning multimodal graph-to-graph translation for
molecule optimization. In International Conference on
Learning Representations.

Jo, J., Lee, S., and Hwang, S. J. (2022). Score-based gen-
erative modeling of graphs via the system of stochastic
differential equations. In ICML.

Kipf, T. N. and Welling, M. (2017). Semi-supervised
classification with graph convolutional networks. In

International Conference on Learning Representations
(ICLR2017).

Kusner, M. J., Paige, B., and Hernandez-Lobato, J. M.
(2017). Grammar variational autoencoder. In In-
ternational Conference on Machine Learning, pages
1945-1954. PMLR.

Lee, J., Lee, 1., and Kang, J. (2019). Self-attention graph
pooling. In International Conference on Machine
Learning, pages 3734-3743. PMLR.

Luo, Y., Yan, K., and Ji, S. (2021). Graphdf: A discrete flow
model for molecular graph generation. In International
Conference on Machine Learning, pages 7192-7203.
PMLR.

Ma, Y., Aggarwal, C., Wang, S., and Tang, J. (2019). Graph
convolutional networks with eigenpooling. In KDD 2019
- Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 723-731.

Madhawa, K., Ishiguro, K., Nakago, K., and Abe, M.
(2019). Graphnvp: An invertible flow model for generat-
ing molecular graphs. arXiv preprint arXiv:1905.11600.

Yinglong Guo, Dongmian Zou, Gilad Lerman

Maere, S., Heymans, K., and Kuiper, M. (2005). Bingo: a
cytoscape plugin to assess overrepresentation of gene on-
tology categories in biological networks. Bioinformatics,
21(16):3448-3449.

Mahmood, O., Mansimov, E., Bonneau, R., and Cho, K.
(2021). Masked graph modeling for molecule generation.
Nature Communications, 12(1):1-12.

Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B.,
Golovanov, S., Tatanov, O., Belyaev, S., Kurbanov,
R., Artamonov, A., Aladinskiy, V., Veselov, M., et al.
(2020). Molecular sets (MOSES): a benchmarking
platform for molecular generation models. Frontiers in
pharmacology, 11:1931.

Prykhodko, O., Johansson, S. V., Kotsias, P.-C., Ards-Pous,
J., Bjerrum, E. J., Engkvist, O., and Chen, H. (2019).
A de novo molecular generation method using latent
vector based generative adversarial network. Journal of
Cheminformatics, 11(1):1-13.

Pu, Y, Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A.,
and Carin, L. (2016). Variational autoencoder for deep
learning of images, labels and captions. Advances in
neural information processing systems, 29:2352-2360.

Radford, A., Metz, L., and Chintala, S. (2016). Unsuper-
vised representation learning with deep convolutional
generative adversarial networks. In International
Conference on Learning Representations (ICLR2016).

Ramakrishnan, R., Dral, P. O., Rupp, M., and Von Lilien-
feld, O. A. (2014). Quantum chemistry structures
and properties of 134 kilo molecules. Scientific data,
1(1):1-7.

Samanta, B., De, A., Jana, G., Gémez, V., Chattaraj, P. K.,
Ganguly, N., and Gomez-Rodriguez, M. (2020). NeVAE:
A deep generative model for molecular graphs. Journal
of machine learning research. 2020 Apr; 21 (114): 1-33.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. (2008). The graph neural network model.
IEEE transactions on neural networks, 20(1):61-80.

Segler, M. H., Kogej, T., Tyrchan, C., and Waller, M. P.
(2018). Generating focused molecule libraries for drug
discovery with recurrent neural networks. ACS central
science,4(1):120-131.

Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., and Tang, J.
(2020). Graphaf: a flow-based autoregressive model for
molecular graph generation. In International Conference
on Learning Representations.

Simonovsky, M. and Komodakis, N. (2017). Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 3693-3702.

Simonovsky, M. and Komodakis, N. (2018). GraphVAE:
Towards generation of small graphs using variational
autoencoders. In International conference on artificial
neural networks, pages 412-422. Springer.

Sterling, T. and Irwin, J. J. (2015). Zinc 15-ligand discov-
ery for everyone. Journal of chemical information and

modeling, 55(11):2324-2337.

Sutton, R. S. and Barto, A. G. (2018).
learning: An introduction. MIT press.

Reinforcement

Velickovié, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P, and Bengio, Y. (2018). Graph attention networks. In
International Conference on Learning Representations

(ICLR2018).

Waxman, B. (1988). Routing of multipoint connections.
IEEE Journal on Selected Areas in Communications,
6(9):1617-1622.

Weaver, L. and Tao, N. (2001). The optimal reward baseline
for gradient-based reinforcement learning. In Pro-
ceedings of the Seventeenth Conference on Uncertainty
in Artificial Intelligence, UAI’0O1, page 538-545, San
Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How
powerful are graph neural networks? In International
Conference on Learning Representations (ICLR2019).

Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., and
Leskovec, J. (2018). Hierarchical graph representation
learning with differentiable pooling. arXiv preprint
arXiv:1806.08804.

You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J.
(2018a). Graph convolutional policy network for goal-
directed molecular graph generation. Advances in neural
information processing systems, 31.

You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec,
J. (2018b). Graphrnn: Generating realistic graphs with
deep auto-regressive models. In International conference
on machine learning, pages 5708-5717. PMLR.

Zang, C. and Wang, F. (2020). Moflow: an invertible flow
model for generating molecular graphs. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 617-626.

Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus,
R. (2010). Deconvolutional networks. In 2010 IEEE
Computer Society Conference on computer vision and
pattern recognition, pages 2528-2535. IEEE.

An Unpooling Layer for Graph Generation

SUPPLEMENTARY MATERIALS

We supplement the main text as follows: §A includes more details on the unpooling layer; §B discusses the tested codes;
§C describes implementation details of both the unpooling layer and the generative neural network; §D carefully validates
the theory stated in §3; §E reports molecule generation results in a particular setting that aims to optimize specific chemical
properties; and §F reports some additional numerical results that supplement the ones in §4.

A ADDITIONAL DETAILS ABOUT THE UNPOOLING LAYER

We describe in more details the unpooling layer mechanism. For completeness, we repeat details explained in §2.1.

Notations. For an unpooling layer U, the input featured graph is denoted by G = (V, E, X, W), which is an undirected
graph (V, E') with feature matrices X and W for nodes and edges respectively. More specifically, V = [N] := {1,2,--- N}
are node indices, F is the edge set whose members are of the form {7, j } where i, j € V,and M = | E| is the number of edges
in the graph. X € RV*? is the node features matrix whose i-th row x; is a d-dimensional vector for node i. W € RM*¢ ig
the edge features matrix whose rows are e—dimensional vectors for edge features and we refer to the feature vector on edge
{i,j} € Fasw, ;.

Detailed Steps of the Unpooling Layer. We provide more details of the unpooling layer according to the following steps.
Recall that the unpooling layer enlarges an input featured graph G = (V, E, X, W) toagraph G° = (V°, E°, Y ,U), while
using the set of unchanged (or stable) nodes, I, the set of unpooled nodes, I/, and the set of nodes that may be unpooled, 1.

s Lo s Lo

Step 1. Generating nodes and node features. We first probabilistically determine the eventual set of nodes to be unpooled
and consequently form the set of nodes in the output graph. We finally construct node features.

Step 1a. Determining nodes to be unpooled. We determine a set of nodes to be unpooled and a set of nodes to stay
unchanged based on I, I/ and I,. For eachnode ¢ € I. C V, we determine the probability of being unpooled by

pr(2;) = MLP- R(x;).
Anode i € I is unpooled if a randomly drawn uniform random variable U; ~ U[0, 1] is smaller than p,(z;). We form a set
of nodes to be unpooled as
The rest nodes stay unchanged and form a set I; := V' \ I,,. The total log probability in this step is

10gP-R = > " 10g (pr(@:) 1y, <p, (@) + (1 = Pr(@:) Lt 2, (w1)) “)
i€l

We remark that it is possible to have I = () (e.g. the unpooling layers used for the protein dataset), thus all the unpooling
nodes are pre-determined. In this case, we obtain I,, := I}, and I, = I without using MLP- R and we do not establish the
log probability logP-R.

Step 1b. Unpooling nodes and constructing node features. From the previous step, we obtain I, a set of nodes to stay
unchanged, and I,,, a set of nodes to be unpooled. We thus clarified the set V°, where we note that [V°| = |I5| + 2|1,].
Given two children nodes in V°, we refer to the “subdivided” node in V" as their parent node. We define a map f that assigns
to each node in i € I the corresponding index, f (i) € V°, and to each node in i € I, the set of two indices of its children
nodes in V°; in the latter case we denote f(i) = {f1(2), f2(¢)}. The feature vectors of the nodes in V° are obtained by an
MLP for vertices, MLP-y. To produce different features for the children nodes f; (i) and f2(4), we apply MLP-y to two
different pieces of the node feature vector ;. More specifically, we use the orthogonal projectors, Ps, and Pg,, onto two
fixed subspaces, S7 and Ss in R4 (which are later specified in §C), as follows:
Yy@i) = MLP-y(Ps, x;), for i € Iy;

Yri (i) :MLP-y(PSjiL'Z'), for j =1,2,1 € I,,.
One can also use three different MLP-y’s for the static nodes and the two different children nodes.

Step 2. Building edges. Next, the unpooling layer takes the generated children nodes in V' and their node features and
builds edges for them. It first builds intra-links, which are edges within the pairs of children nodes; it then builds inter-links,
which are edges between pairs of children nodes and images (according to the function f) of neighbors of their parent node
(in I,,). Atlast, a single step ensures the connectivity of the output graph.

We also aggregate all log-probabilities in all three steps and use that in the policy gradient algorithm to train the layer and
tune those probabilities for edge construction.

We start the edge generation process with E° = ().

Yinglong Guo, Dongmian Zou, Gilad Lerman

Step 2a. Building intra-links. We aim to probabilistically sample a set V.. of nodes in I, C V whose two children (in V?)
will be connected to each other by intra-links. We first initialize V. = (). For each node j € I, with feature vector x ; we
add node j into V.. with a probability outputted by an MLP for intra-links, p.(j) = MLP-IA(z;). That is, we draw a uniform
random variable, U ~ U[0,1], and if U < p.(j), then V. = V. U {j} and {f1(j), f2(j)} is an intra-link, which is added to
E°; otherwise, V. is unchanged and no intra-link is added.

We add all the intra-link to edge set in output graph
E° = E°U{{/1(j), f2(j)},Vj € V.}.
We track the log probabilities for later use as follows:
logP-IA := > " In(pe(§)) + Y _ In(1 = pe(4))- ©)
JEVe J¢Ve

Step 2b. Finding a shared node for disconnected children. For disconnected children pairs, we designate a node that will
connect to these children. In the next step these nodes and possibly additional ones will be connected to a subset of the children
pairs. For eachnode j € I,, \ V., we denote the set of all edges in E that are connected to j by E; = {{i1,j},...{im,;,j}}.
and we calculate probabilities of selecting those edges as
(pb(jv il)apb(ja iQ)a pb(]a Zm;)) X (MLP'C(yf1(])7 Yia(5) W{g,i1}s Liy)7
MLP-C(Y, (j): Ysa(s) Wijiia}» Tin) -oos MLP-CYF (3 Ypa(3)s Wi} i,)

We draw from uniform distribution U ~ U[0, 1] and let

ila 1fU<pb(]7l1)7
. . k—1 . k .

bj = T, itU € {21:1 po(d,01)5 D1y pb(]ﬂl))?
Ty s otherwise.

Then, we define Ny, ;3 (j) := {f1(5), f2(4)}

In the next step, each edge {i, j} in E gives rise to adding edges between Ny; ;1 (i) and Ny; ;3(j) in G°. Therefore, our
approach ensures that f1(j) and f2(j) both connect to Ny, ;1 (b;) so G is connected.

We track the log-probabilities from this step that ensures connectivity as follows:

logP-C:= Y In(ps(j.by)) (6)

JEIu,j¢Ve

Step 2c. Building inter-links. For each edge {i,j} € E and node j, we first generate a set of nodes Ny; j1(j) C V°
as follows. For j € I, \ V. and i = b;, we have already defined Ny; ;3(j) in the above step. If j € I, we let
Ny (3) = {f(4)}. If j € I, we first calculate probabilities from an MLP of intra-links as follows: (p1 (7, j), p2(i, j)) =
MLP-IE(yy, (), ¥ .(j)> W{i,j}> Ti). Then, we draw a random variable U ~ U(0, 1) and let

{/10)}, itU <pi(i,5);
Niijy(3) = {A0), 200} iU =pi(i,j) + pa2(i, 5);
{f2(4)}, otherwise.

We similarly form Ny; ;3 (4) by swapping the j and i nodes.
The log probability for each edge-node pair ({4, 5}, j) is
logP-IE({i, j}, j) := (Mﬁ,j}(j):{fl(j)} In(p1(i,5)) + Uny, y (H={£20)3 M(P2(i5)) D

+ ANy,)= G) 0y (L —pi(i,5) — pz(i»j)))

Lastly, we add to £° all inter-links, i.e., all possible edges that connect nodes in Ny; ;1 (i) and Ny, j1(7):
E° = E°U{{k,1}, Yk € Ng; j3(i), L € Ny 1 () }- (8)

LetA; :={j € Vo}and A; ; :={j € L,, j ¢ V., i # b;}. The cumulative log-probability for inter-links outputted by
MLP-IE is
logP-IE = > 14,0, ,logP-IE({i,j},§) + La,ua, JogP-IE({i, j}, 4).)
{i,j}e€E

Step 2d. Building additional edges between children node pairs. We insert additional edges between children nodes in
order to assure the expressivity of the output graph (this will be clarified in the proof of Theorem 2). Let E,, = {{i,j} €
E:ie€l,,je€ I,} C E denote the collection of edges whose two ends are both unpooling nodes. We initialize E, :=
(. For each edge {i,j} € E,, we generate a probability of adding one more additional edge using an MLP as follows:
Pa({i,7}) = MLP-IE-A(z;, x;, wy; ;3). We draw a random variable U; ~ U|0,1] and if Uy < po({i,j}), welet B, :=

An Unpooling Layer for Graph Generation

E,U{{i,j}}and E° := E° U E, where EY defined in the following three cases: (1)if | Ny; j1(¢)| = [Ny, ;3(j)| = 1, then
Eo({i,jV) = (U Lk € £(0).0 € £(3), and ke ¢ Nys iy (0),0 & Nyi iy (1)} i [Ngo sy (0] 4 [Nps sy ()] = 3, without
loss of generality, assume | Ny, ;1 (¢)] = 1and | Ny; ;3 (j)| = 2, then draw Uy ~ U[0,1]. If Uz < % (p1(4,) and
p2(i, j) were obtained in Step 3c), we set 75 (j) := 1, otherwise r;;(j) := 2. We then define £ ({i,j}) := {{k, f,,;(4)},
ke f(i),andk & N j3(i)}s 3)if [Ngi 3 (0)] + [Nyijy (4)] = 4, then ES({4,5}) :=). We thus updated the edge set of the

output graph as follows
=kl) U E{i.d}).
{i.j}€Ea
We also record the total log probability of this step:

logP-A= > Inpa({i,j}) + > In(l-pa({i,})

{i,j}€Ea {i,i}¢Ea,{i,j}€E.
n Z In pmj(j)(ivj) . (10)
(i,j}EE, pl(laj)+p2(27])

[N, 53 (8)]=1,
[Ngi i3 (3)1=2

Summary of step 2. The edges of the output graph include all intra-links and inter-links as follows:
B ={{£1(3). fo(i)} 1 € L,j € Ve |

U{k1}: {0} € Bk € Ny jy (0,1 € Ny (1)}

U U Edisp.

{i.j}€Ea

Step 3. Constructing edge features. Using the node features and edges from obtained from the previous steps, for each
edge {k,l} € E°, we build the corresponding edge feature uy ; = MLP-u(yx, yi).

The overall probability for updating the training parameters: The final probability, P, is the product of all probabilities
from step 1a and step 2a-2d. We obtain its logarithm, logP, by combining (4) - (7) and (9) as follows:

logP = logP-R + logP-IA + logP-C + logP-IE + logP-A.
This probability is used to update the training parameters in the unpooling layer while using the REINFORCE algorithm.

B COMMENTS ON THE CODES

We included a zipped folder of codes that implement the proposed method and some baseline methods. It also contains
notebooks that implement numerical experiments for the Waxman random graph, protein, QM9, and ZINC datasets. All the
implemented codes can be found in https://github.com/guo00413/graph_unpooling.

We implemented five baseline methods in the numerical experiments for the Waxman random graph and the protein dataset:
GraphVAE (Simonovsky and Komodakis, 2018), GraphRNN (You et al., 2018b), GCPN (You et al., 2018a), GraphAF
(Shi et al., 2020) and SGD-VAE (Guo et al., 2021). We implement GraphVAE and GraphRNN based on codes from
https://github.com/JiaxuanYou/graph-generation (licensed by MIT), we implement GCPN based on
codes from https://github.com/bowenliul6/rl_graph_generation (licensed by BSD 3-Clause). We
implement SGD-VAE and GraphAF from scratch, because we do not find codes with the appropriate license to use and
modify. We select model hyperparameters based on their original papers.

We remark that GCPN can not produce numeric node features due to its generation strategy. As a result, we do not report the
metric related to node features for GCPN. To clarify, GCPN (You et al., 2018a) enlarges a single node at each time based on
the existing graph as follows: it first adds 9 new nodes, corresponding to 9 types of heavy atoms in ZINC dataset; it constructs
one edge connecting one of the new nodes to one of the nodes in the existing graph; it further sequentially determines to stop
this step or to construct more edges. This approach can naturally handle graphs with categorical node features, but it fails
to generate numeric node features. Therefore in the numerical experiments, we only generate a non-featured graph from
GCPN and do not report metrics related to node features.

C IMPLEMENTATION DETAILS

Section C.1 introduces layers used in the experiments other than the unpooling layer; §C.2 provides details of the components
in the unpooling layer; §C.3 describes the architectures of the discriminators in UL GAN and of the encoders in UL VAE,;

https://github.com/guo00413/graph_unpooling
https://github.com/JiaxuanYou/graph-generation
https://github.com/bowenliu16/rl_graph_generation

Yinglong Guo, Dongmian Zou, Gilad Lerman

§C.4 details the architectures of the generative networks, including generators in UL GAN and decoders in UL VAE; and
§C.5 explains how we calculate the reconstruction error for UL VAE.

We remark that all numerical experiments are run in a machine with Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz and
NVIDIA TITAN RTX (576 tensor cores, and 24 GB GDDR6 memory).

C.1 Details of Other Neural Layers

Aggregation. We introduce the following aggregation function agg(x1, €2) = LeakyReLU(x; + @5). It is used when the
inputs are order invariant, for example, to produce edge feature based on features of two end nodes.

MLP. We denote a multilayer perceptron by MLP[ko, k1, k2, ..k,]. It contains m — 1 hidden blocks, where the i-th block,
1 =1,...,m — 1, cascades a linear layer with input dimension k;_; and output dimension k;, a batch normalization and a
LeakyReLU activation with negative slope 0.05 (the same slope is used for all LeakyReLU activations in our experiments);
and an output block which is a linear layer with output dimension k,,,.

Initial layer. An initial layer of a generator takes a latent vector z and produces a 3-nodes graph. To define an initial layer,
we need to specify the dimension of the input vector, d;,,, the dimension of the output node feature, d,,, the dimension of the
output edge feature, d,,,.

The initial layer generates a 3-nodes graph as follows: First, a multilayer perceptron MLP-INI-V = MLP[d;,,, 6d,, 3d,]
takes a d;,-dimensional input z and generates the initial node features for the 3-nodes graph. It further reshapes it to
a matrix in R3*%= where d, is the dimension of the output node features. Second, it calculates the probabilities from
(p1,p2,p3,p4) = MLP-INI-E(x1, ®o, x3) = softmax(MLP[3d, 16, 4])(x1, x2,x3), draws a uniform random variable
U ~ UJ0, 1], and determines the initial edge set to be

{{1a2}a{1a3}}7 ifU<pla

E = {{152}7{253}}a lfpl < U<p1 + D2
{{113}1{253}}7 lfpl + D2 < U<P1 +p2+p3
{{1,2},{2,3},{1,3}}, otherwise

The log probability from the initial layer is In(ps), where s € {1,2,3,4} corresponding to the determined initial
edge set. Third, it constructs edge feature vectors using a multilayer perceptron as follows: MLP-INI-W(x;, ;) =
LeakyReLU(BN(MLPI[d, d.,, d.y](agg(x;, z;)))), foreach {3, j} € E, where BN is a batch normalization.

Skip connection. The generator of UL GAN adopts a skip connection procedure (Brock et al., 2019) to avoid mode collapse.
A skip connection can be specified by the input dimension, d., the node feature dimension, d,,, the multiplier for hidden
dimension, N,, and the maximal number of nodes in the output graph, IN. The skip connection generates additional node
features by

LeakyReLU(BN(MLP[d,, N.d,, Nd,](z))).

MPNN. Our implemented models use an edge-conditional MPNN (Gilmer et al., 2017; Simonovsky and Komodakis, 2017),
which can be characterized by input node feature dimension d,, input edge feature dimension d,, and output node feature
dimension d,,. For a featured graph (V, E, X, W) with d,-dimensional node features and d,,-dimensional edge features,
the rows of the output features matrix Y are formed by

y; = LeakyReLU | BN [2,0, + > @;H,(w; ;) | |,
iEN;
where N is a set of neighbors of j, H,, is a linear layer, which maps an edge feature vector to a matrix with the same
dimensions as O.

Final layer for edge features. The final layer outputs feature vectors for each edge in the output graph, while leveraging the
node features of the connecting nodes and the edge features from the last intermediate graph. The parameters of this layer
include the dimension of input edge features, d,,, the dimension of input node features, d,,, and the dimension of the output
edge features, d,,. It produces the final edge features by

MLP-uf(w; j, @i, x;) = MLP[d, + 2d,,,d,](w; j, MLP[d,, d,,, d\,](agg(x;, z;)), agg(x;, x;)).

C.2 Details of the Unpooling Layer

Hyperparameters. Recall from §A that an unpooling layer takes a featured input graph G = (V, E, X, W), with d,-
dimensional node features and d,,-dimensional edge features. This unpooling layer is thus specified using the following
hyperparameters:

o Il: asetof nodes fixed as static (i.e., they will not be unpooled).

An Unpooling Layer for Graph Generation

* I,: a set of nodes that are determined to be static based on the probabilities p; = MLP-S(x;) for j € I, where
MLP-S = sigmoid(MLP[d,, | d,/2],1]). The overall static nodes for the unpooling layer are
I, =1,U{j:j €I, Uj <MLP-S(z;)},
where U; are i.i.d. random variables drawn from a uniform distribution on U0, 1].
* ky, dy: hidden dimension and output dimension of node features. We let d, = |d,/2] + |d,/4] and
MLP-y = MLP[d’,, k., d,],
so that the child node feature vector is given by y s, (;y = MLP-y(Ps, (z;)). The latter projection, Ps, is defined for j = 1,
2, and each feature vector = (1, ...24) of anode in I, as
Ps, (x) = (21, .., Td,, Td. 41, Td.+D)"
P52 (iL’) = (.’1?1, ceey xds ; xds+D+1, ...xdngD)T
where d, = d, /2| and D = |4 |.
* ki, and k;.: hidden dimensions in MLP-IA and MLP-IE, respectively. The probabilities used for generating intra- and
inter-links are given by

b

MLP-IA(x) =sigmoid(MLP[d,, ki,, 1](x)), (11)
MLP-IE(y1, Y2, w, &) =softmax (MLP-IE- 1(y1, w,), MLP-IE-1(y2, w, x),

MLP-IE-Z(yl,yQ,w,m)), (12)
where the first two MLPs used in MLP-IE are the same networks, defined as
MLP-IE-1 := MLP[dy + dyy + dz, kie, 1],

and the third term is defined as

MLP-1E-2(y1, Y2, w,) := MLP[d, + dy, + dy, kie, 1](agg(y1, y2), w, x).
In practice MLP-C in Step 3b in §A is based on MLP-IE as follows. It uses MLP-IE-2 and calculates

he (Y1, Y2, w, x) := MLP-IE-2(y1, yo2, w,).

The probabilities used in Step 3b in § A are then calculated as

(pb(j7 il)apb(jv Z.2)3 pb(ja Zm7)) - SOftmaX(hC(yfl(j)a Ysa(9) W4} Liy)a
ho(Ys,) Y () Wiy Tia)s o RO (5 Yo (51 Wi,) B,)

* ky, d,: hidden dimension and output dimension of the edge features. The output edge feature vectors are built as follows:
u; ; = MLP-u(y;, y;) = LeakyReLU(BN(MLP(dy, kv, du](agg(¥i, ¥;))))-

Preference score. We further introduce preference score and modify the direct way of generating the probabilities obtained
in (12), in order to avoid all the edges being inherited by one single node in a pair of children nodes and thus to ensure that the
unpooling layer can produce all possible output graphs with probabilities that are not too small. Denote

hs(y,w, x) := MLP-IE-1(y, w,) and hy(y1, Y2, w, x)) := MLP-IE-2(y, w, x),
where the forms of MLP-IE-1 and MLP-IE-2 are defined below (12). For each child node f;(j) with feature y, which

is generated from an input node j, we rescale the h;’s to obtain the preference score hff) when N k1 (3) = {f1(4)} as
follows:

({n (g, k) : k € Ny} AP ()) 1= softmax ({hs (y, wjk i) : k € Nj}h O (y)),

where NN, is set of neighbors of node j, and hgo)(y) is capturing zero-preference (i.e., preference of not connecting any
inter-link) and is calculated by a multilayer perceptron MLP[d,,, 2d,,, 1].

Similarly, we also rescale the h;’s to obtain the preference score when Ny, ;3 (j) = {f1(j), f2(j)}. Let y; and y» be feature
vectors of children nodes generated from j. Let o be the feature vector of node j in the input graph. With an added zero

preference hl()o) (x) = MLP[d,, 2d,, 1](x), the preference score is calculated as
({h;()p)(ylayz,k) k€ Nj}vhéf’fl(yhyz)) := softmax ({hb(ylvy%wj,k»a:k) ke Nj}vh((y())(w)) .

We use the preference scores hgp) and hl()p) instead of MLP-IE to obtain probabilities for building Ny, ;3 (j) for the inter-link
in Step 2c in §A as

(p) ()
(p1,p2) = <(hs (y1,k) hs’(y1,k)

P >7whereZ=(hgp)<y1,k>+h£.p><y2,k>+h§f”<y1,y2,k>).

Yinglong Guo, Dongmian Zou, Gilad Lerman

C.3 Architectures of Discriminators and Encoders

Discriminators of UL GAN. The details of the discriminator in UL GAN and the encoder in UL VAE for QM9 have been
described in §4.3. In this part, we describe the details for other datasets.

The discriminator in the Waxman random graph data takes an input graph and uses two MPNN layers with 64 and 128
units to generate a graph G = (V, E, X, W). It then aggregates the node features (the rows {z; } ;e of X) to produce the
following single feature vector for the graph:

h(G) =Y o(lini(z;)) © tanh(ling(z;));
jev
where o is logistic sigmoid, ® is element-wise multiplication and lin; and ling are two layers with 128 units. Then it uses
a global sum pooling to extract a signal for each graph. It applies two linear layers with 128 and 256 units. A final layer with
a single unit then produces the output, where its activation function is sigmoid. The LeakyReLLU activation function (with
0.05 negative slope) is used after the two MPNNs and all linear layers.

The discriminator in the protein dataset is similar to the discriminator in the random graph dataset. Some parameters were
changed to simplify the network that fit the protein dataset; we used one MPNN layer with 128 units and one linear layer
with 256 units after the global pooling.

The discriminator in ZINC is the same as the discriminator used in QM9 as described in §4.3.

Encoder in UL VAE. It has the same architecture as the corresponding discriminator described above, except that the final
layer maps into a 256-dimensional vector with a linear activation function. This vector further splits to two 128-dimensional
vectors: z, and 2. It then generates the following latent vector: z = z,, + exp(3z,) ® @, where & ~ N (0, 1).

Additional adjustment when the number of nodes of the output graph is not fixed. For the ZINC dataset, since the
number of nodes of the output graph is not fixed by the generator, we added one trivial predictive network to the discriminator.
This additional network contains one hidden layer with 256 units and only takes the global sum of node feature vectors and
edge feature vectors as input, to encourage a proper distribution of the numbers of atoms and edges. The final output of the
discriminator is the sum of the outputs of this network and the original GNN discriminator.

C.4 Architecture of Generators

We describe details of the architecture of the generator in UL GAN and decoder in UL VAE for the different datasets.

Architecture of the generator in UL GAN. We show the generators in UL GAN (same as the decoders in UL VAE, if
applicable) for the Waxman random graph, protein, QM9 and ZINC datasets in Figure 6, Figure 7, Figure 8, and Figure 9,
respectively. For simplicity, we neglect batch sizes. For example, the input should be z € RP*128 where B is the batch size.

Loss function. In practice, we alternatively train the generator with a GAN'’s loss function and with REINFORCE. In each
training step, we first update the generator using the loss function —D(G(z)). We then update the parameter of the generator,
O, using

oty .— g0 | a(VglogP\9g>)(D(G(z)) - E(D(G(2)))),

where the learning rate o« = 5 x 1072,

C.5 Reconstruction Loss for UL VAE

We calculate the reconstruction loss for UL VAE following Simonovsky and Komodakis (2018).

Given two featured graphs with the same number of nodes, we calculate their distance by summing the distances between
node features, the distances between adjacency matrices and the distances between edge features of these two graphs. We
used the same formula described in Section 3.3 in Simonovsky and Komodakis (2018).

When the number of nodes may vary (e.g., in the QM9 dataset, the corresponding graphs may contain 6-9 nodes) and the
input/output graph has less nodes than the maximal number of nodes (e.g., less than 9 nodes in the QM9 experiment), we add
artificial nodes to the graph so that it contains the maximal number of nodes (e.g., 9 nodes for QM9). We add an additional
binary feature to the node features: it assigns 0 to the real nodes and 1 to the artificial nodes.

For an input graph and an output graph with the same numbers of nodes (if they have different node numbers, we perform
the above procedure to make them the same), we permute the node indices of the output graph in order to achieve a minimal
distance to the input graph. This minimal distance is regarded as the reconstruction loss between the input and output graph.
More details of how to permute the indices appear in Section 3.4 of Simonovsky and Komodakis (2018).

An Unpooling Layer for Graph Generation

Input z € R128 -

’ Initial layer: d;,, = 128,d, = 128,d,, = 8 ‘

[

(Graph (V. B, X, W).[V| = 3, |E| € [2,3], X € R¥!? W € RM*®)

’MPNN layer: d, = 128,d,, = 8,d, = 64‘

I

Unpooling layer: I = 0, I, = {1,2},d, = 64, Skip connection:
key = kig = kie = 64,dy = d,, = 8,d,, = 48 d. =128, N, = 10,d, = 16
(Graph (V. B, X, W). [V € [4,6], X € RN*%5 W € RM*®)
l
(Graph (V,E,X,W),|V| € [4,6], X € RN*64 W ¢ RMXS)
Concatenate
’MPNN layer: d, = 64,d,, = 8,d, = 128‘
Unpooling layer: I, = 0, I, = {1,2,3,4,5},d, = 128, Skip connection:
by = kig = kie = 128, dyy = d,, = 8,d, = 384 d, =128, N, = 15,d, = 128

(Graph (V,E,X,W),|V| € [5,12], X € RN*3%4 Wy ¢ RMXED

(Graph (V.E,X,W),|V| € [5,12], X € RN*?12 W ¢ RM*8
Concatenate

’MPNN layer: d, = 512,d,, = 8,d, = 64‘

(Output graph (V. E, X): |V € [5,12], X € RV*?)

Figure 6: Demonstration of the architecture of the generator in UL GAN and the decoder in UL VAE for Waxman random
graph dataset. The rectangles present neural network layers and the rounded rectangles clarify the shape of the hidden data.

D PROOF OF THEOREMS

In this section, we prove claims on connectivity and expressivity for the output graph of our unpooling layer. For the ease
of presenting, we denote a graph by G = (V, E') and omit features in nodes and edges because features are irrelevant with
graph connectivity and expressivity.

D.1 Proof of Proposition 1

Let k°, [° € V° be two arbitrary nodes in the output graph G° = (V°, E°). In order to prove the connectivity of G° we
need to find a path in G° connecting k° and [°. Recall that G = (V, E) denotes the input graph. Let k, [€ V be the parent
nodes of k£° and [°, respectively. Since the input graph G is connected, & and [are connected by a path. We denote its length
by n — 1, where n > 2, and its edges by {i1,i2}, {i2,73}, ..{in—1,in}, Where iy = k and ¢, = [. Recall that for r € [n]
Nyi,i,.13 () is a subset of the children of node 4, connected to Ny; ;. .3 (4r41), Which is a subset of the children of node
ir41. For r € [n] we arbitrarily choose a vertex in Ny; ; . 1(i,) and denote it by vy; ; . ,3(ir). We thus note that the
following edges exist in the output graph:

{0001 (1), 0401 003 (02) by {02,001 (82), V4an,is1 (3) b - - {0401 iy (ine1)s Vi in 3 (in) }-

Yinglong Guo, Dongmian Zou, Gilad Lerman

Input z € R128 -

’ Initial layer: d;,, = 128,d, = 128,d,, = 8 ‘

[

(Graph (V. B, X, W).[V| = 3, |E| € [2,3], X € R¥!? W € RM*®)

’MPNN layer: d, = 128,d,, = 8,d, = 128‘

|

Unpooling layer: I, = {1,2},I, = 0,d, = 128, Skip connection:
ko = kig = kie = 128, dy = dy, = 8,d, = 96 d. =128, N, = 10,d, = 32

|

V]=4,X € R W e RMX*D

(Graph (V,E, X, W),

(Graph (V,E,X,W),|V| =4, X € RNX128 yy ¢ RMx8

Concatenate
]MPNN layer: d, = 128,d,, = 8,d, = 128‘
Unpooling layer: I, = 0, I, = 0,d, = 128, Skip connection:
ky = kiq = kie = 128, dyy = d,, = 8, d, = 384 d. =128, N, = 15,d, = 128

(Graph (V. , X, W), [V| =8, X € R4 W € RM*®)
[

(Graph (V,E, X, W),|V|=8,X € R®512 W ¢ RMX@

Concatenate

’MPNN layer: d, = 512, d,, = 8,d, = 256 \

MLP[256, 3]

(Outputgraph (V,E,X):|V|=8,X € R8X3>

Figure 7: Demonstration of the architecture of the generator in UL GAN and the decoder in UL VAE for protein dataset. The
rectangles present neural network layers and the rounded rectangles clarify the shape of the hidden data.

In order to prove that k° and [° connect by a path we verify the following properties:

1. Forall v € [n — 2], either v, ;. 3(ir41) = Vfi,,1,i,0} (irr1) oOr there is a path connecting vy; ;.3 (4r41) and
U{ipg1,irta} (iT+1)

2. Either k° = vy;, 4,1(i1) or there is a path connecting £° and vy, ;,3 (41)

3. Either1° = vy;, _, ;,.1(i,) or there is a path connecting [° and v;, 5.1 (in)

To prove the first property we note that vy ; . 3(irg1) € {fi(iry1), fo(irg1)} and vy 603 (iep1) €
{fl (iT+1)> f2(ir+1)}' If U{ir,ir+1}(i”’+1) # v{ir+27ir+l}(ir+1)’ then {v{ir1i7‘+l}(ir+1)7v{ir+1ai1‘+2}(ir+l)} =
{f1(ir11), f2(ir41)}. To show that there is a path connecting vy, ;, ..} (4r41) and vg; 4,01 (ir41), it suffices to show
that there is a path connecting f; (4,41) and fo(i,1). Assume an arbitrary node j € V. If j € V the construction in Step 3a
guarantees the existence of an edge connecting f1(j) and f(j). Otherwise, based on Step 3b, there exists a node b; such that
N, 53 (G) = {f1(4), f2(4)}, so that f1(j) and f2(j) are connected via f(b;). Letting j = 4,1 we conclude this property.

J

The above argument also applies to the other two properties. [

An Unpooling Layer for Graph Generation

Input z € R28 -

’ Initial layer: d;,, = 128,d, = 256, d,, = 32 ‘

[

(Graph (V. B, X, W).[V| =3, |E| € [2,3], X € R»® W € RM*)

’MPNN layer: d, = 256, d,, = 32,d, = 128‘

I

Unpooling layer: I = {1}, I, = 0,d, = 128, Skip connection:
ky = kiqg = kie =128,d,, = dy, = 32,d,, = 96 d, =128, N, =10,d, = 32

|
V|=5X € R™% W e RM*®)

l
(Graph (V, B, X, W), |V| =5, X € ™25, W € RM <2

(Graph (V,E, X, W),

Concatenate

]MPNN layer: d, = 128,d,, = 32,d, = 128‘

|

Unpooling layer: I, = {1}, I, = {2,3,4},d, = 128, Skip connection:
ko = kia = kie = 128, dy = dy = 32,d, = 96 d, =128, N, = 15,d, = 32

(Graph (V. 2, X, W), |V| € [6,9], X € RN*%, W € RM*3?)
[

(Graph (V. , X, W), [V| € [6,9], X € RNX125, W & RM>32)

[

’MPNN layer: d, = 128,d,, = 32,d, = 64‘

Concatenate

’MLP[64, 64, 10] \]Final edge layer: d, = 64,d, = 32,d, = 3

’ Gumbel softmax layers ‘

[

@utput graph (V, E, X, W): [V| € [6,9], X € RN*10 W ¢ RMX3>

Figure 8: Demonstration of the architecture of the generator in UL GAN and the decoder in UL VAE for QM9. The
rectangles present neural network layers and the rounded rectangles clarify the shape of the hidden data.

D.2 Proof of Theorem 2

We will first define a pooling process and show that there exists an unpooling layer that acts as an inverse of this pooling
procedure (see Lemma D.1). We then show that any graph with N nodes can be pooled to a graph with [N/2] nodes
(Lemma D.2 clarifies the case where IV is even and Lemma D.3 clarifies the cases where N is odd). Finally we use these
observations to conclude the proof of the theorem.

We define the pooling process by using an “eligible” set. For a graph G° = (V°, E°), a set of pairs of nodes in V°,
S = {(41,71) ---(in, Jn)}, is called eligible if all nodes 41 - - - i,, and j; - - - ji, are distinct and for any m € [n], i,, and
Jm are connected by a path of length at most 2; that is, there are two cases: either {i,,, j,,} € E° or there exists k € V°,
such that {i,,,k} € E° and {k,j,,} € E°. Using an arbitrarily chosen eligible set S, we describe a specific pooling
process with respect to .S that produces a graph G from G° as follows. We initialize G with V' = V°and E = E°. For
m = 1,2, ---n, we follow the next three steps: (1) We remove from V' the nodes i,, and j,,. We remove from F all edges
inE, :={e€ FE:i, € ecorj, € c}; (2) We add a new node i, , to V; (3) We add the following set of new edges to E:

m

Yinglong Guo, Dongmian Zou, Gilad Lerman

Input z € R'28

| Initial layer: d;, = 128, d,, = 32,d,, = 32|
T
(Graph (V. B, X, W), |V| = 3, |E| € [2,3], X € R>¥, W e RM*32)

’MPNN layer: d, = 32,d,, = 32,d, = 32‘

I
Unpooling layer: I/ = {1}, I, = 0,d, = 32, Skip connection:
ky = kiq = kie =32,dyy = d,, = 32,d, =24 d, =128, N, =6,d, =8
1 I
(Graph (V. B, X, W).|V| = 5, X € B4 W RMXB@
T
(Graph (V. E, X, W), |V| = 5, X € % W € RM"3)
T Concatenate
’MPNN layer: d, = 32,d,, = 32,d, = 64‘
I
Skip connection:

Unpooling layer: I, = {1}, I, = 0,d
=32 d, =128, N, =10,d, = 16

k—km—kw—64d =d,

I
(Graph (V. B, X, W), [V| =9, X € RO W e RM*32)

d:8

1
(Graph (V. B, X, W), [V| =9, X € R W e RM*32)
Concatenat,
’MPNN layer: d, = 64,d,, = 32,d, = 64‘
T
Unpooling layer: I = 0, I, = {1,2,...8},d, = 64,| |Skip connection:
dy = 32,d, = 48 d, =128, N, = 10,d, = 16

kv:kia:kie:64adw: u s Uy
I
(Graph (V. B, X, W), |V| € [10, 18], X € RN <% W € R!‘“@ﬂ
1

(Graph (V. , X, W), V| € [10, 18], X € RN*®4 W & RM*9?
Concatenat

1
’MPNN layer: d, = 64, d,, = 32,d, = 128‘

L
Unpooling layer: I/ = 0, I, = {1,2,...17},d, = 128, | | Skip connection:
d. =128, N. = 10,d, = 32

ky = kiq = kie = 128,d,, = dy, = 32,d,, = 96
1

1
Concatenate

(Graph (V. , X, W), |V| € [11,36], X € RV*% W € RM*?)
1

(Graph (V, , X, W), |V| € [11,36], X € RN<125, W € RM <2

]MPNN layer: d, = 128,d,, = 32,d, = 128‘

’Final edge layer: d, = 128,d,, = 32,d, = 3

] MLP[128, 256, 15] \

’ Gumbel softmax layers ‘
I

(Outputgraph (V,E,X,W):|V| € [11,36], X € RV*15 W ¢ RMX:D

Figure 9: Demonstration of the architecture of the generator in UL GAN for ZINC. The rectangles present neural network

layers and the rounded rectangles clarify the shape of the hidden data.

An Unpooling Layer for Graph Generation

{{i,,k} : k € V andeither {i,,, k} € E,, or {jm, k} € Ep,}. Itisclear that the resulting G is connected if G is connected.

We introduce a lemma showing that for a given pooling process which maps G° to G, there exists an unpooling layer as the
inverse of this pooling process, i.e., it maps G to G°.

Lemma D.1. For any pooling process that maps G° = (V°, E°) to G = (V, E), there exists an unpooling layer that maps
GtoGe.

Proof. Consider the pooling process with respect to the eligible pairs in S = {(i1, 1), ---(in, jn)} C V°. We use the same
notation as above for i}, i5, ...i,, C V that were pooled by the respective eligible pairs.

We construct an unpooling layer whose input is G and its output is Go = (V°7 EO). The unpooling layer unpools the
nodes 44,15, ...i), and keeps the remaining nodes unchanged. It forms the following children nodes of 4/, 5, ...7), in Ve
(f1(i1), f2(i1)), ...(f1(3), f2(il,)), respectively. For every r € [n], we identify (f1(i}), f2(i..)) with (i,, j,) and re-index
respectively, so Ve =ve.

It remains to show that we can find an unpooling layer such that E° = E°. We first note that the edges in £ that do not
contain nodes from the eligible set remain unchanged in £ and E° since the pooling process is identical on those edges
(for clarity, these edges are the ones in {{i,j} € E° : 4,5 ¢ {i1,42,...in,j1,J2,---Jn}}). Since we restricted above the
unpooling layer to only unpool 4/, i}, ...i!, those edges also remain unchanged in E°. We thus only need to show that we can
construct the unpooling layer so that the set of edges in E? that contain children nodes is the set of edges that contain nodes
from the eligible set in £°. Each edge in the latter set falls into one of the following three categories, for which we establish
the required equality with the corresponding edges in E°:

1. Edges whose end nodes form a pair {i,., j,- } € S. For each such edge, we select the intra-link in the unpooling layer (step
3a) so that there is an edge connecting f; (i..) and f5(i..) in E°.

2. Edges between an eligible pair (i, j,) and a static node k in V°. That is, for a fixed r € [n] and a static node k, there
three possibilities for the set of these edges: {{i,, k}} or {{j., k}} or {{i,, k}, {j-, k}}. In view of the pooling process,
the edge {i;., k} is in E. In Step 3c, there are three possibilities for determining N 1 (4;.) and we need to select the
unpooling layer to match these three possibilities. Thatis, Ny 1y (i;.) = {f1(4;)} in the first case, where the set of the
above edges is {{i, k}}; Nyir 11 (4.) = {f2(i}.)} in the second case, where the set of the above edges is {{j,, k}} and
Ny iy (i) = {f1(3}.), fa(i;.)} in the third case, where the set of the above edges is {{i, k}, {j., k}}. In view of the

way Ny 1y (i) is used to build inter-links (see (8)), the edges in E° between (f1(i..), f2(i’)) and k are the same as the
ones in E° between (i, j,-) and k.

3. Edges between two different eligible pairs, (i,,j,) and (is,js), thatis {{k,l} € E° : k € {ir,jr},] € {is,js}}
For fixed s,r € [n] this set of edges in E° is a nonempty subset of the following set of four edges:
{{iryish, {ir,dsts {Jrsis}s {jrsjs}}. Therefore, there are 22 — 1 = 15 such edge sets. In view of the pooling
process, the edge {i’.,’} is in E. The unpooling layer unpools .. to (f1(i..), f2(i..)) and unpools i/, to (f1(¢), f2(%)).
We claim that according to Steps 3¢ and 3d, the unpooling layer can produce all the 15 possible edge sets between the pair

10 i!.)) and the pair (f1 (4 i%,)). To clarify this claim we specify for a ossible edges between (4
(f1(2), fa(i%)) and the pair (f1(,), f2(i,)). To clarify this claim we specify for all 15 possible edges between (i j)
and (is, js) the choice of Ny i1y (4;.), Nysr i1 (45) in Step 3¢ and the choice of the additional edge in Step 3d:

* If the edge set is {{i,,is}}, we set Ny i3 (i7.) = {f1(i7.)}, Nar iry (45) = {f1(4%)} and we do not insert an edge in
Step 3d
* If the edge set is {{i,, js } }, we set Ny iy (i) = {f1(3}.)}, Nygir iy (i) = {f2(i%)} and we do not insert an edge in
Step 3d
* If the edge set is {{j,,4s}}, we set Ny iy (i) = {f2(4).)}, Nyiriry (i5) = {f1(4%)} and we do not insert an edge in
Step 3d
* If the edge setis {{J, js}}, we set Ny iy (i7.) = {f2(4).)}, Nyar iry (i%) = {f2(i%)} and we do not insert an edge in
Step 3d
o If the edge setis {{i, i}, {ir s} 1o We set Ny iy (72) = {100}, Nes gy (12) = {f1(22), F2(i4)} and we do not
insert an edge in Step 3d

* If the edge set is {{j, is}, {jr, Js}}, we set Nyg iy (4)) = {fa(i;)}, Nyar oy (%) = {f1(3%), f2(i%)} and we do not
insert an edge in Step 3d

+ Ifthe edge set s {{ir.is}, (i)}, we set Npy iy (1) = (2(i0). foli)}. Ny (22) = {f1(8,)} and we do not
insert an edge in Step 3d

« Ifthe edge set s {{ir. js}, {jrs s We et Nisg iy (i2) = {2 (02), F2(i0)}, Npsigy (12) = {£2(i%)} and we do not
insert an edge in Step 3d

o If the edge set'/is {{ir,./is}, {jrsgst} weset Ny iy (i) = {f1(i7)}, Nyir iy (i5) = {f1(i%) } and in Step 3d we insert
the edge {fQ(zr)a fQ(Zs)}

Yinglong Guo, Dongmian Zou, Gilad Lerman

* If the edge setis {{i,, js }, {Jrs s} }, we set Ny iy (4)) = {f1(27.) }, Nyar iry (35) = {f2(i%)} and in Step 3d we insert
the edge { f2(i1), /1(71)]

» If the edge setis {{i,, s}, {ir, Js}, {dr.ds}} we set Ny iy (i) = {f1(i7), f2(37)}, Nyar iy (45) = {f1(i5)} and in
Step 3d we insert the edge { f1 (7)), f2(i%)}

o Ifthe edge setis {{ir,ix}, Urris)s s o} We set Ny oy (1) = (1000, Fo(#0)}, Nesp iy (1) = (f1(i0)} and in
Step 3d we insert the edge { f2(i..), f2(i})}

* If the edge setis {{ir, %5}, {ir, Js }, {Jr> Js} }» we set Ngg oy (47.) = {f1(47.), f2(0.) }, Nyar iy (35) = {fa(i%)} and in
Step 3d we insert the edge { f1(4..), f1(i%)}

« Tfthe edge setis {{dr job L1 U o b We set Nisy i) (1) = {F1(00), foli2)} Nisg iy (1) = {fa(i0)} and in
Step 3d we insert the edge { f2(4..), f1 (i)}

o If the edge set is {{i,,is}, {ir,Js}, {dr. 05} {Ur, ds}}, We set N{i;,i’s}(i;) = {f1(i}), f2(i7)}, N{i’r,ig}(i/s) =
{f1(@%), f2(i’,) } and we do not insert an edge in Step 3d
The inter-link construction in (8) for the above specified choices of Ny;r i3 (4;) and Nyy iy (if) together with

the above specified choices of inserting an additional edge imply that the output edges between (f1(i,), f2(i.)) and

(f1(3)), f2(i%)) in E° are the same as the edges between (i.., j,-) and (is, js).

O

To show that for a graph G° = (V°, E°) with N node there is an unpooling layer that maps a graph G with N — n nodes
to G°, we need to show that there exists an eligible set S = {(i1, 1), ...(in,jn)} C V°. Indeed, the pooling process with
respect to S maps G° to a graph G with N — n nodes and by Lemma D.1 there exists an unpooling layer that maps G to G°.

The next two lemmas conclude the theorem by implying that for a connected graph G° there exists an eligible set of maximal
size, i.e., n = | N/2]. The first lemma considers a graph with an even number of nodes and the second lemma considers a
graph with an odd number of nodes.

Lemma D.2. For any connected graph G° = (V°, E°) with 2K nodes, there exists an eligible set S containing K pairs of
nodes in G° such that the pooling process with respect to S maps G° to a graph G with K nodes.

Proof. We prove this lemma by inductionusing M =1, ..., K. When M = 1, the lemma is trivial.

Assume the lemma holds for M = 1,..., K — 1. Given a connected graph G° = (V°, E°) with 2K nodes, we prove the
result, while considering the following two different scenarios:

Case 1: There exists a node in V° of degree 1. We arbitrarily choose such a node and denote it by j. We consider its only
neighbor, which we denote k € V°, and remove the pair of nodes (4, k) and all the edges connected to them from the graph G°.
The remaining graph has 2 K —2 nodes. Ifitis also connected, then by the induction assumption there exists an eligible set with
K —1 pairs of nodes. By adding the pair (7, k) to that eligible set, we obtain an eligible set with K pairs and conclude the proof.

If, on the other hand, the remaining graph is not connected, we partition it into maximally connected subgraphs
G1,G2, -+ ,Gn. That is, each subgraph is connected, but any two subgraphs are not connected to each other. Since
G1, .. .Gy, are not connected to each other and to the degree-one node j, they all connect to the node k.

We consider the following four steps that assist in finding an eligible set:

1. We identify the maximally connected subgraphs with even numbers of nodes. Clearly, each of these numbers is not
greater than 2K — 2 and thus by induction all the nodes of each such subgraph can be used to form an eligible set. The
union of all these eligible sets forms a larger eligible set that uses all the nodes in these subgraphs. If all maximally
connected subgraphs have even numbers of nodes, then we terminate the procedure at this step.

2. We re-index the maximally connected subgraphs with odd numbers of nodes as Gy, ...Gas, for some s € N. We note that
the total number, 2s, is indeed even since the total number of the remaining nodes is even and the number of nodes in each
subgraph is odd. For 1 < ¢ < 2s, let g; be a node in G; that connects to & (we commented above on its existence). We
form the following s pairs: (g1, g2), (93, g4), ---(g2s—1, 925). We note that they form an eligible set since they all connect
to k. This eligible set only uses the nodes {g;}7°,. We terminate the procedure at this step whenever all maximally
connected subgraphs with an odd number of nodes only contain a single node (so that all nodes of these subgraphs are
used by this eligible set).

3. If G; # ({g:},0) and the number of nodes of G; is odd, then we remove g; from G; and also remove all the edges
connected to g;. The remaining graph contains an even number of nodes. If the remaining graph is connected, then we
find an eligible set that uses all nodes in this remaining subgraph (its existence follows from the induction assumption).
We terminate the procedure at this step if each of these remaining subgraphs is connected (the union of all such eligible
sets then form a larger eligible set that uses all nodes in these subgraphs).

An Unpooling Layer for Graph Generation

4. If a remaining subgraph from the above step (having g; and its connected edges removed from ;) is not connected, we
form its maximally connected subgraphs ’Hgl), e ’Hl(l) We note that ’Hgl), .. 'HZ(Z) are all connected to g; (since G; is

connected and H1, . .. H,, are not connected to each other). We also observe that Uﬁ}':ngi) contains less than 2K — 2
nodes (indeed the number of nodes of G; is strictly less than the number of nodes in U]"_; G,., which is 2K — 2; we remark
that since g; was removed from G; the bound 2K — 2 is not tight).

If this procedure terminates in its first three steps, then it finds an eligible set that uses all nodes in the maximally connected
subgraphs and thus its size is 2K — 2. Otherwise, we iteratively apply the same four-steps procedure on the maximally
connected subgraphs of the last step. At each iteration the total number of nodes in the maximally connected subgraphs

reduces (we clarified this at the end of the fourth step). Since the graph is finite, the iteration either terminates or Uf}zl’HSi)
in step 4 of the procedure is of size 2, that is, there are two subgraphs with single nodes. When inputting these single nodes
at the next iteration, the procedure will terminate at step 2.

The final eligible set is the union of all the eligible sets iteratively generated from steps (1)-(3) and the pair (j, k). This
eligible set uses all the nodes in V' © and thus it contains K pairs.

We remark that we introduced Case 1 in order to help the reader master the idea of the proof in a simpler case. We actually
demonstrated how to consecutively handle the case where a single node is connected to maximally connected subgraphs
whose total number of nodes is even. Starting with a node of degree 1 allowed us to proceed with this idea in one direction.
Next, we pick up two different points and proceed with this idea in two different directions and, in fact, we could have
started the proof with the latter setting right away. This setting has two subcases (2A and 2B). In Case 2A, we still have an
even number of nodes in the maximally connected subgraphs, which are connected to a single node, so the ideas of Case 1
immediately apply. In Case 2B, the latter number of nodes is odd, but we can somehow reduce it to Case 2A.

Case 2: There does not exist any node in V' ° with degree 1. In this case we randomly select two neighboring nodes j, k € V°.
We consider the remaining graph after removing these two nodes from V' and also remove all edges connected to them from
FE°. If the remaining graph is connected or if all the maximally connected subgraphs of the remaining graph contain an even
number of nodes, then the induction assumption concludes the proof. Otherwise, the remaining graph is partitioned into
maximally connected subgraphs G, ..., G,, ., We reindex these subgraphs so Gy, ...G,, are all connected to node j and not
connected to node k in G°. The other maximally connected subgraphs, G,;,+1, ..Gp+n, are connected to &k in G° (they may
or may not be connected to 7). We prove this case by further considering two different scenarios:

Case 2A: U™ | G; contains an even number of nodes. In this case, it is clear that U'%"™ ', 1Gi also contains an even number of

nodes. We could iteratively perform the above four-steps procedure introduced in Case 1 on {G; ?jﬁﬂ (as they all connect
to k) and on {G;}7, (as they all connect to j). Following the same argument at the end of the proof of case 1, we obtain
two eligible sets that cover {G;}77™" | and {G;}7,, respectively. The union of these two sets and the pair (j, k) yields an
eligible set that uses all nodes in G°, which concludes the proof.

Case 2B: U] | §; contains an odd number of nodes. We note that U?::f“gi contains an odd number of nodes. We further
note that within {G; }/ ,, there is an odd number of subgraphs that contain an odd number of nodes. After reindexing, these
subgraphs are G1, Ga, ...Go,41, Where 2r + 1 < m. We pick one node from G, that is connected to j and denote it by
{. By definition, [is not connected to G;, i € [2r] ori = 2r + 2,...m, and also not connected to node k.Using this special
node [, we redefine the “remaining graph” that was described in the beginning of case 2. That is, we remove from G° the pair
(4,1) (and the associated edges), whereas before the pair (j, k) was removed from it. We can similarly identify maximally
connected subgraphs of this new remaining graph. Now the collection of the maximally connected subgraphs that connect
to j but not connect to [contains an even number of nodes in total. Indeed, this collection contains all nodes in the former
subgraphs, Gy, ... Gar, Gort2, . . ., Gmtn and also the node k and there is an odd number of nodes in every G;, i = 1,...2r,
an even number of nodes in every G;, i = 2r + 2,...m and an odd number of nodes in U?:WT _HQZ- and the single node
k, which yield an even number of total nodes. Note that we transformed the case to the one in case 2A (with the initially
selected pair (7, 1)) and the proof is thus concluded. O

Lemma D.3. For a connected graph G° with 2K + 1 nodes, there exists an eligible set S containing K pairs of nodes in G°
and the pooling process with respect to S maps this graph to a graph with K + 1 nodes.

Proof. We note that there exists a node in G° so that the remaining graph is still connected after removing this node from V°
and removing all edges connected to this node from E°. Indeed, it can be selected as a node with degree 1 in the spanning
tree of G°. Considering the remaining graph with 2K nodes (after removing this node and the associated edges), Lemma D.2
implies the existence of an eligible set S containing K pairs of nodes so that the pooling process with respect to .S will map
G° to a graph with K + 1 nodes.

O

Yinglong Guo, Dongmian Zou, Gilad Lerman

Proof of Theorem 2. To conclude the theorem, we just need to show that for G° = (V°, E°) with |V°| = N, and any number
K € [[N/2], N — 1], there exists a pooling process with an eligible set S (containing N — K pairs) that maps G° to a graph
G with K nodes. It is sufficient to prove the statement for K = [N/2] with the eligible set S* that contains N — [N/2]
pairs. Indeed, for any K > [IN/2], we can take a subset Sk of the eligible set S* (containing N — [N/2] pairs) such that
|Sk| =15% — (K — [N/2]). The pooling process with respect to Sk produces a graph with K nodes.

Given a graph G° with N nodes, Lemma D.2 and Lemma D.3 imply that there exists an eligible set S* with | N/2] pairs.
Therefore, the pooling procedure with respect to S* maps G° to a graph G with [N/2] nodes. O

D.3 Proof of Corollary 3

For any connected graph G° with N nodes, iterative application of Theorem 2 implies the existence of a series of unpooling
layers Uy, k > 1, and intermediate graphs Gy, k > 1, with |G| = [|Gk—1|/2], so that Uy (Gr) = Gi—1, where Gy := G°.
We stop the process once |G| € [4, 6] (we will reach this range because for any N’ > 6, [N’ /2] > 4). Another application
of Theorem 2 yields the existence of a 3-nodes graph, G, and a last unpooling layer, Uy 1, so that U 11(G) = G.

That is, there exist a 3-nodes graph G and a series of unpooling layers Uy, ..Uy so that Uy o Us o ... 0 Up4+1(G) = G°. Note
that the number of unpooling layersis k + 1 = [log,(N/3)]. O

E ANOTHER GENERATION TASK: OPTIMIZING SPECIFIC CHEMICAL PROPERTIES

In this task, we consider the following three chemical properties (Guimaraes et al., 2017), which we evaluate only on the
valid molecules among the 10,000 generated ones: druglikeliness, solubility and synthesizability. We calculate the first
property using the Quantitative Estimate of Druglikeness (QED) package in RDKit (https://www.rdkit.org/)
(licensed by BSD 3-Clause). These scores lie in [0, 1] and their values aim to express the likelihood of being a drug. We
calculate solubility by the log octanol-water partition coefficient using the Crippen package in RDKit. We rescale this value
to liein [0, 1], where 1 is the most soluble value. In order to calculate synthesizability, we calculate the synthetic accessibility
(Ertl and Schuffenhauer, 2009) and rescale this value to lie in [0, 1] where 1 is the easiest to synthesize. We use codes from
https://github.com/connorcoley/scscore, licensed by MIT.

For the generative model, we follow with the same Wasserstein GAN architecture as described in §C (with the final activation
function to be a sigmoid function), but the discriminator minimizes the error between its output and the objective chemical
property; it then outputs a reward score, which we need to maximize when training the generator.

Result of optimizing chemical properties. Using QM9, we generated molecules that aimed to maximize druglikeliness,
solubility and synthesizability. Table 5 reports the six evaluation metrics (listed in its columns, whereas the properties we
aimed to maximize are in its rows). In terms of generating molecules with the targeted chemical properties, UL GAN is
competitive with the other approaches (this is noticed when looking at columns 4, 5, 6 of rows 1, 2, 3, respectively. When
considering the other evaluation metrics, UL GAN generally outperforms Adj GAN, except for the objective of druglikeliness
and the metric of synthesizability (first row and sixth column). Note that the uniqueness of UL GAN and Adj GAN is very low
because our generator does not aim to compete with the discriminator, but to generate molecules with a maximal property of
interest. We did not report the good performance of UL GAN when considering this task with ZINC, since the other methods
we compared with were not tested on ZINC; furthermore, the superiority of UL GAN over Adj GAN for ZINC is already
obvious from Table 4.

F SOME ADDITIONAL NUMERICAL RESULTS

We supplement the numerical results in §4. Section F.1 reports standard deviations for the earlier experiments on QM9
and ZINC; §F.2 includes generation results with only 1,000 samples; and §F.3 demonstrates examples of the generated
molecules from UL GAN and UL VAE.

F.1 Standard Deviations for Molecule Generation

Table 6 supplements Table 3 in the main manuscript and reports the means and standard deviations of the evaluation metrics
for our methods in QMY, including Adj GAN, UL GAN, and UL VAE. Table 7 supplements Table 4 in the main manuscript
and reports the means and standard deviations of the evaluation metrics for our methods in ZINC, including UL GAN and
Adj GAN and UL VAE. These means and standard deviations are calculated from 100 runs.

https://www.rdkit.org/
https://github.com/connorcoley/scscore

An Unpooling Layer for Graph Generation

Table 5: The six evaluation metrics (in rows) for generated samples that aim to minimize the three indicated chemical
properties (in columns). We remark that QED is the acronym for quantitative estimate of druglikeliness. Scores for
competing methods (above the indicated line) were copied from their original papers. NA means that the score is not
available in the original papers.

Objective Method Valid Unique Novel QED Solubility Synthesizability
ORWGAN 0.882 0.694 NA 0.52 0.35 0.32
Naive RL 0.971 0.540 NA 0.57 0.50 0.53
QED MolGAN 1.00 0.022 NA 0.62 0.59 0.53
AdjGAN 0991 0.005 0.865 0.443 0.288 0.658
ULGAN 09888 0.051 0.978 0.598 0.497 0.485
ORWGAN 0.965 0.459 NA 0.50 0.55 0.63
Naive RL 0.927 1.00 NA 0.49 0.78 0.70
Solubility MolGAN 0.998 0.002 NA 0.44 0.89 0.22
AdjGAN 0940 0.003 0958 0.378 0.367 0.007
UL GAN 0.993 0.010 0.781 0.507 0.700 0.793
ORWGAN 0.965 0.459 NA 0.51 0.45 0.83
Naive RL 0.977 0.136 NA 0.52 0.46 0.83
Synthesizability =~ MolGAN 1.00 0.021 NA 0.53 0.68 0.95
AdjGAN 0.999 0.003 0.833 0.360 0.331 0.835
UL GAN 1.00 0.006 0433 0.468 0.569 0.953

Table 6: Validity, uniqueness and novelty with standard deviation for Adj GAN, UL GAN, and UL VAE using QMO.

Method Valid Unique Novel

ULVAE 0.735(£0.004) 0.940 (£0.003) 0.949 (£ 0.002)
AdjGAN 0.941 (£0.002) 0.139(£0.002) 0.886 (£ 0.006)
UL GAN 0.907 (£0.003) 0.826 (£0.004) 0.949 (£ 0.002)

Table 7: Validity, Uniqueness and Novelty with standard deviation for Adj GAN and UL GAN using ZINC.

Method Valid Unique Novel
AdjGAN 0.109 (£0.003) 0.196 (£0.011) 1.00(£0)
ULGAN 0.871 (£ 0.004) 1.00 (£ 0) 1.00 (£ 0)

Table 8: Model performance with 1,000 generated samples on various datasets.

‘Waxman random graph QM9
Method kledgedense klclust klconn klnode feat | wdedgedense wdclust wdconn wdnode feat Valid Unique Novel
UL VAE 0.115 0.443 0.279 0.451 0.009 0.100 0.106 0.126 0.737 0.991 0.932
UL GAN 0.007 0.030 0.033 0.152 0.002 0.022 0.012 0.039 0.905 0.970 0.927
Protein dataset ZINC
kledgedense klclust klconn klnode feat wdedgedense wdclust wdconn wdnode feat Valid Unique Novel
UL VAE 0.565 1.235 0.822 0.260 0.034 0.071 0.319 4.400 NA NA NA
UL GAN 0.084 0.484 0.136 0.234 0.014 0.011 0.115 3.958 0.870 1.00 1.00

F.2 Evaluation with only 1,000 generated samples.

In the experiments of §4, we generated 10,000 samples and reported statistics based on these samples. To check whether
the performance is preserved for a smaller sample, we report here results of UL GAN and UL VAE when generating only
1,000 samples. Table 8 reports such results for the Waxman, protein, QM9 and ZINC datasets. We note that all the reported
metrics, but the uniqueness in QM9, are similar to the ones in Table 1, Table 2, Table 3 and Table 4, where 10k samples
were generated. The uniqueness in QM9 is significantly higher with 1,000 samples. Polykovskiy et al. (2020) also noticed
a higher uniqueness rate with 1,000 samples than with 10,000 samples.

F.3 Synthetic Samples for Molecule Generation

We demonstrate samples generated from the UL GAN for QM9 in Figure 10 and samples generated from the UL VAE in
Figure 11. Also, we present samples generated from the UL GAN for ZINC in Figure 12.

Yinglong Guo, Dongmian Zou, Gilad Lerman

We also illustrate some examples of the evolution of intermediate graphs and illustrate how a graph is generated from a
generative GNN using unpooling layers, in Figure 13 for QM9 and in Figure 14 for ZINC.

OH

— He o) - H K
o \/\ HN'/Nz - /\\
0 HO. 7~ ToH HO.
Q\(\ OH W % o \é"\/\(\ \/N Q
] ” &
Né N’ OH

H B O R,

8. Q Va o
OH o=
a2 = L
) ?OH NH 0 N HO
H HO

Figure 10: Samples of molecules generated by UL GAN based on QM9 dataset.

An Unpooling Layer for Graph Generation

ZT

WOH ” (OH Ho*\ 7{f/\NﬂH1
D TN L

Figure 11: Samples of molecules generated from UL VAE based on QM9 dataset.

HO

Yinglong Guo, Dongmian Zou, Gilad Lerman

Figure 12: Samples of molecules generated from UL GAN based on ZINC dataset.

An Unpooling Layer for Graph Generation

Figure 13: Five examples of generated graphs using UL GAN trained with QM9. Each row represents one example, showing
intermediate graphs in the generation process. Left column: initial 3-nodes graph; Middle 2—-3 columns: intermediate graphs
after unpooling layers; Right column: the final generated molecule. The color represents one dimension of the node features.

Yinglong Guo, Dongmian Zou, Gilad Lerman

RN I G, W
RS PV i
PN A S B
LA e SR

Figure 14: Five examples of generated graphs using UL GAN trained with ZINC dataset. Each row represents one
example, showing intermediate graphs in the generation process. Left column: initial 3-nodes graph; Middle 2—-5 columns:
intermediate graphs after unpooling layers; Right column: the final generated molecule. The color represents one dimension
of the node features.

	INTRODUCTION
	Related Work
	This Work
	Structure of the Rest of the Paper

	METHODOLOGY
	Unpooling Layer
	Graph Generation and Training

	THEORETICAL GUARANTEES
	Guarantee of Connectivity of the Output Graph
	Guarantee of Expressivity for the Unpooling Layer

	EXPERIMENTS
	Datasets
	Evaluation Metrics
	Implementation Details
	Results

	CONCLUSION AND LIMITATIONS
	ADDITIONAL DETAILS ABOUT THE UNPOOLING LAYER
	COMMENTS ON THE CODES
	IMPLEMENTATION DETAILS
	Details of Other Neural Layers
	Details of the Unpooling Layer
	Architectures of Discriminators and Encoders
	Architecture of Generators
	Reconstruction Loss for UL VAE

	PROOF OF THEOREMS
	Proof of Proposition 1
	Proof of Theorem 2
	Proof of Corollary 3

	ANOTHER GENERATION TASK: OPTIMIZING SPECIFIC CHEMICAL PROPERTIES
	SOME ADDITIONAL NUMERICAL RESULTS
	Standard Deviations for Molecule Generation
	Evaluation with only 1,000 generated samples.
	Synthetic Samples for Molecule Generation

