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Abstract. Poisoning attacks are a category of adversarial machine
learning threats in which an adversary attempts to subvert the out-
come of the machine learning systems by injecting crafted data into
training data set, thus increasing the resulting model’s test error. The
adversary can tamper with the data feature space, data labels, or both,
each leading to a different attack strategy with different strengths. Var-
ious detection approaches have recently emerged, each focusing on one
attack strategy. The Achilles heel of many of these detection approaches
is their dependence on having access to a clean, untampered data set.
In this paper, we propose CAE, a Classification Auto-Encoder based
detector against diverse poisoned data. CAE can detect all forms of poi-
soning attacks using a combination of reconstruction and classification
errors without having any prior knowledge of the attack strategy. We
show that an enhanced version of CAE (called CAE+) does not have to
rely on a clean data set to train the defense model. The experimental
results on three real datasets (MNIST, Fashion-MNIST and CIFAR-10)
demonstrate that our defense model can be trained using contaminated
data with up to 30% poisoned data and provides a significantly stronger
defense than existing outlier detection methods. The code is available at
https://github.com/Emory-AIMS/CAE
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1 Introduction

Poisoning attacks are attacks at training time [6] in which an attacker manipu-
lates a small fraction of the training data in order to corrupt the model. Conse-
quently, the model may learn a significantly different decision boundary, resulting
in drastic test error. Poisoning attacks are acquiring increasing importance in
emerging crowd-based systems that collect data from outside sources [12,13,37].
In crowd-sourcing platforms, the attacker can cause massive damages without
having a direct access to the system, but rather by poisoning the collected data
from her. A few examples are autonomous driving cars, health systems, online
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review systems, and malware/spam detection systems. Also, recently poisoning
attacks have been widespread in federated learning systems [32,33,36].

The most recognized poisoning attacks are label flipping and optimal attacks
[7,41]. In these types of attacks, according to the attacker’s goal and his accessi-
bility to the data, he may change the labels of some training samples or distort
the feature space of the samples, usually in an optimal way to diverge the train-
ing from its regular path. Another class of poisoning attacks is backdoor attacks
in which the attacker only targets a group of test data that include a specific
backdoor trigger [8,16]. Backdoor attacks are not explored in this paper, but
they can be considered as future work.

Several defense methods have been recently developed to address flipping or
optimal poisoning attacks. Most of them consider poisoned points as outliers
and utilize outlier detection techniques. They can be based on k-Nearest Neigh-
bor (kNN) algorithms that consider a point with contrasting label with nearby
samples as a poison [30]. They can determine whether a point is poisoned by
comparing its distance to a nearby point or other data points in its cluster
[22,29]. However, they have several limitations. First, they may only work for
a particular type of attacks (optimal or flipping) as the detection is based on
the change of either labels or features. Second, they rely on purely clean data to
learn the patterns of normal points. Training on tainted data is plausible only
when the fraction of the anomalous data is negligible. Also they usually rely on
a threshold to determine an outlier.

A potential solution for outlier detection that has not been explored for data
poisoning attacks is auto-encoder based method [4,38] which learns the data
representation in an unsupervised way. It has been utilized for generating poi-
soning attacks [10,14,45], anomaly detection [31,49], and adversarial example
detection [26]. While promising, utilizing auto-encoders for detecting poisoned
points under poisoning attacks present several challenges. First, existing methods
train auto-encoders using clean data while there is no guarantee of purely clean
data under poisoning attacks [11,24]. Second, existing methods typically select a
threshold by allowing certain percentage of clean points to pass (e.g., 90% clean
data) but there is no access to such clean data under poisoning attacks. Finally,
existing methods for detecting adversarial examples during inference time only
utilize feature space (adversarial examples do not have labels). Thus, if directly
applied for detecting poisoning attacks, they overlook some essential aspects of
the attacks, i.e., the labels of the poisoned data (they may be flipped).

Contributions. In this paper, we develop a Classification Auto-Encoder based
detector (CAE) that utilizes both feature space and label (class) information
to defend against diverse poisoned data. We use a Gaussian Mixture Model
for discriminating poisoned points from clean data so that it does not require
any explicit threshold. We further propose an enhanced version of our method
(CAE+) which does not require purely clean data for training. We elaborate our
contributions as follows:

– We develop a classification auto-encoder based detector (CAE) to defend
against diverse data poisoning attacks, including flipping and optimal attacks.
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The key idea is to utilize two components, an auto-encoder based reconstruc-
tion for learning the representation of the data from the feature space and
an auxiliary classifier for incorporating the label (class) information into the
data representation so it can better detect the poison points.

– We further propose an enhanced model CAE+ so that it can be trained even
on partially poisoned data. The key idea is to add a reconstruction auto-
encoder (RAE) with CAE to form a joint auto-encoder architecture combined
with early stopping of CAE so that it does not overfit the poisoned data while
still learning useful representations of the clean data.

– We evaluate our method using three large and popular image datasets and
show its resilience to poisoned data and advantage compared to existing state-
of-the-art methods. Our defense model can be trained using contaminated
data with up to 30% poisoned data and still works significantly better than
existing outlier detection methods.

2 Background and Related Work

2.1 Poisoning Attacks

Assume distribution R on X ×Y where Y = {−1, 1}. For a clean training dataset
Dtr = {(xi, yi) ⊆ R}ntr

i=0, the goal of a binary classification task M parameterized
by www is to minimize objective loss function L(Dtr,www), w.r.t its parameters www.
In a poisoning attack, the attacker’s goal is to produce np poisoned data points
Dp = {(xi, yi) ⊆ R}pi=0 so that using new training data D′

tr = Dtr ∪ Dp by
the learner results in attacker’s goal or objective function. This goal can be
maximizing the loss on the entire clean test dataset (untargeted attacks) or on a
subset or class of them (targeted attacks). As a result the classification accuracy
of the entire clean test data or a subset of them will drop drastically.

Poisoning attacks have different manifestations depending on which part of
the data is manipulated during the attack [39]. Each of them can have a different
impact on attacker’s objective function and different attack strength. In Label
flipping attacks or in short flipping attacks, only class labels of poisoned data
are flipped, and the adversary usually has a limited budget for the number of
samples it is allowed to change their labels [30,41,43,46].

Optimal attacks are based on optimizing the poisons to maximizing the degra-
dation of the model’s performance. These attacks are stronger compared to other
poisoning attacks, since both feature space and labels can be changed. For clas-
sification problems [7,27,42], the rule of thumb is to initialize poisons with real
samples from training data set and flip their labels. Since labels are not differen-
tiable, they only optimize the feature space. For image datasets, the input space
refers to the pixels comprising the image.

In this paper, we also introduce Semi-optimal attacks which keep the original
labels of the points without flipping them and only optimize the feature space.
This attack can be realistic when the attacker has no control over the labeling
process. The distinction between the different attacks are shown in Table 1.
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Table 1. Various types of poisoning attacks based on tampering different input
domains of the initial candidate poisoning points.

Domain Attack

Flipping Semi-optimal Optimal

X - ✓ ✓

Y ✓ - ✓

2.2 Defense Against Poisoning Attacks

Outlier Detectors. Outlier detection methods are common to defend against
poisoning attacks. These methods are based on the fact that poisoned data devi-
ates from normal points or underlying data generation mechanism. Paudice et al.
[29] suggest distanced-based outlier detection methods to mitigate the effect of
optimal attacks, assuming they have access to a trusted dataset to train the out-
lier detector. Steinhardt et al. [35] use a centroid-based outlier detector and esti-
mates a data-dependent upper-bound on the objective loss for poisoning attacks,
offering a certified defense. Chen et al. [11] benefit from combining Generative
Adversarial Network (GAN) based models, namely cGAN and WGAN-GP, to
create augmented clean samples from a trusted dataset and mimic the origi-
nal model. It then compares the training data against a threshold calculated
by the augmented clean data to detect the poisoned samples. Outliers can also
be detected by clustering based methods [34]. Laishram and Phoha [22] consider
clustering in the combination of feature and label space to defend against optimal
attacks and showed that the poisoned points are more separated from the rest
of their cluster compared to using features alone. K-nearest neighbor algorithm
is proposed to combat flipping attacks [30]. They assume samples close together
share a common label; otherwise, the sample’s label is highly likely flipped.

As we discussed, the existing outlier detection based methods have several
limitations. They typically focus on one type of attacks and rely on purely clean
data to train the detector and a threshold to determine outliers and hence are not
very effective or robust. Furthermore, a recent work [20] considers a new attack
method that generates adjacent poisoned samples. In this case, proximity-based
outlier detection algorithms such as K-nearest neighbor fail to recognize poi-
soned data.

Contribution-Based Methods. Another type of defense methods are based
on how and to what extent each point contributes to or influences the resulting
model. In the context of regression problems, Jagielski et al. [18] retrain the
model multiple times and removes points with high residuals as poisonous points.
RONI [28] is another defense method that tests the impact of each data point on
training performance and discards those points that have a negative contribution.
Baracaldo et al. [5] takes a similar approach but reduces computational expenses
by examining the impact of entire group of points on the model in order to
find manipulated groups. [19] is another work that attempts to find the high
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impact samples in a less costly process using influence functions. Hong et al.
[17] shows poisoned data impact the magnitude and orientation of gradients
during the training. They use DP-SGD [1], a training method for achieving
differential privacy [48], to add noise to the gradients and limit their sensitivity to
mitigate the impact of poisoned samples. In summary, while showing promising
results without approximation, the contribution-based methods have the main
drawback of high computation cost due to enumerative retraining, which makes
it impractical, especially for settings where potentially poisonous data are being
continuously acquired. Also, for the differentially private defense methods, they
suffer from a decrease in model utility [17].

2.3 Auto-Encoders in Anomaly Detection

Auto-encoders [4,38] are neural networks that learn data representation in an
unsupervised way. Auto-encoders reconstruct input x into output x′ by mini-
mizing reconstruction error usually on an Lp-norm distance:

RE(x) =‖ x − x′ ‖p (1)

If auto-encoders are trained with only benign data, they learn to capture only
the main characteristics of these data. So when the reconstruction error of a
sample exceeds a threshold, it is considered an anomaly [2,31]. Nevertheless
most anomalies are recognized as samples with observable differences from the
real data [3], which are not effective for poisoned data that have very small
perturbations.

Auto-encoders have been proposed to detect adversarial examples at infer-
ence time by Magnet [26]. In addition to considering reconstruction error between
the input and output, they also feed them to the target classifier and compare
the corresponding softmax layer outputs to boost the detection power. How-
ever, in the context of poisoning attacks, a pre-trained trusted classifier does not
exist. Instead the defender has access to an extra piece of information which is
the associated label of the poisoned point.

When used for both outlier detection and adversarial example detection, the
auto-encoders need to be trained with pure clean data to capture shared prop-
erties amongst normal data [2,26]. Even in some works [3,47] that considered
anomalous data in the training process of the auto-encoders, the percentage of
anomalies in the dataset is insignificant. In the setting of poisoning attacks, the
assumption of having a clean dataset for training the defense method is not
realistic. By utilizing a joint architecture, we show that our defensive model can
remain resilient to poisoning attacks even up to 30% poisoned points.

3 Classification Auto-Encoder Based Detector

As a baseline solution, we can train an auto-encoder on feature space as in exist-
ing outlier detection methods. For a clean sample sc = (xc, yc), and a poisoned
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Fig. 1. Auto-encoders Structure: (a) The structure of Classification Auto-encoder
(CAE). If trained on pure clean dataset it provides a high success defense against
all poisoning attacks. (b) The structure of CAE+. Both Reconstruction Auto-encoder
(RAE) and Classification Auto-encoder (CAE) work together to combat against poi-
sons. This joint structure makes the defense method more robust even if trained on a
contaminated dataset.

sample sp = (xp, yp), the reconstruction error RE(xp) can be used to discrimi-
nate xc and xp:

RE(xc) � RE(xp) (2)

According to (2) any data point with significantly large reconstruction error
(greater than certain threshold) can be considered as a poison. The limitation of
this approach is that it will only capture the changes in the feature space. Hence
it will address only semi-optimal attacks which only change the features.

3.1 Classification Auto-Encoder (CAE)

To defend against all types of poisoning attacks, we need a method that incor-
porates both labels and features in detection process. In other words, the latent
encoding of the auto-encoder needs to reflect the label information.

Classification Auto-Encoder. We propose Classification Auto-Encoder
(CAE) which has an auxiliary classifier fed by the latent representation z
of the encoder (as shown in Fig. 1(a)). If REcae indicates the reconstruction
error, and Lcae indicates the auxiliary classifier’s loss on representation layer
z, CAE is trained to minimize

∑
xi

(REcae(xi) + Lcae(xi))) on training dataset
Dc = {xi, yi}ni=0. As a result, z is learned in such a way that the classifier is able
to predict the label, and the decoder can reconstruct the associated input. To
boost the connection between these two tasks, we train the auxiliary classifier and
the decoder simultaneously. It contrasts with previous works that utilize clas-
sification auto-encoders for predictive or classification objectives. They employ
a two-stage training process which trains the pair of encoder-decoder and then
uses the low-dimensional representation for training the classifier [15,44].

Detection Criteria. Once the CAE is trained, given a data point, we can use
the combined reconstruction error and classification loss as a detection criteria



CAE Against Data Poisoning Attacks 269

for poisoned data (e.g., if it is greater than certain threshold), since it considers
deviations in both feature space and label space.

Error(x) = α.REcae(x) + (1 − α).Lcae(x) (3)

The first term REcae(x) is the reconstruction error of CAE and the second
term Lcae(x) is the loss of the CAE auxiliary classifier. α and 1 − α are weights
to control the effect of each term. Since RE(x) is indicative of changes in x, and
L(x) reflects the classification loss, the combined metric Error(x) can detect
both changes in feature space and labels and hence defend against the different
types of attacks.

In general, a threshold can be defined based on a guess on the number of pos-
sible poisoned points K [18]. Tuning K is a difficult job that makes the detector
very sensitive to the actual fraction of poisoned data. Instead, we use a cluster-
ing approach and cluster all points based on Error(x) into two clusters using a
Gaussian Mixture Model (GMM). We show that the error is so distinct between
clean and poisoned points that GMM can separate it very well into two clusters,
each representing clean or poisoned data.

3.2 Enhanced Classification Auto-Encoder (CAE+)

CAE requires clean data for training the auto-encoder so it can learn the struc-
ture of the normal data and detect any deviation from that. Since we assume
the training data is poisoned, we need to add a mechanism that is robust to
contaminated data. We do so by leveraging a combination of early stopping and
a replicate reconstruction auto-encoder.

Early Stopping. Since we assume there is no access to purely clean data for
training the detector, to prevent CAE to learn patterns from poisoned data, we
use the early stopping method. Early stopping leads the auto-encoder to focus
on reconstructing the pattern of the majority of data, and avoids overfitting on
anomalies. The auxiliary classifier is a single dense layer and can usually catch
all the class information quickly, especially in binary-class problems. Selecting
a small number of neurons in this layer does not provide sufficient parameters
for the classification task, and leads to missing even the general patterns of the
training dataset. On the other hand, large number of neurons makes the classifier
more complex and may overfit the poisonous data. To capture all the information
and avoid underfitting, we can select a fairly large number of neurons and address
the overfitting problem using early stopping.

By using this approach, CAE can be very robust to the poisoned data. How-
ever, at the stop point of the training process, z has captured those patterns of
the data that help mostly with classification, but not the reconstruction (which
takes longer to learn). Hence we propose a joint auto-encoder architecture to
address this challenge by using a parallel reconstruction auto-encoder (RAE).

Reconstruction Auto-encoder. The Reconstruction Auto-Encoder (RAE) is
a replicate of the encoder-decoder part of CAE without the auxiliary classifier
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(as shown in Fig. 1(b)). RAE is trained to minimize the reconstruction error
only. By having these two auto-encoders, for an input {x, y} we calculate the
following combined error:

Error(x) = α.RErae(x) + (1 − α).Lcae(x) (4)

This is a modification to (3), in which the reconstruction error has been
replaced with reconstruction error of RAE (RErae(x)).

This extra auto-encoder helps us adjust the training process for RAE sepa-
rately so that while RAE can be trained to full capacity, CAE with early stopping
is not overfitting the poisonous data. In comparison to the classifier of CAE, RAE
with high capacity (especially with convolutional layers) can be trained with a
high number of epochs without overfitting the poisoned data. We call this joint
structure of CAE and RAE, CAE+, since it is enhancing the CAE functionality.

In practice, the training data may be poisoned, so using CAE+ and Eq. 4 is
required. In Sect. 4, we investigate potential scenario of having a clean training
dataset Dc and compare CAE vs. CAE+. In the case of clean training data, since
the concern of overfitting poisoned data does not exist, CAE can be trained until
both the classification layer and decoder converge. We show that CAE can be
effective under this circumstance. In contrast, when training data is poisoned,
we show that CAE+ is much more robust.

Overview. Combining all the previously mentioned information, the overview
of the detection mechanism can be summarized as follows: Initially, we train the
CAE+ detector using the available poisoned data. Subsequently, we utilize the
output of this detector to create two separate clusters for GMM: one for normal
data and the other for poisoned data. Afterwards, we input the suspected points
to the combined models of the trained CAE+ and GMM. If a point falls within
the clean cluster, it is utilized for training the target classifier.

4 Experiments

In Sect. 4.1, we describe the details of our experimental settings, including the
datasets, the attacker’s target model, the architecture of our detectors, the com-
parison methods, and the attributes of the attacks. We also evaluate mixed
attacks that combine all types of poisoning attacks to show the strength of
CAE+ against diverse attacks. Furthermore, we clarify how we used the peri-
odic update of the model to mimic real scenarios wherein poisoning attacks
occur.

In Sect. 4.2, we depict the impact of each type of attack on the poisoned data
under different defense methods, the prominence of the Gaussian Mixture Model
(GMM) over threshold selection, and the effect of the different auto-encoders
employed in the CAE+. Then an ablation study reveals the benefit of CAE+
over CAE and RAE. To confirm the superiority of CAE+, it is compared to the
other state-of-the-art detectors in the literature on multiple datasets, including
MNIST, Fashion-MNIST, and CIFAR-10. Finally, we evaluate the robustness
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of CAE+ and CAE under a hypothetical setting in contrast to the previous
experiments, when there is a trusted training dataset for training CAE.

4.1 Experimental Setup

Datasets. First, we evaluate the performance of CAE+ using the MNIST
dataset [23], and more challenging Fashion-MNIST dataset [40] on binary sub-
problem classes: MNIST 9 vs. 8 and 4 vs. 0, and Fashion-MNIST Sandal vs.
Sneaker and Top vs. Trouser. It is common practice to apply binary setting
for data poisoning attacks [7,19]. Second, we conduct experiments on a more
complex dataset CIFAR-10 [21] for two randomly chosen classes Airplane vs.
Automobile. All datasets are normalized within the interval [0, 1]. These three
datasets are frequently employed in the literature to evaluate poisoning attacks
[7,9] and offer varying levels of complexity.

Attacks. Support Vector Machines (SVM) are known to be subject to strong
poisoning attacks [7,41]. In contrast to complicated models and neural networks
[27], poisoning attacks can achieve a high success in dropping the accuracy of
SVM. As we will show in Fig. 6, the accuracy of optimal attacks on the SVM
model drops to 60% with 10% of poisons. Hence, we use poisoning attacks against
SVMs in the experiments to better demonstrate and evaluate the effectiveness of
different defense methods. We use linear kernel for MNIST and Fashion-MNIST
and RBF kernel for CIFAR-10. We note that our methods work on poisoning
attacks against any target models such as neural networks.

We compare four types of attacks; flipping, optimal, semi-optimal, and mixed
attacks, then assess our defense model against them. In a mixed attack, the
attacker selects 1/3 of the poisons from each of the aforementioned attack types.
This way, we can challenge the defender’s ability to detect diverse poison simul-
taneously, despite their different characteristics. The optimal attack is conducted
based on [25] with some modifications.

Setup. A common paradigm for training machine learning models in real world
is the periodic update [22] in which the data is acquired continuously. In this
scenario, data is provided by users and buffered until sufficient data is obtained
to retrain the model. To implement such a periodic update setting for SVM
classifier, we consider 60 rounds of SVM updates. Each round represents a new
batch of data which consists of 500 data points divided into a training set, a
validation set, and a test set of 100, 200, and 200 samples, respectively. Based on
different attack types, the attacker generates poisoned points for each round and
adds them into the training data for that round. At the next step, we assume that
the defender has access to the recent 50 rounds of buffered data. By aggregating
the contaminated buffered data of those 50 runs, we train our defense model.
Then for evaluation purposes, we use the remaining 10 rounds of updates for
testing the defense methods, namely 10 times the buffered data is fed to the
detector and the data passing through it is used for model assessment. Every
result reported in this paper is the average of these 10 test runs. Maintaining
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a ratio of 5/1 between training and testing the defense method guarantees a
sufficient amount of data is available to evaluate the effectiveness of the defense
method.

Note that for each of the attacks unless otherwise specified, up to 10% of the
clean data are poisoned. In practical scenarios, attackers typically have limited
access to data, usually restricted to a small percentage. Therefore, exceeding
10% may not be realistic [7,20,22]. We believe this is high enough to validate
the robustness of CAE+ against poisonous data. To further show the impact of
the percentage of the poisoned data, we conduct the experiment on CIFAR-10
with a higher poisoning rate (up to 30%).

Implementation Details. The structure of CAE reconstruction component
and RAE is inspired by the auto-encoders introduced in Magnet [26] with
some modifications. Our reconstruction auto-encoders, for MNIST and Fashion-
MNIST dataset, consist of 3× 3 convolutional layers in the encoder, each com-
posed of 3 filters of size 3× 3 with 1× 1 strides and sigmoid activations. Between
these two convolutional layers a MaxPooling 2× 2 is located. At the decoder,
the structure of convolutional layers are the same as the encoder. The only dif-
ference is that the MaxPooling layer is replaced with a 2D UpSampling layer. As
the last layer of the decoder we have a third 3× 3 convolutional layer with only
one filter (compatible to number of channels in MNIST and Fashion-MNIST)
to reconstruct an output image with the same size as the input image. Also,
as [26] suggests, we use a slightly different architecture for CIFAR-10, by uti-
lizing only one convolutional layer in the encoder and one in the decoder with
the mentioned parameters. For the auxiliary classifier, the encoder’s output is
flattened and fed to a dense classification layer with size 128. We experimentally
found out that dropping out the data with rates 0.25 and 0.5 before and after
the dense layer serves the best in training the model and reduces the overfitting.
For each dataset, we train CAE for 100 epochs and the RAE for 300 epochs with
a batch size of 256 using the Adam optimizer. The aggregated error Error(x) is
calculated based on Equation (4) on weighted sum of the normalized L1-norm
reconstruction error and the auxiliary classifier’s cross entropy loss.

Comparison Methods. Distance-based outlier detectors are state-of-the-art
methods in defending against poisoning attacks [20,29]. One of their interesting
properties is that they are more robust against poisoned data and do not require
to be trained on a purely clean dataset compared to other outlier detection based
methods. So, similar to [29], we select centroid-based Outlier Detectors
(OD) as the baseline. It first finds the centroids of each class in the training
dataset and then discards the points that are distant from their respective class
centroid.

Furthermore, we compare our method to a modified Magnet, a state-of-the-
art auto-encoder based detector designed for adversarial examples [26]. We note
that there are more recent detection approaches against adversarial examples,
however, our goal is not to defend against adversarial examples, but rather
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Fig. 2. The effect of different attack types on the reconstruction error and auxiliary
classification loss for poisoned MNIST-4-0 dataset. Triangles and circles represent clean
and poisoned points, respectively. The poisons’ size represents their impact on degrad-
ing the SVM accuracy (larger circles indicate higher impact).

to adapt the auto-encoder based detector as a potential solution for poison-
ing attacks as a comparison. We make the following modifications in order to
make it compatible with poisoning attacks under our setting. We train Magnet
on the same poisonous data as the other defense methods. It contrasts with the
original paper in which the authors train Magnet on a thoroughly clean dataset.
The assumption of access to a clean dataset is valid under adversarial example
attacks at inference time, but not under the poisoning attacks during training
time. We use the same structure as the original paper suggests [26], the only
hyperparameter we change is the number of epochs for a better adaptation to
poisoning attacks (from 100 epochs to 300 epochs). In addition to the detector,
we also evaluate the performance of Magnet detector paired with a reformer [26].
In this case, after Magnet detector filters out poisons, it passes the remaining
data through the reformer, which is another auto-encoder. The reformer’s recon-
structed output will replace the original input and then be fed to the classifier.

4.2 Results

Effect of Different Attacks. As we discussed in Sect. 3, each type of poisoned
data can have a different impact on CAE+ components. Figure 2 illustrates this
fact by showing the classification error Lcae and reconstruction error RErae of
the different poisoning attacks on MNIST-4-0. Blue triangles and orange circles
represent the clean and poisoned points, respectively. Clean data is the same for
all three plots. For the poisoned data, the size of circles indicates their importance
in degrading the SVM classification results. Larger circles imply that the insertion
of those poisons to the SVM clean training dataset drops more accuracy.

For the flipping attack, the reconstruction error RErae cannot differentiate
the poisoned samples from the rest of the data since the feature space of the poi-
sons is intact, while the classification loss Lcae is much larger for the poisoned
data. Under the optimal and semi-optimal attacks, the transformations that
occur in the feature space discriminate the clean data and the poisons through
RErae. It is more noticeable for the semi-optimal attack because the features
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Fig. 3. Changes on MNIST-4-0 F1-score over different thresholds for CAE+ and OD.
Thresholds are guesses on the probable number of poisoned data within the training
dataset.

alter more drastically than in the optimal attack. This discrepancy between the
poisons’ features and the clean space impacts their classification results and
increases the loss Lcae. Therefore, as Eq. 4 suggests, a mixture of both recon-
struction and classification errors is required to detect diverse attacks in the
context of an attack-agnostic defense.

Threshold vs. GMM. According to Sect. 3.1, we pass the detectors’ output to
a GMM for clustering the data into poisoned and clean data, so that we do not
need to specify a threshold of possible poisoned points K for filtering poisons. We
compare our GMM-based approach with the baseline threshold approach when
a fixed number of training data is poisoned (about 10% of the training data,
i.e., 10 poisons). We report F1-score for the detection, which is the harmonic
mean of the precision and recall with the best value at 1. F1-score is indicative
of how successful a detector is in filtering poisons and passing clean data. An
ideal detection algorithm can identify all and only poison data, which means a
perfect F1-score.

Figure 3 depicts how the detectors’ F1-scores change with different threshold
of K for MNIST-4-0 (solid lines). For flipping, optimal and mixed attacks, the F1-
score of CAE+ hits almost 1 at K = 10. In other words, it can accurately detect
all ten poisoned points with very few false positives. The V shape of CAE+ plots
depicts its sensitivity to an accurate threshold K. Before threshold 10 there are
naturally some false negatives, and after that point, false positives are emerging.
In contrast, we do not need to specify any threshold in the unsupervised GMM
method (dashed line) for CAE+. We can see that it competes very closely with
the best guess on K in the threshold-based method.

For the semi-optimal attacks, the scenario is slightly different. The majority
of the poisoned points in semi-optimal attacks get stuck in local maxima and do
not change their feature space; hence they have little impact on the attack. For
the same reason, they do not harm the accuracy even though they can not be
filtered out. This fact is illustrated in Fig. 2. Some of the low-impact attacked
points (shown with small circles) are placed at the bottom left corner of the plot,
where the majority of the clean data points are located. As a result, in Fig. 3,
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Fig. 4. CAE+ F1-score for different values of α (Eq. 4)

F1-score for semi-optimal attacks is not high; but we show later that CAE+ can
detect all the high impact attack points and achieve the original SVM’s accuracy.

In all the attacks, for both threshold-based and GMM methods, CAE+ yields
significantly better F1-scores than OD. For linear SVM, overlooking poisoned
points can be much more harmful than filtering out clean data. So despite the
high false-positive rate, OD can still partially enhance the SVM accuracy. OD
completely fails to operate as a detector if the system is sensitive to clean data
removal. In the remaining experiments, we leverage GMM for all the detection
approaches (including the baseline OD) to have a fair comparison of how they
boost SVM accuracy.

Impact of Alpha. There are four types of attacks. Each of the CAE+ recon-
struction or classification auto-encoders is suitable to address different attack
types. Coefficient α in Eq. 4 can be adjusted to meet this goal. Since the attacker’s
attack type is not known to the defender, α should be pre-adjusted considering
all the attack types. Figure 4 demonstrates how different values of α affect F1-
score. Reconstruction error has a significant impact on semi-optimal attacks,
and as a result, higher α boosts the F1-score. In flipping attacks and optimal
attacks, classification error gains more importance. In particular, in optimal
attacks, there is a trade-off between reconstruction error and classification error.
The vertical dashed line shows α=0.66 in which every attack sustains high F1-
socre. According to Eq. 4, at this value the coefficient of RE(x) is twice as the
coefficient of L(x).

Ablation Study. In this section we show the contribution of each component
in CAE+ (recall Fig. 1). We train two additional models for comparison: 1) CAE
that is not combined with the RAE (the bottom auto-encoder in Fig. 1(b)) and
has the error function in Eq. 3; 2) RAE that is a stand-alone reconstruction
auto-encoder (the top auto-encoder in Fig. 1(b)) and uses reconstruction error
as defined in Eq. 1.

The error for CAE is calculated based on Eq. 3, and for RAE, it is limited
to just reconstruction error. Note that all these methods are trained with 10%
contaminated data and paired with GMM. Figure 5 shows the effectiveness of
these detectors based on F1-score. Since RAE considers only feature space, it
is effective on semi-optimal attacks and, to a less extent, on optimal attacks.
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Fig. 5. Ablation study between CAE+, CAE and RAE on MNIST 4-0

However, flipping attacks can evade it. On the other hand, CAE relies on classi-
fication and reconstruction errors with more emphasis on classification loss. So
it fails on semi-optimal attacks. CAE+ has the advantage of using both CAE
classification error and RAE reconstruction error, and as a result, it gains a bet-
ter F1-score on average. Since the attack is not known in advance, CAE+ is the
best detector among these three.

Comparison. In this experiment, we compare the performance of CAE+ in
terms of accuracy of the resulting model with state-of-the-art defense methods.
We feed the learner’s training data into detectors and filter suspicious poisoned
points using GMM. The rest of the points are used to retrain the SVM classifier.
A perfect filter leaves us with the entire clean data, excluding all poisons, which
results in a high SVM accuracy.

Figure 6 illustrates the resulting accuracy on different percentages of poisoned
training datasets. The plots on the first row (a to d), second row (e to h) and third
row (i to l) belong to MNSIT-4-0, Fashion-MNIST-Sandal-Snkear and CIFAR-
10 Airplane-Automobile, respectively, with original accuracies of 99%, 88% and
73% on clean unpoisoned datasets. In each row, all plots have the same scale.
Each plot indicates one type of attack and corresponding detection methods.

In each plot, we show the accuracy without any detection (attack), and the
accuracy with CAE+, in comparison with other three detection methods (OD,
Magnet, and Magnet+reformer). We first elaborate on the results of the first
row, for MNIST-4-0 dataset. Considering each plot individually, for all the attack
types, CAE+ constantly achieves almost the original accuracy (blue lines), and
outperforms other detectors. As expected, optimal attacks are the strongest
among all four types of attacks.

Magnet does not consider label flipping, so it fails on flipping attack scenarios.
When the feature space changes are significant (mostly semi-optimal attacks), its
performance is comparable to CAE+. Magnet’s sensitivity to perturbation size
has been explored in [26] for evasion attacks under multiple adversarial example
distortion rate ε. Adding the reformer enhances Magnet’s results significantly.
It gives us the insight that using the reformer along with CAE+ can boost its
performance, which can be a direction for future work. The Fashion-MNIST and
CIFAR-10 results are similar to MNIST.
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Fig. 6. Comparison of SVM accuracy after filtering suspicious points by CAE+, OD,
and Magnet over different percentages of poisons. The first row represents MNIST-
4-0, the second row is Fashion-MNIST Sandal-Sneaker and the third row belongs to
CIFAR-10 Airplane-Automobile.

Fig. 7. Comparison of SVM accuracy using detectors trained on clean vs. poisoned
data
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Note that MNIST and Fashion-MNIST were tested for up to 10% of poi-
soned data, and CIFAR-10 is tested for up to 30% of poisons. Although it is not
practical for an attacker to inject this high number of poisons into the system
in real world, this is a good stress test to show CAE+ is robust to even higher
poison rates.

Robustness. Given the assumption of having access to only an untrusted (con-
taminated) dataset, CAE+ was chosen over CAE in all the previous experiments.
However, if clean data is available, we can simply use CAE. Therefore, to verify
the impact of this assumption on the detectors’ performance, we train a stand-
alone CAE on clean data, utilizing Equation (3) and on a large number of epochs
(300). In this experiment, we end up with two new detectors; a clean CAE and
a clean OD.

We use a training dataset with 10% poisoned data to train SVM, then apply
both clean and poisoned versions of CAE(+) and OD on this data to see how
they filter poisoned points and recover SVM accuracy. The result of this com-
parison on four datasets MNIST 9-8, 4-0, Fashion-MNIST Sandal-Snkear, and
Top-Trousers are represented in Fig. 7. The original SVM accuracies on trusted
data for these datasets are 95%, 99%, 88%, and 97%, respectively. We observe
that OD is susceptible to contaminated data as clean OD usually surpasses its
contaminated version. We note that when the defender has access to a clean
dataset, it is adequate to train CAE directly without CAE+. Also, CAE+ and
CAE always outperform OD, especially in optimal attacks.

5 Conclusion

This paper utilized auto-encoders to defend against various types of poison-
ing attacks for the first time. We proposed CAE, a novel two-component auto-
encoder that utilizes an auxiliary classifier to boost detection performance. We
enhanced the structure of CAE by introducing CAE+. The enhanced version is
a joint auto-encoder detector that has a high robustness against contaminated
data. Experiments demonstrated the detection power of CAE+ against diverse
poisoning attacks including optimal, semi-optimal and label-flipping attacks and
showed that it surpasses the state-of-the-art distance-based outlier detector and
Magnet detector. In all these cases, CAE+ is trained on a dataset that is cor-
rupted with a high rate of poisoned data and still preserved its performance.

Directions for future work include demonstrating the results of such detec-
tors on non-convex target models. Studies can also explore the influence of
these defensive approaches on multi-classification problems. Besides, it is worth
extending current work on backdoor attacks since they are carried out during
training and share many characteristics with poisoning attacks.
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