
MUter: Machine Unlearning on Adversarially Trained Models

Junxu Liu1,*, Mingsheng Xue2,*, Jian Lou3,6,², Xiaoyu Zhang4, Li Xiong5, Zhan Qin3,6

1Renmin University of China 2Guangzhou Institute of Technology, Xidian University 3Zhejiang University
4Xidian University 5Emory University 6ZJU-Hangzhou Global Scientific and Technological Innovation Center

junxu_liu@ruc.edu.cn xuemingsheng@stu.xidian.edu.cn jian.lou@zju.edu.cn

xiaoyuzhang@xidian.edu.cn lxiong@emory.edu qinzhan@zju.edu.cn

Abstract

Machine unlearning is an emerging task of removing

the influence of selected training datapoints from a trained

model upon data deletion requests, which echoes the widely

enforced data regulations mandating the Right to be Forgot-

ten. Many unlearning methods have been proposed recently,

achieving significant efficiency gains over the naive baseline

of retraining from scratch. However, existing methods focus

exclusively on unlearning from standard training models and

do not apply to adversarial training models (ATMs) despite

their popularity as effective defenses against adversarial

examples. During adversarial training, the training data are

involved in not only an outer loop for minimizing the training

loss, but also an inner loop for generating the adversarial

perturbation. Such bi-level optimization greatly complicates

the influence measure for the data to be deleted and ren-

ders the unlearning more challenging than standard model

training with single-level optimization. This paper proposes

a new approach called MUter for unlearning from ATMs.

We derive a closed-form unlearning step underpinned by a

total Hessian-related data influence measure, while existing

methods can mis-capture the data influence associated with

the indirect Hessian part. We further alleviate the compu-

tational cost by introducing a series of approximations and

conversions to avoid the most computationally demanding

parts of Hessian inversions. The efficiency and effectiveness

of MUter have been validated through experiments on four

datasets using both linear and neural network models.

1. Introduction

Machine learning (ML) models are increasingly applied

to a broad range of applications, accompanied by growing

concerns about their privacy and robustness issues. Both

issues are actively studied in recent years [45]. On the

*Equal contribution.
²Corresponding Author.

privacy side, model inversion attack [16] and membership

inference attack [51] reveal that the trained ML model con-

tains sensitive information of its training data, which can

cause privacy loss for individuals contributing their data for

model training. On the robustness side, adversarial exam-

ple attack is one of the most well-recognized robustness

attacks [24, 30, 39, 62]. It can easily fool an undefended

model, e.g., standard training model (STM), to misclassify

by a small adversarial perturbation on the input [9, 24, 39].

Many works focus either on the privacy [1, 35, 37, 42, 51]

or on the robustness aspect [9, 33, 38, 53±56, 66], few works

studied both. Yet, it is critical to consider privacy and robust-

ness jointly [20, 27, 36, 41, 47, 48, 52] to build ML models

to simultaneously meet data privacy regulations and ensure

robustness against adversarial threats.

In this paper, we target a new joint privacy-robustness

problem to simultaneously meet emerging privacy regula-

tions and ensure adversarial robustness of the model, which

has not been examined before: how to efficiently and effec-

tively remove the influence of a training datapoint from an

adversarially trained model upon data deletion request?

The privacy need is driven by the widely enacted user

data regulations that enforce the Right to be Forgotten, for

example, the European Union’s GDPR [17], the California

Consumer Privacy Act (CCPA), and Canada’s proposed Con-

sumer Privacy Protection Act (CPPA). These regulations

mandate the deletion of personal data upon user requests and

can even include the deletion of models and algorithms de-

rived from the user data, e.g., the Federal Trade Commission

[15]. Machine unlearning [5, 8] aims to obtain an updated

model with the influence of the target datapoint removed in

an effective and efficient way. That is, the updated model

should be similar to the model obtained by the computation-

ally expensive retraining-from-scratch approach, while con-

suming less computation [21±23,26,31,43,44,58,60,61,65].

The robustness is achieved by the adversarial training

model (ATM) [3, 24, 30, 39, 59], which is a popular and ef-

fective defense for enhancing the model robustness against

adversarial examples by creating and incorporating adver-



Unlearing Request

Direct Hessian

Indirect Hessian

Catch information 
hidden in perturbations

Unable to sufficiently 
capture data influence

Total Hessian-based unlearning

Direct Hessian-only unlearning

Model parameters 

Adversarial perturbations

Figure 1: ATM has two interdependent sets of optimization variables, model parameters and adversarial perturbations (yellow

arrows), both of which contain nested training data influence (blue arrows). To remove such nested data influence, ATM

unlearning requires the total Hessian that consists of both direct and indirect Hessian components (green solid lines). Existing

unlearning methods designed for standard training models are inapplicable to ATM unlearning, because they only use direct

Hessian information during the unlearning update and do not capture sufficient data influence (red dashed lines).

sarial examples into the training process. ATM is trained

by a bi-level optimization with the model parameters as the

outer-level variable and the adversarial perturbations as the

inner-level variable. To the best of our knowledge, all exist-

ing unlearning methods focus solely on data removal from

STM. As our analysis will reveal in Section 3, the existing

methods cannot be applied to ATM unlearning without mis-

capturing the data influence to be removed, due to ATM’s

bi-level optimization structure.

In this paper, we propose a new unlearning approach

called MUter : Machine Unlearning for data removal from

adversarial training models. First, we define the ATM un-

learning task in accordance with the mainstream machine

unlearning standard. Second, we convert it to an ATM un-

learning criteria derived from the optimality condition of

ATM, which facilitates the derivation of the unlearning up-

date for ATM. Meanwhile, existing unlearning methods de-

signed for STM cannot satisfy the ATM unlearning criteria.

As illustrated in Figure 1, ATM, as a bi-level optimization,

has two sets of variables: model parameters and adversarial

perturbations, which are interdependent and both contain

training data information. In contrast, STM, as a single-level

optimization, has only one set of variables: model param-

eters, which have a direct influence dependence on each

training datapoint. Existing unlearning methods cannot suffi-

ciently remove data influence from ATM because they fail to

account for the indirect influence on the model parameters

(i.e., miss the indirect Hessian part in Figure 1). That is, due

to the coupled outer-inner optimization, any updates to the

outer model parameters will incur further updates for both

the adversarial perturbations and the model parameters. To

address this, we derive a new closed-form unlearning update

for ATM, which is underpinned by the total Hessian-based

influence measure. Third, based on the ATM unlearning

update, we propose a three-stage unlearning framework to

support successive unlearning requests for ATM, which en-

hances efficiency by selectively storing certain computations

in memory. Last, we leverage Schur complement conversion

and Neumann series approximation to avoid the computa-

tionally demanding and numerical unstable computations of

Hessian matrix and its inversions.

To summarize, our main contributions are:

1. We introduce the problem of unlearning from adversarial

training models, which is a new and pressing challenge to si-

multaneously meet emerging privacy regulations and ensure

the adversarial robustness of the model. To the best of our

knowledge, it has not been studied in the existing literature.

2. We derive a new unlearning update tailored to ATM un-

learning, which has the total Hessian-based data influence

measure to sufficiently account for the interdependence be-

tween inner and outer optimizations of ATM.

3. We propose MUter based on the proposed unlearning

update, which supports successive unlearning requests for

ATM and introduces a series of conversions and approxima-

tions for Hessian inversions to alleviate the computational

cost and improve the numerical stability.

4. We perform a comprehensive evaluation to verify that

MUter achieves effective and efficient unlearning perfor-

mance while maintaining the model accuracy and adversarial

robustness, under two unlearning settings on four datasets.

2. Preliminaries and Related Work

2.1. Setup and Notation

Setup. Denote the training dataset with n training sam-

ples by D = {(x1, y1), . . . , (xn, yn)}, where for ∀i ∈



{1, . . . , n}, xi ∈ R
d is the d-dimensional feature vector,

and yi ∈ R is the corresponding response/label. Denote

the loss function by l(ω,xi), where ω ∈ R
p represents the

vector of the p-dimensional model parameters.

Standard Training Model (STM). Standard training model

refers to the empirical risk minimization model: ω∗
std =

argminω
1
n

∑n

i=1 l(ω,xi), where ω ∈ R
p is the model pa-

rameter variable.

Adversarial Training Model (ATM). Adversarial training
model is an effective defense against robustness threats posed
by the adversarial attack. In this paper, we adopt one of the
most widely-used ATM variants to consider the following
bi-level robust optimization formulation [30, 50],

ω
∗ = argmin

ω

1

n

n∑

i=1

max
δi∈B(xi,r)

l(ω,xi + δi), (1)

where the inner optimization is to find adversarial perturba-
tion δi from the constraint set B(xi, r) to maximize the loss
and the outer optimization is to find the model parameter
ω that minimizes the loss for the adversarially perturbed
examples. To make the interdependence between the outer
variable ω and the inner variable δ more explicit, we further
introduce an auxiliary function δi(ω) given by

δi(ω) = argmax
δi∈B(xi,r)

l(ω,xi + δi). (2)

Machine Unlearning for Adversarial Training Models.

Definition 1 below specifies the ATM unlearning task in

consistency with the mainstream unlearning standard. For

notational simplicity, we focus on single-point removal in

the paper, but the analysis and algorithms developed in the

paper are generalizable to batch removal as well (please refer

to Appendix B.5 for the batch removal generalization).

Definition 1. (Machine Unlearning for Adversarial Train-
ing Models) For a trained adversarial training model as in
eq.(1), let ∀ i† ∈ {1, . . . , n} be the index of a datapoint to
be forgotten. The ATM after machine unlearning unlearning
(forgetting datapoint i†) has parameter ω∗

−i†
as follows,

ω
∗
−i† = argmin

ω

1

n− 1

n∑

i=1,i ̸=i†

max
δi∈B(xi,r)

l(ω,xi + δi). (3)

Retraining-from-scratch serves as the golden standard

and also a naive baseline to obtain the unlearned ATM ω∗
−i†

,

which is prohibitive in computation, especially for ATM with

both inner maximization and outer minimization. Hence, the

goal of machine unlearning for ATM is to approximately

remove i†’s influence with great computational efficiency

improvement over retraining-from-scratch.

Notation. For a twice differentiable l(ω,x+δ), ∇ωl(ω,x+
δ) denotes the direct gradient of l with respect to (w.r.t.)
ω and ∂ωωl(ω,x + δ), ∂ωδl(ω,x + δ), ∂δωl(ω,x + δ),

∂δδl(ω,x + δ) denote the second order partial derivatives
w.r.t. ω and δ, correspondingly. The total Hessian is

Dωωl(ω,x+ δ) :=

Direct Hessian
︷ ︸︸ ︷

∂ωωl(ω,x+ δ)−

Indirect Hessian
︷ ︸︸ ︷

∂ωδ∂
−1
δδ ∂δωl(ω,x+ δ),

(4)

where ∂ωδ∂
−1
δδ

∂δωl(ω,x + δ) = ∂ωδl(ω,x +
δ)(∂δδl(ω,x+δ))−1∂δωl(ω,x+δ). We also use the short

hand notation l∗i := l(ω∗,xi + δi(ω
∗)) and similarly intro-

duce ∇ωl
∗
i , ∂ωωl

∗
i , ∂ωδl

∗
i , ∂δωl

∗
i , ∂δδl

∗
i .

2.2. Related Work

We briefly review existing machine unlearning methods.

They are exclusively focused on STM and are not applicable

to ATM unlearning with sufficient data influence removal.

We provide a brief overview of current machine unlearning

methods, which are focused exclusively on unlearning for

STM and are not applicable to ATM unlearning with suffi-

cient data influence removal. Thus, it is necessary to develop

a new unlearning approach specific to ATM unlearning.

Exact Machine Unlearning. Exact unlearning methods per-

form exact retraining but manage to do so only on a selective

portion of the dataset to avoid retraining on the entire dataset.

Some exact unlearning methods are designed for specific

models like Naive Bayes [8], quantized k-means [19], and

random forests [6]. Recently, SISA [5] proposes a more

general exact unlearning strategy. It divides the training

data into multiple disjoint shards during the training phase,

and retrains only on the shard that contains the data to be

removed during the unlearning phase. Later, [11] and [12]

extend the SISA strategy to unlearning for recommendation

systems and graph neural networks. However, the SISA strat-

egy requires different shards to be independently updatable

from each other, which is not the case for ATM due to its

interdependent bi-level structure.

Approximate Machine Unlearning. Approximate unlearn-

ing methods seek the updated model parameters to approxi-

mately satisfy the optimality condition of the objective func-

tion on the remaining data, which can be roughly divided into

three categories. 1) Unlearning with direct Hessian-related

terms: [22, 26, 31, 34, 40, 43, 49] propose Newton step-based

unlearning updates, where the Newton curvature matrices

are direct Hessian-related terms. These methods also in-

ject Gaussian noise to further destroy the remaining data

influence due to the discrepancy between the exact unlearn-

ing standard and the approximate unlearning criteria. Some

works also consider to alleviate the computational cost of

the Hessian. For example, [22] proposes to approximate the

direct Hessian with Fisher information matrix; [43] proposes

to avoid dealing with the entire direct Hessian by selecting

small Hessian blocks for unlearning update. 2) Unlearning

based on neural tangent kernel (NTK) theory: they approxi-

mates the training phase by NTK theory, where [23] regards



the training as an approximately linear change and [21] di-

vides the training phase into two stages, one is the linear

standard training on the core dataset, and the other is the lin-

ear finetuning on the target dataset. Both works then applies

direct Hessian-related unlearning updates. 3) Unlearning by

tracking the Stochastic Gradient Descent (SGD) path during

training: DeltaGrad [60] and unrollSGD [57] propose to

track and reverse the SGD optimization path during the train-

ing phase. However, all above methods do not consider the

interdependence between model parameters and adversarial

perturbations of ATM, which cannot holistically capture the

data influence, as will be detailed in the next section.

3. Unlearning Update for ATM

ATM Unlearning Criteria. We begin by converting eq.(3)

in Definition 1 to the optimality condition form of ATM

based on Danskin’s Theorem [13],

n∑

i=1,i ̸=i†

∇ωl(ω
∗
−i† ,xi + δi(ω

∗
−i†)) = 0, (5)

which provides more convenience to the follow-up ATM

unlearning designs. Our goal is to find a closed-form un-

learning update U(ω∗, i†) such that the unlearning model

with parameter ωu = ω∗ + U(ω∗, i†) will satisfy the fol-

lowing ATM unlearning criteria,

n∑

i=1,i ̸=i†

∇ωl(ω
u,xi + δi(ω

u)) ≈ 0. (6)

Cause of Inapplicability of Existing Approximate Un-

learning Methods. Before deriving our ATM unlearning
update, we recall the design rationale common to existing
approximate machine unlearning methods and point out why
they fail to sufficiently remove the data influence for ATM.
Despite the varying forms of specific unlearning updates, ex-
isting approximate unlearning methods all exploit the trained
model parameter ω∗ and connect it with the unlearned model
ωu by first-order expansion of ∇ωl around ω∗:

1

n− 1

n∑

i=1,i ̸=i†

∇ωl(ω
u
,xi + δi(ω

u))

≈
1

n− 1

n∑

i=1,i ̸=i†

[
∇ωl(ω

∗
,xi + δi(ω

u))

+ ∂ωωl(ω
∗
,xi + δi(ω

u))(ωu
− ω

∗)
]
.

(7)

Existing methods then obtain the updated ωu by letting the
right hand side of eq.(7) approach 0 and exploiting the opti-
mality condition of ω∗. For example, the influence function-
inspired unlearning [26, 49] has U(ω∗, i†) =

[
n∑

i=1,i ̸=i†

∂ωωl(ω
∗
,xi + δi(ω

u))
︸ ︷︷ ︸

Direct Hessian-only

]−1
∇ωl(ω

∗
,xi† + δi†(ω

u)).

(8)

However, there are two obvious issues when applying the

above design rationale to the ATM unlearning: 1) the con-

version from eq.(7) to eq.(8) requires
∑n

i=1 ∇ωl(ω
∗,xi +

δi(ω
u)) = 0, which does not hold in general. Rather,

the optimality condition only promises
∑n

i=1 ∇ωl(ω
∗,xi +

δi(ω
∗)) = 0; 2) the Hessian ∂ωωl(ω

∗,xi+δi(ω
u)) and gra-

dient ∇ωl(ω
∗,xi + δi(ω

u)) in eq.(8) are not commutable

without knowing ωu in advance. We point out that the root

cause of both issues is that eq.(7) fails to account for the

interdependence between ω and δ as in eq.(2).

Proposed ATM Unlearning Update. The above root cause

propels us to derive a new unlearning update that can holis-

tically capture the nested data influence. To account for

the interdependence between the adversarial perturbations

and the model parameters in eq.(2), we take the complete

expansion w.r.t. both ω and δ as in Lemma 1 below.

Lemma 1. By expansion around both ω∗ and δ(ω∗), the

approximate machine unlearning model parameter ωu and

the original model parameter ω∗ has the following relation,

1

n− 1

n∑

i=1,i ̸=i†

∇ωl(ω
u,xi + δi(ω

u))

≈
1

n− 1

n∑

i=1,i ̸=i†

[
∇ωl(ω

∗,xi + δi(ω
∗))

+ ∂ωωl(ω
∗,xi + δi(ω

∗))(ωu − ω
∗)

+ ∂ωδl(ω
∗,xi + δi(ω

∗))(δi(ω
u)− δi(ω

∗))
]
.

(9)

Proof. Please refer to Appendix B.1.

The last line of eq.(9) is key to the sufficient removal of

the data influence from ATM, which captures the interdepen-

dence between the adversarial perturbations and the model

parameters. Based on Lemma 1, we can derive the ATM

unlearning update in closed-form in Theorem 1 below.

Theorem 1. Consider the adversarial training model with
trained model parameter ω∗ as in eq.(1). Let (xi† , yi†) be
a datapoint in the training dataset to be forgotten. Let the
machine learning update U(ω∗, i†) take the following form

U(ω∗
, i

†) :=
[ n∑

i=1,i ̸=i†

Dωωl(ω
∗
,xi + δi(ω

∗))
︸ ︷︷ ︸

Total Hessian

]−1

·

[

∇ωl(ω
∗
,xi† + δi†(ω

∗))
]

.

(10)

Then, the unlearning model with updated parameters ωu :=
ω∗+U(ω∗, i†) satisfies the approximate unlearning criteria

for the adversarial training model in eq.(6).

Proof. Please refer to Appendix B.1.

It turns out that the ATM unlearning in eq.(10) requires

both direct Hessian and indirect Hessian (i.e., total Hessian



in eq.(4)) to sufficiently capture the data influence, while

previous methods for the STM unlearning have only the

direct Hessian-related part (e.g., eq.(8)). The total Hessian

term also appears in the second-order bi-level optimization

literature, e.g., the Complete Newton method in [64].

A New Influence Function. Finally, we would like to re-

mark that eq.(10) can be used to define a new influence

function as follows to measure the nested data influence of a

data point for ATM. It could serve as an independent interest,

for example, to measure the marginal contribution of a data

point to the model for valuation in data market [46] and

influence-based defense against data poisoning attacks [18].

Definition 2. (Leave-one-out Adversarial Influence Func-
tion) For the adversarial training model given in eq.(1), the
leave-one-out adversarial influence function for any (x, y)
in the training dataset is defined as

I(x, y) =−

[ 1

n

n∑

i=1

Dωωl(ω
∗
,xi + δ

∗
i )
]−1

∇ωl(ω
∗
,x+ δ

∗).

Definition 2 utilizes total Hessian instead of direct

Hessian-only as in [32], which captures the interdependence

between adversarial perturbations and model parameters.

This is different from recent work [14] which defines the

adversarial influence function as a training sample’s influ-

ence difference between two models: an STM and an ATM,

while Definition 2 measures a training sample’s influence

difference when it is in or out for a single ATM.

4. Proposed Method: MUter

Equipped with the ATM unlearning update, we propose

MUter, a three-stage unlearning method for ATM, which has

two design considerations: 1) Support the more practical

successive unlearning setting where multiple data points can

be forgotten in sequence by keeping a selective variable set

in memory (Sec.4.1); 2) Reduce the per-unlearning compu-

tational cost by introducing more efficient approximations

and conversions to avoid direct computations of the most

computational demanding Hessian inversions (Sec.4.2). The

overall framework of MUter is illustrated in Figure 2. We

also present the complete algorithm in Appendix B.4.

4.1. Three Stages of MUter

Successive Unlearning Setting. Denote the indices of dat-

apoints that have already been forgotten at timestamp r by

{i†1, . . . , i
†
r}, the index of datapoint to be forgotten at times-

tamp r+1 by i
†
r+1 = i†. Corollary 1 below extends Theorem

1 to support successive unlearning for ATM.

Corollary 1. Considering the successive unlearning setting,
let the machine unlearning update at the r + 1-th timestamp

Ur(ω
∗, i

†
r+1) take the following form

Ur(ω
∗
, i

†
r+1) :=

{

M0[Dωω ]
︷ ︸︸ ︷

[ n∑

i=1

Dωωl(ω
∗
,xi + δ

∗
i )
]

−

Part of Mr [Dωω ]
︷ ︸︸ ︷

[ i†r∑

i=i
†
1

Dωωl(ω
∗
,xi + δ

∗
i )
]

−

[

Dωωl(ω
∗
,xi† + δ

∗
i†)

]}−1

·

[

Mr [∇ω ]
︷ ︸︸ ︷

i†r∑

i=i
†
1

∇ωl(ω
∗
,xi + δ

∗
i )+∇ωl(ω

∗
,xi† + δ

∗
i†)

]

.

(11)

Then, the unlearning model with updated parameters

ωu
r+1 := ω∗ + Ur(ω

∗, i
†
r+1) satisfies the approximate un-

learning criteria for the adversarial training model in eq.(6).

Proof. Please refer to Appendix B.2.

Stage I. Pre-Unlearning. According to Corollary 1, it is

a natural idea to pre-compute and keep in memory the to-

tal Hessian
[∑n

i=1 Dωωl(ω
∗,xi + δ∗i )

]
once the ATM is

trained and before responding to unlearning requests, since

it does not depend on the new point to be removed. Thus,

we initialize a memory set M0 at r = 0, which has three

memory parts: M0[Dωω] for
[∑n

i=1 Dωωl(ω
∗,xi + δ∗i )

]
,

M0[ω
∗] for ω∗, and M0[∇ω] for ∇ω = 0 at r = 0.

Stage II. Unlearning. Upon receiving a new unlearning

request to forget the i†-th datapoint at timestamp r + 1,

Corollary 1 indicates that it suffices to compute the total

Hessian and gradient only on i† rather than the entire train-

ing set, once the memory is set up and maintained. We

evaluate the following three parts in sequence: 1) The gra-

dient on i†: ∇ωl(ω
∗,xi† + δ∗

i†
); 2) The total Hessian on i†:

Dωωl(ω
∗,xi†+δ∗

i†
); 3) The unlearning update Ur(ω

∗, i
†
r+1)

in eq.(11) and the updated parameters ωu
r+1. In addi-

tion, we can also inject Gaussian noise by ωu
r+1 + n with

n ∼ N (0, σ2I) to further smooth the remaining data influ-

ence to the discrepancy between eq.(3) and eq.(6).

Stage III. Post-Unlearning. To support subsequent unlearn-

ing requests, we update Mr+1 based on Corollary 1:

Mr+1[Dωω] = Mr[Dωω]− Dωωl(ω
∗,xi† + δ

∗
i†); (12)

Mr+1[∇ω] = Mr[∇ω] +∇ωl(ω
∗,xi† + δ

∗
i†), (13)

where the former is the online update for[∑n

i=1 Dωωl(ω
∗,xi+δ∗i )

]
−
[∑i

†
r+1

i=i
†
1

Dωωl(ω
∗,xi+δ∗i )

]

and the latter is for
[∑i

†
r+1

i=i
†
1

∇ωl(ω
∗,xi + δ∗i )

]
.



Stage III. Post-Unlearning

‐
+

-1

I

Stage II. Unlearning

ww i
l

xw i
l

xx i
l

w i
l

wx i
l

+ +
*
w w

Stage I. Pre-Unlearning

Training 
datatset

Unlearned modelUnlearning components 
for sample i Build block matrix

+
Compute total hessian

-1

 -( 0)     -( )k
Neumann series approximation

Update unlearninig information

-1

Obtain unlearning update Update model 
parameters

1

3

42

w



ww
D

w




ww
D

w


I

w*

w *

Unlearning  requests

Figure 2: The proposed MUter framework. Stage I: the pre-unlearning stage prepares the initial memory

M0[Dωω],M0[∇ω],M0[ω
∗]. Stage II: the unlearning stage computes the total Hessian and gradient on the data to be

forgotten and computes the ATM unlearning update by solving a linear system. Stage II: the post-unlearning stage updates

Mr+1[Dωω] and Mr+1[∇ω] to be prepared for the next unlearning request.

4.2. Unlearning without Direct Hessian Inversions

We now present the approximations and conversions to

circumvent the most computationally expensive and poten-

tially numerical unstable parts in the three stages, which are

three Hessian matrix inversions: (Inv-1) The total Hessian in-

version of
[
Mr[Dωω]−Dωωl(ω

∗,xi†+δ∗
i†
)
]−1

; (Inv-2) The

partial Hessian inversion of ∂−1
δδ

l(ω∗,xi†+δ∗
i†
) inside the to-

tal Hessian in Stage II; (Inv-3) The same ∂−1
δδ

l(ω∗,xi†+δ∗
i†
)

but in Stage I & III.

Avoid Matrix Inversions (Inv-1/2) jointly by Schur Com-

plement Conversion. After expanding the total Hessian as

in eq.(4), we can reorganize
[
Mr[Dωω] − Dωωl(ω

∗,xi† +

δ∗
i†
)
]

into the following form S =
[
Mr[Dωω]− ∂ωωl

∗
i†

]
−

[
− ∂ωδ∂

−1
δδ

∂δωl
∗
i†

]
, which can be regarded as the Schur

complement of the block matrix H:

H =

[
H11 H12

H21 H22

]
=

[
Mr[Dωω]− ∂ωωl

∗
i†

∂ωδl
∗
i†

∂δωl
∗
i†

−∂δδl
∗
i†

]
.

(14)

By Schur complement lemma deferred to Appendix B.3 for

completeness, we convert the inversion of S to the inversion

of H, then the unlearning update is equivalent to solving a

linear system, as summarized in the following Theorem.

Theorem 2. The unlearning update Ur(ω
∗, i

†
r+1) in eq.(11)

can be equivalently computed by solving the linear system:

[
Mr[Dωω]− ∂ωωl

∗
i†

∂ωxl
∗
i†

∂xωl
∗
i†

−∂xxl
∗
i†

] [
∆ω

∆α

]

=

[
Mr[∇ω] +∇ωl

∗
i†

0

]

,

where ∆ω is the unlearning update Ur(ω
∗, i

†
r+1) and ∆α

is an auxiliary variable that can be discarded.

The linear system in Theorem 2 can be solved by conju-

gate gradient or fixed point methods, which are more efficient

than computing the Hessian inversions (Inv-1/2) directly.

Avoid Matrix Inversions (Inv-3) by Neumann Series

Approximation. We expand ∂−1
δδ

l∗i by Neumann Series:

∂−1
δδ

l∗i = limk→∞

∑k

j=0

[
I − ∂xxl

∗
i

]j
. Then, clipping at

order k, we have the following approximation,

∂−1
δδ

l∗i ≈ I+
[
I− ∂δδl

∗
i

]
+ · · ·+

[
I− ∂δδl

∗
i

]k
. (15)

Each term in memory Mr[Dωω] used in Stage I & III can be

approximated by Dωωl
∗
i ≈ D̃ωωl

∗
i :=

∂ωωl
∗
i − ∂ωδl

∗
i

( k∑

j=0

[
I− ∂δδl

∗
i

]j)
∂δωl

∗
i . (16)

5. Experiments

We conduct experimental evaluations on two groups of

machine learning models and four common datasets, under

two typical experiment settings in the unlearning literature

[21±23, 26]. Our source code, experiment details, and more

experiment results can be found in Supplement.

5.1. Experiment Setup

5.1.1 Models and Datasets

Linear Models. We consider two linear models: 1) Ridge

Regression (RR) with least square loss; 2) Logistic Regres-

sion (LR) with logistic loss, both are regularized by squared

ℓ2-norm with hyperparameter λ = 1e− 4.

Neural Network Models. We utilize the Wide ResNet

model (i.e., Wide ResNet 28-10 model) [63] and consider

the pretraining setting [22, 26] (also similar to the mixed-

privacy removal setting [21]) for the neural network model

as follows. We first pretrain a model on a core dataset with

adversarial training. We then finetune the model on another

target dataset with adversarial finetuning [28], where all lay-

ers are frozen except the last layer. We consider unlearning

requests from only the target dataset used for the adversarial

finetuning.



Adversarial Training/Finetuning Algorithms. For outer-

level, we utilize SGD to optimize the model parameters

ω∗; for inner-level, we utilize both PGD [39] and FGSM

[24] to generate adversarial perturbations. The experiment

results by PGD are reported in the paper, while the results

by FGSM and more detailed training and finetuning settings

are relegated to Appendix A.1 and A.3.

Datasets. We consider four common datasets for the two

settings above: (linear models) i) MNIST-b is the subset

from MNIST with classes ‘1’ and ‘7’ for binary classifica-

tion purpose; ii) Covtype is a dataset from the LIBSVM

repository [10]; (neural network model with pretraining) iii)

CIFAR-10 (target dataset) and the Downsampled ImageNet

(core dataset) are both natural image datasets; iv) Lacuna-10

(target dataset) and Lacuna-100 (core dataset) are both face

datasets. More detail can be found in Appendix A.2.

5.1.2 Baseline Unlearning Methods

We compare MUter with six approximate unlearning meth-

ods (with their abbreviations in bold), all of which are origi-

nally designed for unlearning from standard training mod-

els. Since they utilize different Hessian terms in the un-

learning update, for a fair comparison, we evaluate them

under the same three-stage framework as MUter but sub-

stitute in their corresponding unlearning update formula-

tions. (1) Newton unlearning [26] and (2) Newton un-

learning measured with adversarial perturbation (Newton-

delta): both methods utilize the Newton step as the un-

learning update, where the former computes at the original

samples (i.e.,
[∑n

i=1,i ̸=i† ∂ωωl(ω
∗,xi)

]−1
∇ωl(ω

∗,xi†))
and the latter at the adversarially perturbed samples (i.e.,[∑n

i=1,i ̸=i† ∂ωωl(ω
∗,xi + δ∗i )

]−1
∇ωl(ω

∗,xi† + δ∗
i†
)).

Similarly, we have (3) Fisher unlearning [22] and (4) Fisher-

delta, which utilize the Fisher matrix (∇ωl ·∇
⊤
ω l) to approx-

imate the direct Hessian ∂ωωl. (5) Influence function-based

unlearning [32, 40] and (6) Influence-delta, which utilize

the influence function for STM for the unlearning update.

Meanwhile, we utilize (7) Retrain-from-scratch as the

golden standard reference, which applies the same adversar-

ial training/finetuning algorithms to retrain/re-finetune the

model on the remaining data to obtain ω∗
−i†

in eq.(3).

5.1.3 Evaluation Metrics

We measure four aspects of the unlearning performance: 1)

Effectiveness measures the closeness of the unlearned ATM

compared to the golden standard Retrain, for which we

utilize the ℓ2-norm difference between the model parameter

vectors, i.e., ∥ωu−ω∗
−i†

∥2; 2) Accuracy measures the clean

accuracy of the unlearned ATM, for which we utilize the

accuracy on clean test samples; 3) Robustness measures the

adversarial accuracy of the unlearned ATM, for which we

0 100 200 300 400 500 600
Removal Numbers

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Cl
ea

n 
Ac

cu
ra

cy

Logistic  PGD  MNIST-b

0 5000 10000 15000 20000 25000
Removal Numbers

0.66

0.67

0.68

0.69

0.70

0.71

0.72

Cl
ea

n 
Ac

cu
ra

cy

Logistic  PGD  Covtype

retrain
MUter

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

0 100 200 300 400 500 600
Removal Numbers

0.2

0.4

0.6

0.8

1.0

Di
st

an
ce

Logistic  PGD  MNIST-b

1 2 3 4 5

0.1

0.2

0 5000 10000 15000 20000 25000
Removal Numbers

0.0

0.5

1.0

1.5

2.0

2.5

Di
st

an
ce

Logistic  PGD  Covtype

1 2 3 4 5

0.005

0.010

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

MUter

0 100 200 300 400 500 600
Removal Numbers

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Cl
ea

n 
Ac

cu
ra

cy

Logistic  PGD  MNIST-b

0 5000 10000 15000 20000 25000
Removal Numbers

0.66

0.67

0.68

0.69

0.70

0.71

Cl
ea

n 
Ac

cu
ra

cy

Logistic  PGD  Covtype

retrain
MUter

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

0 100 200 300 400 500 600
Removal Numbers

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rtu

rb
ed

 A
cc

ur
ac

y
Logistic  PGD  MNIST-b

1 2 3 4 5
0.89
0.90
0.91

0 5000 10000 15000 20000 25000
Removal Numbers

0.54

0.56

0.58

0.60

0.62

Pe
rtu

rb
ed

 A
cc

ur
ac

y

Logistic  PGD  Covtype

1 2 3 4 5

0.605

0.610

0.615

retrain
MUter

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

Figure 3: Evaluation results on Logistic Regression Model:

Effectiveness (top), Accuracy (middle), and Robustness

(bottom) on datasets MNIST-b (left column), Covtype

(right column). Large plots have greater removal numbers:

1%, 2%, · · · , 5%; the inside small plots have fewer removal

numbers: 1, 2, · · · , 5.

utilize the accuracy on adversarial perturbed test samples;

4) Efficiency measures the unlearning time the unlearning

method takes to respond the unlearning request, for which

we report CPU time.

5.2. Experiment Results

5.2.1 Results with Linear Model

Figure 3 reports the experiment results with logistic regres-

sion model on the MNIST-b and Covtypes datasets. More

results with ridge regression are deferred to Appendix A.3.

Effectiveness. Top row of Figure 3 shows the effectiveness

comparison. All compared methods have increased model

parameter distance with the increasing number of unlearning



0 1000 2000 3000 4000
Removal Numbers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Di
st

an
ce

CIFAR-10
MUter
Newton
Influence
Fisher
Newton_delta
Influence_delta
Fisher_delta

0 100 200 300 400
Removal Numbers

0.0

0.5

1.0

1.5

2.0

Di
st

an
ce

Lacuna-10
MUter
Newton
Influence
Fisher
Newton_delta
Influence_delta
Fisher_delta

0 1000 2000 3000 4000
Removal Numbers

0.820

0.825

0.830

0.835

0.840

Cl
ea

n 
Ac

cu
ra

cy

CIFAR-10

Retrain
MUter
Newton
Influence
Fisher
Newton_delta
Influence_delta
Fisher_delta

0 100 200 300 400
Removal Numbers

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Cl
ea

n 
Ac

cu
ra

cy

Lacuna-10

Retrain
MUter
Newton
Influence
Fisher
Newton_delta
Influence_delta
Fisher_delta

0 1000 2000 3000 4000
Removal Numbers

0.460

0.465

0.470

0.475

0.480

0.485

Pe
rtu

rb
ed

 A
cc

ur
ac

y

CIFAR-10

Retrain
MUter
Newton
Influence
Fisher
Newton_delta
Influence_delta
Fisher_delta

0 100 200 300 400
Removal Numbers

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

Pe
rtu

rb
ed

 A
cc

ur
ac

y

Lacuna-10

Retrain
MUter
Newton
Influence
Fisher
Newton_delta
Influence_delta
Fisher_delta

Figure 4: Evaluation results on Neural Network: Effective-

ness (top), Accuracy (middle), and Robustness (bottom) on

datasets Lacuna-10 (left column) and CIFAR-10 (right col-

umn), under removal numbers (1, 0.4%, 1%, 2%, 4%, 8%).

Model Removal MNIST-b Covtype

Type Number Fisher F-delta MUter Retrain Fisher F-delta MUter Retrain

LR

1 0.002 0.002 0.009 63 0.002 0.002 0.007 192

5 0.010 0.012 0.052 63 0.009 0.011 0.037 194

10 0.019 0.021 0.106 62 0.018 0.022 0.071 194

RR

1 0.002 0.002 0.009 64 0.002 0.002 0.006 200

5 0.009 0.011 0.057 65 0.011 0.012 0.032 206

10 0.018 0.019 0.097 65 0.019 0.020 0.064 205

Table 1: Efficiency results with linear models of logistic

regression (top) and ridge regression (bottom): The unlearn-

ing time (in seconds) of Fisher, Fisher-delta, MUter and

Retrain under varying removal numbers: 1, 5, 10.

requests, which is due to the decreased approximation capa-

bility of the approximate unlearning criteria. MUter achieves

the smallest deviation from Retrain and outperforms all the

compared methods, which is because its ATM unlearning up-

date sufficiently captures the nested data influence in ATM.

Accuracy. Middle row of Figure 3 shows the clean accuracy

comparison. All unlearning methods do not show a signifi-

Removal Lacuna-10 CIFAR-10

Number Fisher F-delta MUter Retrain Fisher F-delta MUter Retrain

1 1.47 1.66 4.18 935 1.51 1.73 3.81 5224

5 7.76 8.41 21.37 934 7.54 8.58 18.64 5294

10 15.51 16.82 41.69 932 15.34 16.42 37.57 5260

Table 2: Efficiency results with Neural Network: The un-

learning time (in seconds) of Fisher, Fisher-delta, MUter

and Retrain under varying removal numbers: 1, 5, 10.

cant drop in clean accuracy after data forgotten. In general,

MUter is among the methods that achieve higher accuracy

and exhibits close consistency with Retrain.

Robustness. Bottom row of Figure 3 shows the robustness

comparison. When the number of forgotten requests is small,

most methods have little variation in perturbed accuracy.

When the forgotten number becomes larger, all baseline

unlearning methods have an obvious decrease in perturbed

accuracy, while MUter still shows high perturbed accuracy

and has the closest proximity to Retrain.

Efficiency. Table 1 shows the efficiency comparison. MUter

has significant efficiency improvement over Retrain, which

is the utmost desideratum of the unlearning method. In addi-

tion, we compare with Fisher and Fisher-delta, which are

the most efficient methods among the six baseline methods

due to the more efficient Fisher information matrix approxi-

mation. MUter takes more CPU time because it computes

the total Hessian to obtain a more holistic data influence

measure, while the baseline methods compute only the (ap-

proximate) direct Hessian and omit the indirect Hessian.

Thus, the small increase in CPU time is the necessary tax to

pay in exchange for more effective unlearning.

Tradeoff between deletion effectiveness, accuracy, and

robustness. According to the above results, there is a trade-

off between efficient and deletion effectiveness, accuracy,

and robustness. That is, MUter takes slightly longer than di-

rect Hessian-only unlearning methods due to the additional

computation of the indirect Hessian. However, this extra

computation is worthwhile as MUter offers improved dele-

tion effectiveness, accuracy, and robustness.

5.2.2 Results with Neural Network Model

Figure 4 summarizes the results of effectiveness, accuracy,

and robustness on the two datasets for the neural network

model with pretraining. MUter has the smallest difference

of parameter distance with Retrain, which indicates that

MUter generates the most similar unlearning model to the

Retrain model. In addition, MUter has the most consistent

behaviour with Retrain in terms of clean accuracy and per-

turbation accuracy. In terms of efficiency, Table 2 reports

the comparison with Retrain and two most efficient base-

line methods Fisher and Fisher-delta. Similar to the linear



5.25 5.00 4.75 4.50 4.25 4.00 3.75 3.50
log( )

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Di
st

an
ce

Lacuna-10 PGD Removal(5%)
muter
newton
influence
fisher
newton_delta
influence_delta
fisher_delta

5.25 5.00 4.75 4.50 4.25 4.00 3.75 3.50
log( )

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Cl
ea

n 
Ac

cu
ra

cy

Lacuna-10 PGD Removal(5%)

muter
newton
influence
fisher
newton_delta
influence_delta
fisher_delta

5.25 5.00 4.75 4.50 4.25 4.00 3.75 3.50
log( )

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Pe
rtu

rb
ed

 A
cc

ur
ac

y

Lacuna-10 PGD Removal(5%)
muter
newton
influence
fisher
newton_delta
influence_delta
fisher_delta

Figure 5: Effect of Gaussian noise injection: Effectiveness (left), Accuracy (middle), and Robustness (right) versus the standard

variation σ of Gaussian noise in log scale, under the case of removing 5% samples and on the Lacuna-10 dataset.

model case, MUter has significant efficiency improvement

over Retrain. Although MUter costs more unlearning time

than the approximate methods, it provides significantly more

effective, more accurate, and more robust unlearned ATM.

Effect of Varying Magnitudes of Gaussian Noise. Figure

5 shows the effectiveness, accuracy, and robustness compar-

isons under varying standard variations of Gaussian noise

(σ) injected by ωu
r+1 +n with n ∼ N (0, σ2I). All methods

get worse unlearning model performance with larger σ, but

MUter maintains the best performance for all σ’s among all

compared unlearning methods.

6. Conclusion

In this paper, we studied a new joint privacy-robustness

problem of machine unlearning from adversarial training

models to simultaneously meet the emerging privacy reg-

ulations on Right to be Forgotten and ensure the adversar-

ial robustness of the model. We proposed a new unlearn-

ing method called Muter, which is underpinned by a total

Hessian-based measure to sufficiently capture the data influ-

ence on both model parameters and adversarial perturbations.

We further introduced the Schur complement conversion and

the Neumann series approximation to mitigate the computa-

tional cost. Our methods show significant enhancement in

effectiveness and efficiency compared to baseline methods.

As future works, several directions can be further ex-

plored: 1) extending MUter to other adversarial training

variants like adversarial regularization; 2) further reducing

the memory cost by considering low-rank/k-fact approxi-

mations to approximate the Hessian matrix, e.g., [25]; 3)

studying the approximation capability of the new influence

function inspired by MUter , e.g., across different depths of

neural networks [4]; 4) exploring the potential connection

between the new influence function with proximal Bregman

response function [2].

7. Acknowledgement

The authors would like to thank the anonymous reviewers

for their constructive comments. This research has been

funded in part by National Science Foundation of China

(NSFC) 62206207, 62102300, 62072395, and U20A20178,

National Key Research and Development Program of China

2020AAA0107705, National Science Foundation (NSF)

CNS-2124104, CNS-2125530, and National Institute of

Health (NIH) R01ES033241.

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMa-

han, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learn-

ing with differential privacy. In Proceedings of the 2016

ACM SIGSAC conference on computer and communications

security, 2016. 1

[2] Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and

Roger B. Grosse. If influence functions are the answer, then

what is the question? In NeurIPS, 2022. 9

[3] Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang.

Recent advances in adversarial training for adversarial ro-

bustness. In Proceedings of the Thirtieth International Joint

Conference on Artificial Intelligence, pages 4312±4321, 8

2021. Survey Track. 1

[4] Samyadeep Basu, Phillip Pope, and Soheil Feizi. Influence

functions in deep learning are fragile. In 9th International

Conference on Learning Representations, ICLR 2021, Virtual

Event, Austria, May 3-7, 2021, 2021. 9

[5] Lucas Bourtoule, Varun Chandrasekaran, Christopher A.

Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang,

David Lie, and Nicolas Papernot. Machine unlearning. In

42nd IEEE Symposium on Security and Privacy, 2021. 1, 3

[6] Jonathan Brophy and Daniel Lowd. Machine unlearning for

random forests. In International Conference on Machine

Learning, pages 1092±1104, 2021. 3

[7] Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, and An-

drew Zisserman. Vggface2: A dataset for recognising faces

across pose and age. In 2018 13th IEEE International Con-

ference on Automatic Face Gesture Recognition (FG 2018),

pages 67±74, 2018. 12

[8] Yinzhi Cao and Junfeng Yang. Towards making systems

forget with machine unlearning. In 2015 IEEE Symposium

on Security and Privacy, pages 463±480. IEEE, 2015. 1, 3



[9] Nicholas Carlini and David Wagner. Towards evaluating the

robustness of neural networks. In 2017 IEEE Symposium on

Security and Privacy. IEEE Computer Society, 2017. 1

[10] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for

support vector machines. ACM Trans. Intell. Syst. Technol.,

2(3), may 2011. 7

[11] Chong Chen, Fei Sun, Min Zhang, and Bolin Ding. Rec-

ommendation unlearning. In Proceedings of the ACM Web

Conference 2022, pages 2768±2777, 2022. 3

[12] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes,

Mathias Humbert, and Yang Zhang. Graph unlearning. In

Proceedings of the ACM Conference on Computer and Com-

munications Security 2022, 2022. 3

[13] John M Danskin. The theory of max-min and its application

to weapons allocation problems, volume 5. Springer Science

& Business Media, 2012. 4

[14] Zhun Deng, Cynthia Dwork, Jialiang Wang, and Linjun

Zhang. Interpreting robust optimization via adversarial in-

fluence functions. In Proceedings of the 37th International

Conference on Machine Learning, volume 119, 2020. 5

[15] Federal Trade Commission. California company settles ftc

allegations it deceived consumers about use of facial recogni-

tion in photo storage app, January 2021. 1

[16] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model

inversion attacks that exploit confidence information and basic

countermeasures. In Proceedings of the 22nd ACM SIGSAC

conference on computer and communications security, pages

1322±1333, 2015. 1

[17] Regulation (EU) 2016/679 of the European parliament and of

the council of 27 April 2016, 2016. 1

[18] Amirata Ghorbani and James Zou. Data shapley: Equitable

valuation of data for machine learning. In International Con-

ference on Machine Learning, pages 2242±2251, 2019. 5

[19] Antonio A Ginart, Melody Y Guan, Gregory Valiant, and

James Zou. Making ai forget you: data deletion in machine

learning. In Proceedings of the 33rd International Conference

on Neural Information Processing Systems, 2019. 3

[20] Jairo Giraldo, Alvaro Cardenas, Murat Kantarcioglu, and

Jonathan Katz. Adversarial classification under differential

privacy. In Network and Distributed Systems Security (NDSS)

Symposium 2020, 2020. 1

[21] Aditya Golatkar, Alessandro Achille, Avinash Ravichandran,

Marzia Polito, and Stefano Soatto. Mixed-privacy forgetting

in deep networks. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

792±801, 2021. 1, 4, 6

[22] Aditya Golatkar, Alessandro Achille, and Stefano Soatto.

Eternal sunshine of the spotless net: Selective forgetting in

deep networks. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 9304±

9312, 2020. 1, 3, 6, 7, 12

[23] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. For-

getting outside the box: Scrubbing deep networks of informa-

tion accessible from input-output observations. In European

Conference on Computer Vision, 2020. 1, 3, 6

[24] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. In Yoshua

Bengio and Yann LeCun, editors, 3rd International Confer-

ence on Learning Representations, 2015. 1, 7

[25] Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex

Tamkin, Amirhossein Tajdini, Benoit Steiner, Dustin Li,

Esin Durmus, Ethan Perez, et al. Studying large language

model generalization with influence functions. arXiv preprint

arXiv:2308.03296, 2023. 9

[26] Chuan Guo, Tom Goldstein, Awni Y. Hannun, and Laurens

van der Maaten. Certified data removal from machine learning

models. In Proceedings of the 37th International Conference

on Machine Learning, 2020. 1, 3, 4, 6, 7

[27] Jamie Hayes, Borja Balle, and M Pawan Kumar. Learning

to be adversarially robust and differentially private. arXiv

preprint arXiv:2201.02265, 2022. 1

[28] Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using

pre-training can improve model robustness and uncertainty.

In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,

Proceedings of the 36th International Conference on Machine

Learning, volume 97 of Proceedings of Machine Learning

Research, pages 2712±2721, 09±15 Jun 2019. 6

[29] Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using

pre-training can improve model robustness and uncertainty.

In International Conference on Machine Learning, pages

2712±2721, 2019. 12

[30] Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba

Szepesvári. Learning with a strong adversary. CoRR,

abs/1511.03034, 2015. 1, 3

[31] Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and

James Zou. Approximate data deletion from machine learning

models. In International Conference on Artificial Intelligence

and Statistics, pages 2008±2016, 2021. 1, 3

[32] Pang Wei Koh and Percy Liang. Understanding black-box pre-

dictions via influence functions. In International Conference

on Machine Learning, 2017. 5, 7, 12

[33] Haowen Lin, Jian Lou, Li Xiong, and Cyrus Shahabi. Integer-

arithmetic-only certified robustness for quantized neural net-

works. In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, pages 7828±7837, 2021. 1

[34] Shen Lin, Xiaoyu Zhang, Chenyang Chen, Xiaofeng Chen,

and Willy Susilo. Erm-ktp: Knowledge-level machine un-

learning via knowledge transfer. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2023. 3

[35] Junxu Liu, Jian Lou, Li Xiong, Jinfei Liu, and Xiaofeng

Meng. Projected federated averaging with heterogeneous

differential privacy. Proceedings of the VLDB Endowment,

15(4):828±840, 2021. 1

[36] Yang Liu, Mingyuan Fan, Cen Chen, Ximeng Liu, Zhuo Ma,

Li Wang, and Jianfeng Ma. Backdoor defense with machine

unlearning. In IEEE INFOCOM 2022 - IEEE Conference on

Computer Communications, page 280±289, 2022. 1

[37] Jian Lou and Yiu-ming Cheung. An uplink communication-

efficient approach to featurewise distributed sparse optimiza-

tion with differential privacy. IEEE Transactions on Neural

Networks and Learning Systems, 32(10):4529±4543, 2020. 1

[38] Jie Ma, Xiangyuan Lan, Bineng Zhong, Guorong Li, Zhenjun

Tang, Xianxian Li, and Rongrong Ji. Robust tracking via



uncertainty-aware semantic consistency. IEEE Transactions

on Circuits and Systems for Video Technology, 33(4):1740±

1751, 2022. 1

[39] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,

Dimitris Tsipras, and Adrian Vladu. Towards deep learning

models resistant to adversarial attacks. In 6th International

Conference on Learning Representations, 2018. 1, 7

[40] Ananth Mahadevan and Michael Mathioudakis. Certifi-

able machine unlearning for linear models. arXiv preprint

arXiv:2106.15093, 2021. 3, 7

[41] Neil G Marchant, Benjamin IP Rubinstein, and Scott Alfeld.

Hard to forget: Poisoning attacks on certified machine un-

learning. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 36, pages 7691±7700, 2022. 1

[42] Brendan McMahan, Eider Moore, Daniel Ramage, Seth

Hampson, and Blaise Aguera y Arcas. Communication-

efficient learning of deep networks from decentralized data.

In Artificial intelligence and statistics, 2017. 1

[43] Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N. Ravi.

Deep unlearning via randomized conditionally independent

hessians. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages

10422±10431, June 2022. 1, 3

[44] Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi.

Descent-to-delete: Gradient-based methods for machine un-

learning. In Algorithmic Learning Theory, 2021. 1

[45] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and

Michael P Wellman. Sok: Security and privacy in machine

learning. In 2018 IEEE European Symposium on Security

and Privacy (EuroS&P), pages 399±414. IEEE, 2018. 1

[46] Jian Pei. A survey on data pricing: from economics to data

science. IEEE Transactions on knowledge and Data Engi-

neering, 2020. 5

[47] Hai Phan, My T Thai, Han Hu, Ruoming Jin, Tong Sun, and

Dejing Dou. Scalable differential privacy with certified ro-

bustness in adversarial learning. In International Conference

on Machine Learning, pages 7683±7694, 2020. 1

[48] NhatHai Phan, Minh N. Vu, Yang Liu, Ruoming Jin, Dejing

Dou, Xintao Wu, and My T. Thai. Heterogeneous gaussian

mechanism: Preserving differential privacy in deep learning

with provable robustness. In Sarit Kraus, editor, Proceed-

ings of the Twenty-Eighth International Joint Conference on

Artificial Intelligence, pages 4753±4759, 2019. 1

[49] Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and

Ananda Theertha Suresh. Remember what you want to for-

get: Algorithms for machine unlearning. Advances in Neural

Information Processing Systems, 34:18075±18086, 2021. 3, 4

[50] Uri Shaham, Yutaro Yamada, and Sahand Negahban. Un-

derstanding adversarial training: Increasing local stability of

supervised models through robust optimization. Neurocom-

puting, 307:195±204, 2018. 3

[51] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly

Shmatikov. Membership inference attacks against machine

learning models. In 2017 IEEE Symposium on Security and

Privacy, pages 3±18. IEEE, 2017. 1

[52] Liwei Song, Reza Shokri, and Prateek Mittal. Privacy risks of

securing machine learning models against adversarial exam-

ples. In Proceedings of the 2019 ACM SIGSAC Conference

on Computer and Communications Security, 2019. 1

[53] Qiheng Sun, Xiang Li, Jiayao Zhang, Li Xiong, Weiran Liu,

Jinfei Liu, Zhan Qin, and Kui Ren. Shapleyfl: Robust fed-

erated learning based on shapley value. In Proceedings of

the 29th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining, pages 2096±2108, 2023. 1

[54] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus.

Intriguing properties of neural networks. In Yoshua Bengio

and Yann LeCun, editors, 2nd International Conference on

Learning Representations, 2014. 1

[55] Farnaz Tahmasebian, Jian Lou, and Li Xiong. Robustfed:

a truth inference approach for robust federated learning. In

Proceedings of the 31st ACM International Conference on

Information & Knowledge Management, 2022. 1

[56] Pengfei Tang, Wenjie Wang, Jian Lou, and Li Xiong. Generat-

ing adversarial examples with distance constrained adversarial

imitation networks. IEEE Transactions on Dependable and

Secure Computing, 19(6):4145±4155, 2021.

[57] Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and

Nicolas Papernot. Unrolling sgd: Understanding factors in-

fluencing machine unlearning. In 2022 IEEE 7th European

Symposium on Security and Privacy (EuroS&P), pages 303±

319. IEEE, 2022. 4

[58] Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Pa-

pernot. On the necessity of auditable algorithmic definitions

for machine unlearning. In 31st USENIX Security Symposium

(USENIX Security 22), pages 4007±4022, 2022. 1

[59] Boxi Wu, Jindong Gu, Zhifeng Li, Deng Cai, Xiaofei He,

and Wei Liu. Towards efficient adversarial training on vision

transformers. In European Conference on Computer Vision,

pages 307±325, 2022. 1

[60] Yinjun Wu, Edgar Dobriban, and Susan Davidson. Deltagrad:

Rapid retraining of machine learning models. In International

Conference on Machine Learning, 2020. 1, 4

[61] Jingwen Ye, Yifang Fu, Jie Song, Xingyi Yang, Songhua Liu,

Xin Jin, Mingli Song, and Xinchao Wang. Learning with

recoverable forgetting. In European Conference on Computer

Vision, pages 87±103, 2022. 1

[62] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Ad-

versarial examples: Attacks and defenses for deep learning.

IEEE transactions on neural networks and learning systems,

30(9):2805±2824, 2019. 1

[63] Sergey Zagoruyko and Nikos Komodakis. Wide residual

networks. In British Machine Vision Conference, 2016. 6

[64] Guojun Zhang, Kaiwen Wu, Pascal Poupart, and Yaoliang

Yu. Newton-type methods for minimax optimization. arXiv

preprint arXiv:2006.14592, 2020. 5

[65] Peng-Fei Zhang, Guangdong Bai, Zi Huang, and Xin-Shun

Xu. Machine unlearning for image retrieval: A generative

scrubbing approach. In Proceedings of the 30th ACM Inter-

national Conference on Multimedia, 2022. 1

[66] Xiaoyu Zhang, Yulin Jin, Tao Wang, Jian Lou, and Xiaofeng

Chen. Purifier: Plug-and-play backdoor mitigation for pre-

trained models via anomaly activation suppression. In Pro-

ceedings of the 30th ACM International Conference on Multi-

media, pages 4291±4299, 2022. 1



Appendix

In this Appendix, Appendix A provides experiment de-

tails and deferred experiment figures and tables; Appendix

B provides the deferred proofs and the complete algorithm

description. In addition, Appendix B also describes how to

generalize MUter from successive single datapoint unlearn-

ing to successive batch of datapoints removal. Our source

code can be found in Supplementary Material.

A. Experiment Details and Deferred Experi-

ment Figures and Tables

A.1. Experiment Details

Our experiments are based on the Pytorch platform and

run on RTX 3090. For the pretraining the Wide ResNet

model on Downsampled ImageNet, we run on four GPU

devices; For all other experiments, we run on a single GPU

device.

We summarize the hyperparameters used for our adversar-

ial training/finetuning in Table 3. For Neural Network Model,

we conduct experiments on Wide ResNet 28-10 model using

the datasets Lacuna-10 and CIFAR-10. We first perform

adversarial pretraining on Lacuna-100 and Downsampled

ImageNet datasets, both by SGD with momentum for the

outer-loops. For the former, we fix the learning rate to 0.1,

and then train for 80 epochs with momentum 0.9 and weight

decay 0.0005. For the latter, we use the pretrained model

in [29] as the pretrained model here, which has a similar

training process. Then, we freeze all but the last layer to ad-

versarially finetune the model on Lacuna-10 and CIFAR-10

datasets.

We summarize the hyperparameters required by MUter

in Table 4. In the neural network model experiments, [32]

points out that under the non-convex setting, the Hessian

matrix on parameters ω∗ sometimes will not be positive

definite. We follow [32] to add a damping term λ on the

diagonal with λ = 0.0001.

Dataset
Model Learning (Tuning) FGSM PGD

type rate Epoch epsilon epsilon alpha steps

MNIST-b
Logistic 0.01 100 0.25 0.25 0.03 15

Ridge 0.01 100 0.25 0.25 0.03 15

Covtype
Logistic 0.1 15 4/255 4/255 0.004 7

Ridge 0.1 15 4/255 4/255 0.004 7

Lacuna-10 Neural Network 0.01 20 8/255 8/255 2/255 10

CIFAR-10 Neural Network 0.001 10 8/255 8/255 2/255 10

Table 3: Adversarial training/finetuning parameters.

A.2. Datasets

Linear Model. We perform experiments on MNIST-b and

Covtype. MNIST-b is taken from the MNIST dataset, which

consists of 28 ∗ 28 grayscale images from digist ‘0’ to digit

‘9’. We select the digit ‘1’ and digit ‘7’ to form the binary

Dataset
Model Neumann Series Conjugate Gradient

type order k iterations C

MNIST-b
Logistic 3 10

Ridge 3 10

Covtype
Logistic 3 20

Ridge 20 20

Lacuna-10 Neural Network 100 10

CIFAR-10 Neural Network 100 20

Table 4: MUter parameters.

subset MNIST-b. Covtype with 54 attributes is used to clas-

sify the main tree species in the Roosevelt National Forest

wilderness area, where use the binary classification version

from LIBSVM.

Neural Network Model. We introduce Lacuna-100 and

downsampled ImageNet as core datasets, and conduct exper-

iments on target datasets Lacuna-10 and CIFAR-10. CIFAR-

10 consists of 32 ∗ 32 color pictures, covering different an-

imals and machines in 10 categories. The Downsampled

ImageNet is derived from the 1000-class ImageNet dataset,

which resize the image to 32 ∗ 32. Lacuna-10/Lacuna-

100 comes from [22]. We use the same data processing

method to select 10/100 celebrities (no intersection) from

VGGFace2 [7], and each celebrity randomly selects at least

500 pictures. Then each celebrity divides 100 pictures to

form the test set, and the remaining images to form the

training set. Finally, we resize the images to 32 ∗ 32.

To facilitate the constrained adversarial perturbation for

adversarial training, all the above datasets are scaled to [0, 1]
(for image data, we use Totensor to transform, and for Cov-

type, we choose the version scaled to [0, 1] in LIBSVM.). We

summarize the dimensions, classes, and quantity information

of the above datasets in Table 5.

Dataset Domension Classes Train data Test Data

MNIST-b 784 2 11,982 1,198

Covtype 54 2 522,910 58,102

Lacuna-10 3072 10 4,374 1,000

CIFAR-10 3072 10 50,000 10,000

Table 5: Datasets Statistics

A.3. Deferred Experiment Figures and Tables

In this section, we report additional experiment results,

where Subsection A.3.1 reports additional experiment re-

sults under the PGD setting, and Subsection A.3.2 reports

additional experiment results under the FGSM setting.

A.3.1 Deferred Experiment Figures under PGD Setting

We summarize the experiment results under Ridge Model

with PGD in Figure 6.



0 100 200 300 400 500 600
Removal Numbers

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Cl
ea

n 
Ac

cu
ra

cy

Logistic  PGD  MNIST-b

0 5000 10000 15000 20000 25000
Removal Numbers

0.66

0.67

0.68

0.69

0.70

0.71

0.72

Cl
ea

n 
Ac

cu
ra

cy

Logistic  PGD  Covtype

retrain
MUter

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

0 100 200 300 400 500 600
Removal Numbers

0.0

0.1

0.2

0.3

0.4

Di
st

an
ce

Ridge  PGD  MNIST-b

1 2 3 4 5

0.025
0.050
0.075

0 5000 10000 15000 20000 25000
Removal Numbers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Di
st

an
ce

Ridge  PGD  Covtype

1 2 3 4 5

0.01

0.02

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

MUter

0 100 200 300 400 500 600
Removal Numbers

0.95

0.96

0.97

0.98

Cl
ea

n 
Ac

cu
ra

cy

Ridge  PGD  MNIST-b

0 5000 10000 15000 20000 25000
Removal Numbers

0.66

0.67

0.68

0.69

0.70

0.71

Cl
ea

n 
Ac

cu
ra

cy

Ridge  PGD  Covtype

retrain
MUter

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

0 100 200 300 400 500 600
Removal Numbers

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rtu

rb
ed

 A
cc

ur
ac

y

Ridge  PGD  MNIST-b

1 2 3 4 5

0.875

0.900

0 5000 10000 15000 20000 25000
Removal Numbers

0.54

0.56

0.58

0.60

0.62

Pe
rtu

rb
ed

 A
cc

ur
ac

y

Ridge  PGD  Covtype

1 2 3 4 5

0.60

0.62

retrain
MUter

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

Figure 6: Evaluation results on Ridge Regression Model

with PGD: Effectiveness (left column), Accuracy (middle

column), and Robustness (right column) on datasets MNIST

(top) and Covtype (bottom). Large plots have greater re-

moval numbers: 1%, 2%, · · · , 5%; Small plots inside the

large plots have fewer removal numbers: 1, 2, · · · , 5.

A.3.2 Deferred Experiment Figures and Tables under

FGSM Setting

In this part, we change the way of generating perturbations

from PGD to FGSM. With the same experimental settings

under PGD conditions, we report experiment results both on

Linear Model and Neural Network Model.

Results with Linear Model. We report the effectiveness,

accuracy and robustness metrics of logistic model and ridge

model in Figure 7 and Figure 8, respectively. In Table 6, we

summarize the efficiency comparison for linear model under

FGSM setting.

0 100 200 300 400 500 600
Removal Numbers

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Cl
ea

n 
Ac

cu
ra

cy

Logistic  PGD  MNIST-b

0 5000 10000 15000 20000 25000
Removal Numbers

0.66

0.67

0.68

0.69

0.70

0.71

0.72

Cl
ea

n 
Ac

cu
ra

cy

Logistic  PGD  Covtype

retrain
MUter

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

0 100 200 300 400 500 600
Removal Numbers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
st

an
ce

Logistic  FGSM  MNIST-b

1 2 3 4 5
0.0

0.1

0 5000 10000 15000 20000 25000
Removal Numbers

0.0

0.5

1.0

1.5

2.0

2.5

Di
st

an
ce

Logistic  FGSM  Covtype

1 2 3 4 5

0.005

0.010

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

MUter

0 100 200 300 400 500 600
Removal Numbers

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Cl
ea

n 
Ac

cu
ra

cy

Logistic  FGSM  MNIST-b

0 5000 10000 15000 20000 25000
Removal Numbers

0.69

0.70

0.71

0.72

0.73

Cl
ea

n 
Ac

cu
ra

cy

Logistic  FGSM  Covtype

retrain
MUter

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

0 100 200 300 400 500 600
Removal Numbers

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rtu

rb
ed

 A
cc

ur
ac

y
Logistic  FGSM  MNIST-b

1 2 3 4 5
0.89

0.90

0.91

0 5000 10000 15000 20000 25000
Removal Numbers

0.57

0.58

0.59

0.60

0.61

0.62

0.63

Pe
rtu

rb
ed

 A
cc

ur
ac

y

Logistic  FGSM  Covtype

1 2 3 4 5

0.6300

0.6325

retrain
MUter

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

Figure 7: Evaluation results on Logistic Regression Model

with FGSM: Effectiveness (left column), Accuracy (middle

column), and Robustness (right column) on datasets MNIST

(top) and Covtype (bottom). Large plots have greater re-

moval numbers: 1%, 2%, · · · , 5%; Small plots inside the

large plots have fewer removal numbers: 1, 2, · · · , 5.

Model Removal MNIST-b Covtype

Type Number Fisher F-delta MUter Retrain Fisher F-delta MUter Retrain

LR

1 0.002 0.002 0.008 14.6 0.002 0.002 0.007 75

5 0.010 0.012 0.045 14.5 0.008 0.009 0.033 76

10 0.020 0.022 0.089 14.2 0.018 0.019 0.065 77

1% 0.242 0.249 0.978 14.3 9.178 11.278 33.974 77

RR

1 0.002 0.002 0.008 14.6 0.002 0.002 0.007 78

5 0.009 0.012 0.047 14.5 0.009 0.009 0.034 78

10 0.018 0.020 0.091 14.3 0.018 0.021 0.063 79

1% 0.239 0.244 0.993 14.5 9.797 11.043 33.505 79

Table 6: Efficiency results with Logistic Regression Model

(top) and Ridge Regression Model (bottom) under FGSM:

The unlearning time (in seconds) of Fisher, Fisher-delta,

MUter and Retrain under varying removal numbers: 1, 5,

10, 1% (120 for MNSIT-b, 5000 for Covtype).



0 100 200 300 400 500 600
Removal Numbers

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Cl
ea

n 
Ac

cu
ra

cy

Logistic  PGD  MNIST-b

0 5000 10000 15000 20000 25000
Removal Numbers

0.66

0.67

0.68

0.69

0.70

0.71

0.72

Cl
ea

n 
Ac

cu
ra

cy

Logistic  PGD  Covtype

retrain
MUter

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

0 100 200 300 400 500 600
Removal Numbers

0.0

0.1

0.2

0.3

0.4

Di
st

an
ce

Ridge  FGSM  MNIST-b

1 2 3 4 5

0.025

0.050

0.075

0 5000 10000 15000 20000 25000
Removal Numbers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
st

an
ce

Ridge  FGSM  Covtype

1 2 3 4 5

0.01

0.02

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

MUter

0 100 200 300 400 500 600
Removal Numbers

0.95

0.96

0.97

0.98

Cl
ea

n 
Ac

cu
ra

cy

Ridge  FGSM  MNIST-b

0 5000 10000 15000 20000 25000
Removal Numbers

0.68

0.69

0.70

0.71

0.72

0.73

Cl
ea

n 
Ac

cu
ra

cy

Ridge  FGSM  Covtype

retrain
MUter

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

0 100 200 300 400 500 600
Removal Numbers

0.5

0.6

0.7

0.8

0.9

Pe
rtu

rb
ed

 A
cc

ur
ac

y

Ridge  FGSM  MNIST-b

1 2 3 4 5

0.875

0.900

0 5000 10000 15000 20000 25000
Removal Numbers

0.58

0.60

0.62

0.64

Pe
rtu

rb
ed

 A
cc

ur
ac

y

Ridge  FGSM  Covtype

1 2 3 4 5
0.62

0.63

retrain
MUter

Newton
Newton_delta

Influence
influence_delta

Fisher
Fisher_delta

Figure 8: Evaluation results on Ridge Regression Model

with FGSM: Effectiveness (left column), Accuracy (middle

column), and Robustness (right column) on datasets MNIST

(top) and Covtype (bottom). Large plots have greater re-

moval numbers: 1%, 2%, · · · , 5%; Small plots inside the

large plots have fewer removal numbers: 1, 2, · · · , 5.



Result with Neural Network Model. We report the effectiveness, accuracy, and robustness metrics of the neural network

model in Figure 9. In Table 7, we summarize the efficiency comparison for the neural network model under the FGSM setting.

0 500 1000 1500 2000 2500 3000 3500 4000
Removal Numbers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Di
st

an
ce

CIFAR-10
MUter
Newton
Influence
Fisher
Newton-delta
Influence-delta
Fisher-delta

0 500 1000 1500 2000 2500 3000 3500 4000
Removal Numbers

0.830

0.835

0.840

0.845

0.850
Cl

ea
n 

Ac
cu

ra
cy

CIFAR-10

Retrain
MUter
Newton
Influence
Fisher
Newton-delta
Influence-delta
Fisher-delta

0 500 1000 1500 2000 2500 3000 3500 4000
Removal Numbers

0.595

0.600

0.605

0.610

0.615

Pe
rtu

rb
ed

 A
cc

ur
ac

y

CIFAR-10

Retrain
MUter
Newton
Influence
Fisher
Newton-delta
Influence-delta
Fisher-delta

0 50 100 150 200 250 300 350 400
Removal Numbers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
st

an
ce

Lacuna-10
MUter
Newton
Influence
Fisher
Newton-delta
Influence-delta
Fisher-delta

0 50 100 150 200 250 300 350 400
Removal Numbers

0.76

0.78

0.80

0.82

0.84

Cl
ea

n 
Ac

cu
ra

cy

Lacuna-10

Retrain
MUter
Newton
Influence
Fisher
Newton-delta
Influence-delta
Fisher-delta

0 50 100 150 200 250 300 350 400
Removal Numbers

0.52

0.54

0.56

0.58

0.60

0.62

0.64

Pe
rtu

rb
ed

 A
cc

ur
ac

y

Lacuna-10

Retrain
MUter
Newton
Influence
Fisher
Newton-delta
Influence-delta
Fisher-delta

Figure 9: Evaluation results on Neural Network with FGSM: Effectiveness (left column), Accuracy (middle col-

umn), and Robustness (right column) on datasets Lacuna-10 (top) and CIFAR-10 (bottom), under removal numbers

(1, 0.4%, 1%, 2%, 4%, 8%).

Removal Lacuna-10 CIFAR-10

Number Fisher F-delta MUter Retrain Fisher F-delta MUter Retrain

1 1.51 1.57 3.96 150 1.43 1.56 3.72 799

5 7.81 8.08 20.72 151 7.71 8.11 18.23 794

10 15.46 15.94 39.82 150 15.42 15.87 36.84 790

Table 7: Efficiency results with Neural Network Model under FGSM: The unlearning time (in seconds) of Fisher, Fisher-delta,

MUter and Retrain under varying removal numbers: 1, 5, 10.



B. Deferred Proofs and Algorithm Description

In this section, Subsection B.1 provides the omitted proofs for the derivation of the ATM unlearning update (i.e., Lemma

1 and Theorem 1), Subsection B.2 provides the omitted proof for the derivation of the successive unlearning setting (i.e.,

Corollary 1), Subsection B.3 provides the deferred Lemma for Schur complement for completeness and the omitted proof for

Theorem 2, Subsection B.4 provides the complete algorithm description for MUter , and Subsection B.5 how to generalize

MUter from successive single datapoint unlearning to successive batch of datapoints removal.

B.1. Proofs for Derivation of ATM Unlearning Update

B.1.1 Proof of Lemma 1

Proof. By Taylor expansion around both ω∗ and δi(ω
∗), we have

1

n− 1

n∑

i=1,i ̸=i†

∇ωl(ω
u,xi + δi(ω

u))

=
1

n− 1

n∑

i=1,i ̸=i†

[
∇ωl(ω

∗,xi + δi(ω
∗))

+ ∂ωωl(ω
∗,xi + δi(ω

∗))(ωu − ω
∗) +O(∥ωu − ω

∗∥22)

+ ∂ωδl(ω
∗,xi + δi(ω

∗))(δi(ω
u)− δi(ω

∗)) +O(∥δi(ω
u)− δi(ω

∗)∥22)
]
.

(17)

By furthering neglecting the higher-order Taylor expansion terms O(∥ωu − ω∗∥22) and O(∥δi(ω
u)− δi(ω

∗)∥22), we have the

following relationship,

1

n− 1

n∑

i=1,i ̸=i†

∇ωl(ω
u,xi + δi(ω

u))

≈
1

n− 1

n∑

i=1,i ̸=i†

[
∇ωl(ω

∗,xi + δi(ω
∗))

+ ∂ωωl(ω
∗,xi + δi(ω

∗))(ωu − ω
∗)

+ ∂ωδl(ω
∗,xi + δi(ω

∗))(δi(ω
u)− δi(ω

∗))
]
,

(18)

which proves Lemma 1.

B.1.2 Proof of Theorem 1

Proof. By Lemma 1, we begin with

1

n− 1

n∑

i=1,i ̸=i†

∇ωl(ω
u,xi + δi(ω

u))

≈
1

n− 1

n∑

i=1,i ̸=i†

[
∇ωl(ω

∗,xi + δi(ω
∗))

+ ∂ωωl(ω
∗,xi + δi(ω

∗))(ωu − ω
∗) + ∂ωδl(ω

∗,xi + δi(ω
∗))(δi(ω

u)− δi(ω
∗))

]
.

(19)



For the first line on the right hand side of eq.(19), we have

1

n− 1

n∑

i=1,i ̸=i†

∇ωl(ω
∗,xi + δi(ω

∗))

=
1

n− 1

n∑

i=1

∇ωl(ω
∗,xi + δi(ω

∗))−
1

n− 1
∇ωl(ω

∗,xi† + δi†(ω
∗))

=0−
1

n− 1
∇ωl(ω

∗,xi† + δi†(ω
∗)

=−
1

n− 1
∇ωl(ω

∗,xi† + δi†(ω
∗)),

(20)

where the second equality is obtained as follows. Since ω∗ is the optimum of the following ATM,

ω
∗ = argmin

ω

max
δi∈B(xi,r)

1

n

n∑

i=1

l(ω,xi + δ(ω∗)), (21)

it satisfies the following by Danskin’s Theorem,

1

n

n∑

i=1

∇ωl(ω
∗,xi + δi(ω

∗)) = 0, (22)

which is the second equality relation in eq.(20).

For the second line on the right hand side of eq.(19), we further expand (δi(ω
u)− δi(ω

∗)) by the implicit function theorem.

That is, for all i ∈ {1, · · · , n}, we have

δi(ω
u)− δi(ω

∗) = −∂−1
δδ

l(ω∗,xi + δi(ω
∗)) · ∂δωl(ω

∗,xi + δi(ω
∗)) · (ωu − ω

∗), (23)

which gives

1

n− 1

n∑

i=1,i ̸=i†

[
∂ωωl(ω

∗,xi + δi(ω
∗))(ωu − ω

∗) + ∂ωδl(ω
∗,xi + δi(ω

∗))(δi(ω
u)− δi(ω

∗))
]

=
1

n− 1

n∑

i=1,i ̸=i†

[
∂ωωl(ω

∗,xi + δi(ω
∗))(ωu − ω

∗)

− ∂ωδl(ω
∗,xi + δi(ω

∗))∂−1
δδ

l(ω∗,xi + δi(ω
∗))∂δωl(ω

∗,xi + δi(ω
∗))(ωu − ω

∗)
]

=
1

n− 1

n∑

i=1,i ̸=i†

Dωωl(ω
∗,xi + δi(ω

∗))(ωu − ω
∗).

(24)

By substituting eq.(20) and eq.(24) into eq.(19), we have

1

n− 1

n∑

i=1,i ̸=i†

∇ωl(ω
u,xi + δi(ω

u))

≈−
1

n− 1
∇ωl(ω

∗,xi† + δi†(ω
∗)) +

1

n− 1

n∑

i=1,i ̸=i†

Dωωl(ω
∗,xi + δi(ω

∗))(ωu − ω
∗).

(25)

Thus, ωu = ω∗ +U(ω∗, i†) = ω∗ +
[∑n

i=1,i ̸=i† Dωωl(ω
∗,xi + δi(ω

∗))
]−1

·
[
∇ωl(ω

∗,xi† + δi†(ω
∗))

]
is the the solution

to the following linear system,

−
1

n− 1
∇ωl(ω

∗,xi† + δi†(ω
∗)) +

1

n− 1

n∑

i=1,i ̸=i†

Dωωl(ω
∗,xi + δi(ω

∗))(ωu − ω
∗) = 0, (26)

which gives 1
n−1

∑n

i=1,i ̸=i† ∇ωl(ω
u,xi + δi(ω

u)) ≈ 0 according to eq.(25). As a result, we have proved that ωu satisfies

the approximate unlearning criteria for ATM.



B.2. Proofs for derivation of Successive Unlearning Setting

B.2.1 Proof of Corollary 1

Proof. Denote the data that have been deleted by Ur := {i†1, i
†
2, . . . , i

†
r}. Similar to the ATM unlearning standard in eq.(3), we

have the retraining-from-scratch model parameter after the r+1-th unlearning by ω∗
−Ur∪i†

, which has the following definition,

ω
∗
−Ur∪i† = argmin

ω

1

n− r − 1

n∑

i=1,i ̸=Ur∪i†

max
δi∈B(xi,r)

l(ω,xi + δi). (27)

The unlearning criteria for ATM at the r + 1-th unlearning is as follows,

n∑

i=1,i ̸=Ur∪i†

∇ωl(ω
∗
−Ur∪i† ,xi + δi(ω

∗
−Ur∪i†)) ≈ 0. (28)

Our aim is to show that ωu
r+1 approximately satisfies the above criteria,

n∑

i=1,i ̸=Ur∪i†

∇ωl(ω
u
r+1,xi + δi(ω

u
r+1)) ≈ 0, (29)

which is also the approximate unlearning criteria for ATM in eq.(6).

The proof is similar to Theorem 1, as follows,

n∑

i=1,i ̸=Ur∪i†

∇ωl(ω
u
r+1,xi + δi(ω

u
r+1))

=
[ n∑

i=1

∇ωl(ω
u
r+1,xi + δi(ω

u
r+1))

]
−
[ i†r∑

i=i
†
1

∇ωl(ω
u
r+1,xi + δi(ω

u
r+1))

]
−
[
∇ωl(ω

u
r+1,xi† + δi†(ω

u
r+1))

]

≈
[( n∑

i=1

∇ωl(ω
∗,xi + δi(ω

∗)) + ∂ωωl(ω
∗,xi + δi(ω

∗))(ωu
r+1 − ω

∗) + ∂ωδl(ω
∗,xi + δi(ω

∗))(δi(ω
u
r+1)− δi(ω

∗))
)]

−
[( i†r∑

i=i
†
1

∇ωl(ω
∗,xi + δi(ω

∗)) + ∂ωωl(ω
∗,xi + δi(ω

∗))(ωu
r+1 − ω

∗) + ∂ωδl(ω
∗,xi + δi(ω

∗))(δi(ω
u
r+1)− δi(ω

∗))
)]

−
[(

∇ωl(ω
∗,xi† + δi†(ω

∗)) + ∂ωωl(ω
∗,xi† + δi†(ω

∗))(ωu − ω
∗) + ∂ωδl(ω

∗,xi† + δi†(ω
∗))(δi†(ω

u
r+1)− δi†(ω

∗))
)]

=
[ n∑

i=1

∇ωl(ω
∗,xi + δi(ω

∗)) + Dωωl(ω
∗,xi + δi(ω

∗))(ωu
r+1 − ω

∗)
]

−
[ i†r∑

i=i
†
1

∇ωl(ω
∗,xi + δi(ω

∗)) + Dωωl(ω
∗,xi + δi(ω

∗))(ωu
r+1 − ω

∗)
]

−
[
∇ωl(ω

∗,xi† + δi†(ω
∗)) + Dωωl(ω

∗,xi† + δi†(ω
∗))(ωu

r+1 − ω
∗)
]

=
[ n∑

i=1

Dωωl(ω
∗,xi + δi(ω

∗))(ωu
r+1 − ω

∗)
]

−
[ i†r∑

i=i
†
1

∇ωl(ω
∗,xi + δi(ω

∗)) + Dωωl(ω
∗,xi + δi(ω

∗))(ωu
r+1 − ω

∗)
]

−
[
∇ωl(ω

∗,xi† + δi†(ω
∗)) + Dωωl(ω

∗,xi† + δi†(ω
∗))(ωu

r+1 − ω
∗)
]
,

(30)



where the approximation equality is by the Taylor expansion and neglecting the higher-order terms, the second equality is by

implicit function theorem and the definition of the total Hessian, and the third equality is by
∑n

i=1 ∇ωl(ω
∗,xi + δi(ω

∗)) = 0
by eq.(22).

Thus, ωu
r+1 = ω∗ +Ur(ω

∗, i†) is the the solution to the following linear system,

−

i†r∑

i=i
†
1

∇ωl(ω
∗,xi + δi(ω

∗))−∇ωl(ω
∗,xi† + δi†(ω

∗))

+
[ n∑

i=1

Dωωl(ω
∗,xi + δi(ω

∗))−

i†r∑

i=i
†
1

Dωωl(ω
∗,xi + δi(ω

∗))− Dωωl(ω
∗,xi† + δi†(ω

∗)
]
(ωu − ω

∗) = 0,

(31)

which gives
∑n

i=1,i ̸=Ur∪i† ∇ωl(ω
u
r+1,xi + δi(ω

u
r+1)) ≈ 0. As a result, we have proved that ωu satisfies the approximate

unlearning criteria for ATM in eq.(29) that is consistent with eq.(6).

B.3. Proof for Schur Complement Conversion

B.3.1 Additional Lemma of Schur Complement

Lemma 2. (Schur Complement Conversion) Let S = H11 −H12H
−1
22 H21. If H22 and S are invertible, then H is invertible

and the following relation holds,

H−1 =

[
H11 H12

H21 H22

]−1

=

[
S−1 −S−1H12H

−1
22

−H22H21S
−1 H−1

22 H21S
−1H12H

−1
22

]
. (32)

B.3.2 Proof of Theorem 2

Proof. Let

S =
[
Mr[Dωω]− ∂ωωl

∗
i†

]
−
[
− ∂ωδ∂

−1
δδ

∂δωl
∗
i†

]
, (33)

which is the Schur complement of the following block matrix,

H =

[
H11 H12

H21 H22

]
=

[
Mr[Dωω]− ∂ωωl

∗
i†

∂ωδl
∗
i†

∂δωl
∗
i†

−∂δδl
∗
i†

]
. (34)

Then, based on Lemma 2, we have

S−1g = ∆ω =
[
I 0

]
·

[
H11 H12

H21 H22

]−1

·

[
g

0

]
, (35)

which can be cast as the solution of the following linear system,

[
H11 H12

H21 H22

]
·

[
∆ω

∆α

]
=

[
g

0

]
. (36)

By substituting eq.(34) in, we have

[
Mr[Dωω]− ∂ωωl

∗
i†

∂ωδl
∗
i†

∂δωl
∗
i†

−∂δδl
∗
i†

] [
∆ω

∆α

]
=

[
Mr[∇ω] +∇ωl

∗
i†

0

]
, (37)

which proves Theorem 2.



B.4. The Complete Algorithm Description

We present the complete algorithm description for MUter in Algorithm 1.

Algorithm 1 The Complete Algorithm Description for MUter

Input: Training dataset D = {(x1, y1), . . . , (xn, yn)}, loss l, adversarial perturbation constraint B(xi, r), adversarial training

finishing status {ω∗, δ1(ω
∗), · · · , δn(ω

∗)}, a sequence of indices to be removed U = {i†1, i
†
2, . . . , }

1: Stage I. Pre-Unlearning:

2: Compute memory M0[Dωω] =
∑n

i=1 D̃ωωl(ω
∗,xi + δi(ω

∗)) by eq.(16);

3: Initialize M0[∇ω] = 0 and M0[ω
∗] = ω∗;

4: for i
†
r+1 = i† do

5: Stage II. Unlearning:

6: Re-compute the adversarial perturbation δi†(ω
∗);

7: Compute gradient g = ∇ωl
∗
i†

;

8: Apply conjugate gradient (with C iterations) to solve the least square problem of the linear system

[
Mr[Dωω]− ∂ωωl

∗
i†

∂ωδl
∗
i†

∂δωl
∗
i†

−∂δδl
∗
i†

] [
∆ω

∆α

]
=

[
Mr[∇ω] +∇ωl

∗
i†

0

]
,

9: Obtain Ur(ω
∗, i

†
r+1) = ∆ω, the model paraeter after the r + 1-th unlearning: ωu

r+1 = ω∗ +Ur(ω
∗, i

†
r+1);

10: Stage III. Post-Unlearning:

11: mi† = ∂ωωl
∗
i†
− ∂ωδl

∗
i†

[∑k

j=0(I− ∂δδl
∗
i†
)j
]
∂δωl

∗
i†

by eq.(16);

12: Update the memory Mr+1[Dωω] = Mr[Dωω]−mi† and Mr+1[∇ω] = Mr[∇ω] + g;

13: end for

B.5. Extension to Successive Batch Unlearning

In this subsection, we show that our method can be generalized to the successive batch unlearning setting.

Successive Batch Unlearning Setting. Denote the index sets of datapoints that have already been forgotten at timestamp r by

U†
1 , · · · ,U

†
r}, where each U†

r contains a set of data indices. Let the set of datapoints to be forgotten at timestamp r + 1 by

U†
r+1 = U†. Corollary 2 below extends Corollary 1 to support successive batch unlearning for ATM.

Corollary 2. Considering the successive batch unlearning setting, let the machine unlearning update at the r+1-th timestamp

Ur(ω
∗,U†) take the following form

Ur(ω
∗, i

†
r+1) :=

{
M0[Dωω ]︷ ︸︸ ︷

[ n∑

i=1

Dωωl(ω
∗,xi + δ

∗
i )
]
−

Part of Mr[Dωω ]︷ ︸︸ ︷
[ r∑

j=1

∑

i∈U
†
j

Dωωl(ω
∗,xi + δ

∗
i )
]
−
[ ∑

i†∈U†

Dωωl(ω
∗,xi† + δ

∗
i†)

]}−1

·
[

Mr[∇ω ]︷ ︸︸ ︷
r∑

j=1

∑

i∈U
†
j

∇ωl(ω
∗,xi + δ

∗
i )+

∑

i†∈U†

∇ωl(ω
∗,xi† + δ

∗
i†)

]
.

(38)

Then, the unlearning model with updated parameters ωu
r+1 := ω∗ +Ur(ω

∗,U†) satisfies the approximate unlearning criteria

for the adversarial training model in eq.(6).

The proof of Corollary 2 is similar to the proof of Corollary 1. Based on Corollary 2, MUter can be similarly designed to

support the successive batch unlearning setting.


