MUter: Machine Unlearning on Adversarially Trained Models

Junxu Liu"*, Mingsheng Xue®*, Jian Lou®%", Xiaoyu Zhang*, Li Xiong®, Zhan Qin*¢

'Renmin University of China 2Guangzhou Institute of Technology, Xidian University 3Zhejiang University

#Xidian University >Emory University °ZJU-Hangzhou Global Scientific and Technological Innovation Center

junxu_liu@ruc.edu.cn

xiaoyuzhang@xidian.edu.cn

Abstract

Machine unlearning is an emerging task of removing
the influence of selected training datapoints from a trained
model upon data deletion requests, which echoes the widely
enforced data regulations mandating the Right to be Forgot-
ten. Many unlearning methods have been proposed recently,
achieving significant efficiency gains over the naive baseline
of retraining from scratch. However, existing methods focus
exclusively on unlearning from standard training models and
do not apply to adversarial training models (ATMs) despite
their popularity as effective defenses against adversarial
examples. During adversarial training, the training data are
involved in not only an outer loop for minimizing the training
loss, but also an inner loop for generating the adversarial
perturbation. Such bi-level optimization greatly complicates
the influence measure for the data to be deleted and ren-
ders the unlearning more challenging than standard model
training with single-level optimization. This paper proposes
a new approach called MUter for unlearning from ATMs.
We derive a closed-form unlearning step underpinned by a
total Hessian-related data influence measure, while existing
methods can mis-capture the data influence associated with
the indirect Hessian part. We further alleviate the compu-
tational cost by introducing a series of approximations and
conversions to avoid the most computationally demanding
parts of Hessian inversions. The efficiency and effectiveness
of MUter have been validated through experiments on four
datasets using both linear and neural network models.

1. Introduction

Machine learning (ML) models are increasingly applied
to a broad range of applications, accompanied by growing
concerns about their privacy and robustness issues. Both
issues are actively studied in recent years [45]. On the

*“Equal contribution
Corresponding Author.

xuemingsheng@stu.xidian.edu.cn

lxiong@emory.edu

jian.lou@zju.edu.cn

ginzhan@zju.edu.cn

privacy side, model inversion attack [16] and membership
inference attack [51] reveal that the trained ML model con-
tains sensitive information of its training data, which can
cause privacy loss for individuals contributing their data for
model training. On the robustness side, adversarial exam-
ple attack is one of the most well-recognized robustness
attacks [24, 30, 39, 62]. Tt can easily fool an undefended
model, e.g., standard training model (STM), to misclassify
by a small adversarial perturbation on the input [9,24,39].
Many works focus either on the privacy [1,35,37,42,51]
or on the robustness aspect [9, 33,38, 53-56, 66], few works
studied both. Yet, it is critical to consider privacy and robust-
ness jointly [20,27,36,41,47,48,52] to build ML models
to simultaneously meet data privacy regulations and ensure
robustness against adversarial threats.

In this paper, we target a new joint privacy-robustness
problem to simultaneously meet emerging privacy regula-
tions and ensure adversarial robustness of the model, which
has not been examined before: how to efficiently and effec-
tively remove the influence of a training datapoint from an
adversarially trained model upon data deletion request?

The privacy need is driven by the widely enacted user
data regulations that enforce the Right to be Forgotten, for
example, the European Union’s GDPR [17], the California
Consumer Privacy Act (CCPA), and Canada’s proposed Con-
sumer Privacy Protection Act (CPPA). These regulations
mandate the deletion of personal data upon user requests and
can even include the deletion of models and algorithms de-
rived from the user data, e.g., the Federal Trade Commission
[15]. Machine unlearning [5, 8] aims to obtain an updated
model with the influence of the target datapoint removed in
an effective and efficient way. That is, the updated model
should be similar to the model obtained by the computation-
ally expensive retraining-from-scratch approach, while con-
suming less computation [21-23,26,31,43,44,58,60,61,65].

The robustness is achieved by the adversarial training
model (ATM) [3,24,30,39,59], which is a popular and ef-
fective defense for enhancing the model robustness against
adversarial examples by creating and incorporating adver-

Unlearing Request

=

Unable to sufficiently

Direct Hessian-only unlearning capture data influence

Direct Hessian

Total Hessian-based unlearning

_Catch information ?
hidden in perturbations

! Indirect Hessian

— YU

Figure 1: ATM has two interdependent sets of optimization variables, model parameters and adversarial perturbations (yellow
arrows), both of which contain nested training data influence (blue arrows). To remove such nested data influence, ATM
unlearning requires the total Hessian that consists of both direct and indirect Hessian components (green solid lines). Existing
unlearning methods designed for standard training models are inapplicable to ATM unlearning, because they only use direct

Hessian information during the unlearning update and do not capture sufficient data influence (red dashed lines).

sarial examples into the training process. ATM is trained
by a bi-level optimization with the model parameters as the
outer-level variable and the adversarial perturbations as the
inner-level variable. To the best of our knowledge, all exist-
ing unlearning methods focus solely on data removal from
STM. As our analysis will reveal in Section 3, the existing
methods cannot be applied to ATM unlearning without mis-
capturing the data influence to be removed, due to ATM’s
bi-level optimization structure.

In this paper, we propose a new unlearning approach
called MUter : Machine Unlearning for data removal from
adversarial training models. First, we define the ATM un-
learning task in accordance with the mainstream machine
unlearning standard. Second, we convert it to an ATM un-
learning criteria derived from the optimality condition of
ATM, which facilitates the derivation of the unlearning up-
date for ATM. Meanwhile, existing unlearning methods de-
signed for STM cannot satisfy the ATM unlearning criteria.
As illustrated in Figure 1, ATM, as a bi-level optimization,
has two sets of variables: model parameters and adversarial
perturbations, which are interdependent and both contain
training data information. In contrast, STM, as a single-level
optimization, has only one set of variables: model param-
eters, which have a direct influence dependence on each
training datapoint. Existing unlearning methods cannot suffi-
ciently remove data influence from ATM because they fail to
account for the indirect influence on the model parameters
(i.e., miss the indirect Hessian part in Figure 1). That is, due
to the coupled outer-inner optimization, any updates to the
outer model parameters will incur further updates for both
the adversarial perturbations and the model parameters. To
address this, we derive a new closed-form unlearning update
for ATM, which is underpinned by the total Hessian-based

influence measure. Third, based on the ATM unlearning
update, we propose a three-stage unlearning framework to
support successive unlearning requests for ATM, which en-
hances efficiency by selectively storing certain computations
in memory. Last, we leverage Schur complement conversion
and Neumann series approximation to avoid the computa-
tionally demanding and numerical unstable computations of
Hessian matrix and its inversions.

To summarize, our main contributions are:
1. We introduce the problem of unlearning from adversarial
training models, which is a new and pressing challenge to si-
multaneously meet emerging privacy regulations and ensure
the adversarial robustness of the model. To the best of our
knowledge, it has not been studied in the existing literature.
2. We derive a new unlearning update tailored to ATM un-
learning, which has the total Hessian-based data influence
measure to sufficiently account for the interdependence be-
tween inner and outer optimizations of ATM.
3. We propose MUter based on the proposed unlearning
update, which supports successive unlearning requests for
ATM and introduces a series of conversions and approxima-
tions for Hessian inversions to alleviate the computational
cost and improve the numerical stability.
4. We perform a comprehensive evaluation to verify that
MUter achieves effective and efficient unlearning perfor-
mance while maintaining the model accuracy and adversarial
robustness, under two unlearning settings on four datasets.

2. Preliminaries and Related Work

2.1. Setup and Notation

Setup. Denote the training dataset with n training sam-
ples by D = {(x1,91),--., (Xn,yn)}, where for Vi €

{1,...,n}, x; € R is the d-dimensional feature vector,
and y; € R is the corresponding response/label. Denote
the loss function by /(w, x;), where w € RP? represents the
vector of the p-dimensional model parameters.

Standard Training Model (STM). Standard training model
refers to the empirical risk minimization model: w},; =
argmin,, L 3" | I(w,x;), where w € R is the model pa-
rameter variable.

Adpversarial Training Model (ATM). Adversarial training
model is an effective defense against robustness threats posed
by the adversarial attack. In this paper, we adopt one of the
most widely-used ATM variants to consider the following

bi-level robust optimization formulation [30, 50],
w” = argmin — max l(w,x; + &;), €))
w n = 8, €B(x;,r)

where the inner optimization is to find adversarial perturba-

tion §; from the constraint set B(x;,r) to maximize the loss
and the outer optimization is to find the model parameter
w that minimizes the loss for the adversarially perturbed
examples. To make the interdependence between the outer
variable w and the inner variable § more explicit, we further
introduce an auxiliary function ¢;(w) given by

0;(w) = argmax l(w,x; + 6;). (2)
8;€B(x;,m)

Machine Unlearning for Adversarial Training Models.
Definition | below specifies the ATM unlearning task in
consistency with the mainstream unlearning standard. For
notational simplicity, we focus on single-point removal in
the paper, but the analysis and algorithms developed in the
paper are generalizable to batch removal as well (please refer
to Appendix B.5 for the batch removal generalization).

Definition 1. (Machine Unlearning for Adversarial Train-
ing Models) For a trained adversarial training model as in
eq.(1),let Vit € {1,...,n} be the index of a datapoint to
be forgotten. The ATM after machine unlearning unlearning
(forgetting datapoint 1) has parameter w* ., as follows,

n

max
Z 5,€B

X;,T
i=1,izit (ea,m)

w” ;y = argmin lw,x; +8;). (3)

n—1

Retraining-from-scratch serves as the golden standard
and also a naive baseline to obtain the unlearned ATM w™ .,
which is prohibitive in computation, especially for ATM with
both inner maximization and outer minimization. Hence, the
goal of machine unlearning for ATM is to approximately
remove i!’s influence with great computational efficiency

improvement over retraining-from-scratch.
Notation. For a twice differentiable [(w, x+6), V[(w,x+

d) denotes the direct gradient of [with respect to (w.r.t.)
w and Oyl (w,x + §), Jwsl(w,x + 8), Oswl(w,x + d),

Ossl(w, x +) denote the second order partial derivatives
w.r.t. w and &, correspondingly. The total Hessian is

Direct Hessian Indirect Hessian

—_—~
Dwwl (W, X + 8) := uul(w, X + 8) — 555 Oswl(w,x + 8),
“
where 6w58(5_5165wl(w, x + 0) = Ousllw,x +
8)(9ssl(w,x+8)) 105wl (w, x+ &). We also use the short
hand notation [} := l(w*,x; + J;(w™*)) and similarly intro-
duce VoI, Duwwll s Owslts Dswll Dssl.

2.2. Related Work

We briefly review existing machine unlearning methods.
They are exclusively focused on STM and are not applicable
to ATM unlearning with sufficient data influence removal.
We provide a brief overview of current machine unlearning
methods, which are focused exclusively on unlearning for
STM and are not applicable to ATM unlearning with suffi-
cient data influence removal. Thus, it is necessary to develop
a new unlearning approach specific to ATM unlearning.

Exact Machine Unlearning. Exact unlearning methods per-
form exact retraining but manage to do so only on a selective
portion of the dataset to avoid retraining on the entire dataset.
Some exact unlearning methods are designed for specific
models like Naive Bayes [8], quantized k-means [19], and
random forests [6]. Recently, SISA [5] proposes a more
general exact unlearning strategy. It divides the training
data into multiple disjoint shards during the training phase,
and retrains only on the shard that contains the data to be
removed during the unlearning phase. Later, [1 1] and [12]
extend the SISA strategy to unlearning for recommendation
systems and graph neural networks. However, the SISA strat-
egy requires different shards to be independently updatable
from each other, which is not the case for ATM due to its
interdependent bi-level structure.

Approximate Machine Unlearning. Approximate unlearn-
ing methods seek the updated model parameters to approxi-
mately satisfy the optimality condition of the objective func-
tion on the remaining data, which can be roughly divided into
three categories. 1) Unlearning with direct Hessian-related
terms: [22,26,31,34,40,43,49] propose Newton step-based
unlearning updates, where the Newton curvature matrices
are direct Hessian-related terms. These methods also in-
ject Gaussian noise to further destroy the remaining data
influence due to the discrepancy between the exact unlearn-
ing standard and the approximate unlearning criteria. Some
works also consider to alleviate the computational cost of
the Hessian. For example, [22] proposes to approximate the
direct Hessian with Fisher information matrix; [43] proposes
to avoid dealing with the entire direct Hessian by selecting
small Hessian blocks for unlearning update. 2) Unlearning
based on neural tangent kernel (NTK) theory: they approxi-
mates the training phase by NTK theory, where [23] regards

the training as an approximately linear change and [21] di-
vides the training phase into two stages, one is the linear
standard training on the core dataset, and the other is the lin-
ear finetuning on the target dataset. Both works then applies
direct Hessian-related unlearning updates. 3) Unlearning by
tracking the Stochastic Gradient Descent (SGD) path during
training: DeltaGrad [60] and unrollSGD [57] propose to
track and reverse the SGD optimization path during the train-
ing phase. However, all above methods do not consider the
interdependence between model parameters and adversarial
perturbations of ATM, which cannot holistically capture the
data influence, as will be detailed in the next section.

3. Unlearning Update for ATM

ATM Unlearning Criteria. We begin by converting eq.(3)
in Definition | to the optimality condition form of ATM
based on Danskin’s Theorem [13],

Z vwl(wiihxi + 5z(w*_zf)) =0,)
i=1,iit

which provides more convenience to the follow-up ATM
unlearning designs. Our goal is to find a closed-form un-
learning update U(w*,4!) such that the unlearning model
with parameter w® = w* + U(w*,i") will satisfy the fol-
lowing ATM unlearning criteria,

Z Vol(w, x; + 6;(w™)) = 0. (6)

i=1,iit

Cause of Inapplicability of Existing Approximate Un-

learning Methods. Before deriving our ATM unlearning
update, we recall the design rationale common to existing
approximate machine unlearning methods and point out why
they fail to sufficiently remove the data influence for ATM.
Despite the varying forms of specific unlearning updates, ex-
isting approximate unlearning methods all exploit the trained
model parameter w* and connect it with the unlearned model
w" by first-order expansion of V! around w*:

1< " "
T Z Vol(w", x; + §;(w"))
i=1,i#it
1 < . w @)
M Y [Vellw' x4 di(w"))
i=1,i#it

+ Owwl (W™, x; + 6 (w™)) (W™ — w*)].
Existing methods then obtain the updated w™ by letting the
right hand side of eq.(7) approach 0 and exploiting the opti-

mality condition of w*. For example, the influence function-
inspired unlearning [26,49] has U(w*,i') =

[D Ouwl(w® xi+8:(w")] 7 Val(w", X1 + ;i (w")).
i=1,i#£it

Direct Hessian-only

®

However, there are two obvious issues when applying the
above design rationale to the ATM unlearning: 1) the con-
version from eq.(7) to eq.(8) requires Y .-, Vi l(w*,x; +
di(w")) = 0, which does not hold in general. Rather,
the optimality condition only promises Y .- ; Vi, l(w*,x; +
di(w™)) = 0; 2) the Hessian Oyl (w™*, x; +J; (w™)) and gra-
dient V,l(w*, x; + 6;(w™)) in eq.(8) are not commutable
without knowing w* in advance. We point out that the root
cause of both issues is that eq.(7) fails to account for the
interdependence between w and § as in eq.(2).

Proposed ATM Unlearning Update. The above root cause
propels us to derive a new unlearning update that can holis-
tically capture the nested data influence. To account for
the interdependence between the adversarial perturbations
and the model parameters in eq.(2), we take the complete
expansion w.r.t. both w and 4 as in Lemma 1 below.

Lemma 1. By expansion around both w* and §(w™), the
approximate machine unlearning model parameter w" and
the original model parameter w* has the following relation,

1 - u u
o1 Z Vol(w",x; + 6;(w"))
i=1,i#it
1 - . .
] %T | Vel(w" i 4 6:(w)) ©)

+ Ouwl(@W”, % + 0i(w")) (W" — W)
o+ Busl(w, x4+ 8:(w")) (6:(w") = Gilw")].

Proof. Please refer to Appendix B.1. O

The last line of eq.(9) is key to the sufficient removal of
the data influence from ATM, which captures the interdepen-
dence between the adversarial perturbations and the model
parameters. Based on Lemma 1, we can derive the ATM
unlearning update in closed-form in Theorem | below.

Theorem 1. Consider the adversarial training model with
trained model parameter w* as in eq.(1). Let (X;1,y;t) be
a datapoint in the training dataset to be forgotten. Let the
machine learning update W(w* i) take the following form

n

W(w", i) ;:[3 Duwllw”,xi + éi(w*))]
i=1,i#£it

-1

Total Hessian (1 O)

. [le(w*,xﬁ e (w*))].

Then, the unlearning model with updated parameters w" :=
w* +W(w*, i) satisfies the approximate unlearning criteria
for the adversarial training model in eq.(6).

Proof. Please refer to Appendix B.1. O

It turns out that the ATM unlearning in eq.(10) requires
both direct Hessian and indirect Hessian (i.e., total Hessian

in eq.(4)) to sufficiently capture the data influence, while
previous methods for the STM unlearning have only the
direct Hessian-related part (e.g., eq.(8)). The total Hessian
term also appears in the second-order bi-level optimization
literature, e.g., the Complete Newton method in [64].

A New Influence Function. Finally, we would like to re-
mark that eq.(10) can be used to define a new influence
function as follows to measure the nested data influence of a
data point for ATM. It could serve as an independent interest,
for example, to measure the marginal contribution of a data
point to the model for valuation in data market [46] and
influence-based defense against data poisoning attacks [18].

Definition 2. (Leave-one-out Adversarial Influence Func-
tion) For the adversarial training model given in eq.(1), the
leave-one-out adversarial influence function for any (x, y)
in the training dataset is defined as

I(X> y) = - [% tiwl(w*7xi + 5:)] 71le(w*,x + 5*)
i=1

Definition 2 utilizes total Hessian instead of direct
Hessian-only as in [32], which captures the interdependence
between adversarial perturbations and model parameters.
This is different from recent work [14] which defines the
adversarial influence function as a training sample’s influ-
ence difference between two models: an STM and an ATM,
while Definition 2 measures a training sample’s influence
difference when it is in or out for a single ATM.

4. Proposed Method: MUter

Equipped with the ATM unlearning update, we propose
MUter, a three-stage unlearning method for ATM, which has
two design considerations: 1) Support the more practical
successive unlearning setting where multiple data points can
be forgotten in sequence by keeping a selective variable set
in memory (Sec.4.1); 2) Reduce the per-unlearning compu-
tational cost by introducing more efficient approximations
and conversions to avoid direct computations of the most
computational demanding Hessian inversions (Sec.4.2). The
overall framework of MUfter is illustrated in Figure 2. We
also present the complete algorithm in Appendix B.4.

4.1. Three Stages of MUter

Successive Unlearning Setting. Denote the indices of dat-
apoints that have already been forgotten at timestamp 7 by
{il,...,il}, the index of datapoint to be forgotten at times-
tamp r+1 by zi 1= if. Corollary 1 below extends Theorem
1 to support successive unlearning for ATM.

Corollary 1. Considering the successive unlearning setting,
let the machine unlearning update at the r + 1-th timestamp

U, (w*, z'Lrl) take the following form

Mo D]

ur(w*7ii+1) = { [Zwal(w*vxi + 6:)] -
i=1
Part of My D]

it

+

=1y

1
an

My (Vo]

S+

7

i

Then, the unlearning model with updated parameters
Wi = w4 U (W, iIH) satisfies the approximate un-
learning criteria for the adversarial training model in eq.(0).

Vol(w",x; + 687) +Vul(w*, x;1 + 85)] .

M

=+

1=1

Proof. Please refer to Appendix B.2. O

Stage 1. Pre-Unlearning. According to Corollary 1, it is
a natural idea to pre-compute and keep in memory the to-

tal Hessian {Z?Zl Dyl (w*, x; + 5;‘)} once the ATM is
trained and before responding to unlearning requests, since

it does not depend on the new point to be removed. Thus,

we initialize a memory set M at r = 0, which has three
n

memory parts: Mg[Dy] for {Zi:l Duwl(w*, x; + 6?)],
Mo[w*] for w*, and M[V,,] for V,, = 0atr = 0.

Stage II. Unlearning. Upon receiving a new unlearning
request to forget the if-th datapoint at timestamp r + 1,
Corollary 1 indicates that it suffices to compute the total
Hessian and gradient only on i rather than the entire train-
ing set, once the memory is set up and maintained. We
evaluate the following three parts in sequence: 1) The gra-
dient on i': V,l(w*, x;: + 67;); 2) The total Hessian on i:
Duwwl(w*,x;+407%); 3) The unlearning update W, (w*, iIH)
in eq.(11) and the updated parameters w;’,;. In addi-
tion, we can also inject Gaussian noise by w;!,; + n with
n ~ N(0,021) to further smooth the remaining data influ-
ence to the discrepancy between eq.(3) and eq.(6).

Stage II1. Post-Unlearning. To support subsequent unlearn-
ing requests, we update M, ; based on Corollary 1:

MT+1[D¢.J<.J] = MT‘[DL-JL.:)] - wal(W*v Xt + 6:’r)7 (12)
MT+1 [Vw] = MT[Vw] + le(w*7 X;t + 6;—), (13)

where the former 1is the online update for

[Dl xi+67)] - [Z;i Dul(w”, x:+67)]

t
and the latter is for [E::ﬁ Vol(w*, x; + 5;)}-

Stage 1. Pre-Unlearning E

Stage II. Unlearning
Build block matrix

...
h

H Stage II1. Post-Unlearning '
H TS .

! Update unlearninig information
H

Unleammg requests Unlcazlr“i ;O'Eploncms i
; H 2 [:]- > =
i ' o | E

o % ' M
i . — 1 i H
: Training H i 3l | % H : H
E datatset E E [i i w E
i H I] e : : :
; ¢ P] yo bo i
H : A H H ;
L - =Bl g :
. B Had Ina k- E I |
H i ., - . 0 WooAw | . H
H - .t H : E eumann series approximation !
H H V. [:] D @ w H H VI Obtain unlearning update Aw Update model 1 ! o 0) & H
H H H parameters .y = ([1-] =) (] =) H
............................... L= N LT T AR
Figure 2: The proposed MUter framework. Stage I: the pre-unlearning stage prepares the initial memory

MO[wa]a Mo[vw]; MO [w*]

Stage II: the unlearning stage computes the total Hessian and gradient on the data to be

forgotten and computes the ATM unlearning update by solving a linear system. Stage II: the post-unlearning stage updates
M 11[Dww] and M,.11[V,,] to be prepared for the next unlearning request.

4.2. Unlearning without Direct Hessian Inversions

We now present the approximations and conversions to
circumvent the most computationally expensive and poten-
tially numerical unstable parts in the three stages, which are
three Hessian matrix inversions: (Inv-1) The total Hessian in-
version of M, [Dyw] —Duwwl(w*, x;1 +67%)] ~! (Inv-2) The
partial Hessian inversion of 05 I(w*, x; +67;) inside the to-
tal Hessian in Stage IT; (Inv-3) The same 055 [(w*, X1 +6};)
but in Stage I & II1.

Avoid Matrix Inversions (Inv-1/2) jointly by Schur Com-
plement Conversion. After expanding the total Hessian as
in eq.(4), we can reorganize [MT[DW,] — Dy l(w*, x;1 +
8%.)] into the following form S = {MT[DW“,] - &‘,wl;} -

[- 8w58(;51 85‘,,@} , which can be regarded as the Schur

complement of the block matrix H:

H— Hyy Hyp _ M Do) —
Hy Hy sl

Dol Owsly |
— sl

(14)

By Schur complement lemma deferred to Appendix B.3 for
completeness, we convert the inversion of S to the inversion
of H, then the unlearning update is equivalent to solving a
linear system, as summarized in the following Theorem.

Theorem 2. The unlearning update U,.(w*, ii+1) ineq.(11)
can be equivalently computed by solving the linear system:

8ux ,?1- Aw _ Mr[vu]+vwljt
Aa| — 0

M'r [Dwu] -
Oxeols

auw :’f

—Oxx :7

where Aw is the unlearning update U,.(w*, T+1) and Ao
is an auxiliary variable that can be discarded.

The linear system in Theorem 2 can be solved by conju-
gate gradient or fixed point methods, which are more efficient
than computing the Hessian inversions (Inv-1/2) directly.

Avoid Matrix Inversions (Inv-3) by Neumann Series
Approximation. We expand 855112‘ by Neumann Series:
85_51l;" = limg_, oo Z?:o [I — axxl;"]]. Then, clipping at
order k, we have the following approximation,

+[1-0ssl2]". (15)

Each term in memory M. [Dy,] used in Stage I & III can be
approximated by Dyl ~ Dyl :=

86_61['? ~1I+ [I — 655[?] +

k
Ol = Ousli (Y [T 0ssli]) Osuli. (16)
J=0

5. Experiments

We conduct experimental evaluations on two groups of
machine learning models and four common datasets, under
two typical experiment settings in the unlearning literature
[21-23,26]. Our source code, experiment details, and more
experiment results can be found in Supplement.

5.1. Experiment Setup
5.1.1 Models and Datasets

Linear Models. We consider two linear models: 1) Ridge
Regression (RR) with least square loss; 2) Logistic Regres-
sion (LR) with logistic loss, both are regularized by squared
£5-norm with hyperparameter A = le — 4.

Neural Network Models. We utilize the Wide ResNet
model (i.e., Wide ResNet 28-10 model) [63] and consider
the pretraining setting [22, 26] (also similar to the mixed-
privacy removal setting [21]) for the neural network model
as follows. We first pretrain a model on a core dataset with
adversarial training. We then finetune the model on another
target dataset with adversarial finetuning [28], where all lay-
ers are frozen except the last layer. We consider unlearning
requests from only the target dataset used for the adversarial
finetuning.

Adversarial Training/Finetuning Algorithms. For outer-
level, we utilize SGD to optimize the model parameters
w™; for inner-level, we utilize both PGD [39] and FGSM
[24] to generate adversarial perturbations. The experiment
results by PGD are reported in the paper, while the results
by FGSM and more detailed training and finetuning settings
are relegated to Appendix A.1 and A.3.

Datasets. We consider four common datasets for the two
settings above: (linear models) i) MNIST-b is the subset
from MNIST with classes ‘1’ and ‘7’ for binary classifica-
tion purpose; ii) Covtype is a dataset from the LIBSVM
repository [10]; (neural network model with pretraining) iii)
CIFAR-10 (target dataset) and the Downsampled ImageNet
(core dataset) are both natural image datasets; iv) Lacuna-10
(target dataset) and Lacuna-100 (core dataset) are both face
datasets. More detail can be found in Appendix A.2.

5.1.2 Baseline Unlearning Methods

We compare MUter with six approximate unlearning meth-
ods (with their abbreviations in bold), all of which are origi-
nally designed for unlearning from standard training mod-
els. Since they utilize different Hessian terms in the un-
learning update, for a fair comparison, we evaluate them
under the same three-stage framework as MUter but sub-
stitute in their corresponding unlearning update formula-
tions. (1) Newton unlearning [26] and (2) Newton un-
learning measured with adversarial perturbation (Newton-
delta): both methods utilize the Newton step as the un-
learning update, where the former computes at the original
samples (i.e., [Z?:Li;éﬁ Dwwl (W™, ;)] _1le(w*,xﬁ))
and the latter at the adversarially perturbed samples (i.e.,
(S0 it Bweol (@ xi + 87)] 7 Vul(w®, X0 + 85)).
Similarly, we have (3) Fisher unlearning [22] and (4) Fisher-
delta, which utilize the Fisher matrix (V /- V 1) to approx-
imate the direct Hessian 0,,.,{. (5) Influence function-based
unlearning [32,40] and (6) Influence-delta, which utilize
the influence function for STM for the unlearning update.
Meanwhile, we utilize (7) Retrain-from-scratch as the
golden standard reference, which applies the same adversar-
ial training/finetuning algorithms to retrain/re-finetune the
model on the remaining data to obtain w” ; in eq.(3).

5.1.3 Evaluation Metrics

We measure four aspects of the unlearning performance: 1)
Effectiveness measures the closeness of the unlearned ATM
compared to the golden standard Retrain, for which we
utilize the ¢5-norm difference between the model parameter
vectors, i.e., [|w" —w™ ;||2; 2) Accuracy measures the clean
accuracy of the unlearned ATM, for which we utilize the
accuracy on clean test samples; 3) Robustness measures the
adversarial accuracy of the unlearned ATM, for which we

retrain —¥— Newton —— Influence
—e— MUter —¥— Newton_delta —&— influence_delta

—=— Fisher
Fisher_delta

Logistic PGD MNIST-b Logistic PGD Covtype

02 0.010
1.0 /./A 2.5
sl S A/ 2.0 [0.005] —
y . == A/ o |
2 12 4 c 15 12 3 4%
@ 0.6 / 5 .‘/
s 8
1) %) /
= ./ L= A 10 /1
P - » __—"
o2 J— 05 " i
~__a——
00 ="

0 100 200 300 400 500 600 0 5000 10000 15000 20000 25000
Removal Numbers Removal Numbers

Logistic PGD MNIST-b Logistic PGD Covtype

0.990
0.985 071
> 0.980 >
3 & 070
5 0.975 5 ~— — — .
g 0.970 i — S T~
e e i S | Q) 069 —~——
< 0.965 c ——
© L
D 0.960 o 068
s}
0.955 067
0.950
0.66
0 100 200 300 400 500 600 0 5000 10000 15000 20000 25000
Removal Numbers Removal Numbers
Logistic PGD MNIST-b Logistic PGD Covtype
00 L - . 0.62
> ; ‘ﬁ‘N‘hr > -9- -»- -0 -8 .
i—,
& 08 A\ & 0.60 ,\5§‘
g « 5 A
go7 ~ g X i
< N N | <ose \ .
T 0.6 , * o ‘\
[[
2 \ bS] 0.61 x
2 P ——— = 0.56
0.5 B i
g 0.91) F=EsSiE=i=at . é 0610 [t \‘
3] 0.90 9]
Soa \ & 54 |0:605
03 123 45 L] 12 3 4 5

0 100 200 300 400 500 600 0 5000 10000 15000 20000 25000
Removal Numbers Removal Numbers

Figure 3: Evaluation results on Logistic Regression Model:
Effectiveness (top), Accuracy (middle), and Robustness
(bottom) on datasets MNIST-b (left column), Covtype
(right column). Large plots have greater removal numbers:
1%,2%, - - -, 5%; the inside small plots have fewer removal
numbers: 1,2, ... 5.

utilize the accuracy on adversarial perturbed test samples;
4) Efficiency measures the unlearning time the unlearning
method takes to respond the unlearning request, for which
we report CPU time.

5.2. Experiment Results

5.2.1 Results with Linear Model

Figure 3 reports the experiment results with logistic regres-
sion model on the MNIST-b and Covtypes datasets. More
results with ridge regression are deferred to Appendix A.3.

Effectiveness. Top row of Figure 3 shows the effectiveness
comparison. All compared methods have increased model
parameter distance with the increasing number of unlearning

CIFAR-10 Lacuna-10
0.7 | —® MUter 2.0 | —® MuUter -
—¥— Newton v —¥— Newton
0.6 | —— Influence A —4— Influence
Fisher 15 Fisher
o 05] v
o —¥— Newton_delta I o —%— Newton_delta '
% 0.4 | —A— Influence_delta A % —4— Influence_delta /
krd 03 | % Fisher_delta / 4 10| _m Fisher delta o
LR y A
a 8 a -//‘ /
0.2 l/’l/ 0.5 '/1/7
ry
r 1/24'1
01| 2~ L
/0 /‘. / e o
0.0 | 5-0—o—o—@: 0.0 | s-o—¢
0 1000 2000 3000 4000 0 100 200 300 400
Removal Numbers Removal Numbers
CIFAR-10 Lacuna-10

N . ..
0.840 | eRn=s; —_— 0.84 | M ZadN \
= \!\ - r\ | .
ENS

7

> b 2082
5 0.835 ~ 3
5 Retrain 5 0.80 Retrain
o —e— MUter m O —e— MUter A
O 0.830 ¥ O 078 2
< —¥— Newton < Y —¥— Newton d
c —— Influence S 976 | * Influence ;
© 0825 Fisher o Fisher
O —¥— Newton_delta ‘ O 0.74 | =% Newton_delta
0.820 | —A— Influence_delta —&— Influence_delta
—— Fisher_delta 0.72 —— Fisher_delta
0 1000 2000 3000 4000 0 100 200 300 400
Removal Numbers Removal Numbers
CIFAR-10 Lacuna-10
0.485 /'Is%\ 0525 1z .
X = X S ————
‘_‘!\ \’_—° S 0500 | W S
5 % g _\.
AN .| S 0473 RN

Retrain

MUter

Newton
Influence
Fisher
Newton_delta
Influence_delta
Fisher_delta

0.450 Retrain
MUter
Newton
Influence
Fisher
Newton_delta
Influence_delta
Fisher_delta

(A

7,

I I o o
N > ES S
o 3))
a =) o S
]

Perturbed Accuracy
NELREERTE

v

7/
P; r;u rgedoAcc
NEIRERRTR)

1000 2000 3000 4000
Removal Numbers

100 200 300 400
Removal Numbers

Figure 4: Evaluation results on Neural Network: Effective-
ness (top), Accuracy (middle), and Robustness (bottom) on
datasets Lacuna-10 (left column) and CIFAR-10 (right col-
umn), under removal numbers (1, 0.4%, 1%, 2%, 4%, 8%).

Model Removal MNIST-b Covtype

Type Number Fisher F-delta MUter Retrain Fisher F-delta MUter Retrain
1 0.002 0.002 0.009 63 0.002 0.002 0.007 192
5 0.010 0.012 0.052 63 0.009 0.011 0.037 194

LR 10 0.019 0.021 0.106 62 0.018 0.022 0.071 194
1 0.002 0.002 0.009 64 0.002 0.002 0.006 200
RR 5 0.009 0.011 0.057 65 0.011 0.012 0.032 206

10 0.018 0.019 0.097 65 0.019 0.020 0.064 205

Table 1: Efficiency results with linear models of logistic
regression (top) and ridge regression (bottom): The unlearn-
ing time (in seconds) of Fisher, Fisher-delta, MUter and
Retrain under varying removal numbers: 1, 5, 10.

requests, which is due to the decreased approximation capa-
bility of the approximate unlearning criteria. MUter achieves
the smallest deviation from Retrain and outperforms all the
compared methods, which is because its ATM unlearning up-
date sufficiently captures the nested data influence in ATM.

Accuracy. Middle row of Figure 3 shows the clean accuracy
comparison. All unlearning methods do not show a signifi-

Removal Lacuna-10 CIFAR-10

Number Fisher F-delta MUter Retrain Fisher F-delta MUter Retrain
1 147 1.66 4.18 935 1.51 173 381 5224
5 7776 841 2137 934 754 858 18.64 5294
10 1551 16.82 41.69 932 1534 1642 37.57 5260

Table 2: Efficiency results with Neural Network: The un-
learning time (in seconds) of Fisher, Fisher-delta, MUter
and Retrain under varying removal numbers: 1, 5, 10.

cant drop in clean accuracy after data forgotten. In general,
MUter is among the methods that achieve higher accuracy
and exhibits close consistency with Retrain.

Robustness. Bottom row of Figure 3 shows the robustness
comparison. When the number of forgotten requests is small,
most methods have little variation in perturbed accuracy.
When the forgotten number becomes larger, all baseline
unlearning methods have an obvious decrease in perturbed
accuracy, while MUter still shows high perturbed accuracy
and has the closest proximity to Retrain.

Efficiency. Table 1 shows the efficiency comparison. MUter
has significant efficiency improvement over Retrain, which
is the utmost desideratum of the unlearning method. In addi-
tion, we compare with Fisher and Fisher-delta, which are
the most efficient methods among the six baseline methods
due to the more efficient Fisher information matrix approxi-
mation. MUter takes more CPU time because it computes
the total Hessian to obtain a more holistic data influence
measure, while the baseline methods compute only the (ap-
proximate) direct Hessian and omit the indirect Hessian.
Thus, the small increase in CPU time is the necessary tax to
pay in exchange for more effective unlearning.

Tradeoff between deletion effectiveness, accuracy, and
robustness. According to the above results, there is a trade-
off between efficient and deletion effectiveness, accuracy,
and robustness. That is, MUter takes slightly longer than di-
rect Hessian-only unlearning methods due to the additional
computation of the indirect Hessian. However, this extra
computation is worthwhile as MUter offers improved dele-
tion effectiveness, accuracy, and robustness.

5.2.2 Results with Neural Network Model

Figure 4 summarizes the results of effectiveness, accuracy,
and robustness on the two datasets for the neural network
model with pretraining. MUter has the smallest difference
of parameter distance with Retrain, which indicates that
MUter generates the most similar unlearning model to the
Retrain model. In addition, MUter has the most consistent
behaviour with Retrain in terms of clean accuracy and per-
turbation accuracy. In terms of efficiency, Table 2 reports
the comparison with Retrain and two most efficient base-
line methods Fisher and Fisher-delta. Similar to the linear

275
2550
225
@ 2.00
o
<
© 175
el
A 150
125
1.00

0.75

Lacuna-10 PGD Removal(5%)

Lacuna-10 PGD Removal(5%)

Lacuna-10 PGD Removal(5%)

— muter
—— newton
—— influence

fisher
—— newton_delta
— influence_delta
—— fisher_delta

Clean Accuracy

0.76

— muter
—— newton

—— influence \
fisher
—— newton_delta

— influence_delta
—— fisher_delta

—— muter
—— newton
—— influence

fisher
—— newton_delta
— — influence_delta
— fisher_delta

%S

—5.25 -5.00 —4.75 —-4.50 —4.25 -4.00 -3.75 -3.50
log(o)

—5.25 —5.00 —4.75 -4.50 —-4.25 -4.00 -3.75 -3.50
log(o)

=5.25 —5.00 —4.75 -4.50 -4.25 —-4.00 -3.75 -3.50
log(o)

Figure 5: Effect of Gaussian noise injection: Effectiveness (left), Accuracy (middle), and Robustness (right) versus the standard
variation o of Gaussian noise in log scale, under the case of removing 5% samples and on the Lacuna-10 dataset.

model case, MUter has significant efficiency improvement
over Retrain. Although MUter costs more unlearning time
than the approximate methods, it provides significantly more
effective, more accurate, and more robust unlearned ATM.

Effect of Varying Magnitudes of Gaussian Noise. Figure
5 shows the effectiveness, accuracy, and robustness compar-
isons under varying standard variations of Gaussian noise
(o) injected by w, | + n with n ~ N(0, *I). All methods
get worse unlearning model performance with larger o, but
MUter maintains the best performance for all ¢’s among all
compared unlearning methods.

6. Conclusion

In this paper, we studied a new joint privacy-robustness
problem of machine unlearning from adversarial training
models to simultaneously meet the emerging privacy reg-
ulations on Right to be Forgotten and ensure the adversar-
ial robustness of the model. We proposed a new unlearn-
ing method called Muter, which is underpinned by a total
Hessian-based measure to sufficiently capture the data influ-
ence on both model parameters and adversarial perturbations.
We further introduced the Schur complement conversion and
the Neumann series approximation to mitigate the computa-
tional cost. Our methods show significant enhancement in
effectiveness and efficiency compared to baseline methods.

As future works, several directions can be further ex-
plored: 1) extending MUter to other adversarial training
variants like adversarial regularization; 2) further reducing
the memory cost by considering low-rank/k-fact approxi-
mations to approximate the Hessian matrix, e.g., [25]; 3)
studying the approximation capability of the new influence
function inspired by MUter , e.g., across different depths of
neural networks [4]; 4) exploring the potential connection
between the new influence function with proximal Bregman
response function [2].

7. Acknowledgement

The authors would like to thank the anonymous reviewers
for their constructive comments. This research has been

funded in part by National Science Foundation of China
(NSFC) 62206207, 62102300, 62072395, and U20A20178,
National Key Research and Development Program of China
2020AAA0107705, National Science Foundation (NSF)
CNS-2124104, CNS-2125530, and National Institute of
Health (NIH) RO1ES033241.

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMa-
han, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learn-
ing with differential privacy. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications
security, 2016. 1

2

—

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and
Roger B. Grosse. If influence functions are the answer, then
what is the question? In NeurIPS, 2022. 9

[3] Tao Bai, Jingi Luo, Jun Zhao, Bihan Wen, and Qian Wang.
Recent advances in adversarial training for adversarial ro-
bustness. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, pages 4312-4321, 8
2021. Survey Track. 1

Samyadeep Basu, Phillip Pope, and Soheil Feizi. Influence
functions in deep learning are fragile. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021, 2021. 9

Lucas Bourtoule, Varun Chandrasekaran, Christopher A.
Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang,
David Lie, and Nicolas Papernot. Machine unlearning. In
42nd IEEE Symposium on Security and Privacy, 2021. 1, 3

Jonathan Brophy and Daniel Lowd. Machine unlearning for
random forests. In International Conference on Machine
Learning, pages 1092-1104, 2021. 3

Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, and An-
drew Zisserman. Vggface2: A dataset for recognising faces
across pose and age. In 2018 13th IEEE International Con-
ference on Automatic Face Gesture Recognition (FG 2018),
pages 67-74, 2018. 12

[8] Yinzhi Cao and Junfeng Yang. Towards making systems

forget with machine unlearning. In 2015 IEEE Symposium
on Security and Privacy, pages 463-480. IEEE, 2015. 1, 3

[4

—

[5

—

[6

—_

[7

—

(9]

[10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 IEEE Symposium on
Security and Privacy. IEEE Computer Society, 2017. 1
Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for
support vector machines. ACM Trans. Intell. Syst. Technol.,
2(3), may 2011. 7

Chong Chen, Fei Sun, Min Zhang, and Bolin Ding. Rec-
ommendation unlearning. In Proceedings of the ACM Web
Conference 2022, pages 2768-2777, 2022. 3

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes,
Mathias Humbert, and Yang Zhang. Graph unlearning. In
Proceedings of the ACM Conference on Computer and Com-
munications Security 2022, 2022. 3

John M Danskin. The theory of max-min and its application
to weapons allocation problems, volume 5. Springer Science
& Business Media, 2012. 4

Zhun Deng, Cynthia Dwork, Jialiang Wang, and Linjun
Zhang. Interpreting robust optimization via adversarial in-
fluence functions. In Proceedings of the 37th International
Conference on Machine Learning, volume 119, 2020. 5
Federal Trade Commission. California company settles ftc
allegations it deceived consumers about use of facial recogni-
tion in photo storage app, January 2021. 1

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model
inversion attacks that exploit confidence information and basic
countermeasures. In Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security, pages
13221333, 2015. 1

Regulation (EU) 2016/679 of the European parliament and of
the council of 27 April 2016, 2016. 1

Amirata Ghorbani and James Zou. Data shapley: Equitable
valuation of data for machine learning. In International Con-
ference on Machine Learning, pages 2242-2251, 2019. 5
Antonio A Ginart, Melody Y Guan, Gregory Valiant, and
James Zou. Making ai forget you: data deletion in machine
learning. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems, 2019. 3

Jairo Giraldo, Alvaro Cardenas, Murat Kantarcioglu, and
Jonathan Katz. Adversarial classification under differential
privacy. In Network and Distributed Systems Security (NDSS)
Symposium 2020, 2020. 1

Aditya Golatkar, Alessandro Achille, Avinash Ravichandran,
Marzia Polito, and Stefano Soatto. Mixed-privacy forgetting
in deep networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
792-801,2021. 1,4, 6

Aditya Golatkar, Alessandro Achille, and Stefano Soatto.
Eternal sunshine of the spotless net: Selective forgetting in
deep networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9304—
9312, 2020. 1,3,6,7, 12

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. For-
getting outside the box: Scrubbing deep networks of informa-
tion accessible from input-output observations. In European
Conference on Computer Vision, 2020. 1, 3,6

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Yoshua

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

Bengio and Yann LeCun, editors, 3rd International Confer-
ence on Learning Representations, 2015. 1,7

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex
Tamkin, Amirhossein Tajdini, Benoit Steiner, Dustin Li,
Esin Durmus, Ethan Perez, et al. Studying large language
model generalization with influence functions. arXiv preprint
arXiv:2308.03296, 2023. 9

Chuan Guo, Tom Goldstein, Awni Y. Hannun, and Laurens
van der Maaten. Certified data removal from machine learning
models. In Proceedings of the 37th International Conference
on Machine Learning, 2020. 1, 3,4, 6,7

Jamie Hayes, Borja Balle, and M Pawan Kumar. Learning
to be adversarially robust and differentially private. arXiv
preprint arXiv:2201.02265, 2022. 1

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using
pre-training can improve model robustness and uncertainty.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning
Research, pages 2712-2721, 09-15 Jun 2019. 6

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using
pre-training can improve model robustness and uncertainty.
In International Conference on Machine Learning, pages
2712-2721, 2019. 12

Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba
Szepesvari. Learning with a strong adversary. CoRR,
abs/1511.03034, 2015. 1,3

Zachary 1zzo, Mary Anne Smart, Kamalika Chaudhuri, and
James Zou. Approximate data deletion from machine learning
models. In International Conference on Artificial Intelligence
and Statistics, pages 2008-2016, 2021. 1, 3

Pang Wei Koh and Percy Liang. Understanding black-box pre-
dictions via influence functions. In International Conference
on Machine Learning, 2017. 5,7, 12

Haowen Lin, Jian Lou, Li Xiong, and Cyrus Shahabi. Integer-
arithmetic-only certified robustness for quantized neural net-
works. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 7828-7837, 2021. 1
Shen Lin, Xiaoyu Zhang, Chenyang Chen, Xiaofeng Chen,
and Willy Susilo. Erm-ktp: Knowledge-level machine un-
learning via knowledge transfer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023. 3

Junxu Liu, Jian Lou, Li Xiong, Jinfei Liu, and Xiaofeng
Meng. Projected federated averaging with heterogeneous
differential privacy. Proceedings of the VLDB Endowment,
15(4):828-840, 2021. 1

Yang Liu, Mingyuan Fan, Cen Chen, Ximeng Liu, Zhuo Ma,
Li Wang, and Jianfeng Ma. Backdoor defense with machine
unlearning. In /IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications, page 280-289, 2022. 1

Jian Lou and Yiu-ming Cheung. An uplink communication-
efficient approach to featurewise distributed sparse optimiza-
tion with differential privacy. IEEE Transactions on Neural
Networks and Learning Systems, 32(10):4529-4543, 2020. 1
Jie Ma, Xiangyuan Lan, Bineng Zhong, Guorong Li, Zhenjun
Tang, Xianxian Li, and Rongrong Ji. Robust tracking via

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

[50]

[51]

[52]

uncertainty-aware semantic consistency. IEEE Transactions
on Circuits and Systems for Video Technology, 33(4):1740—
1751, 2022. 1

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In 6th International
Conference on Learning Representations, 2018. 1,7

Ananth Mahadevan and Michael Mathioudakis. Certifi-
able machine unlearning for linear models. arXiv preprint
arXiv:2106.15093, 2021. 3,7

Neil G Marchant, Benjamin IP Rubinstein, and Scott Alfeld.
Hard to forget: Poisoning attacks on certified machine un-
learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 7691-7700, 2022. 1

Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics, 2017. 1

Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N. Ravi.
Deep unlearning via randomized conditionally independent
hessians. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
10422-10431, June 2022. 1, 3

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi.
Descent-to-delete: Gradient-based methods for machine un-
learning. In Algorithmic Learning Theory, 2021. 1

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and
Michael P Wellman. Sok: Security and privacy in machine
learning. In 2018 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 399-414. IEEE, 2018. 1

Jian Pei. A survey on data pricing: from economics to data
science. IEEE Transactions on knowledge and Data Engi-
neering, 2020. 5

Hai Phan, My T Thai, Han Hu, Ruoming Jin, Tong Sun, and
Dejing Dou. Scalable differential privacy with certified ro-
bustness in adversarial learning. In International Conference
on Machine Learning, pages 7683-7694, 2020. 1

NhatHai Phan, Minh N. Vu, Yang Liu, Ruoming Jin, Dejing
Dou, Xintao Wu, and My T. Thai. Heterogeneous gaussian
mechanism: Preserving differential privacy in deep learning
with provable robustness. In Sarit Kraus, editor, Proceed-
ings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, pages 4753-4759, 2019. 1

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and
Ananda Theertha Suresh. Remember what you want to for-
get: Algorithms for machine unlearning. Advances in Neural
Information Processing Systems, 34:18075-18086, 2021. 3, 4
Uri Shaham, Yutaro Yamada, and Sahand Negahban. Un-
derstanding adversarial training: Increasing local stability of
supervised models through robust optimization. Neurocom-
puting, 307:195-204, 2018. 3

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine
learning models. In 2017 IEEE Symposium on Security and
Privacy, pages 3—18. IEEE, 2017. 1

Liwei Song, Reza Shokri, and Prateek Mittal. Privacy risks of
securing machine learning models against adversarial exam-

(53]

[54]

[55]

[56]

[57]

(58]

(591

(60]

[61]

(62]

[63]

[64]

[65]

[66]

ples. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019. 1
Qiheng Sun, Xiang Li, Jiayao Zhang, Li Xiong, Weiran Liu,
Jinfei Liu, Zhan Qin, and Kui Ren. Shapleyfl: Robust fed-
erated learning based on shapley value. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 2096-2108, 2023. 1

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. In Yoshua Bengio
and Yann LeCun, editors, 2nd International Conference on
Learning Representations, 2014. 1

Farnaz Tahmasebian, Jian Lou, and Li Xiong. Robustfed:
a truth inference approach for robust federated learning. In
Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, 2022. 1

Pengfei Tang, Wenjie Wang, Jian Lou, and Li Xiong. Generat-
ing adversarial examples with distance constrained adversarial
imitation networks. IEEFE Transactions on Dependable and
Secure Computing, 19(6):4145—-4155, 2021.

Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and
Nicolas Papernot. Unrolling sgd: Understanding factors in-
fluencing machine unlearning. In 2022 IEEE 7th European
Symposium on Security and Privacy (EuroS&P), pages 303—
319. IEEE, 2022. 4

Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Pa-
pernot. On the necessity of auditable algorithmic definitions
for machine unlearning. In 31st USENIX Security Symposium
(USENIX Security 22), pages 4007-4022, 2022. 1

Boxi Wu, Jindong Gu, Zhifeng Li, Deng Cai, Xiaofei He,
and Wei Liu. Towards efficient adversarial training on vision
transformers. In European Conference on Computer Vision,
pages 307-325, 2022. 1

Yinjun Wu, Edgar Dobriban, and Susan Davidson. Deltagrad:
Rapid retraining of machine learning models. In International
Conference on Machine Learning, 2020. 1, 4

Jingwen Ye, Yifang Fu, Jie Song, Xingyi Yang, Songhua Liu,
Xin Jin, Mingli Song, and Xinchao Wang. Learning with
recoverable forgetting. In European Conference on Computer
Vision, pages 87-103, 2022. 1

Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Ad-
versarial examples: Attacks and defenses for deep learning.
1EEE transactions on neural networks and learning systems,
30(9):2805-2824, 2019. 1

Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In British Machine Vision Conference, 2016. 6
Guojun Zhang, Kaiwen Wu, Pascal Poupart, and Yaoliang
Yu. Newton-type methods for minimax optimization. arXiv
preprint arXiv:2006.14592, 2020. 5

Peng-Fei Zhang, Guangdong Bai, Zi Huang, and Xin-Shun
Xu. Machine unlearning for image retrieval: A generative
scrubbing approach. In Proceedings of the 30th ACM Inter-
national Conference on Multimedia, 2022. 1

Xiaoyu Zhang, Yulin Jin, Tao Wang, Jian Lou, and Xiaofeng
Chen. Purifier: Plug-and-play backdoor mitigation for pre-
trained models via anomaly activation suppression. In Pro-
ceedings of the 30th ACM International Conference on Multi-
media, pages 4291-4299, 2022. 1

Appendix

In this Appendix, Appendix A provides experiment de-
tails and deferred experiment figures and tables; Appendix
B provides the deferred proofs and the complete algorithm
description. In addition, Appendix B also describes how to
generalize MUter from successive single datapoint unlearn-
ing to successive batch of datapoints removal. Our source
code can be found in Supplementary Material.

A. Experiment Details and Deferred Experi-
ment Figures and Tables

A.1l. Experiment Details

Our experiments are based on the Pytorch platform and
run on RTX 3090. For the pretraining the Wide ResNet
model on Downsampled ImageNet, we run on four GPU
devices; For all other experiments, we run on a single GPU
device.

We summarize the hyperparameters used for our adversar-
ial training/finetuning in Table 3. For Neural Network Model,
we conduct experiments on Wide ResNet 28-10 model using
the datasets Lacuna-10 and CIFAR-10. We first perform
adversarial pretraining on Lacuna-100 and Downsampled
ImageNet datasets, both by SGD with momentum for the
outer-loops. For the former, we fix the learning rate to 0.1,
and then train for 80 epochs with momentum 0.9 and weight
decay 0.0005. For the latter, we use the pretrained model
in [29] as the pretrained model here, which has a similar
training process. Then, we freeze all but the last layer to ad-
versarially finetune the model on Lacuna-10 and CIFAR-10
datasets.

We summarize the hyperparameters required by MUter
in Table 4. In the neural network model experiments, [32]
points out that under the non-convex setting, the Hessian
matrix on parameters w* sometimes will not be positive
definite. We follow [32] to add a damping term A on the
diagonal with A = 0.0001.

Model Learning | (Tuning) | FGSM PGD
Dataset - -
type rate Epoch | epsilon | epsilon | alpha | steps

Logistic 0.01 100 025 | 025 | 003 | 15
MNIST-b Ridge 0.01 00 | 025 | 025 | 003 | 15
Cont Logistic 0.1 5 47255 | 4255 | 0.004 | 7
ovtype Ridge 0.1 5 4255 | 47255 | 0.004 | 7
Lacuna-10 | Neural Network | 0.01 20 8/255 | 8/255 | 2255 | 10
CIFAR-10 | Neural Network | 0.001 10 8/255 | 8/255 | 2255 | 10

Table 3: Adversarial training/finetuning parameters.

A.2. Datasets

Linear Model. We perform experiments on MNIST-b and
Covtype. MNIST-b is taken from the MNIST dataset, which
consists of 28 x 28 grayscale images from digist ‘0’ to digit
‘9’. We select the digit ‘1’ and digit ‘7 to form the binary

Model Neumann Series | Conjugate Gradient
Dataset . .
type order k iterations C'

Logistic 3 10
MNIST-b Ridge 3 10
Logistic 3 20
Covtype Ridge 20 20
Lacuna-10 | Neural Network 100 10
CIFAR-10 | Neural Network 100 20

Table 4: MUter parameters.

subset MNIST-b. Covtype with 54 attributes is used to clas-
sify the main tree species in the Roosevelt National Forest
wilderness area, where use the binary classification version
from LIBSVM.

Neural Network Model. We introduce Lacuna-100 and
downsampled ImageNet as core datasets, and conduct exper-
iments on target datasets Lacuna-10 and CIFAR-10. CIFAR-
10 consists of 32 * 32 color pictures, covering different an-
imals and machines in 10 categories. The Downsampled
ImageNet is derived from the 1000-class ImageNet dataset,
which resize the image to 32 x 32. Lacuna-10/Lacuna-
100 comes from [22]. We use the same data processing
method to select 10/100 celebrities (no intersection) from
VGGFace2 [7], and each celebrity randomly selects at least
500 pictures. Then each celebrity divides 100 pictures to
form the test set, and the remaining images to form the
training set. Finally, we resize the images to 32 * 32.

To facilitate the constrained adversarial perturbation for
adversarial training, all the above datasets are scaled to [0, 1]
(for image data, we use Totensor to transform, and for Cov-
type, we choose the version scaled to [0, 1] in LIBSVM.). We
summarize the dimensions, classes, and quantity information
of the above datasets in Table 5.

Dataset Domension Classes Train data Test Data
MNIST-b 784 2 11,982 1,198
Covtype 54 2 522,910 58,102
Lacuna-10 3072 10 4,374 1,000
CIFAR-10 3072 10 50,000 10,000

Table 5: Datasets Statistics

A.3. Deferred Experiment Figures and Tables

In this section, we report additional experiment results,
where Subsection A.3.1 reports additional experiment re-
sults under the PGD setting, and Subsection A.3.2 reports
additional experiment results under the FGSM setting.

A.3.1 Deferred Experiment Figures under PGD Setting

We summarize the experiment results under Ridge Model
with PGD in Figure 6.

—&— Fisher
Fisher_delta

—e— retrain —¥— Newton —&— Influence
—e— MUter —¥— Newton_delta —&— influence_delta

Ridge PGD MNIST-b Ridge PGD Covtype

-
049075 / 1, 002
.050 L 1
| ~ x
029 [nnt e - 10 Jooa| /
03¢ =ttt
) = 4] »
2 12 30, 2os8 12 3 4 /
© / L] i
0 o2 . 7 06
[a) [a] |
1 0.4 / i
0.1 ‘/'Ir‘ —
N 02 P e
a & 2
oo H e 00 L —_ -
" 0 100 200 300 400 500 600 0 5000 10000 15000 20000 25000
Removal Numbers Removal Numbers
Ridge PGD MNIST-b Ridge PGD Covtype
0.71
0.98
9 Z 070
© © o
o o | éA\. 2
5097 - 3 060 =~__——‘,:,\']
9 — e ————e 9 —
g L] ‘=-‘-_==i~|‘i e oes '\.\x
c 0.96 c 0.
© © ~
Q@ Q@
o G 067
0.95
0.66
0 100 200 300 400 500 600 0 5000 10000 15000 20000 25000
Removal Numbers Removal Numbers
Ridge PGD MNIST-b Ridge PGD Covtype
0.9 " 3
2 i =
A\" " "k i 0.62 \.
] | P T
0.8 s . .
g \1 g +
0.60 -§.
o o . -
007 9] s G
2 L z \§‘§‘\.
s \ Toss % —
-EOS [T rp——— 2 0.§2 |
2 T~a—a 2056 \
5 0.5 [0.875] b.60) I ——"—2 ~—
a - a e—e—e— *
0.54
0.4 1213 4\5-"/ 12 3 4 5

0 100 200 300 400 500 600 0 5000 10000 15000 20000 25000
Removal Numbers Removal Numbers

Figure 6: Evaluation results on Ridge Regression Model
with PGD: Effectiveness (left column), Accuracy (middle
column), and Robustness (right column) on datasets MNIST
(top) and Covtype (bottom). Large plots have greater re-
moval numbers: 1%,2%, - -- ,5%; Small plots inside the
large plots have fewer removal numbers: 1,2,--- | 5.

A.3.2 Deferred Experiment Figures and Tables under
FGSM Setting

In this part, we change the way of generating perturbations
from PGD to FGSM. With the same experimental settings
under PGD conditions, we report experiment results both on
Linear Model and Neural Network Model.

Results with Linear Model. We report the effectiveness,
accuracy and robustness metrics of logistic model and ridge
model in Figure 7 and Figure 8, respectively. In Table 6, we
summarize the efficiency comparison for linear model under
FGSM setting.

—&— Fisher
Fisher_delta

—e— retrain —¥— Newton —— Influence
—e— MUter —¥— Newton_delta —&— influence_delta

Logistic FGSM MNIST-b Logistic FGSM Covtype

12 5.50.010
e
1.0 2.09.005(|
o o 1)
0.8 x
L 2.5 12 3 44 /
© © Py
z 0.6 4@1 /
[a) olo N
04 ~
e —"
0.2 05 -‘/ /-/A/A
I, ! S
0.0 i S R — 0.0 et
0 100 200 300 400 500 600 0 5000 10000 15000 20000 25000
Removal Numbers Removal Numbers
Logistic FGSM MNIST-b Logistic FGSM Covtype
0.990
0.73
0.985
> >
3 0.980 9
8 @072
5 0.975 5 1|
3 3 —_— p— —
O 0,970 |- mm————— 1 Qo e ——— —
< = — g on ——
< 0.965 < .
b b
S 0.960 o o7
0.955
0.69
0.950
0 100 200 300 400 500 600 0 5000 10000 15000 20000 25000
Removal Numbers Removal Numbers
Logistic FGSM MNIST-b Logistic FGSM Covtype
0.9 b o —
> ;\‘\Tﬁ‘ — | 5% e
Oos - [% e —
g _\ g 0.62 \‘\ —
v 0.7 o
] g o061 5
8 \‘\ g \
3 0.6 = 3 0.60 %
2 T \ k) \
5 05| 09 — ", % 5
t 0.90 £
Qoa 2
0.89
0.3 1.2 3 4 5] 0.57 12 3 4 5
0 100 200 300 400 500 600 0 5000 10000 15000 20000 25000

Removal Numbers Removal Numbers

Figure 7: Evaluation results on Logistic Regression Model
with FGSM: Effectiveness (left column), Accuracy (middle
column), and Robustness (right column) on datasets MNIST
(top) and Covtype (bottom). Large plots have greater re-
moval numbers: 1%, 2%, --- ,5%; Small plots inside the
large plots have fewer removal numbers: 1,2, --- | 5.

Model Removal MNIST-b Covtype

Type Number Fisher F-delta MUter Retrain Fisher F-delta MUter Retrain
1 0.002 0.002 0.008 14.6 0.002 0.002 0.007 75
5 0.010 0.012 0.045 145 0.008 0.009 0.033 76

IR0 0020 002 008 142 0018 0019 0065 77
1% 0242 0249 0978 143 9178 11278 33974 77
T 0002 0002 0008 146 0002 0002 0007 78
pe 5 0009 0012 0047 145 0009 0009 0034 78

10 0.018 0.020 0.091 143 0.018 0.021 0.063 79
1% 0239 0.244 0.993 145 9.797 11.043 33.505 79

Table 6: Efficiency results with Logistic Regression Model
(top) and Ridge Regression Model (bottom) under FGSM:
The unlearning time (in seconds) of Fisher, Fisher-delta,
MUter and Retrain under varying removal numbers: 1, 5,
10, 1% (120 for MNSIT-b, 5000 for Covtype).

—¥— Newton
—¥— Newton_delta

—e— retrain
—e— MUter

Ridge FGSM MNIST-b

—=— Fisher
Fisher_delta

—— Influence
—&— influence_delta

Ridge FGSM Covtype

] -
0.4 4075 / 15 [0:02
.050 -
—nl P N 1)
& L _/ 10 001/ ~ /A
030 == -
o) e
2 12 340, gos 12 3 4 /
© © 1
® 02 _/ 06 i
a a !
A 0.4 o -
0.1 T -
oo H i 0.0 e ———— .
’ 0 100 200 300 400 500 600 0 5000 10000 15000 20000 25000
Removal Numbers Removal Numbers
Ridge FGSM MNIST-b Ridge FGSM Covtype
0.73
5, 0.98 ~0.72
(%} %}
© ©
S 0.07 S 0.71 .
. g S —————-—
A R e e e
= s ———1 —)
< 0.96 "l co70 b —
© ©
2 K
O O
0.95 0.69
0.68
0 100 200 300 400 500 600 0 5000 10000 15000 20000 25000
Removal Numbers Removal Numbers
Ridge FGSM MNIST-b Ridge FGSM Covtype
0.9 ; —e
2 o — s .
> \A\‘ — >
i
© 08 — @
3 3
3 S
g o7 \ 2
o el
g \ g
£ 0.6 0,904 [mmzm=p ; £
3 T . 3
£ " £
@ o5 0875 . @
a " o
._.—-/
1 2 3 4 5
0 100 200 300 400 500 600 0 5000 10000 15000 20000 25000

Removal Numbers

Removal Numbers

Figure 8: Evaluation results on Ridge Regression Model
with FGSM: Effectiveness (left column), Accuracy (middle
column), and Robustness (right column) on datasets MNIST

(top) and Covtype (bottom). Large plots have greater re-

moval numbers: 1%,2%, - -- ,5%; Small plots inside the
large plots have fewer removal numbers: 1,2,--- | 5.

Result with Neural Network Model. We report the effectiveness, accuracy, and robustness metrics of the neural network
model in Figure 9. In Table 7, we summarize the efficiency comparison for the neural network model under the FGSM setting.

Lacuna-10 Lacuna-10 Lacuna-10
12 —e— Muter] 0.84 1 /. z . 0.64 a .—/.—/—0
—¥— Newton e L\t
Lo — Influence i ""'%A 0.62 %é.-<ﬁ\
; G]
—=— Fisher 1 0.82 T n, z v \,
g T Newton-delta § X € 0.0 i
@~ & Influence-delta /' v 5 x g i
£ Fisher-delta i N 5 080 -~ Retrain X < g5g —® Retrain
Sos / ‘/ < —o— MUter 3 —o— MUter
a _/1 é —¥— Newton £ g T Newton \
0.4 ./:/ S 078 A Influence 2Y —A— Influence
r/t —&— Fisher = & —— Fisher
0.2 ./Z —¥— Newton-delta A 0.54 —¥— Newton-delta
i —— Influence-delta B —— Influence-delta ¥
0.0 e -—" ® 0.76 Fisher-delta = 0.52 Fisher-delta 4
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Removal Numbers Removal Numbers Removal Numbers
08 CIFAR-10 CIFAR-10 CIFAR-10
e MUter] 0850 e 0.615 o. 1
0.7 —¥ Newton 5§: :S:g‘§!::/ Y
—— Influence v \;\ w \¢
0.6 _g Fisher 0.845 % 2 0.610 S .\A
05 —¥— Newton-delta L . § g i
Y —&— Influence-delta " T < .] . \
€ 04 Fisher-delta X S 0.gag ~® Retrain < 0.605 —® Retrain 3 %
2 - "/ < —e— Muter s 9 —e— MUter
D03 //2 § —¥— Newton), £ —¥— Newton
1L 2 —&— Influence v —A— Influence %
02 ./"%/ © 0835 _m Fisher E 0% e Fisher it
01 A%x —¥— Newton-delta —¥— Newton-delta
/‘A —— Influence-delta 0505 A Influence-delta
00 we—e—tT————o—— ° 0.830 Fisher-delta - Fisher-delta 4
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Removal Numbers Removal Numbers Removal Numbers

Figure 9: Evaluation results on Neural Network with FGSM: Effectiveness (left column), Accuracy (middle col-
umn), and Robustness (right column) on datasets Lacuna-10 (top) and CIFAR-10 (bottom), under removal numbers

(1,0.4%, 1%, 2%, 4%, 8%).

Removal Lacuna-10 CIFAR-10

Number Fisher F-delta MUter Retrain Fisher F-delta MUter Retrain
1 1.51 1.57 3.96 150 143 156 3.72 799
5 7.81 8.08 20.72 151 771 811 18.23 794
10 1546 1594 39.82 150 1542 15.87 36.84 790

Table 7: Efficiency results with Neural Network Model under FGSM: The unlearning time (in seconds) of Fisher, Fisher-delta,
MUter and Retrain under varying removal numbers: 1, 5, 10.

B. Deferred Proofs and Algorithm Description

In this section, Subsection B.1 provides the omitted proofs for the derivation of the ATM unlearning update (i.e., Lemma
1 and Theorem 1), Subsection B.2 provides the omitted proof for the derivation of the successive unlearning setting (i.e.,
Corollary 1), Subsection B.3 provides the deferred Lemma for Schur complement for completeness and the omitted proof for
Theorem 2, Subsection B.4 provides the complete algorithm description for MUter , and Subsection B.5 how to generalize
MUter from successive single datapoint unlearning to successive batch of datapoints removal.

B.1. Proofs for Derivation of ATM Unlearning Update

B.1.1 Proof of Lemma 1

Proof. By Taylor expansion around both w* and d;(w™), we have

1
n—1

Z le(w",xi —+ 51(00“))
i=1,i£it
1 - . .
- ;M [Vl i +0,(w)) (17)

+ Owwl (W, i + 6;(w)) (w" — w) + O(Jw" — w|3)
+ Gwsl(w?, x; +0i(w")) (0i(w") = 0i(w™)) + O([|di(w") — 5i(w*)H§)] :

By furthering neglecting the higher-order Taylor expansion terms O(||w* — w*||3) and O(||§;(w™) — &;(w*)||3), we have the
following relationship,

1
n—1

> Vel(w",x; + 6i(w"))
i=1,i#iT

~—) [le(w*,xi—kéi(w*)) (18)
i=1,i£it

Dl (", X1 + 61 (")) (" — W)
o Qusl(w", %+ 05(w") (0i(w") = 83(w"))]

which proves Lemma 1. O

B.1.2 Proof of Theorem 1

Proof. By Lemma 1, we begin with

n

1 u u
1 Z Veol(w",x; + 0;(w"))
i=1,iif
R - ot G (19)
" 12;“ [le(w % + 6 (w*))

+ Ol (W™, x; 4 0;(w")) (W — W) + Dusl (W™, x; + §i(w™))(;(w") — 5i(w*))} .

For the first line on the right hand side of eq.(19), we have

1 n . .
— > Vul(w*, xi + 6i(w”))
i=1,i#it
LSVl () — Tl 0+ i 7)
= X i B —) X4 i
nflizl W& @ n—1 wi ! i (20)
1
:0 — mvwl(w*,xif =+ (Sif (w*)
1
= mvwl(w*,xﬂ + ;1 (w™)),
where the second equality is obtained as follows. Since w™ is the optimum of the following ATM,
1 n
w arg‘imnéier%?;im) - ; (w,x; + §(w™")) (21
it satisfies the following by Danskin’s Theorem,
1 n
~ > Vel(w",x; + 8i(w") =0, (22)

i=1
which is the second equality relation in eq.(20).

For the second line on the right hand side of eq.(19), we further expand (J;(w*) — d;(w*)) by the implicit function theorem.
That is, forall i € {1,--- ,n}, we have

Si(w") — 6i(w*) = =055 l(w*, x; + 6i(w")) - Dsel (W™, X; + 6;(w¥)) - (W — w*), (23)
which gives
1 - * * u * * * u *
— 4_12/‘7“ Dl (" Xi + Gi(w")) (@ = @) + Dl (", Xi + G:(w"))(6:(w") = 0i(w"))]
1 n
-y [&le(w*,xi + i (w)) (W — w*)
i=1,iit 24
— Owsl(w*, x; + 6;(w*)) 055 L(w™, X; + 03 (w™)) Osel (W™, X; + 8 (w™)) (W — w*)}
1 n * * u *
= Z Duwl(w™, x; + 0;(w™)) (w" — w™).
i=1,iit

By substituting eq.(20) and eq.(24) into eq.(19), we have

1 " . .
ol Z Vol(w", x; + 6;(w"))
i=1,i#it
n (25)
R = 7 Vel(w" xir 4 03t (W) + —— '—é-erWZ(w \Xi + 6 (W) (w" — w*).

Thus, w" = w* + U(w*,i") = w* + {Z?:Li;ﬁﬂ Deyeo ! (W™, x; + 51(w*))] e [le(w*, Xt + ;1 (w*))| is the the solution
to the following linear system,

Z Duwl(w™, x; + §;(w*))(w* — w™) =0, (26)
i=1,iit

1
Vol(w®, x4 6;1 (w")) +

n—1 n—1

which gives ﬁ S it Vol(w®, x; + §;(w")) =~ 0 according to eq.(25). As a result, we have proved that w" satisfies
the approximate unlearning criteria for ATM. O

B.2. Proofs for derivation of Successive Unlearning Setting
B.2.1 Proof of Corollary 1

Proof. Denote the data that have been deleted by U/, := {il, i2, ...,il}. Similar to the ATM unlearning standard in eq.(3), we
have the retraining-from-scratch model parameter after the r + 1- th unlearning by w* which has the following definition,

—U,uit?
1 n
Wiy uit = argmin g Z g maxU(w,Xi + 8i). @7)
i=1,iAU- Uit

The unlearning criteria for ATM at the r + 1-th unlearning is as follows,

n

> Val(Wt gy X+ 8i(w g i) ~ 0. (28)
i:l,z‘;éu,.uﬂ

Our aim is to show that w;’, ; approximately satisfies the above criteria,

n

Z v l(7+1’X5+5(7+1)) 07 (29)

i=1,i£U, Uit

which is also the approximate unlearning criteria for ATM in eq.(6).
The proof is similar to Theorem 1, as follows,

n

Z v l(1+17X1+5(r+1))
i=1,i2U, Uit
-f

[ZV Hwy'q,%i + 6wyl } [ZV Hwy'yq, % + 6i(w 7‘+1>)} - [le(w;LJrlvxiT+6ﬂ(wal"b+1)>}

i=1 l’LI

z[(Zv“’l(w*’xi +6i(w")) + Quwl(w®, xi + 0i(w)) (Wi — w*) + duwsl(w™, xi + 0i(w")) (0w’ 1) — 51‘(60*)))}

Zv U™+ 05(w")) + Dol (W, % + 83(w") (i1 — @) + Busl(w”, i + (W) (Bi(wiy) — ("))

Z’Ll

-[(
([Tl + 811 (7)) Dol a1 + 851 (@) (" — 07) 4 Ol 01 + 83 () (B () — b1 ()]
[zn: Vol (w*, % + 6;(w*)) + Duwl(w", X; + 6;(w*)) (wy; — w*)}

it

r

D Valw" x4 61(w") + Dol i + 8i(w")) Wiy —)]

Lt
’L’Ll

-
[Vl s 4 851 () Dussl(3651+ 8 () (1 —)]

_[Duwl (W™, x; + 0;(w™)) (W) — w*)}

[10" 0+ 81(07)) + Dar 00", , + 64w w0ty —)]
[(@ it + 811 (@) + Dol (@, i1 + 1 (")) (@i, = w")],

(30)

where the approximation equality is by the Taylor expansion and neglecting the higher-order terms, the second equality is by
implicit function theorem and the definition of the total Hessian, and the third equality is by Y ;- ; Vl(w*,x; + 6;(w*)) =0
by eq.(22).

Thus, w, ;| = w* + U, (", i1) is the the solution to the following linear system,

il
— Z Vol(w*, x; + 0i(w")) — Vol(w*, x4t + 6;1 (W)

i=il
n if Gh
+ [Zwal(w*,xi +6;(w")) — Z Dywl(w*,x; + 8;(w*)) = Dl (w™, Xt + §j1 (w*) | (w" — w™) =0,
i=1 i=i]
which gives Z?:l,i v uit Vol(wiy X +6i(wyty 1)) ~ 0. As a result, we have proved that w" satisfies the approximate
unlearning criteria for ATM in eq.(29) that is consistent with eq.(6). O]

B.3. Proof for Schur Complement Conversion
B.3.1 Additional Lemma of Schur Complement

Lemma 2. (Schur Complement Conversion) Let S = Hy; — H12H521 Ho,. If Has and S are invertible, then H is invertible
and the following relation holds,

H' = {H“ Hl?}_l _ { s~ ~S™'H,H,, } (32)
H,, Hy ~HyH»S™! Hy, Hy S 'HHS |
B.3.2 Proof of Theorem 2
Proof. Let
S = [Me[Duw] = Gulis| = | = Ousg Dol . (33)
which is the Schur complement of the following block matrix,
Hy; Hp M Dyw] = Owawlfi Owslf;
H= = v NI 34
[Hm H22:| { sl —0s5l3; (34
Then, based on Lemma 2, we have
-1
_ H H g
Slg=Aw=1[I 0]-|,.% <2 |2/, 35
& w=|] l:H21 Hso 0 (35)
which can be cast as the solution of the following linear system,
H;;, Hp| [Av| g
By substituting eq.(34) in, we have
MT[wa] - 6wwl:f 8«.;6[; Aw _ M'r‘ [Vw] + le;‘k“r (37)
35@,1;} 765512} A 0 ’

which proves Theorem 2. O

B.4. The Complete Algorithm Description

We present the complete algorithm description for MUter in Algorithm 1.

Algorithm 1 The Complete Algorithm Description for MUter

Input: Training dataset D = {(x1,%1),- - -, (Xn, Yn)}, loss [, adversarial perturbation constraint%(xi, 1), adversarial training
finishing status {w*, 81 (w*), - - - , 8, (w*)}, a sequence of indices to be removed U = {i{, il ... }
1: Stage 1. Pre-Unlearning:
2: Compute memory Mo[Deww] = S| D l(w x; + d;(w*)) by eq.(16);
3: Initialize M[V,,] = 0 and /\/lo[=
4 foril , =il do
5: Stage II. Unlearning:
6: Re-compute the adversarial perturbation d; (w™);
7. Compute gradient g = V,[%;
8: Apply conjugate gradient (with C' iterations) to solve the least square problem of the linear system

9:
10:
11:
12:
13:

M, Duw] = Ouwlli Buslly | [Aw] [M,[Va] + Vol
85wl;§ —85512} Aa o 0 ’

Obtain W, (w*, ii+1) = Aw, the model paraeter after the r + 1-th unlearning: w;', | = w* + W, (w*, ii+1)§
Stage III. Post-Unlearning:k _
Wyt = Ouolfy — sl [Do (L — 05813)] Dswlf; by eq.(16);
Update the memory M, 41[Dyw] = M- [Duww] — m;t and M, 1[Vy] = M, [Vu] + g
end for

B.5. Extension to Successive Batch Unlearning

In this subsection, we show that our method can be generalized to the successive batch unlearning setting.

Successive Batch Unlearning Setting. Denote the index sets of datapoints that have already been forgotten at timestamp r by

uf

.-+ ,UI'}, where each U contains a set of data indices. Let the set of datapoints to be forgotten at timestamp r + 1 by

L{: L =Uu f. Corollary 2 below extends Corollary 1 to support successive batch unlearning for ATM.

Corollary 2. Considering the successive batch unlearning setting, let the machine unlearning update at the r + 1-th timestamp

u

~(w*,UT) take the following form

MO[wa]

i o = [t]

Part of M. [Dww]

{Z > Duwl(w®, xi + 52‘)} —{ > Duwl(w”, x;i +5;;)} }_1 (38)

j=1 ieu} iteut
M [Vo]
SN Vel xi+ 8+ Y Valw' x4 65)].
i=Lieu] iteut

Then, the unlearning model with updated parameters w;*, | = w* + WU, (w*, U 1) satisfies the approximate unlearning criteria
for the adversarial training model in eq.(6).

The proof of Corollary 2 is similar to the proof of Corollary 1. Based on Corollary 2, MUter can be similarly designed to

support the successive batch unlearning setting.

