

1 Personalized Differentially Private Federated Learning without 2 Exposing Privacy Budgets

3 Anonymous Author(s)
4 Submission Id: 2886***

5 ABSTRACT

6 The meteoric rise of cross-silo Federated Learning (FL) is due to its
7 ability to mitigate data breaches during collaborative training. To
8 further provide rigorous privacy protection with consideration of
9 the varying privacy requirements across different clients, a privacy-
10 enhanced line of work on personalized differentially private federated
11 learning (PDP-FL) has been proposed. However, the existing
12 solution for PDP-FL [19] assumes the raw privacy requirements
13 (i.e., privacy budgets) of all clients should be collected by the server,
14 which are then *directly* utilized to improve the model utility via facil-
15 itating the privacy attitudes partitioning (i.e., partitioning all clients
16 into multiple privacy groups). It is however non-realistic because
17 the raw privacy budgets can be quite informative and sensitive.
18

19 In this work, our goal is to achieve PDP-FL without exposing
20 clients' raw privacy budgets by indirectly partitioning the privacy
21 attitudes solely based on clients' noisy model updates. The crux
22 lies in the fact that the noisy updates could be influenced by two
23 entangled factors of DP noises and non-IID clients' data, leaving
24 it unknown whether it is possible to uncover privacy attitudes by
25 disentangling the two affecting factors. To overcome the hurdle,
26 we systematically investigate the unexplored question of *how to*
27 *determine the conditions under which the model updates of clients*
28 *can be dominated by the heterogeneous DP noises instead of non-IID*
29 *data*. Then, we propose a simple yet effective strategy based on
30 clustering the L2 norm of the noisy updates to indirectly estimate
31 the privacy attitude partitions, which can be integrated into the
32 vanilla PDP-FL to maintain the same performance. Experimental
33 results demonstrate the effectiveness and feasibility of our privacy-
34 budget-agnostic PDP-FL method.

35 CCS CONCEPTS

- 36 • Security and privacy → Privacy protections.

37 KEYWORDS

38 differential privacy, federated learning, personalization

39 ACM Reference Format:

40 Anonymous Author(s). 2023. Personalized Differentially Private Federated
41 Learning without Exposing Privacy Budgets. In *Proceedings of (Conference acronym 'XX)*. ACM, New York, NY, USA, 5 pages. <https://doi.org/XXXXXX.XXXXXXXX>

42 Permission to make digital or hard copies of all or part of this work for personal or
43 educational use is granted. For other kinds of copying, such as for general distribution
44 for profit or commercial advantage and that copies bear this notice and the full citation
45 on the first page. Copyrights for components of this work owned by others than ACM
46 must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
47 to post on servers or to redistribute to lists, requires prior specific permission and/or a
48 fee. Request permissions from permissions@acm.org.

49 Conference acronym 'XX, June 03–05, 2023, Woodstock, NY

50 © 2023 Association for Computing Machinery.

51 ACM ISBN 978-1-4503-XXXX-X/18/06...\$15.00

52 <https://doi.org/XXXXXX.XXXXXXXX>

53 Submission ID: 2886. 2023-08-29 23:01. Page 1 of 1-5.

54 1 INTRODUCTION

55 Cross-silo Federated Learning (FL) [12, 21], which allows multiple
56 clients to collaboratively train a global model without requiring access
57 to clients' raw data, has been widely adopted both in academia
58 and industry. Differential Privacy [5, 6] has been further integrated
59 into FL, which gives rise to the DP-FL studies [2, 3, 7, 20, 24, 25] that
60 seek to provide mathematically rigorous privacy protection at the
61 desired level quantified by the privacy budget. DP-FL bears much
62 resemblance to non-DP FL in training (e.g., by building on top of
63 FedAvg [21]) but additionally incorporates local updates clipping
64 and Gaussian noise injection [1, 4, 22, 28], whereby clients' local
65 updates will be more strictly protected.

66 A more challenging yet practical problem is personalized differen-
67 tially private federated learning (PDP-FL)¹, which takes the wide-
68 ranging differences in individuals' privacy attitudes [11, 23, 26] into
69 consideration and enables clients to pre-define their own privacy
70 budgets (as opposed to shared an identical value specified by the
71 server) [19]. Definition 1 formalizes this problem. One common
72 way to achieve PDP in FL is to add different amounts of Gaussian
73 noise to clients' submitted local updates, while directly aggregating
74 the noisy and discordant local updates would inevitably lead to
75 suboptimal model performance due to the biased estimation of the
76 global parameters. To address these issues, Liu et al. [19] present the
77 first promising attempt by developing a projection-based approach
78 named projected federated averaging (PFA) for noise reduction
79 [8, 30]. However, a major downside of PFA is that they treat clients'
80 privacy budgets as publicly available knowledge and allow the
81 server to utilize this information directly to identify the conserva-
82 tive/liberal clients at the initialization stage (see Line 5, Algorithm
83 1 in Section 2).

84 **Definition 1** (Personalized Differential Privacy in Federated Learn-
85 ing [19]). Let the set of clients be $C = \{C_1, \dots, C_M\}$, where each
86 client $C_m \in C$ holds a local dataset \mathcal{D}_m . The federated learning
87 satisfies $\{(\epsilon_m, \delta_m)\}_{m \in [M]}$ -personalized differential privacy, if each
88 client satisfies (ϵ_m, δ_m) -DP with respect to its local dataset.

89 We contend that assessing clients' privacy budgets is unrealistic
90 and problematic. This is because the precise privacy budgets are
91 also quite informative and sensitive for clients, and may act as a
92 trigger for potential privacy attacks. Yet, we are not aware of any
93 approach designed to discern the underlying privacy attitudes of
94 clients based solely on their noisy model updates. Intuitively, the
95 diversity of privacy budgets implies the varying magnitude of the
96 perturbations added to the gradients, leading to a difference in the
97 magnitude of clients' local updates due to the cumulative effects. On
98 the other hand, such a difference also could be subject to the non-
99 IID client data [15, 18]. An open question is *how to determine the*

100 ¹In our considered cross-silo setting, we use "personalized DP" to refer to customizing
101 DP guarantees for each client rather than a specific user belonging to each client.

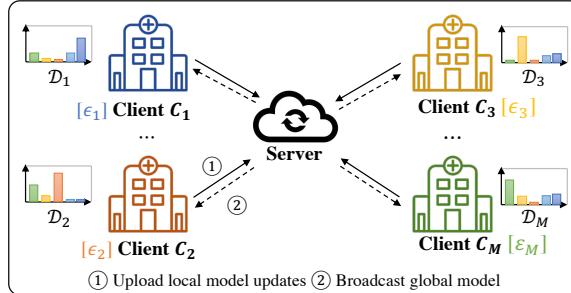


Figure 1: An illustration of the PDP-FL framework in which heterogeneous clients with non-IID data and personalized privacy budgets are collaboratively training a global model.

conditions under which the model updates of clients can be dominated by heterogeneous DP noises instead of non-IID data.

Contribution. In this paper, we aim to address the issue of indirectly estimating the privacy attitudes in the context of cross-silo FL for clients with non-IID data distributions and varying privacy budgets (ϵ). To summarize, our contributions are twofold.

- (1) We discover through systematic empirical observations that the magnitude (i.e., L2-norms) of clients' local updates can serve as an effective indicator to facilitate indirect privacy attitudes partitioning. This novel insight propels the development of our clustering-based approach without requiring any prior knowledge about the real ε .
- (2) We introduce a simple yet powerful approach for indirect privacy attitudes partitioning that suffices to leverage off-the-shelf clustering methods (e.g., Gaussian Mixture Models algorithm) to neglect the reliance on the raw privacy budgets in existing PDP-FL. To assess the effectiveness, we integrate it into the PFA framework and verify that our indirect privacy attitude partitioning approach can maintain the same model performance under the same experimental setup in the previous study[19].

2 PRELIMINARIES

Differential Privacy (DP). The definition of the classic (ϵ, δ) -DP is as follows, where the parameter ϵ is referred to as the *privacy budget* and the other parameter $\delta \geq 0$ captures the probability that the privacy is broken in the worst-case. A smaller value of ϵ corresponds to a higher level of privacy that can be achieved.

Definition 2 (ϵ, δ) -Differential Privacy [6]. Let \mathcal{D} be the space of all datasets and $D, D' \in \mathcal{D}$ is any pair of *adjacent datasets* where D' is obtained by deleting *any one* individual d from D , i.e., $D = D' \cup \{d\}$. A randomized mechanism $\mathcal{M} : \mathcal{D} \rightarrow \mathcal{R}$ satisfies (ϵ, δ) -DP if for any subsets of outputs $S \subseteq \mathcal{R}$, it holds that

$$\Pr[\mathcal{M}(D) \in S] \leq e^\varepsilon \Pr[\mathcal{M}(D') \in S] + \delta.$$

Federated Averaging (FedAvg). FedAvg [21] is the most widely used algorithm for solving the federated optimization problem. In each communication round, a randomly sampled subset of clients run a certain number of Stochastic Gradient Descent (SGD) steps locally and independently, then the server averages the local updates and broadcasts a single global model to all clients. FedAvg

Algorithm 1: Projected Federated Averaging with Personalized Differential Privacy

input : Clients' privacy preferences $\{(\epsilon_m, \delta)\}_{m \in [M]}$, number of communication rounds T , number of local steps τ
output : \hat{w}_T (global model)

```

1 Framework PDP-FL({ $\langle \epsilon_m, \delta \rangle$ } $_{m \in [M]}$ ,  $T$ ,  $\tau$ ):
2   for round  $t = 1, \dots, T$  do
3      $S_t \leftarrow$  (random subset of  $K$  clients)
4     // Partition clients into "public" and "private"
5      $S_t^{(pub)}, S_t^{(pri)} \leftarrow$ 
6     (Before) Direct partition based on exposed privacy budgets  $\{\epsilon_m\}_{m \in S_t}$ 
7     (After) Indirect partition based on clustering with L2-norms of the noisy local
8       updates  $\{\Delta x_t^m\}_{m \in [K]}$ 
9     foreach  $m \in S_t$  do in parallel
10       $\Delta x_t^m \leftarrow$  DPSGD( $t, x_t, \epsilon_m$ )
11
12       $\bar{x}_t \leftarrow$  PFA( $\{\langle \epsilon_m, \Delta x_t^m \rangle\}_{m \in [K]}$ ,  $S_t^{(pub)}, S_t^{(pri)}$ )
13       $x_{t+1} \leftarrow x_t - \Delta \bar{x}_t$ 
14
15   return  $\bar{x}_T$ 
16
17 Function PFA( $\{\langle \epsilon_m, \Delta x^m \rangle\}_{m \in [K]}$ ,  $S^{(pub)}, S^{(pri)}$ ):
18   // Compute the subspace from "public" updates
19    $V_k \leftarrow$  (the top- $k$  eigenvectors of the second moment matrix computed from all
20    $\Delta x^m$  and  $m \in S^{(pub)}$ )
21   // Project "private" updates onto the subspace
22    $\hat{\Delta x}^{(pri)} \leftarrow V_k V_k^\top \sum_{m \in S^{(pri)}} \omega_m \Delta x^m$ 
23
24   // Projected federated averaging
25    $S \leftarrow S^{(pub)} + S^{(pri)}$ 
26
27    $\bar{\Delta x} \leftarrow \frac{\sum_{m \in S^{(pub)}} \epsilon_m}{\sum_{m \in S} \epsilon_m} \cdot \Delta \bar{x}^{(pub)} + \frac{\sum_{m \in S^{(pri)}} \epsilon_m}{\sum_{m \in S} \epsilon_m} \cdot \Delta \hat{x}^{(pri)}$ 
28
29   return  $\bar{\Delta x}$ 

```

by itself makes no special adjustments when encountering non-IID client data and therefore suffers from suboptimal performance in such circumstances [9, 16, 17].

Projected Federated Averaging (PFA). In PFA [19], all clients are divided into two types according to their precise privacy budgets (i.e., “private” clients with stricter privacy budgets and “public” clients with more relaxed privacy budgets) exposed to the server at the initialization stage; then the server extracts a reduced-dimensional subspace from the “public” model updates and projects the “private” model updates onto it. In this way, the heavy private perturbation of the “private” updates can be discarded, and the most useful information from all clients can be aggregated to improve the joint model utility. Pseudocode is given in Algorithm 1.

3 STUDY ON THE IMPLICATIONS OF NOISE LEVEL AND DATA DISTRIBUTION

In this section, we conduct a comprehensive empirical study to explore the characteristics of the local model updates obtained from heterogeneous clients whose local data distribution and privacy budgets differ from one another. This investigation aims to gain insights into the conditions under which the DP perturbations can significantly affect the client's local updates compared to the effect caused by non-IID data.

3.1 Experimental Setup

Datasets and Models. We consider two classic image classification tasks: the MNIST [14] digit recognition with a simple logistic regression model (MNIST-LogR) and the CIFAR10 [13] image classification with the same CNN architecture as in McMahan et al. [21]. We deploy them in the cross-silo FL setting with $M = 10$ clients.

233 **Data Distributions.** To examine the effects of data heterogeneity,
 234 we first establish the baseline using IID data and consider two
 235 partition strategies to simulate potential non-IID scenarios.

- 236 • **IID:** each client is assigned a uniform distribution over 10 classes.
- 237 • **NIID(2):** also known as the *quantity-based label distribution skew*
 238 where each client owns data records of a fixed number (e.g., 2) of
 239 labels [21].
- 240 • **NIID-Dir(0.5):** also known as the *distribution-based label imbalance*
 241 where a $p_{k,m} \sim Dir(\beta)$ proportion of records of class k are
 242 allocated to client m . Here $Dir(\beta)$ denotes a Dirichlet distribution
 243 [10] and the smaller the β is, the resulting partition is more
 244 unbalanced. We choose the same $\beta = 0.5$ as done in [29].

245 **Varying privacy budgets.** We explore a diverse range of pri-
 246 vacy budgets ϵ to manifest the significant differences in privacy
 247 requirements among clients with varying privacy attitudes (e.g.,
 248 $\epsilon \approx 0.4, 3.0, 20$ for the MNIST-LogR experiments), and establish the
 249 baseline without any DP requirement.

250 **Methods.** For all experiments, we employ FedAvg [21] as the base
 251 FL algorithm. To ensure DP-FL, we incorporate minibatch DP-SGD
 252 [1] into clients' local training procedures, resulting in a modified
 253 version of FedAvg known as DP-FedAvg. In brief, DP-FedAvg intro-
 254 duces a certain amount of Gaussian noise to the clipped gradients
 255 during each local SGD iteration. It is worth noting that we do not
 256 employ the PFA algorithm since the privacy budgets of all clients
 257 are hidden from the server side, making the projection-based oper-
 258 ations inapplicable in this case. Furthermore, we incorporate the
 259 full participation procedure to ensure all clients get continuous
 260 observations throughout the communication rounds.

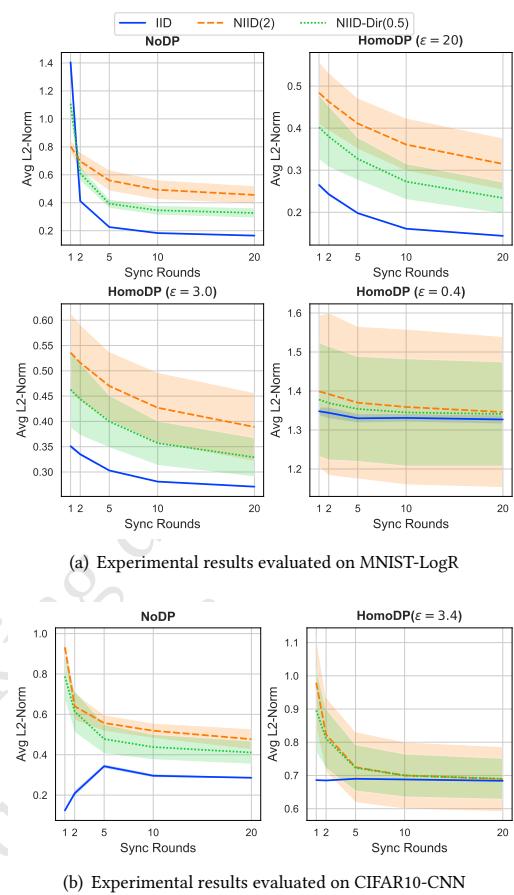
261 **Evaluation Metrics.** In this section, we always report the average
 262 and standard deviation of the L2-norms of local updates across all
 263 clients along the training process. For the sake of readability, we
 264 use the abbreviations avg./std. L2-norm in the remaining sections.

265 **Hyperparameters.** Unless otherwise stated, we fix the local mini-
 266 batch size $B = 64$, the local epochs $E = 1$, the total number of
 267 communication rounds $T = 20$, and the step size (or learning rate)
 268 $\eta = 0.01$ for all clients.

273 3.2 Evaluation Results

274 For every single plot in Fig. 2, we show how the avg./std. L2-norm
 275 evolves over communication rounds in the IID, NIID(2) and NIID-
 276 dir(0.5) settings respectively. Furthermore, we conduct a series of
 277 comparative experiments of FL with/without DP to analyze the
 278 isolated implications of varying levels of additive Gaussian noise
 279 on the values of avg./std. L2-norm. Here we assume that all clients
 280 have identical privacy budgets, which we refer to as homogeneous
 281 DP (HomoDP) in contrast to PDP. The intention behind this
 282 consideration is to explore the differences in the characteristics of the
 283 avg./std. L2-norms among clients with different privacy budgets.

284 **The isolated effect of data distribution.** From Fig. 2, we can
 285 observe two common trends from all plots: (1) both the avg. and
 286 the std. L2-norms in IID cases consistently exhibit lower values
 287 compared to all non-IID cases along the training process; (2) in the
 288 majority of cases, NIID-Dir(0.5) tends to produce avg. L2-norms



289 **Figure 2: Effects of data distribution and varying privacy budgets on**
 290 **the average and standard deviation of the L2-norms (y-axis) of local**
 291 **updates across 10 clients over a maximum of 20 communication**
 292 **rounds (x-axis).**

293 and std. L2-norms that are either smaller or comparable to those
 294 obtained with NIID(2).

295 **The isolated effect of privacy budget.** From Fig. 2 (a), it is clear
 296 that there exists a negative correlation between the value of pri-
 297 vacy budget (ϵ) and the avg./std. L2-norms in two non-IID cases.
 298 Although the trend may not be readily apparent in the IID case, we
 299 note that the observation remains consistent. It makes sense since
 300 the discrepancies in privacy budgets imply variations in the scale
 301 of the random Gaussian distribution, resulting in different amounts
 302 of additive noise being introduced to the model updates during the
 303 local training procedure. Surprisingly, the results obtained from
 304 the cases with $\epsilon = 3.0$ and $\epsilon = 20$ show a considerable resemblance,
 305 indicating that both cases result in a similar degree of perturbation
 306 on the magnitude of clients' local updates, despite the latter case
 307 having a significantly larger privacy budget (in other words, an ϵ
 308 value of 3.0 may not be sufficiently small to provide a significant
 309 enhancement in privacy protection compared to the weak privacy
 310 setting of $\epsilon = 20$). Given that similar trends have been observed
 311 in the CIFAR10-CNN experiments, we present only a partial set of
 312 results here due to the strict space limitations.

Table 1: Distribution of privacy preferences

Distribution	Parameters Setting
MixGauss1	Mixture of $\mathcal{N}_1(0.1, 0.01)$ and $\mathcal{N}_2(10.0, 0.1)$ with mixture weights 0.9 and 0.1
MixGauss2	Mixture of $\mathcal{N}_1(1.0, 0.1)$ and $\mathcal{N}_2(10.0, 0.1)$ with mixture weights 0.9 and 0.1
MixGauss3	Mixture of $\mathcal{N}_1(0.1, 0.01)$, $\mathcal{N}_2(1.0, 0.1)$ and $\mathcal{N}_3(10.0, 0.1)$ with mixture weights 0.5, 0.4 and 0.1

4 PDP-FL WITHOUT EXPOSING RAW PRIVACY BUDGETS

In this section, we introduce a privacy-budget-agnostic version of PFA that utilizes the L2-norms of noisy local updates. To evaluate the effectiveness of our approach as well as ensure a fair comparison, we reproduce the experiments using the same experimental setup as the previous study conducted by Liu et al [19].

4.1 Indirect Privacy Attitudes Partitioning

Key Insight. In our empirical study presented in the above section, we investigate the effects of non-IID data and varying privacy budgets on the local model updates of clients. The experimental results suggest that it is possible to indirectly partition the privacy attitudes of clients into groups by analyzing the L2-norms of their local noisy updates without requiring access to their raw privacy budgets, as long as (1) there exists a significant diversity in the privacy budgets across all clients; (2) the “private” (or conservative) clients opt for a ϵ that is small enough to ensure effective differentiation.

Proposed Approach. Equipped with the above key insight, now our focus shifts back to the PDP-FL setting where the additive Gaussian noises of the clients are drawn from different distributions determined by their privacy budget. The conservative clients with stricter privacy budgets require larger perturbation while the liberal clients with more relaxed privacy budgets submit more accurate model updates. This distinction in privacy budgets and the corresponding impact on the magnitude of perturbations just align with the two conditions revealed in the key insight from Section 3, which motivates us to develop the clustering-based approach for indirect privacy attitude estimation using L2-norms.

In more detail, we develop a simple yet powerful strategy based on the clients’ noisy local updates and the Gaussian Mixture Models (GMMs) clustering algorithm, based on the intuition that clients who have similar privacy attitudes (privacy budgets) are expected to introduce Gaussian noises drawn from a similar random distribution. Then we can improve PFA by replacing the original *direct* client partition based on exposed privacy budgets with the *indirect* partition based on L2-norm clustering (as highlighted in Alg. 1).

4.2 Experimental Results

We first evaluate the utility of our proposed clustering approach by considering 3 potential multimodal distributions (a mixture of two or three different Gaussian distributions) as shown in Tab. 1 (see more details in [19]). Note that this assumption is supported by previous observations which have shown that a bimodal distribution is quite universal in a wide range of complex social systems [27].

Effects of the privacy preference distribution. In Fig. 3, we demonstrate the effectiveness of the L2-norm clustering approach evaluated on MNIST-LogR in NIID(2) setting with 10 clients in three

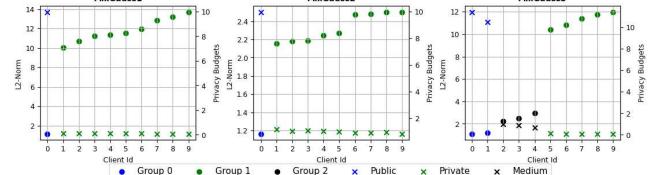


Figure 3: The consistency between the results of GMMs clustering based on L2-norm (left y-axis) and the ground truths based on the real privacy budgets (right y-axis) across 10 clients (x-axis) evaluated on MNIST-LogR in NIID(2) setting.

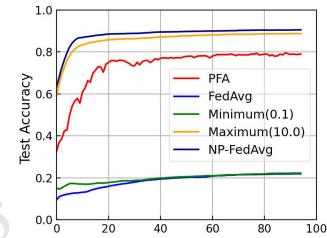


Figure 4: The test accuracy versus communication rounds evaluated on MNIST-LogR in non-IID data setting with privacy preferences distribution of MixGauss1.

privacy preferences distributions. In all plots, we utilize various markers to represent the predicted cluster index and the real privacy attitude of each client. Additionally, we use three different colors to indicate the resulting partitions. Experiment results show an obvious consistency between the L2-norms clustering and the ground truths (based on clients’ real privacy budgets).

Evaluation of the end-to-end PFA framework. In Fig. 4, we report the test accuracy versus communication rounds evaluated on MNIST-LogR in non-IID data setting with privacy preferences distribution of MixGauss1. Different from Liu et al. [19], we do not compare the weighted average (WeiAvg) and the communication-efficient version of PFA (PFA+) here since these two methods are dependent on the values of clients’ privacy budgets, which is no longer available in our considered scenario. Just as we expected, the distinct utility advantages of PFA over the baseline methods FedAvg and Minimum remain due to the correct clustering results. Although it has worse accuracy than the non-private baseline (NP-FedAvg), PFA still reaches a reasonable level of model utility, while the FedAvg with PDP becomes ineffective. Just as we expected, the distinct utility advantages of PFA over the baseline methods FedAvg and Minimum remain due to the correct clustering results. Although it has worse accuracy than the non-private baseline (NP-FedAvg), PFA still reaches a reasonable level of model utility, while the FedAvg with PDP becomes ineffective.

5 CONCLUSION AND FUTURE WORK

In this work, we have proposed an effective method for indirect privacy attitude estimation based on L2-norm clustering in the PDP-FL setting. Additionally, we have integrated this clustering approach into the vanilla PFA framework to address potential privacy leakage issues arising from exposed privacy budgets. Some future directions include: (1) generalizing the clustering strategy

465 to the more challenging cases where clients' privacy budgets are
 466 relatively uniform or more difficult to differentiate; (2) conducting
 467 extensive empirical evaluations on larger and more diverse datasets
 468 for deeper explorations into the effectiveness and scalability of our
 469 proposed approach.
 470

471 REFERENCES

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In *CCS*.
 [2] Naman Agarwal, Peter Kairouz, and Ziyu Liu. 2021. The skellam mechanism for differentially private federated learning. In *NeurIPS*.
 [3] Naman Agarwal, Ananda Theertha Suresh, Felix Yu, Sanjiv Kumar, and H. Brendan McMahan. 2018. CpSGD: Communication-Efficient and Differentially-Private Distributed SGD. In *NeurIPS*.
 [4] Xiangyi Chen, Steven Z Wu, and Mingyi Hong. 2020. Understanding gradient clipping in private sgd: A geometric perspective. In *NeurIPS*.
 [5] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrating noise to sensitivity in private data analysis. In *TCC*.
 [6] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differential privacy. *Foundations and Trends in Theoretical Computer Science* 9, 3-4 (2014), 211–407.
 [7] Robin C Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially private federated learning: A client level perspective. In *arXiv preprint arXiv:1712.07557*.
 [8] Xin Gu, Gautam Kamath, and Zhiwei Steven Wu. 2023. Choosing public datasets for private machine learning via gradient subspace distance. In *arXiv preprint arXiv:2303.01256*.
 [9] Filip Hanzely, Slavomír Hanzely, Samuel Horváth, and Peter Richtárik. 2020. Lower bounds and optimal algorithms for personalized federated learning. In *NeurIPS*.
 [10] Jonathan Huang. 2005. Maximum likelihood estimation of Dirichlet distribution parameters. *CMU Technique report* 18 (2005).
 [11] Zach Jorgensen, Ting Yu, and Graham Cormode. 2015. Conservative or liberal? Personalized differential privacy. In *ICDE*.
 [12] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben- nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. 2021. Advances and open problems in federated learning. *Foundations and Trends® in Machine Learning* 14, 1–2 (2021), 1–210.
 [13] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images.
 [14] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit database. *ATT Labs [Online]. Available: <http://yann.lecun.com/exdb/mnist>* 2.
 [15] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. 2022. Federated learning on non-iid data silos: An experimental study. In *ICDE*.
 [16] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2021. Ditto: Fair and robust federated learning through personalization. In *ICML*.
 [17] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2020. Federated optimization in heterogeneous networks. *Proceedings of Machine Learning and Systems* 2 (2020), 429–450.
 [18] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2019. On the convergence of fedavg on non-iid data. In *arXiv preprint arXiv:1907.02189*.
 [19] Junxu Liu, Jian Lou, Li Xiong, Jinfei Liu, and Xiaofeng Meng. 2021. Projected federated averaging with heterogeneous differential privacy. In *VLDB*.
 [20] Ken Liu, Shengyuan Hu, Steven Z Wu, and Virginia Smith. 2022. On privacy and personalization in cross-silo federated learning. In *NeurIPS*.
 [21] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep networks from decentralized data. In *AISTATS*.
 [22] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. In *S&P*.
 [23] Ben Niu, Yahong Chen, Boyang Wang, Zhibo Wang, Fenghua Li, and Jin Cao. 2021. AdaDPD: Adaptive personalized differential privacy. In *INFOCOM*.
 [24] Maxence Noble, Aurélien Bellet, and Aymeric Dieuleveut. 2022. Differentially private federated learning on heterogeneous data. In *AISTATS*.
 [25] Yifan Shi, Yingqi Liu, Kang Wei, Li Shen, Xueqian Wang, and Dacheng Tao. 2023. Make landscape flatter in differentially private federated learning. In *ICCV*.
 [26] Zhibo Wang, Jiahui Hu, Ruizhao Lv, Jian Wei, Qian Wang, Dejun Yang, and Hairong Qi. 2018. Personalized privacy-preserving task allocation for mobile crowdsensing. *IEEE Transactions on Mobile Computing* 18, 6 (2018), 1330–1341.
 [27] Ye Wu, Changsong Zhou, Jinghua Xiao, Jürgen Kurths, and Hans Joachim Schellnhuber. 2010. Evidence for a bimodal distribution in human communication. *PNAS* 107, 44 (2010), 18803–18808.
 [28] Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. 2019. Differentially private model publishing for deep learning. In *S&P*.

[29] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and Yasaman Khazaeni. 2019. Bayesian nonparametric federated learning of neural networks. In *ICML*.
 [30] Yingxue Zhou, Steven Wu, and Arindam Banerjee. 2021. Bypassing the Ambient Dimension: Private SGD with Gradient Subspace Identification. In *ICLR*.

Received 16 June 2023