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ABSTRACT

The meteoric rise of cross-silo Federated Learning (FL) is due to its
ability to mitigate data breaches during collaborative training. To
further provide rigorous privacy protection with consideration of
the varying privacy requirements across different clients, a privacy-
enhanced line of work on personalized differentially private feder-
ated learning (PDP-FL) has been proposed. However, the existing
solution for PDP-FL [19] assumes the raw privacy requirements
(i.e., privacy budgets) of all clients should be collected by the server,
which are then directly utilized to improve the model utility via facil-
itating the privacy attitudes partitioning (i.e., partitioning all clients
into multiple privacy groups). It is however non-realistic because
the raw privacy budgets can be quite informative and sensitive.

In this work, our goal is to achieve PDP-FL without exposing
clients’ raw privacy budgets by indirectly partitioning the privacy
attitudes solely based on clients’ noisy model updates. The crux
lies in the fact that the noisy updates could be influenced by two
entangled factors of DP noises and non-IID clients’ data, leaving
it unknown whether it is possible to uncover privacy attitudes by
disentangling the two affecting factors. To overcome the hurdle,
we systematically investigate the unexplored question of how to
determine the conditions under which the model updates of clients
can be dominated by the heterogeneous DP noises instead of non-IID
data. Then, we propose a simple yet effective strategy based on
clustering the L2 norm of the noisy updates to indirectly estimate
the privacy attitude partitions, which can be integrated into the
vanilla PDP-FL to maintain the same performance. Experimental
results demonstrate the effectiveness and feasibility of our privacy-
budget-agnostic PDP-FL method.
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1 INTRODUCTION

Cross-silo Federated Learning (FL) [12, 21], which allows multiple
clients to collaboratively train a global model without requiring ac-
cess to clients’ raw data, has been widely adopted both in academia
and industry. Differential Privacy [5, 6] has been further integrated
into FL, which gives rise to the DP-FL studies [2, 3, 7, 20, 24, 25] that
seek to provide mathematically rigorous privacy protection at the
desired level quantified by the privacy budget. DP-FL bears much
resemblance to non-DP FL in training (e.g., by building on top of
FedAvg [21]) but additionally incorporates local updates clipping
and Gaussian noise injection [1, 4, 22, 28], whereby clients’ local
updates will be more strictly protected.

A more challenging yet practical problem is personalized differ-
entially private federated learning (PDP-FL)!, which takes the wide-
ranging differences in individuals’ privacy attitudes [11, 23, 26] into
consideration and enables clients to pre-define their own privacy
budgets (as opposed to shared an identical value specified by the
server) [19]. Definition 1 formalizes this problem. One common
way to achieve PDP in FL is to add different amounts of Gaussian
noise to clients’ submitted local updates, while directly aggregating
the noisy and discordant local updates would inevitably lead to
suboptimal model performance due to the biased estimation of the
global parameters. To address these issues, Liu et al. [19] present the
first promising attempt by developing a projection-based approach
named projected federated averaging (PFA) for noise reduction
[8, 30]. However, a major downside of PFA is that they treat clients’
privacy budgets as publicly available knowledge and allow the
server to utilize this information directly to identify the conserva-
tive/liberal clients at the initialization stage (see Line 5, Algorithm
1 in Section 2).

Definition 1 (Personalized Differential Privacy in Federated Learn-
ing [19]). Let the set of clients be C = {Cy, ..., Cpr}, where each
client C,;, € C holds a local dataset D,,. The federated learning
satisfies {(ém, 6m)} me[ ) -personalized differential privacy, if each
client satisfies (&m, 5m)-DP with respect to its local dataset.

We contend that assessing clients’ privacy budgets is unrealistic
and problematic. This is because the precise privacy budgets are
also quite informative and sensitive for clients, and may act as a
trigger for potential privacy attacks. Yet, we are not aware of any
approach designed to discern the underlying privacy attitudes of
clients based solely on their noisy model updates. Intuitively, the
diversity of privacy budgets implies the varying magnitude of the
perturbations added to the gradients, leading to a difference in the
magnitude of clients’ local updates due to the cumulative effects. On
the other hand, such a difference also could be subject to the non-
IID client data [15, 18]. An open question is how to determine the

'In our considered cross-silo setting, we use “personalized DP” to refer to customizing
DP guarantees for each client rather than a specific user belonging to each client.
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Figure 1: An illustration of the PDP-FL framework in which hetero-
geneous clients with non-IID data and personalized privacy budgets
are collaboratively training a global model.

conditions under which the model updates of clients can be dominated
by heterogeneous DP noises instead of non-IID data.

Contribution. In this paper, we aim to address the issue of indi-
rectly estimating the privacy attitudes in the context of cross-silo
FL for clients with non-IID data distributions and varying privacy
budgets (¢). To summarize, our contributions are twofold.

(1) We discover through systematic empirical observations that the
magnitude (i.e., L2-norms) of clients’ local updates can serve
as an effective indicator to facilitate indirect privacy attitudes
partitioning. This novel insight propels the development of our
clustering-based approach without requiring any prior knowl-
edge about the real e.

(2) We introduce a simple yet powerful approach for indirect pri-
vacy attitudes partitioning that suffices to leverage off-the-shelf
clustering methods (e.g., Gaussian Mixture Models algorithm)
to neglect the reliance on the raw privacy budgets in existing
PDP-FL. To assess the effectiveness, we integrate it into the PFA
framework and verify that our indirect privacy attitude parti-
tioning approach can maintain the same model performance
under the same experimental setup in the previous study[19].

2 PRELIMINARIES

Differential Privacy (DP). The definition of the classic (e, §)-DP
is as follows, where the parameter ¢ is referred to as the privacy
budget and the other parameter § > 0 captures the probability
that the privacy is broken in the worst-case. A smaller value of ¢
corresponds to a higher level of privacy that can be achieved.

Definition 2 ((¢, §)-Differential Privacy [6]). Let D be the space
of all datasets and D, D’ € D is any pair of adjacent datasets where
D’ is obtained by deleting any one individual d from D, i.e., D =
D’ U {d}. A randomized mechanism M : D — R satisfies (¢, §)-DP
if for any subsets of outputs S C R, it holds that

PrIM(D) € S] < e Pr[M(D’) € S] +.

Federated Averaging (FedAvg). FedAvg [21] is the most widely
used algorithm for solving the federated optimization problem. In
each communication round, a randomly sampled subset of clients
run a certain number of Stochastic Gradient Descent (SGD) steps
locally and independently, then the server averages the local up-
dates and broadcasts a single global model to all clients. FedAvg

Anon. Submission Id: 2886

Algorithm 1: Projected Federated Averaging with Person-
alized Differential Privacy

input :Clients’ privacy preferences { (¢m, 8) } e 1], number of communication
rounds T, number of local steps 7
output: global model x7
1 Framework PDP-FL({ (&m, 8) } e M) T, 0):
2 for roundt =1,..., T do
3 St « (random subset of K clients)
// Partition clients into “public” and “private”
S;pul» i 5t<pri) -

5 (Before) Direct partition based on exposed privacy budgets {&m } mes,
6 (After) Indirect partition based on clustering with L2-norms of the noisy local
updates {AX}} ¢ [k
7 foreach m € Sy do in parallel
8 L AX]" — DPSGD(£,X¢,7)
. A%; — PEA{ (em AXI) e k1. S, 8PP0
10 | Xes1 < X¢ — DXy
1 | returnXxr

12 Function PFA({ (&m, AX™) } ¢ K] s(pub) glpri)y,

// Compute the subspace from “public” updates

13 Vj. < (The top-k eigenvectors of the second moment matrix computed from all
Ax™ andm € S(Pub))

// Project “private” updates onto the subspace

14 2P —ViVES (pri) @mbX™
// Projected federated averaging
15 S — S(pub) 4 g(pri)
6 | Ax e Zmesteub) T Cipub) | Emeserd T ipri)
ZmeS €m ZmeS €m
17 return AX

by itself makes no special adjustments when encountering non-IID
client data and therefore suffers from suboptimal performance in
such circumstances [9, 16, 17].

Projected Federated Averaging (PFA). In PFA [19], all clients
are divided into two types according to their precise privacy bud-
gets (i.e., “private” clients with stricter privacy budgets and “pub-
lic” clients with more relaxed privacy budgets) exposed to the
server at the initialization stage; then the server extracts a reduced-
dimensional subspace from the “public” model updates and projects
the “private” model updates onto it. In this way, the heavy private
perturbation of the “private” updates can be discarded, and the most
useful information from all clients can be aggregated to improve
the joint model utility. Pseudocode is given in Algorithm 1.

3 STUDY ON THE IMPLICATIONS OF NOISE
LEVEL AND DATA DISTRIBUTION

In this section, we conduct a comprehensive empirical study to
explore the characteristics of the local model updates obtained from
heterogeneous clients whose local data distribution and privacy
budgets differ from one another. This investigation aims to gain
insights into the conditions under which the DP perturbations can
significantly affect the client’s local updates compared to the effect
caused by non-IID data.

3.1 Experimental Setup

Datasets and Models. We consider two classic image classifica-
tion tasks: the MNIST [14] digit recognition with a simple logistic
regression model (MNIST-LogR) and the CIFAR10 [13] image classi-
fication with the same CNN architecture as in McMahan et al. [21].
We deploy them in the cross-silo FL setting with M = 10 clients.
Submission ID: 2886. 2023-08-29 23:01. Page 2 of 1-5.
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Data Distributions. To examine the effects of data heterogeneity,
we first establish the baseline using IID data and consider two
partition strategies to simulate potential non-IID scenarios.

o IID: each client is assigned a uniform distribution over 10 classes.

o NIID(2): also known as the quantity-based label distribution skew
where each client owns data records of a fixed number (e.g., 2) of
labels [21].

e NIID-Dir(0.5): also known as the distribution-based label imbal-
ance where a py. n,, ~ Dir(f) proportion of records of class k are
allocated to client m. Here Dir(f) denotes a Dirichlet distribu-
tion [10] and the smaller the f is, the resulting partition is more
unbalanced. We choose the same § = 0.5 as done in [29].

Varying privacy budgets. We explore a diverse range of pri-
vacy budgets ¢ to manifest the significant differences in privacy
requirements among clients with varying privacy attitudes (e.g.,
€ ~ 0.4, 3.0, 20 for the MNIST-LogR experiments), and establish the
baseline without any DP requirement.

Methods. For all experiments, we employ FedAvg [21] as the base
FL algorithm. To ensure DP-FL, we incorporate minibatch DP-SGD
[1] into clients’ local training procedures, resulting in a modified
version of FedAvg known as DP-FedAvg. In brief, DP-FedAvg intro-
duces a certain amount of Gaussian noise to the clipped gradients
during each local SGD iteration. It is worth noting that we do not
employ the PFA algorithm since the privacy budgets of all clients
are hidden from the server side, making the projection-based oper-
ations inapplicable in this case. Furthermore, we incorporate the
full participation procedure to ensure all clients get continuous
observations throughout the communication rounds.

Evaluation Metrics. In this section, we always report the average
and standard deviation of the L2-norms of local updates across all
clients along the training process. For the sake of readability, we
use the abbreviations avg./std. L2-norm in the remaining sections.

Hyperparameters. Unless otherwise stated, we fix the local mini-
batch size B = 64, the local epochs E = 1, the total number of
communication rounds T = 20, and the step size (or learning rate)
n = 0.01 for all clients.

3.2 Evaluation Results

For every single plot in Fig. 2, we show how the avg./std. L2-norm
evolves over communication rounds in the IID, NIID(2) and NIID-
dir(0.5) settings respectively. Furthermore, we conduct a series of
comparative experiments of FL with/without DP to analyze the
isolated implications of varying levels of additive Gaussian noise
on the values of avg./std. L2-norm. Here we assume that all clients
have identical privacy budgets, which we refer to as homogeneous
DP (HomoDP) in contrast to PDP. The intention behind this con-
sideration is to explore the differences in the characteristics of the
avg./std. L2-norms among clients with different privacy budgets.

The isolated effect of data distribution. From Fig. 2, we can
observe two common trends from all plots: (1) both the avg. and
the std. L2-norms in IID cases consistently exhibit lower values
compared to all non-IID cases along the training process; (2) in the
majority of cases, NIID-Dir(0.5) tends to produce avg. L2-norms
Submission ID: 2886. 2023-08-29 23:01. Page 3 of 1-5.
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(b) Experimental results evaluated on CIFAR10-CNN

Figure 2: Effects of data distribution and varying privacy budgets on
the average and standard deviation of the L2-norms (y-axis) of local
updates across 10 clients over a maximum of 20 communication
rounds (x-axis).

and std. L2-norms that are either smaller or comparable to those
obtained with NIID(2).

The isolated effect of privacy budget. From Fig. 2 (a), it is clear
that there exists a negative correlation between the value of pri-
vacy budget (¢) and the avg./std. L2-norms in two non-IID cases.
Although the trend may not be readily apparent in the IID case, we
note that the observation remains consistent. It makes sense since
the discrepancies in privacy budgets imply variations in the scale
of the random Gaussian distribution, resulting in different amounts
of additive noise being introduced to the model updates during the
local training procedure. Surprisingly, the results obtained from
the cases with ¢ = 3.0 and ¢ = 20 show a considerable resemblance,
indicating that both cases result in a similar degree of perturbation
on the magnitude of clients’ local updates, despite the latter case
having a significantly larger privacy budget (in other words, an ¢
value of 3.0 may not be sufficiently small to provide a significant
enhancement in privacy protection compared to the weak privacy
setting of ¢ = 20). Given that similar trends have been observed
in the CIFAR10-CNN experiments, we present only a partial set of
results here due to the strict space limitations.
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Table 1: Distribution of privacy preferences
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4 PDP-FL WITHOUT EXPOSING RAW
PRIVACY BUDGETS

In this section, we introduce a privacy-budget-agnostic version of
PFA that utilizes the L2-norms of noisy local updates. To evaluate
the effectiveness of our approach as well as ensure a fair comparison,
we reproduce the experiments using the same experimental setup
as the previous study conducted by Liu et al [19].

4.1 Indirect Privacy Attitudes Partitioning

Key Insight. In our empirical study presented in the above section,
we investigate the effects of non-IID data and varying privacy bud-
gets on the local model updates of clients. The experimental results
suggest that it is possible to indirectly partition the privacy attitudes
of clients into groups by analyzing the L2-norms of their local noisy
updates without requiring access to their raw privacy budgets, as
long as (1) there exists a significant diversity in the privacy budgets
across all clients; (2) the “private” (or conservative) clients opt for a
¢ that is small enough to ensure effective differentiation.

Proposed Approach. Equipped with the above key insight, now
our focus shifts back to the PDP-FL setting where the additive
Gaussian noises of the clients are drawn from different distribu-
tions determined by their privacy budget. The conservative clients
with stricter privacy budgets require larger perturbation while the
liberal clients with more relaxed privacy budgets submit more ac-
curate model updates. This distinction in privacy budgets and the
corresponding impact on the magnitude of perturbations just align
with the two conditions revealed in the key insight from Section 3,
which motivates us to develop the clustering-based approach for
indirect privacy attitude estimation using L2-norms.

In more detail, we develop a simple yet powerful strategy based
on the clients’ noisy local updates and the Gaussian Mixture Models
(GMMs) clustering algorithm, based on the intuition that clients
who have similar privacy attitudes (privacy budgets) are expected
to introduce Gaussian noises drawn from a similar random distri-
bution. Then we can improve PFA by replacing the original direct
client partition based on exposed privacy budgets with the indirect
partition based on L2-norm clustering (as highlighted in Alg. 1).

4.2 Experimental Results

We first evaluate the utility of our proposed clustering approach by
considering 3 potential multimodal distributions (a mixture of two
or three different Gaussian distributions) as shown in Tab. 1 (see
more details in [19]). Note that this assumption is supported by pre-
vious observations which have shown that a bimodal distribution
is quite universal in a wide range of complex social systems [27].

Effects of the privacy preference distribution. In Fig. 3, we
demonstrate the effectiveness of the L2-norm clustering approach
evaluated on MNIST-LogR in NIID(2) setting with 10 clients in three
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Figure 3: The consistency between the results of GMMs clustering
based on L2-norm (left y-axis) and the ground truths based on the
real privacy budgets (right y-axis) across 10 clients (x-axis) evaluated
on MNIST-LogR in NIID(2) setting.
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Figure 4: The test accuracy versus communication rounds evaluated

on MNIST-LogR in non-IID data setting with privacy preferences
distribution of MixGauss1.

privacy preferences distributions. In all plots, we utilize various
markers to represent the predicted cluster index and the real pri-
vacy attitude of each client. Additionally, we use three different
colors to indicate the resulting partitions. Experiment results show
an obvious consistency between the L2-norms clustering and the
ground truths (based on clients’ real privacy budgets).

Evaluation of the end-to-end PFA framework. In Fig. 4, we
report the test accuracy versus communication rounds evaluated
on MNIST-LogR in non-IID data setting with privacy preferences
distribution of MixGauss1. Different from Liu et al. [19], we do not
compare the weighted average (WeiAvg) and the communication-
efficient version of PFA (PFA+) here since these two methods are
dependent on the values of clients’ privacy budgets, which is no
longer available in our considered scenario. Just as we expected,
the distinct utility advantages of PFA over the baseline methods
FedAvg and Minimum remain due to the correct clustering results.
Although it has worse accuracy than the non-private baseline (NP-
FedAvg), PFA still reaches a reasonable level of model utility, while
the FedAvg with PDP becomes ineffective. Just as we expected,
the distinct utility advantages of PFA over the baseline methods
FedAvg and Minimum remain due to the correct clustering results.
Although it has worse accuracy than the non-private baseline (NP-
FedAvg), PFA still reaches a reasonable level of model utility, while
the FedAvg with PDP becomes ineffective.

5 CONCLUSION AND FUTURE WORK

In this work, we have proposed an effective method for indirect
privacy attitude estimation based on L2-norm clustering in the
PDP-FL setting. Additionally, we have integrated this clustering
approach into the vanilla PFA framework to address potential pri-
vacy leakage issues arising from exposed privacy budgets. Some
future directions include: (1) generalizing the clustering strategy

Submission ID: 2886. 2023-08-29 23:01. Page 4 of 1-5.
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to the more challenging cases where clients’ privacy budgets are
relatively uniform or more difficult to differentiate; (2) conducting
extensive empirical evaluations on larger and more diverse datasets
for deeper explorations into the effectiveness and scalability of our
proposed approach.
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