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ABSTRACT

The meteoric rise of cross-silo Federated Learning (FL) is due to its

ability to mitigate data breaches during collaborative training. To

further provide rigorous privacy protection with consideration of

the varying privacy requirements across different clients, a privacy-

enhanced line of work on personalized differentially private feder-

ated learning (PDP-FL) has been proposed. However, the existing

solution for PDP-FL [19] assumes the raw privacy requirements

(i.e., privacy budgets) of all clients should be collected by the server,

which are then directly utilized to improve the model utility via facil-

itating the privacy attitudes partitioning (i.e., partitioning all clients

into multiple privacy groups). It is however non-realistic because

the raw privacy budgets can be quite informative and sensitive.

In this work, our goal is to achieve PDP-FL without exposing

clients’ raw privacy budgets by indirectly partitioning the privacy

attitudes solely based on clients’ noisy model updates. The crux

lies in the fact that the noisy updates could be influenced by two

entangled factors of DP noises and non-IID clients’ data, leaving

it unknown whether it is possible to uncover privacy attitudes by

disentangling the two affecting factors. To overcome the hurdle,

we systematically investigate the unexplored question of how to

determine the conditions under which the model updates of clients

can be dominated by the heterogeneous DP noises instead of non-IID

data. Then, we propose a simple yet effective strategy based on

clustering the L2 norm of the noisy updates to indirectly estimate

the privacy attitude partitions, which can be integrated into the

vanilla PDP-FL to maintain the same performance. Experimental

results demonstrate the effectiveness and feasibility of our privacy-

budget-agnostic PDP-FL method.
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1 INTRODUCTION

Cross-silo Federated Learning (FL) [12, 21], which allows multiple

clients to collaboratively train a global model without requiring ac-

cess to clients’ raw data, has been widely adopted both in academia

and industry. Differential Privacy [5, 6] has been further integrated

into FL, which gives rise to the DP-FL studies [2, 3, 7, 20, 24, 25] that

seek to provide mathematically rigorous privacy protection at the

desired level quantified by the privacy budget. DP-FL bears much

resemblance to non-DP FL in training (e.g., by building on top of

FedAvg [21]) but additionally incorporates local updates clipping

and Gaussian noise injection [1, 4, 22, 28], whereby clients’ local

updates will be more strictly protected.

A more challenging yet practical problem is personalized differ-

entially private federated learning (PDP-FL)1, which takes the wide-

ranging differences in individuals’ privacy attitudes [11, 23, 26] into

consideration and enables clients to pre-define their own privacy

budgets (as opposed to shared an identical value specified by the

server) [19]. Definition 1 formalizes this problem. One common

way to achieve PDP in FL is to add different amounts of Gaussian

noise to clients’ submitted local updates, while directly aggregating

the noisy and discordant local updates would inevitably lead to

suboptimal model performance due to the biased estimation of the

global parameters. To address these issues, Liu et al. [19] present the

first promising attempt by developing a projection-based approach

named projected federated averaging (PFA) for noise reduction

[8, 30]. However, a major downside of PFA is that they treat clients’

privacy budgets as publicly available knowledge and allow the

server to utilize this information directly to identify the conserva-

tive/liberal clients at the initialization stage (see Line 5, Algorithm

1 in Section 2).

Definition 1 (Personalized Differential Privacy in Federated Learn-

ing [19]). Let the set of clients be C = {𝐶1, . . . ,𝐶𝑀 }, where each

client 𝐶𝑚 ∈ C holds a local dataset D𝑚 . The federated learning

satisfies {(𝜀𝑚, 𝛿𝑚)}𝑚∈[𝑀 ] -personalized differential privacy, if each

client satisfies (𝜀𝑚, 𝛿𝑚)-DP with respect to its local dataset.

We contend that assessing clients’ privacy budgets is unrealistic

and problematic. This is because the precise privacy budgets are

also quite informative and sensitive for clients, and may act as a

trigger for potential privacy attacks. Yet, we are not aware of any

approach designed to discern the underlying privacy attitudes of

clients based solely on their noisy model updates. Intuitively, the

diversity of privacy budgets implies the varying magnitude of the

perturbations added to the gradients, leading to a difference in the

magnitude of clients’ local updates due to the cumulative effects. On

the other hand, such a difference also could be subject to the non-

IID client data [15, 18]. An open question is how to determine the

1In our considered cross-silo setting, we use łpersonalized DPž to refer to customizing
DP guarantees for each client rather than a specific user belonging to each client.
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Figure 1: An illustration of the PDP-FL framework in which hetero-

geneous clients with non-IID data and personalized privacy budgets

are collaboratively training a global model.

conditions under which the model updates of clients can be dominated

by heterogeneous DP noises instead of non-IID data.

Contribution. In this paper, we aim to address the issue of indi-

rectly estimating the privacy attitudes in the context of cross-silo

FL for clients with non-IID data distributions and varying privacy

budgets (𝜀). To summarize, our contributions are twofold.

(1) We discover through systematic empirical observations that the

magnitude (i.e., L2-norms) of clients’ local updates can serve

as an effective indicator to facilitate indirect privacy attitudes

partitioning. This novel insight propels the development of our

clustering-based approach without requiring any prior knowl-

edge about the real 𝜀.

(2) We introduce a simple yet powerful approach for indirect pri-

vacy attitudes partitioning that suffices to leverage off-the-shelf

clustering methods (e.g., Gaussian Mixture Models algorithm)

to neglect the reliance on the raw privacy budgets in existing

PDP-FL. To assess the effectiveness, we integrate it into the PFA

framework and verify that our indirect privacy attitude parti-

tioning approach can maintain the same model performance

under the same experimental setup in the previous study[19].

2 PRELIMINARIES

Differential Privacy (DP). The definition of the classic (𝜖, 𝛿)-DP

is as follows, where the parameter 𝜀 is referred to as the privacy

budget and the other parameter 𝛿 ≥ 0 captures the probability

that the privacy is broken in the worst-case. A smaller value of 𝜀

corresponds to a higher level of privacy that can be achieved.

Definition 2 ((𝜀, 𝛿)-Differential Privacy [6]). Let D be the space

of all datasets and 𝐷,𝐷′ ∈ D is any pair of adjacent datasets where

𝐷′ is obtained by deleting any one individual 𝑑 from 𝐷 , i.e., 𝐷 =

𝐷′ ∪ {𝑑}. A randomized mechanismM : D → R satisfies (𝜀, 𝛿)-DP

if for any subsets of outputs 𝑆 ⊆ R, it holds that

Pr[M(𝐷) ∈ 𝑆] ≤ 𝑒𝜀 Pr[M(𝐷′) ∈ 𝑆] + 𝛿.

Federated Averaging (FedAvg). FedAvg [21] is the most widely

used algorithm for solving the federated optimization problem. In

each communication round, a randomly sampled subset of clients

run a certain number of Stochastic Gradient Descent (SGD) steps

locally and independently, then the server averages the local up-

dates and broadcasts a single global model to all clients. FedAvg

Algorithm 1: Projected Federated Averaging with Person-

alized Differential Privacy

input :Clients’ privacy preferences { (𝜀𝑚 , 𝛿 ) }𝑚∈ [𝑀 ] , number of communication

rounds𝑇 , number of local steps 𝜏
output :global model x𝑇

1 Framework PDP-FL({ (𝜀𝑚 , 𝛿 ) }𝑚∈ [𝑀 ] ,𝑇 , 𝜏):

2 for round 𝑡 = 1, . . . ,𝑇 do
3 𝑆𝑡 ← (random subset of 𝐾 clients)

// Partition clients into “public” and “private”

4 𝑆
(𝑝𝑢𝑏)
𝑡 , 𝑆

(𝑝𝑟𝑖 )
𝑡 ←

5 (Before) Direct partition based on exposed privacy budgets {𝜀𝑚 }𝑚∈𝑆𝑡
6 (After) Indirect partition based on clustering with L2-norms of the noisy local

updates {Δx𝑚𝑡 }𝑚∈ [𝐾 ]
7 foreach𝑚 ∈ 𝑆𝑡 do in parallel
8 Δx

𝑚
𝑡 ← DPSGD(𝑡, x𝑡 , 𝜏 )

9 Δx̄𝑡 ← PFA({ (𝜀𝑚 ,Δx
𝑚
𝑡 ) }𝑚∈ [𝐾 ] , S

(𝑝𝑢𝑏)
𝑡 , S

(𝑝𝑟𝑖 )
𝑡 )

10 x𝑡+1 ← x𝑡 − Δx̄𝑡

11 return x𝑇

12 Function PFA({ (𝜀𝑚 ,Δx
𝑚 ) }𝑚∈ [𝐾 ] , 𝑆

(𝑝𝑢𝑏) , 𝑆 (𝑝𝑟𝑖 ) ):

// Compute the subspace from “public” updates

13 V𝑘 ← (The top-𝑘 eigenvectors of the second moment matrix computed from all

Δx
𝑚 and𝑚 ∈ S (𝑝𝑢𝑏) )

// Project “private” updates onto the subspace

14 Δx̂
(𝑝𝑟𝑖 ) ← V𝑘V

⊤
𝑘

∑

𝑚∈S(𝑝𝑟𝑖 )
𝜔𝑚Δx

𝑚

// Projected federated averaging

15 S ← S (𝑝𝑢𝑏) + S (𝑝𝑟𝑖 )

16 Δx̄←

∑

𝑚∈S(𝑝𝑢𝑏)
𝜀𝑚

∑
𝑚∈S 𝜀𝑚

· Δx̄(𝑝𝑢𝑏) +

∑

𝑚∈S(𝑝𝑟𝑖 )
𝜀𝑚

∑
𝑚∈S 𝜀𝑚

· Δx̂(𝑝𝑟𝑖 )

17 return Δx̄

by itself makes no special adjustments when encountering non-IID

client data and therefore suffers from suboptimal performance in

such circumstances [9, 16, 17].

Projected Federated Averaging (PFA). In PFA [19], all clients

are divided into two types according to their precise privacy bud-

gets (i.e., łprivatež clients with stricter privacy budgets and łpub-

licž clients with more relaxed privacy budgets) exposed to the

server at the initialization stage; then the server extracts a reduced-

dimensional subspace from the łpublicž model updates and projects

the łprivatež model updates onto it. In this way, the heavy private

perturbation of the łprivatež updates can be discarded, and the most

useful information from all clients can be aggregated to improve

the joint model utility. Pseudocode is given in Algorithm 1.

3 STUDY ON THE IMPLICATIONS OF NOISE
LEVEL AND DATA DISTRIBUTION

In this section, we conduct a comprehensive empirical study to

explore the characteristics of the local model updates obtained from

heterogeneous clients whose local data distribution and privacy

budgets differ from one another. This investigation aims to gain

insights into the conditions under which the DP perturbations can

significantly affect the client’s local updates compared to the effect

caused by non-IID data.

3.1 Experimental Setup

Datasets and Models. We consider two classic image classifica-

tion tasks: the MNIST [14] digit recognition with a simple logistic

regression model (MNIST-LogR) and the CIFAR10 [13] image classi-

fication with the same CNN architecture as in McMahan et al. [21].

We deploy them in the cross-silo FL setting with𝑀 = 10 clients.

Submission ID: 2886. 2023-08-29 23:01. Page 2 of 1ś5.
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Data Distributions. To examine the effects of data heterogeneity,

we first establish the baseline using IID data and consider two

partition strategies to simulate potential non-IID scenarios.

• IID: each client is assigned a uniform distribution over 10 classes.

• NIID(2): also known as the quantity-based label distribution skew

where each client owns data records of a fixed number (e.g., 2) of

labels [21].

• NIID-Dir(0.5): also known as the distribution-based label imbal-

ance where a 𝑝𝑘,𝑚 ∼ 𝐷𝑖𝑟 (𝛽) proportion of records of class 𝑘 are

allocated to client𝑚. Here 𝐷𝑖𝑟 (𝛽) denotes a Dirichlet distribu-

tion [10] and the smaller the 𝛽 is, the resulting partition is more

unbalanced. We choose the same 𝛽 = 0.5 as done in [29].

Varying privacy budgets. We explore a diverse range of pri-

vacy budgets 𝜀 to manifest the significant differences in privacy

requirements among clients with varying privacy attitudes (e.g.,

𝜀 ≈ 0.4, 3.0, 20 for the MNIST-LogR experiments), and establish the

baseline without any DP requirement.

Methods. For all experiments, we employ FedAvg [21] as the base

FL algorithm. To ensure DP-FL, we incorporate minibatch DP-SGD

[1] into clients’ local training procedures, resulting in a modified

version of FedAvg known as DP-FedAvg. In brief, DP-FedAvg intro-

duces a certain amount of Gaussian noise to the clipped gradients

during each local SGD iteration. It is worth noting that we do not

employ the PFA algorithm since the privacy budgets of all clients

are hidden from the server side, making the projection-based oper-

ations inapplicable in this case. Furthermore, we incorporate the

full participation procedure to ensure all clients get continuous

observations throughout the communication rounds.

Evaluation Metrics. In this section, we always report the average

and standard deviation of the L2-norms of local updates across all

clients along the training process. For the sake of readability, we

use the abbreviations avg./std. L2-norm in the remaining sections.

Hyperparameters. Unless otherwise stated, we fix the local mini-

batch size 𝐵 = 64, the local epochs 𝐸 = 1, the total number of

communication rounds 𝑇 = 20, and the step size (or learning rate)

𝜂 = 0.01 for all clients.

3.2 Evaluation Results

For every single plot in Fig. 2, we show how the avg./std. L2-norm

evolves over communication rounds in the IID, NIID(2) and NIID-

dir(0.5) settings respectively. Furthermore, we conduct a series of

comparative experiments of FL with/without DP to analyze the

isolated implications of varying levels of additive Gaussian noise

on the values of avg./std. L2-norm. Here we assume that all clients

have identical privacy budgets, which we refer to as homogeneous

DP (HomoDP) in contrast to PDP. The intention behind this con-

sideration is to explore the differences in the characteristics of the

avg./std. L2-norms among clients with different privacy budgets.

The isolated effect of data distribution. From Fig. 2, we can

observe two common trends from all plots: (1) both the avg. and

the std. L2-norms in IID cases consistently exhibit lower values

compared to all non-IID cases along the training process; (2) in the

majority of cases, NIID-Dir(0.5) tends to produce avg. L2-norms
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(a) Experimental results evaluated on MNIST-LogR
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(b) Experimental results evaluated on CIFAR10-CNN

Figure 2: Effects of data distribution and varying privacy budgets on

the average and standard deviation of the L2-norms (y-axis) of local

updates across 10 clients over a maximum of 20 communication

rounds (x-axis).

and std. L2-norms that are either smaller or comparable to those

obtained with NIID(2).

The isolated effect of privacy budget. From Fig. 2 (a), it is clear

that there exists a negative correlation between the value of pri-

vacy budget (𝜀) and the avg./std. L2-norms in two non-IID cases.

Although the trend may not be readily apparent in the IID case, we

note that the observation remains consistent. It makes sense since

the discrepancies in privacy budgets imply variations in the scale

of the random Gaussian distribution, resulting in different amounts

of additive noise being introduced to the model updates during the

local training procedure. Surprisingly, the results obtained from

the cases with 𝜀 = 3.0 and 𝜀 = 20 show a considerable resemblance,

indicating that both cases result in a similar degree of perturbation

on the magnitude of clients’ local updates, despite the latter case

having a significantly larger privacy budget (in other words, an 𝜀

value of 3.0 may not be sufficiently small to provide a significant

enhancement in privacy protection compared to the weak privacy

setting of 𝜀 = 20). Given that similar trends have been observed

in the CIFAR10-CNN experiments, we present only a partial set of

results here due to the strict space limitations.
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Table 1: Distribution of privacy preferences

Distribution Parameters Setting

MixGauss1
Mixture of N1 (0.1, 0.01) and N2 (10.0, 0.1)

with mixture weights 0.9 and 0.1

MixGauss2
Mixture of N1 (1.0, 0.1) and N2 (10.0, 0.1)

with mixture weights 0.9 and 0.1

MixGauss3
Mixture of N1 (0.1, 0.01) , N2 (1.0, 0.1) and N3 (10.0, 1.0)

with mixture weights 0.5, 0.4 and 0.1

4 PDP-FL WITHOUT EXPOSING RAW
PRIVACY BUDGETS

In this section, we introduce a privacy-budget-agnostic version of

PFA that utilizes the L2-norms of noisy local updates. To evaluate

the effectiveness of our approach as well as ensure a fair comparison,

we reproduce the experiments using the same experimental setup

as the previous study conducted by Liu et al [19].

4.1 Indirect Privacy Attitudes Partitioning

Key Insight. In our empirical study presented in the above section,

we investigate the effects of non-IID data and varying privacy bud-

gets on the local model updates of clients. The experimental results

suggest that it is possible to indirectly partition the privacy attitudes

of clients into groups by analyzing the L2-norms of their local noisy

updates without requiring access to their raw privacy budgets, as

long as (1) there exists a significant diversity in the privacy budgets

across all clients; (2) the łprivatež (or conservative) clients opt for a

𝜀 that is small enough to ensure effective differentiation.

Proposed Approach. Equipped with the above key insight, now

our focus shifts back to the PDP-FL setting where the additive

Gaussian noises of the clients are drawn from different distribu-

tions determined by their privacy budget. The conservative clients

with stricter privacy budgets require larger perturbation while the

liberal clients with more relaxed privacy budgets submit more ac-

curate model updates. This distinction in privacy budgets and the

corresponding impact on the magnitude of perturbations just align

with the two conditions revealed in the key insight from Section 3,

which motivates us to develop the clustering-based approach for

indirect privacy attitude estimation using L2-norms.

In more detail, we develop a simple yet powerful strategy based

on the clients’ noisy local updates and the Gaussian Mixture Models

(GMMs) clustering algorithm, based on the intuition that clients

who have similar privacy attitudes (privacy budgets) are expected

to introduce Gaussian noises drawn from a similar random distri-

bution. Then we can improve PFA by replacing the original direct

client partition based on exposed privacy budgets with the indirect

partition based on L2-norm clustering (as highlighted in Alg. 1).

4.2 Experimental Results

We first evaluate the utility of our proposed clustering approach by

considering 3 potential multimodal distributions (a mixture of two

or three different Gaussian distributions) as shown in Tab. 1 (see

more details in [19]). Note that this assumption is supported by pre-

vious observations which have shown that a bimodal distribution

is quite universal in a wide range of complex social systems [27].

Effects of the privacy preference distribution. In Fig. 3, we

demonstrate the effectiveness of the L2-norm clustering approach

evaluated onMNIST-LogR in NIID(2) setting with 10 clients in three

Figure 3: The consistency between the results of GMMs clustering

based on L2-norm (left y-axis) and the ground truths based on the

real privacy budgets (right y-axis) across 10 clients (x-axis) evaluated

on MNIST-LogR in NIID(2) setting.

Figure 4: The test accuracy versus communication rounds evaluated

on MNIST-LogR in non-IID data setting with privacy preferences

distribution of MixGauss1.

privacy preferences distributions. In all plots, we utilize various

markers to represent the predicted cluster index and the real pri-

vacy attitude of each client. Additionally, we use three different

colors to indicate the resulting partitions. Experiment results show

an obvious consistency between the L2-norms clustering and the

ground truths (based on clients’ real privacy budgets).

Evaluation of the end-to-end PFA framework. In Fig. 4, we

report the test accuracy versus communication rounds evaluated

on MNIST-LogR in non-IID data setting with privacy preferences

distribution of MixGauss1. Different from Liu et al. [19], we do not

compare the weighted average (WeiAvg) and the communication-

efficient version of PFA (PFA+) here since these two methods are

dependent on the values of clients’ privacy budgets, which is no

longer available in our considered scenario. Just as we expected,

the distinct utility advantages of PFA over the baseline methods

FedAvg and Minimum remain due to the correct clustering results.

Although it has worse accuracy than the non-private baseline (NP-

FedAvg), PFA still reaches a reasonable level of model utility, while

the FedAvg with PDP becomes ineffective. Just as we expected,

the distinct utility advantages of PFA over the baseline methods

FedAvg and Minimum remain due to the correct clustering results.

Although it has worse accuracy than the non-private baseline (NP-

FedAvg), PFA still reaches a reasonable level of model utility, while

the FedAvg with PDP becomes ineffective.

5 CONCLUSION AND FUTUREWORK

In this work, we have proposed an effective method for indirect

privacy attitude estimation based on L2-norm clustering in the

PDP-FL setting. Additionally, we have integrated this clustering

approach into the vanilla PFA framework to address potential pri-

vacy leakage issues arising from exposed privacy budgets. Some

future directions include: (1) generalizing the clustering strategy

Submission ID: 2886. 2023-08-29 23:01. Page 4 of 1ś5.
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to the more challenging cases where clients’ privacy budgets are

relatively uniform or more difficult to differentiate; (2) conducting

extensive empirical evaluations on larger and more diverse datasets

for deeper explorations into the effectiveness and scalability of our

proposed approach.
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