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Abstract

Kinship relationship estimation plays a significant role in today’s genome studies. Since genetic data are mostly

stored and protected in different silos, retrieving the desirable kinship relationships across federated data warehouses

is a non-trivial problem. The ability to identify and connect related individuals is important for both research and

clinical applications. In this work, we propose a new privacy-preserving kinship relationship estimation framework:

Incremental Update Kinship Identification (INK). The proposed framework includes three key components that allow

us to control the balance between privacy and accuracy (of kinship estimation): an incremental process coupled with

the use of auxiliary information and informative scores. Our empirical evaluation shows that INK can achieve higher

kinship identification correctness while exposing fewer genetic markers.

Introduction

In the age of big data, collaborative studies have increasingly become more important. Especially in genomic research,

all the participating parties in federated setting benefit from such collaborations since they obtain more significant

statistics and a more accurate outcome [1, 2]. On the other hand, genomic datasets typically contain sensitive infor-

mation of the participants such as phenotype, family membership, and disease information, which, if inferred by an

adversary, may be used in a harmful way (e.g., higher health insurance rates or unemployment due to known precon-

ditions) [3, 4]. Some of the existing solutions that mitigate such privacy issues include: (a) differential privacy based

solutions, which generally rely on addition of noise to the raw data [5, 6]; (b) meta-analysis, in which the collaborators

only share the aggregate statistics of individual studies with each other [7, 8]; and (c) cryptographic solutions, which

utilize cryptographic algorithms to encrypt the data, but also enable the researchers to work on encrypted data [9, 10].

Often the datasets that are being used in genomic research may introduce bias to the research results. This is because

the samples may be related to each other, or the majority of the samples may belong to only one or two sub-populations.

This could influence the results of the research, and for any study it is important to be aware of this potential bias.

Typically since any study would primarily be focused on a particular target group, one of the most important steps in

collaborative studies is to select the set of attributes and samples that will be used in the study. This process helps to

ensure that the results of the study are fair and robust.

Our focus in this work is the identification of the related samples in the federated dataset of the collaborators. This

is typically required in several scenarios: (a) the collaborators identify and filter out the related samples as part of

the quality control procedure which is widely used in genome-wide association studies (GWAS); or (b) collaborators

identify closely related samples (family members) and use only those samples to perform GWAS. Note that the related

samples may belong to datasets owned by different parties and that is the main challenge we address in this paper.

Previous works in this area have mainly focused on the privacy-preserving similar patient search, which means iden-

tifying similar patients in the datasets to a known target. For example, Jha et al. [11], proposed a privacy-preserving

cryptographic technique for computing the Smith-Waterman similarity score and edit distance between two sequences.

Recently, Zhu et al. [12] proposed a secure patient search mechanism based on a gBK-tree, edit distance approxima-

tion algorithm, and symmetric-key encryption. As opposed to the aforementioned approaches, our work focuses on

a different problem of finding similar records across different genomic datasets without a known target. The scheme

proposed in [13] is the first to provide a privacy-preserving solution to identify related individuals across different

genomic datasets. In the proposed framework, the collaborators synchronize to decide on a set of genetic markers

(single nucleotide polymorphisms - SNPs) and a common seed, shuffle their data according to the seed, and send their

shuffled dataset to the server which performs the necessary computations to compute the kinship coefficients between

all the federated data participants. With more than 250 SNPs, their method correctly identifies 95% of kinship rela-
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tionships. However, the authors only consider up to second degree relationships. Moreover, due to the usage of a local

differential privacy (ϵ-LDP) variant to provide stronger privacy guarantees, the utility suffers when a large amount of

noise is added (e.g. the recall drops below 85% for any ϵ value lower than 3). Considering the same system model

and kinship coefficient metric, we propose an efficient framework that is able to identify higher degree of kinship

relationships with lower privacy risks.

In this paper, we propose the Incremental Update Kinship Identification (INK) framework in which all the researchers

generate the metadata and monitor the kinship relationships of each pair of individuals in the federated setting itera-

tively. We propose to make use of auxiliary information (e.g. simulation distributions of relatedness coefficients) to

decide the cutoff values for classifying individuals belonging to different kinship categories. We define the informative

score of each SNP based on the impact it has on the relatedness coefficients and select SNPs according to the ranks.

In our work, we aim to accurately compute the kinship coefficients between all the samples in federated datasets and

show that our approach has lower privacy risks than the previous works.

Since our framework is based on multiple components, we evaluate different methods that are built on a combination of

multiple components. We compare them with the original centralized approach [14] and our previous approach [13].

We noticed that the usage of auxiliary information to determine cut-off points has a higher impact than the other

framework components. Furthermore, we also explore the change in utility when we use different number of SNPs.

Compared to methods that outsource metadata to the server, our method achieves higher kinship identification correct-

ness while requiring fewer SNPs to be shared with the server, thus minimizing the privacy risk.

Kinship Inference

There exist a few metrics to measure the relatedness between two samples such as KING coefficient [15], Identity By

Descent estimation method [16], Graphical Representation of Relationship errors [17], and KIND [14]. In this work,

we use KING coefficient as the kinship metric because of its high accuracy and simplicity in use. Assuming that SNPs

are biallelic, we compute the KING kinship coefficient between two samples i and j as follows:

ϕi,j =
2n11 − 4(n02 + n20)− n∗1 + n1∗

4n1∗
, (1)

where n11 represents the number of SNPs in which both samples are heterozygous, n02 in which sample i is homozy-

gous dominant and sample j is homozygous recessive, n20 refers to the opposite case (i.e., i is homozygous recessive

and j is homozygous dominant), n1∗ and n∗1 in which samples i and j are heterozygous, respectively.

Based on KING, a kinship coefficient greater than different thresholds implies different degrees of kinship relatedness.

Environment and Threat Model

System model. We refer to the parties that want to perform the collaborative study as researchers, and the third party

that has the computation power as the server. The goal of each researcher is to identify the kinship relationships

between samples across federated datasets while guaranteeing the privacy of the dataset participants (samples). The

researchers need to share with the server some partial metadata which are locally generated from the original dataset.

Then, the server performs the necessary computations to identify all the related samples across federated datasets.

Based on the study that the researchers want to conduct (i.e., whether they need to remove related samples or keep

only the family members), the server sends back the IDs of the samples that need to be filtered out to each researcher.

Threat model. There are several known privacy attacks in the field of genomic data science, such as membership

inference attacks [18, 19], attribute inference attack [20], and reconstruction attacks [21]. In most cases, the adversaries

are assumed to know the target’s full or partial genomic sequences and exploit side information to increase the power

of the attacks. In this work, we focus on general privacy risks without specifying particular attacks, and the goal is to

limit the privacy risk due to sharing metadata iteratively.

We assume an honest-but-curious server and legitimate researchers. Suppose the server has a target and the partial

genome sequence of the target. The server follows the protocol but tries to obtain more information, i.e., the genome

sequences of the target. In order to conduct further attacks, such as membership inference attacks and reconstruction

attacks, the server tries to match the target’s sequence with the shared metadata from both researchers. This is achieved

if (a) at each iteration, the server can match the unordered SNP sequence shared by the researchers with the target’s
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Figure 1: Workflow overview of the proposed framework. (1) Synchronization: two researchers initially decide

whether they will continue the process; if continue, they decide on the set of SNPs that is used to generate the meta-

data which is later sent to the server. (2) Initialization: each researcher utilizes the auxiliary information (e.g. simulated

samples) and extracts the basic statistics of the KING coefficients distributions. (3) Outsourcing: the server calculates

and returns the pairwise KING coefficients to both researchers. Each researcher updates locally the kinship relation-

ships.

SNP sequence and (b) the server is able to find the linkage among the SNPs shared across the iteration process. The

privacy risk, therefore, depends on the number of shared SNPs, the number of iterations, and the correlations between

SNPs.

Methods

In this section, we describe the proposed mechanism to identify kinship relationships in the federated setting that

achieves high kinship identification accuracy and is robust even when a small set of SNPs is provided. We initially

present the proposed Incremental Update Kinship Identification (INK) framework. Then, we describe the three com-

ponents, including exploiting auxiliary information, incremental process, and informative score, which pave the way

to address the drawbacks of existing methods (discussed in the previous section).

Proposed Framework. In the following sections, for the ease of simplicity, we have considered two researchers, but

our framework can be easily extended to multiple researchers. The algorithm of the proposed framework is shown in

Algorithm 1 and the overall workflow is illustrated in Figure 1. Similar to the previous method [13], each researcher

sends some metadata to the server to facilitate computation of the KING coefficients. At each iteration, there are three

stages which include: synchronization stage, initialization stage, and outsourcing stage. In the synchronization stage,

the researchers mutually decide on the set of SNPs which are used to generate the metadata. The selected set of SNPs

(i.e. SNP IDs) is not revealed to the server as part of the metadata. In the initialization stage, each researcher generates

synthetic relatives and unrelated individuals (i.e., simulated set) following Mendel’s Laws. Each researcher calculates

the KING coefficients on the simulated set and extracts the aggregate statistics for each kinship relationship group,

i.e., ([min,max],mean)k (line 8 to 11). Note that the researchers only synchronize to decide the metadata.

In the outsourcing stage, both researchers send the metadata to the server. Since the metadata does not contain the

SNP IDs, the server cannot simply construct the SNP sequence of the samples that are included in the metadata.

The server calculates the KING coefficients with the pooled metadata and returns each pair’s coefficients to both

researchers. Each researcher calculates the KING coefficients on all the shared SNPs via Eq 2. Then, comparing

the results with the aggregate statistics, each researcher obtains the kinship relationship for each pair of individuals.

Finally, each researcher updates the kinship relationship based on the previous results using a weighted voting strategy

(line 14 to 19). Given a list of kinship relationship predictions from T iterations, k1, k2, · · · , kT , the weighted kinship

relationship k is calculated as
∑T

1 wt ∗ kt, where wt is the weight associates with kt, and wt =
1

T+1−t∑
T

t

1
T+1−t

. Each

researcher then takes the majority weighted vote, k∗ = argmax k, and sets it as the kinship relationship between the

samples. In the next synchronization phase, the researchers also need to decide if they want to continue. If the kinship
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Algorithm 1 Incremental Update Kinship Identification (INK)

Input: Individuals data DA and DB from researcher A and B

Output: Kinship relatedness of the individuals in DA and DB

1: Initialize S = ∅
2: T = 1
3: while stop condition is not satisfied do

4: Sync Stage:

5: Both researchers, A and B, decide ST to be shared to the server

6: S = S ∪ ST

7: Init Stage:

8: for r = A and B do

9: Generate simulated unrelated individuals and relatives, Simr
D, of Dr

10: Calculate KING coefficients with Eq. 1 of Simr
D on S

11: Extract ([min,max],mean)rk of the coefficients of the k-degree relatives

in Simr
D where k ∈ {1, 2, 3, unrelated}

12: end for

13: Outsourcing Stage:

14: A and B share ST of DA and DB to the server, respectively

15: Sever computes the KING coefficients and return {i ∈ DA, j ∈ DB |(i, j, ϕ
T
i,j)} to A and B

16: for r = A and B do

17: Compute ϕi,j based on Eq. 2 and ϕT
i,j

18: Obtain the kinship relationship

kT = argmin
k

|ϕR −meanr
k|, where ϕR ∈ [min,max]rk and k ∈ [1, 2, 3, unrelated]

19: Update the kinship relationship

k∗ = argmax
k

∑T

1 wt ∗ kt, where wt =
1

T+1−t∑
T

t

1
T+1−t

20: end for

21: T = T + 1
22: end while

relationships for all the individuals remain the same, both researchers choose to end the iteration.

Exploiting Auxiliary Information. Determining the kinship relationships based on some relatedness measures that

quantify the genetic information shared by individuals is a straightforward and efficient approach. However, the

accuracy of these estimators is not guaranteed. The performance of these measures is affected by the number of

genetic markers, allele frequency distribution, and the kin structure of the population [22]. A large set of SNPs can

help to increase the accuracy and robustness of the relatedness measure-based estimators (e.g., KING). In fact, the

distributions of the KING coefficient for different kinship categories (i.e., relationship degrees) are based on 20K

SNPs [15]. However, using a large set of SNPs is not applicable in the federated setting for two reasons: (a) a large

number of overlapping SNPs may not be feasible for all the participating parties; and (b) sharing a large number of

SNPs can significantly increase the privacy risks.

To address this issue, we propose to use the auxiliary information, such as simulated distributions of KING coefficients

and publicly available genomic datasets which contain real relatives, to determine the cutoff values (i.e., thresholds)

while classifying KING coefficients as belonging to these kinship categories.

In the proposed framework, each researcher r creates a simulated set, denoted as Simr, that contains artificially

generated relatives (up to third-degree relatives) and unrelated individuals of the individuals in their dataset. Given a

set of SNPs and a pair of real individuals (i, j), the researcher initially calculates the KING coefficients of the simulated

kinship categories (k) and obtains the descriptive statistics, i.e., {minimal,maximal,mean}k, of the corresponding

coefficients distributions. Then, the researcher classifies the kinship relationship of the pair of real individuals based on
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the KING coefficients (ϕi,j) and the distance to the simulated distributions. If the ϕi,j ∈ [min,max]k, it is classified

as a k-th degree kinship category. If the coefficient falls into multiple categories, the kinship relation is determined by

the distance to the mean, and the closest category is chosen, i.e., k = argmin
k

|ϕR−meank| where ϕR ∈ [min,max]k

and k ∈ [1, 2, 3, unrelated].

Incremental Process. Besides the aforementioned factors, the relatedness measure-based estimators suffer from the

inherent inaccuracies due to the inconsistencies between genetic and pedigree relatedness, which leads to overlapping

distributions of coefficients for different kinship categories [23, 15]. This, however, holds even with a large number of

SNPs and/or the auxiliary information (e.g., simulated distributions). To address the issue, we propose an incremental

process. Our proposed process starts with a small number of SNPs, and then gradually expands to include more SNPs.

This approach is both robust and efficient, and it can handle large datasets.

Instead of outsourcing metadata all at once, each researcher breaks down the metadata and outsources a small subset

iteratively. Similar to the ensemble technique, researchers combine the results from multiple iterations to improve the

robustness of the relatedness-based approach. Moreover, with the proposed outsourcing framework, each researcher

is able to recover the results as computed on the whole metadata based on the results returned at each iteration.

Assume that at iterations t and t+ p, researchers share metadata M t and M t+p to the server. Note that each metadata

includes a small set of SNPs, denoted as St and St+p respectively, and St ∩ St+p = ∅. Server returns the KING

coefficients computed on St and St+p to both researchers. Denote ϕ, ϕt, and ϕt+p as the KING coefficients computed

on St ∪ St+p, St, and St+p respectively. Then, both researchers obtain ϕ as:

ϕ =
nt
1∗ϕ

t + n
t+p
1∗ ϕt+p

nt
1∗ + n

t+p
1∗

(2)

Note that this is true since

ϕ =
2n11 − 4(n02 + n20)− n∗1 + n1∗

4n1∗

=
2
(

nt
11 + n

t+p
11

)

− 4
((

nt
02 + n

t+p
02

)

+
(

nt
20 + n

t+p
20

))

−
(

nt
∗1 + n

t+p
∗1

)

+
(

nt
1∗ + n

t+p
1∗

)

4
(

nt
1∗ + n

t+p
1∗

)

=
nt
1∗ϕ

t + n
t+p
1∗ ϕt+p

(

nt
1∗ + n

t+p
1∗

)

(3)

Informative Score. Given SNP sequences from two individuals, the kinship relatedness based on the KING coefficient

is determined by the pairwise combinations of SNPs (the total number of SNPs in which individuals are heterozygous,

homozygous dominant, and homozygous recessive). When sharing of the whole SNP sequence is infeasible (as in the

federated setting), the SNPs that are selected to compute the KING coefficients are important in order to achieve high

accuracy in an efficient way. For instance, outsourcing a set of SNPs that have small impact on the KING coefficient

(i.e., SNPs for which both individuals are homozygous recessive or homozygous dominant) is undesirable. In this

section, we propose informative score (IS) to measure the impact of each SNP on KING coefficients calculation. In

the federated setting, the IS of each SNP is not directly available since the individuals are separated in two different

datasets. Therefore, we utilize the simulated dataset, as described in the previous section, to calculate the informative

score for each SNP. Formally, we define the informative score of SNP h as:

IS(h) =
1

|σ|

∑

(i,i)∈σ

∣

∣

∣

∣

∣

log
ϕS
i,j

ϕ
S
−h

i,j

∣

∣

∣

∣

∣

(4)

where σ denotes all the possible combinations of samples in the simulation set and S−h denotes the SNPs set without

h (i.e., S−h = S \ {h}).

During the iteration process, researchers first outsource the SNPs with high informative scores. When a set of SNPs

have the same informative scores, a random selection is applied to break ties.
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Privacy Analysis

As mentioned before, in this work, we focus on general privacy risks without specifying one particular attack, and the

goal is to limit the privacy risk due to sharing metadata iteratively. The server is able to infer the sensitive information

from the metadata if (a) at each iteration, the server can match the unordered SNP sequence shared by the researchers

with a target’s SNP sequence (i.e., a target individual, whose membership to a research dataset may be sensitive) and

(b) the server is able to find the linkage among the SNPs shared across the iteration process.

To alleviate the privacy risk, we present two mitigation techniques. On the one hand, researchers select SNPs from

different chromosomes for each iteration to remove the linkage among SNPs in different iterations. Researchers

also remove the user IDs and shuffle the samples in each iteration. On the other hand, during each iteration, each

researcher generates several synthetic SNPs and shares them as part of the metadata with the server. With carefully

tuned parameters, the synthetic SNPs are indistinguishable from the real ones [24]. To remove the noise introduced by

the synthetic SNPs, researchers initially create two different sets of synthetic SNPs, named SF1 and SF2 , then share

three batches of metadata, SF 1

∪ SR, SF2 ∪ SR, and SF1 ∪ SF2 respectively, with the server and obtain the KING

coefficients, ϕF1R, ϕF2R, and ϕF1F2 . Based on Eq. 2, each researcher recovers the KING coefficients calculated on

the real SNPs set R, ϕR, with

ϕR =
nF1R
1∗ ϕF1R + nF2R

1∗ ϕF2R − nF1F2

1∗ ϕF1F2

2nR
1∗

Note that each researcher generates the synthetic SNPs independently.

Experiments

As discussed in the previous section, our proposed framework is based on three components. We propose several

methods based on the components (see Table 1) and their combinations as follows:

1. Increment: Iteratively outsource the SNPs and update the kinship relationships based on the predefined thresh-

olds

2. Increment+Sim: Iteratively outsource the SNPs and update the kinship relationships based on the simulated

thresholds

3. Increment+Informative: Iteratively outsource the SNPs based on the informative scores, and update the kinship

relationships based on the predefined thresholds

4. Increment+Inform+Sim: Iteratively outsource the SNPs based on the informative scores, and update the kinship

relationships based on the simulated thresholds

Increment Sim Inform All

outsource update outsource update outsource update outsource update

Increment ⋆ ⋆ † † • ⋆

Sim † † Ð Ð Ð Ð • †
Inform • ⋆ Ð Ð Ð Ð

Note: Predefined threshold (⋆) ; Simulated threshold (†) ; Informative scores (•) ; Not applicable (Ð)

Table 1: Summary of components combinations

We compare the proposed methods with two baselines: centralized approach and privacy-preserving kinship identifi-

cation (PPKI) [13]. The centralized approach assumes all the data is stored in one local node, and the computation

is carried out locally. PPKI assumes there are two researchers and utilize an ϵ-LDP variant for preserving privacy. ϵ

is the privacy parameter which controls the trade-off between privacy and accuracy. Following the implementation of

the PPKI, we pick the parameters that result in high utility, and therefore, we set ϵ to be 5.

To evaluate the proposed methods, we use real genomic data from OpenSNP [25] and randomly sample a subset

that contains 200 unrelated individuals and 3000 SNPs. Following Mendel’s law, we generate 200 pairs of synthetic

relatives for each degree of kinship relationship (up to third-degree) of the individuals in the subset.
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The performance of the proposed methods in comparison with the two baselines is evaluated in terms of utility (mea-

sured by the correctness of identifying kinship relationships) and the relative privacy loss (measured by the number of

SNPs required to achieve a certain correctness level). The method that achieves higher kinship identification correct-

ness and lower relative privacy loss is preferred.

Kinship Identification Correctness. We use accuracy rate and Area Under the Receiver Operating Characteristic

Curve (AUROC) scores to measure the correctness of kinship relationships identification.

Relative Privacy Loss. As discussed in the previous section, we use the number of outsourced SNPs to measure

the potential privacy risk in the federated setting. Denote the number of SNPs required by baseline q as |S|q and

the kinship identification correctness achieved by this baseline with |S|q SNPs as c-correctness. We then define the

relative privacy loss (RPL(c)) of approach p to the baseline q as

RPL(c)p,q =
|S|p − |S|q

|S|q
(5)

where |S|p is the the minimal number of SNPs required by q to achieve c-correctness. In the following experiments, we

use the centralized method, i.e., all the data is stored in a single node and no privacy risk introduced, as the baseline

q. As per the above definition, a negative value is always preferred since it means a privacy gain compared to the

centralized approach.

Results

Our objective is to identify the kinship correlation of individuals from different data sites. Here, we consider two

practical tasks (a) identifying the degree of kinship relatedness (we consider first, second, third-degree relatives and

unrelated samples) and (b) identifying relatives and unrelated individuals. We conduct each experiment 10 times and

report the average of the results.

Utility. The utility of identifying relatives is shown in Table 2. For the proposed methods, we fix the size of the

metadata (the number of SNPs) in each iteration at 100 and continue the iteration until all the SNPs are shared with the

server. For the two baselines, we calculate the KING coefficients using all the SNPs. From Table 2, we observe that

under task (a), all the proposed methods outperform PPKI [13]. Simulation set has a more significant impact than the

other two components. Increment+Sim and Increment+Inform+Sim achieve higher accuracy rates and AUPRC scores

compared to the other methods. Under task (b), we notice that Simulation set has a minor contribution. This is due to

the low expressibility of the basic statistics including minimum, maximum, and mean. Samples containing different

kinship categories can lead to a complicated KING coefficient distribution, which basic statistics cannot capture. To

address this issue, we can incorporate the misclassification rate to determine the cutoff values [23]. However, the

utility is still improved solely by the Incremental Process and the weighted voting strategy.

In Figure 2, we further explore the change in utility for all the kinship relationships with different numbers of SNPs.

The correctness of identifying kinship relatedness increases when more SNPs are provided. However, to identify

higher degree kinship relationship, more SNPs are required. While no single method dominates the rest, Incremental

process and Simulation set show a greater improvement in terms of utility.

Task (a) Task (b)

Methods Accuracy AUROC Accuracy AUROC

Increment 0.803 0.870 0.908 0.868

Increment+Sim 0.821 0.881 0.814 0.858

Increment+Informative 0.800 0.869 0.877 0.808

Increment+Inform+Sim 0.816 0.877 0.900 0.800

Centralized 0.807 0.873 0.906 0.866

PPKI [13](ϵ = 5) 0.799 0.866 0.903 0.866

Table 2: Kinship identification correctness. The best performance is marked in light blue font, and the second best is

marked in blue font.

Relative Privacy Loss. Based on the accuracy rate and AUPRC scores of the centralized setting (which is considered

as the main baseline in this experiment), we compute the relative privacy loss of the proposed methods and PPKI [13],
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Figure 2: Utility for different degrees of relatedness with different number of SNPs. Centralized is evaluated with all

the 3000 SNPs.

Task (a) Task (b)

Methods RPL(acc) RPL(auc) RPL(acc) RPL(auc)

Increment > 0 > 0 -0.19 -0.09

Increment+Sim -0.25 -0.24 > 0 -0.09

Increment+Informative > 0 > 0 > 0 > 0
Increment+Inform+Sim -0.03 > 0 > 0 > 0
PPKI [13] (ϵ = 5) -0.05 > 0 -0.24 -0.19

Table 3: Relative privacy loss. The best performance is marked in light blue font, and the second best is marked in

blue font.

and present them in Table 3. Note that > 0 suggests that the relative privacy loss is undefined since the number of

the required SNPs is larger than the dataset size. Increment+Sim achieves the best and the second best RPL results in

terms of AUROC for tasks (a) and (b), respectively. The obtained results show that Increment+Sim require 24% fewer

SNPs in order to achieve the same kinship identification correctness as the baseline.

Efficiency and Utility Trade-off. The proposed framework assumes that the researchers need to synchronize and

maintain the samples’ kinship relatedness once the server returns the results at each iteration. Hence, the computation

and communication overhead increases linearly with the number of iterations. Researchers can stop the iteration

process early if the goal is to identify the lower degrees of relatives, as shown in Figure 2 (e.g., only a small number

of SNPs, 200-400, enables to achieve a high accuracy rate of identifying first-degree relatives). In order to identify a

higher degree relatives and reduce the computation and communication overhead, researchers can increase the number

of shared SNPs (m) at each iteration. In Table 4, we show the change in utility when considering different numbers of

shared SNPs in an iteration. From Table 4, the communication and computation overhead can be reduced drastically

with a low impact on the utility. For instance, when m increases from 100 to 600, the number of iterations decreases

from 30 to 5, and the AUPRC score of Increment+Sim slightly decreases from 0.881 to 0.879 for task (a).

Task (a) Task (b)

Methods m = 100 m = 200 m = 400 m = 600 m = 100 m = 200 m = 400 m = 600

Accuracy

Increment 0.806 0.805 0.800 0.802 0.912 0.911 0.910 0.908

Increment+Sim 0.823 0.822 0.817 0.819 0.832 0.829 0.828 0.825

Increment+Informative 0.800 0.791 0.787 0.790 0.879 0.884 0.886 0.889

Increment+Inform+Sim 0.816 0.813 0.803 0.804 0.900 0.899 0.893 0.899

AUROC

Increment 0.870 0.870 0.867 0.869 0.868 0.866 0.863 0.861

Increment+Sim 0.881 0.881 0.877 0.879 0.858 0.858 0.858 0.858

Increment+Informative 0.869 0.864 0.860 0.862 0.808 0.820 0.833 0.848

Increment+Inform+Sim 0.877 0.876 0.869 0.870 0.800 0.798 0.785 0.803

Table 4: Utility with varying numbers of shared SNPs in each iteration. Results are based on 3000 SNPs in total.
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Conclusion

The volume and pace at which genomic data is collected and used to train models keeps on increasing enormously

[26, 27, 28, 29]. Since sending out the sensitive individual genomic data is prohibited by regulations like HIPAA,

studies that require population-wise correlation cannot be done in a centralized way and a privacy-preserving method

to estimate the kinship relationship is necessary to balance privacy concerns and research utility.

In this work, we propose the Incremental Update Kinship Identification (INK), which shows considerable improve-

ments to the prior Privacy-preserving Kinship Identification (PPKI) method [13]. Our proposed kinship framework

is the state-of-the-art method for estimating kinship relationships in a federated setting while preserving privacy. By

sharing limited number of SNPs, INK can achieve a good accuracy in estimating the degree of relatedness. This allows

us to estimate kinship relationships while preserving privacy by limiting the amount of information shared. Moreover,

the flexibility of combining three novel components (Incremental process, Informative score, and Auxiliary informa-

tion) in INK framework allow the flexibility to deal with heterogeneous datasets. Collaborators can choose the best

performing combination of these components according to their required kinship estimation accuracy.

Our proposed method is lightweight, easy to implement on the researcher’s side, and does not require a completely

trusted server. However, the implementation of real-world applications needs to handle problems including client

selection, dropout, and heterogeneous data, which can be explored in future work. Furthermore, the experimental

setting assumes that the sample sizes in each node are equal. In general, this is not true. Note that in a federated

network, the node with smaller sample size will be more vulnerable to others when it comes to privacy protection.

With this in mind, our future work will focus on adopting secure multi-party computation (secure-MPC) protocols to

the INK framework, such as ABY3 [30], Falcon [31], Function Secret Sharing (FSS) [32], SPDZ [33, 34], etc, and

evaluating different settings including having multiple parties.
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