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Abstract

We propose a new method for novelty detec-
tion that can tolerate high corruption of the train-
ing points, whereas previous works assumed ei-
ther no or very low corruption. Our method
trains a robust variational autoencoder (VAE),
which aims to generate a model for the uncor-
rupted training points. To gain robustness to high
corruption, we incorporate the following four
changes to the common VAE: 1. Extracting cru-
cial features of the latent code by a carefully de-
signed dimension reduction component for dis-
tributions; 2. Modeling the latent distribution as
a mixture of Gaussian low-rank inliers and full-
rank outliers, where the testing only uses the in-
lier model; 3. Applying the Wasserstein-1 met-
ric for regularization, instead of the Kullback-
Leibler (KL) divergence; and 4. Using a robust
error for reconstruction. We establish both ro-
bustness to outliers and suitability to low-rank
modeling of the Wasserstein metric as opposed
to the KL divergence. We illustrate state-of-the-
art results on standard benchmarks.

1 INTRODUCTION

Machine learning solutions often assume that training
datasets are flawless and can serve as ground truth. How-
ever, this assumption usually does not hold in practice. In-
deed, most datasets, even commonly used ones such as
CIFAR-10 or ImageNet, suffer from corruption and misla-
beling (Northcutt et al., 2021). While in many applications
the percentage of mislabels may be sufficiently small, there
are important scenarios where this is not the case. One such
scenario appears when studying problems with no earlier
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experience and expertise. For instance, in the beginning of
the COVID-19 pandemic it was hard to diagnose COVID-
19 patients and distinguish them from other patients with
pneumonia (Chowdhury et al., 2020; Xiao et al., 2020).
Another scenario occurs when it is very hard to make pre-
cise measurements, for example, when working with the
highly corrupted images in cryogenic electron microscopy
(cryo-EM) (Miolane et al., 2020; Huang & Tagare, 2015).

One problem, where it is crucial to carefully address mis-
labeled training data points, is novelty detection. It asks to
detect testing data points that deviate from the underlying
structure of a given training dataset (Chandola et al., 2009;
Pimentel et al., 2014; Chalapathy & Chawla, 2019; Perera
et al., 2021). Novelty detection is equivalent to the well-
known one-class classification problem (Moya & Hush,
1996). This problem asks to identify members of a class
in a test dataset, and consequently distinguish them from
“novel” data points, given training points from this class.
The points of the main class are commonly referred to as
inliers and the novel ones as outliers. Novelty detection
is also commonly referred to as semi-supervised anomaly
detection. In this terminology, the notion of being “semi-
supervised” is different from usual, and means that a train-
ing set is provided for the inliers only. On the other hand,
the supervised case has labeled training data for both the in-
liers and outliers, and the unsupervised case has no training
and is also known as “outlier detection”.

Traditional one-class classification methods often assume
that the training set is purely sampled from a single class
or has few outliers and perform poorly when there is a non-
trivial portion of outliers. In this paper, we study a robust
version of novelty detection that allows a nontrivial fraction
of corrupted samples, namely outliers, within the training
set. We solve this problem by using a special variational
autoencoder (VAE) (Kingma & Welling, 2014). Our VAE
is able to model the underlying distribution of the uncor-
rupted data, despite nontrivial corruption. We refer to it
as “Mixture Autoencoding with Wasserstein penalty”, or
“MAW”.
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1.1 Previous Work

Solutions to novelty detection either estimate the density
of the inlier distribution (Bengio & Monperrus, 2005; Ilo-
nen et al., 2006) or determine a geometric property of the
inliers, such as their boundary set (Breunig et al., 2000;
Schölkopf et al., 2000; Xiao et al., 2016; Wang & Lan,
2020; Jiang et al., 2019). When the inlier distribution is
nicely approximated by a low-dimensional linear subspace,
Shyu et al. (2003) propose to distinguish between inliers
and outliers via Principal Component Analysis (PCA). In
order to consider more general cases of nonlinear low-
dimensional structures, one may use autoencoders (or re-
stricted Boltzmann machines), which nonlinearly general-
ize PCA (Goodfellow et al., 2016, Ch. 2) and whose recon-
struction error naturally provides a score for membership
in the inlier class. Instances of this strategy with various
architectures include (Zhai et al., 2016; Zong et al., 2018;
Sabokrou et al., 2018; Perera et al., 2019; Pidhorskyi et al.,
2018). In all of these works, but (Zong et al., 2018), the
training set is assumed to solely represent the inlier class.
If there are also outliers (with a simple shape) among the
inliers (with a complex shape), encoding the inlier distribu-
tion becomes difficult. Nevertheless, some previous works
already explored the possibility of a corrupted training set
(Xiao et al., 2016; Wang & Lan, 2020; Zong et al., 2018).
In particular, Xiao et al. (2016); Zong et al. (2018) test ar-
tificial instances with at most 5% corruption of the training
set and Wang & Lan (2020) consider ratios of 10%, but
with very small numbers of training points. In this work
we consider corruption ratios up to 50%, with a method
that tries to estimate the distribution of the training set, and
not just a geometric property.

VAEs (Kingma & Welling, 2014) have been commonly
used for generating distributions with reconstruction scores
and are thus natural for novelty detection without corrup-
tion. The first VAE-based method for novelty detection was
suggested by An & Cho (2015). It was recently extended
by Daniel et al. (2021) who modified the training objec-
tive. A variety of VAE models were also proposed for spe-
cial anomaly detection problems, which are different from
novelty detection (Xu et al., 2018; Zhang et al., 2019; Pol
et al., 2019). Current VAE-based methods for novelty de-
tection do not perform well when the training data is cor-
rupted. Indeed, the learned distribution of any such method
also represents corruption, that is, the outlier component.
To the best of our knowledge, no effective solutions were
proposed for collapsing the outlier mode so that the trained
VAE would only represent the inlier distribution.

A variant of VAE is the adversarial autoencoder (AAE) of
(Makhzani et al., 2016). The penalty term of AAE takes the
form of a generative adversarial network (GAN) (Goodfel-
low et al., 2016), where the AAE’s encoder serves as the
GAN’s generator. We can thus view it as a hybrid GAN-
VAE model. Another such model is the Wasserstein au-

toencoder (WAE) (Tolstikhin et al., 2018), which general-
izes AAE by allowing a general objective function. Our
proposed model is also a hybrid GAN-VAE. Other hybrid
VAE-GAN models include (Mescheder et al., 2017; Xian
et al., 2019; Ye & Bors, 2021). The GAN of (Mescheder
et al., 2017) is used for both the samples and the latent code,
the GAN of (Xian et al., 2019; Ye & Bors, 2021) is used
only for the samples, whereas the GAN of our work and
(Makhzani et al., 2016; Tolstikhin et al., 2018) is used only
for the latent code. We demonstrate the resulting robust-
ness to outliers due to our particular use of a GAN.

There are two relevant lines of work on robustness to out-
liers in linear modeling that can be used in nonlinear set-
tings via autoencoders or VAEs. Robust PCA aims to
deal with sparse elementwise corruption of a data matrix
(Candès et al., 2011; De La Torre & Black, 2003; Wright
et al., 2009; Vaswani & Narayanamurthy, 2018). Robust
subspace recovery (RSR) aims to address general corrup-
tion of selected data points and thus better fits the frame-
work of outliers (Watson, 2001; De La Torre & Black,
2003; Ding et al., 2006; Zhang et al., 2009; McCoy &
Tropp, 2011; Xu et al., 2012; Lerman & Zhang, 2014;
Zhang & Lerman, 2014; Lerman et al., 2015; Lerman &
Maunu, 2017; Maunu et al., 2019; Lerman & Maunu, 2018;
Maunu & Lerman, 2019). Autoencoders that use robust
PCA for anomaly detection tasks were proposed in (Chala-
pathy et al., 2017; Zhou & Paffenroth, 2017). It is shown
in (Dai et al., 2018) that a VAE can be interpreted as a non-
linear robust PCA problem. Nevertheless, explicit regu-
larization is often required to improve robustness to sparse
corruption in VAEs (Akrami et al., 2019; Eduardo et al.,
2020). An RSR layer was successfully applied to outlier
detection in (Lai et al., 2020). One can also apply this work
to novelty detection.

We remark that the setting of our work is different from that
of out-of-distribution (OOD) detection and open-set recog-
nition. Indeed, in these recent settings the inliers are from
multiple classes that need to be identified. On the other
hand, this work does not ask to classify the inliers.

1.2 This Work

We propose a robust novelty detection procedure, MAW,
that aims to model the distribution of the training data in the
presence of a nontrivial fraction of outliers. We highlight
its following four features:

1. MAW models the latent distribution by a Gaussian
mixture of low-rank inliers and full-rank outliers, and
applies the inlier distribution for testing. Previous
applications of mixture models for novelty detection
were designed for multiple modes of inliers and used
more complicated tools such as additional network
construction (Zong et al., 2018) or clustering (Aytekin
et al., 2018; Lee et al., 2018).
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2. MAW applies a novel dimension reduction compo-
nent, which extracts lower-dimensional features of the
latent distribution. The reduced dimension allows
using full covariances; whereas previous VAE-based
methods for novelty detection used diagonal covari-
ances in their models (An & Cho, 2015; Daniel et al.,
2021).

3. MAW uses the Wasserstein-1 (W1) metric for the la-
tent code penalty. We prove that the Wasserstein met-
ric gives rise to outlier-robust estimation and is suit-
able to the low-rank modeling of inliers by MAW.
We also show that these properties do not hold for
the commonly-used KL divergence. To the best of
our knowledge, this is the first theoretical analysis
that clarifies the advantage of the Wasserstein distance
over the KL divergence in a VAE in terms of robust-
ness to outliers and low-rank inlier modeling.

4. MAW achieves state-of-the-art results on popular
anomaly detection datasets.

Additional two features are as follows. First, for recon-
struction, MAW replaces the common least squares formu-
lation with a least absolute deviations formulation. This
can be justified by the use of a robust estimator (Lopuhaa
& Rousseeuw, 1991) with a heavier-tail likelihood. Sec-
ond, MAW is attractive for practitioners. It is simple to im-
plement in any standard deep learning library, and is easily
adaptable to other choices of network architecture, energy
functions and similarity scores.

2 DESCRIPTION OF MAW

We motivate and overview the underlying model and as-
sumptions of MAW in §2.1. We describe the implemen-
tation details of its components in §2.2 and sketch the al-
gorithm procedures in the supplementary materials. Fig. 1
illustrates the general idea of MAW and can assist in read-
ing this section.

2.1 The Model and Assumptions of MAW

MAW aims to robustly estimate a mixture inlier-outlier dis-
tribution for the training data and then use its inlier compo-
nent to detect outliers in the testing data. For this purpose,
it designs a novel variational autoencoder with an underly-
ing mixture model and a robust loss function in the latent
space. We find the variational framework natural for nov-
elty detection. Indeed, it learns a distribution that describes
the inlier training examples and generalizes to the inlier test
data. Moreover, the variational formulation allows a direct
modeling of a Gaussian mixture model (GMM) in the latent
space, unlike a standard autoencoder.

Let x be a random variable in RD with an unknown train-
ing data distribution, which contains both inlier and out-

lier modes. We assume L training points in RD, {x(i)}Li=1

sampled from this distribution. We assume a latent random
variable z of low and even dimension 2 ≤ d ≤ D (our de-
fault choice is d = 2), and a standardized Gaussian prior,
p(z), so that z ∼ N (0, Id×d). In the remaining text, we
shall denote it as

p(z) = N (z|0, Id×d).

The posterior distribution p(z|x) is unknown. However, we
assume an approximation to it, which we denote by

q(z|x) = ηN (z|µ1,Σ1) + (1− η)N (z|µ2,Σ2), (1)

where µ1,Σ1,µ2,Σ2 depend on x and are generated by
the encoder network and the dimension reduction compo-
nent (explained below) the default choice for the mixture
parameter is η = 5/6 (the low sensitivity of our method
to the choice of η is demonstrated in the supplementary
materials). The first mode in (1) represents the inliers and
the second one represents the outliers. We model p(z) as
a single Gaussian since we only want to include the inlier
information, while having the simplest possible design. In
§4.3, we will numerically compare with the modeling of
p(z) as a GMM. In the supplementary materials we intu-
itively clarify the mechanism that helps in such modeling.

The dimension reduction component involves a mapping
from a higher-dimensional space onto the latent space. It is
analogous to the RSR layer (Lai et al., 2020) that projects
encoded points onto the latent space, but requires a more
careful design since we consider a distribution rather than
sample points. Due to this reduction, we assume that the
mapped covariance matrices of z|x are full, unlike com-
mon single-mode VAE models that assume a diagonal co-
variance (Kingma & Welling, 2014; An & Cho, 2015). We
assume that the inliers lie on a low-dimensional structure
and we thus enforce the lower rank d/2 for Σ1, but allow
Σ2 to have full rank d. Nevertheless, we later describe a
necessary regularization of both matrices. We remark that
the low rank assumption results in the main distinction be-
tween the inliers and outliers in (1) (as noted in the supple-
mentary materials the choice of η > 0.5 is not crucial).

The unknown posterior distribution p(z|x) is approximated
within the variational familyQ = {q(z|x)} indexed by µ1,
Σ1, µ2 and Σ2. Unlike a standard VAE, which maximizes
the evidence lower bound (ELBO), MAW maximizes the
following loss function, which uses the W1 distance (de-
fined in the supplementary materials), instead of the KL
divergence, for regularizing the log-likelihood of the data
distribution:

LMAW(q) = Ep(x)Eq(z|x) log p(x|z)−W1(q(z), p(z)) .
(2)

We use the Wasserstein distance since it is more robust to
outliers than the KL divergence and is thus more suitable
for detecting anomalies (see related guarantees in §3).
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Figure 1: Demonstration of the architecture of MAW for novelty detection.

Following the VAE framework, we use a Monte-Carlo ap-
proximation to estimate Eq(z|x) log p(x|z) with i.i.d. sam-
ples, {z(t)}Tt=1, from q(z|x) as follows:

Eq(z|x) log p(x|z) ≈ 1

T

T∑
t=1

log p(x|z(t)). (3)

To enhance robustness, we let the negative log likelihood
function − log p(x|z(t)) be proportional to the `2 norm of
the difference of the random variable x and a mapping of
the sample z(t) from Rd to RD by the decoder, D, that is,

− log p(x|z(t)) ∝
∥∥∥x−D(z(t))

∥∥∥
2
. (4)

We deviate from the common choice of the squared `2
norm, which corresponds to an underlying Gaussian like-
lihood and assume instead a likelihood with a heavier tail.

MAW trains its networks by minimizing −LMAW(q). For
1 ≤ i ≤ L, it samples {z(i,t)

gen }Tt=1 from q(z|x(i)), where all
samples are independent. Using the aggregation formula
q(z) = L−1

∑L
i=1 q(z|x(i)), the approximation of p(x) by

the empirical distribution of the training data, and (2)-(4),
MAW applies the following approximation of −LMAW(q):

1

LT

L∑
i=1

T∑
t=1

∥∥∥x(i) −D(z(i,t)
gen )

∥∥∥
2

+W1

(
1

L

L∑
i=1

q(z|x(i)), p(z)

)
.

(5)

Our procedure of minimizing (5) is described in §2.2.

During testing, MAW identifies outliers according to low
similarity scores computed between test points and points
generated from the learned inlier component of z|x.

2.2 Details of Implementing MAW

MAW has a VAE-type structure with additional WGAN-
type structure for minimizing the W1 loss in (5). We pro-
vide here details of implementing these structures. Some
specific choices of the networks are described in §4 since
they may depend on the type of datasets.

The VAE-type structure of MAW contains three ingre-
dients: encoder, dimension reduction component and
decoder. The encoder forms a neural network (NN),
E , that maps the training sample x(i) in RD to
µ

(i)
0,1,µ

(i)
0,2, s

(i)
0,1, s

(i)
0,2 in RD′ , where our default choice is

D′ = 128. The dimension reduction component then
computes the following statistical quantities of the GMM
z|x(i): means µ(i)

1 and µ(i)
2 in Rd and covariance matrices

Σ
(i)
1 and Σ

(i)
2 in Rd×d. First, a linear layer, represented by

A ∈ RD′×d, maps (via AT) the features µ(i)
0,1, µ(i)

0,2 ∈ RD′

to the following respective vectors in Rd:

µ
(i)
1 = ATµ

(i)
0,1 and µ(i)

2 = ATµ
(i)
0,2.

The mapping of the covariance matrices is constructed as
follows. Form M

(i)
j = ATdiag(s

(i)
0,j)A for j = 1, 2. For

j = 2, compute Σ
(i)
2 = M

(i)
2 M

(i)T
2 . For j = 1, we first

need to reduce the rank ofM (i)
1 . For this purpose, we form

M
(i)
1 = U

(i)
1 diag(σ

(i)
1 )U

(i)T
1 , (6)

the spectral decomposition of M (i)
1 , and then truncate its

bottom d/2 eigenvalues. That is, let σ̃(i)
1 ∈ Rd have the

same entries as the largest d/2 entries of σ(i)
1 and zero en-
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tries otherwise. Then, compute

M̃
(i)
1 = U

(i)
1 diag(σ̃

(i)
1 )U

(i)T
1 (7)

and
Σ

(i)
1 = M̃

(i)
1 M̃

(i)T
1 .

To ensure numerically-significant positive definiteness of
both Σ

(i)
1 and Σ

(i)
2 , we add to them an identity matrix. De-

spite this, the low-rank structure of Σ
(i)
1 is still evident.

Note that the dimension reduction component only trains
A. The decoder, D : Rd → RD, maps independent sam-
ples, {z(i,t)

gen }Tt=1, generated for each 1 ≤ i ≤ L by the
distribution

ηN (µ
(i)
1 ,Σ

(i)
1 ) + (1− η)N (µ

(i)
2 ,Σ

(i)
2 ),

into the reconstructed data space.

The loss function associated with the VAE structure is the
first term in (5). We can write it as

LVAE(E ,A,D) =
1

LT

L∑
i=1

T∑
t=1

∥∥∥x(i) −D(z(i,t)
gen )

∥∥∥
2
. (8)

The dependence of this loss on E and A is implicit, but
follows from the fact that the parameters of the sampling
distribution of each z

(i,t)
gen were obtained by E andA.

The WGAN-type structure seeks to minimize the second
term in (5) using the dual formulation

W1

(
1

L

L∑
i=1

q(z|x(i)), p(z)

)
= (9)

sup
‖f‖Lip≤1

Ezhyp∼p(z)f(zhyp)− Ezgen∼ 1
L

∑L
i=1 q(z|x(i))f(zgen).

The generator of this WGAN-type structure is composed
of the encoder E and the dimension reduction compo-
nent, which we represent by A. It generates the samples
{z(i,t)

gen }L,Ti=1,t=1 described above. The discriminator, Dis,
of the WGAN-type structure plays the role of the Lipschitz
function f in (9). It compares the latter samples with the
i.i.d. samples {z(i,t)

hyp }Tt=1 from the prior distribution. In or-
der to makeDis Lipschitz, its weights are clipped to [−1, 1]
during training. In the MinMax game of this WGAN-type
structure, the discriminator minimizes and the generator (E
andA) maximizes

LW1(Dis) =
1

LT

L∑
i=1

T∑
t=1

(
Dis(z(i,t)

gen )−Dis(z(i,t)
hyp )

)
.

(10)

We note that maximization of (10) by the generator is
equivalent to minimization of the loss function

LGEN(E ,A) = − 1

LT

L∑
i=1

T∑
t=1

Dis(z(i,t)
gen ) . (11)

During training, MAW alternatively minimizes the losses
(8), (10) and (11) instead of their weighted sum. Therefore,
any multiplicative constant in front of either term of (5) will
not affect the optimization. In particular, it was okay to
omit the multiplicative constant of (4) when deriving (5).

For each testing point y(j), we sample {z(j,t)
in }Tt=1 from the

inlier mode of the learned latent Gaussian mixture and de-
code them as {ỹ(j,t)}Tt=1 = {D(z

(j,t)
in )}Tt=1. Using a simi-

larity measure S(·, ·) (our default is the cosine similarity),
we compute

S(j) =
T∑
t=1

S(y(j), ỹ(j,t)).

If S(j) is larger than a chosen threshold, then y(j) is classi-
fied as normal, and otherwise, novel. Additional details of
MAW are in the supplementary materials.

We remark that in our setting we find it natural to imple-
ment an auxiliary WGAN on top of the VAE component
in order to estimate the W1 distance. We did not find it
useful to directly estimate the W1 distance by either the
sliced Wasserstein distance (Kolouri et al., 2018, 2019) or
the Sinkhorn algorithm (Cuturi, 2013). Indeed, it is not
clear how to use these methods in order to minimize the es-
timated W1 distance with respect to the parameters within
the neural network. In particular, the partial derivatives for
learning the GMM using the sliced Wasserstein distance al-
ready have very complicated forms, and it is very difficult
to include them in our framework, where neural networks
are involved.

3 THEORETICAL GUARANTEES

We theoretically establish the superiority of using the
Wasserstein distance over the KL divergence, where we
leave out some details (in particular proofs) to the supple-
mentary materials. We formulate a mathematical setting
that aims to isolate the minimization of the WGAN-type
structure introduced in §2.2, while ignoring unnecessary
complex components of MAW. We assume a mixture pa-
rameter η > 1/2, a separation parameter ε > 0 and de-
note by R the regularizing function, which can be either
the KL divergence or the Wasserstein distance, and by SK+
and SK++ the sets of K ×K positive semidefinite and pos-
itive definite matrices, respectively. Our mathematical set-
ting, which we motivate in the supplementary materials,
assumes µ0 ∈ RK and Σ0 ∈ SK++ and requires to mini-
mize

min
µ1,µ2∈RK ;Σ1,Σ2∈SK+

s.t. ‖µ1−µ2‖2≥ε

ηR (N (µ1,Σ1),N (µ0,Σ0)) (12)

+ (1− η)R (N (µ2,Σ2),N (µ0,Σ0)) .

This minimization aims to approximate the “prior” distri-
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bution N (µ0,Σ0) with a Gaussian mixture distribution.
For MAW, µ0 = 0 and Σ0 = I , but our generalization
helps clarify things. The constraint ‖µ1 − µ2‖2 ≥ ε dis-
tinguishes between the inlier and outlier modes and it is a
realistic assumption as long as ε is sufficiently small.

3.1 Guarantees for (12) with Identical Covariances

Our cleanest result is when Σ0, Σ1 and Σ2 coincide. It is
formulated next and demonstrates robustness to the outlier
component by theW1 (orWp, p ≥ 1) minimization and not
by the KL minimization (its proof is in the supplementary
materials).

Proposition 3.1 If µ0 ∈ RK , Σ0 ∈ SK++, ε > 0 and
1 > η > 1/2, then the minimizer of (12) with R = Wp,
p ≥ 1 and the additional constraint: Σ0 = Σ1 = Σ2,
satisfies µ1 = µ0, and thus the recovered inlier distribu-
tion coincides with the “prior distribution”. However, the
minimizer of (12) with R = KL and the same constraint
satisfies µ0 = ηµ1 + (1− η)µ2.

That is, under the above setting with R = W1, the es-
timated mean of the inlier distribution, µ1, coincides with
the mean of the prior distribution, independently of the out-
lier distribution. However, when R = KL, the estimated
mean of the inlier distribution is sensitive to outliers.

3.2 Guarantees for (12) with Low-rank Σ1

We study the minimization problem (12) when Σ1 has a
low rank and Σ2 ∈ SK++. We fully analyze the cases where
R = W2 and R = KL; however, the case where R =
W1 is difficult to analyze and compute. We first formulate
results for both cases (R = W2 and R = KL), and then
clarify them. When R = W2, we assume that the prior
distribution has zero mean vector µ0 = 0K ∈ RK and
covariance Σ0 = IK×K ∈ RK×K . We further denote
by 1K the vector (1, · · · , 1) ∈ RK . Similarly, we denote
for any n ∈ N, 0n, 1n, In×n. For vectors a ∈ Rn and
b ∈ Rm, we denote the concatenated vector in Rn+m by
(a; b).

Proposition 3.2 If κ, K ∈ N, K > κ ≥ 1, ε > 0, 1 >

η > η? := K−κ+ε2

K−κ+2ε2 , u? :=
(

(K−κ)(1−η)
ε2(2η−1)

) 1
3

, where one

can note that η? > 1
2 and u? ∈ (0, 1), then the minimizer

of (12) withR = W2 and the constraints that Σ1 is of rank
κ and Σ2 is of rankK, satisfies 0K = u?µ2 +(1−u?)µ1,
Σ1 = diag(1κ; 0K−κ) and Σ2 = diag(1κ; (u?)

−2
1K−κ).

Moreover, ‖µ1‖2 = u?ε and ‖µ2‖2 = (1− u?)ε.

Proposition 3.3 If κ, K ∈ N, K > κ ≥ 1, ε > 0, η > 0,
µ0, µ1 ∈ RK , Σ0 ∈ SK++ and Σ1 ∈ SK+ , rank(Σ1) = κ,
then

KL(N (µ1,Σ1)||N (µ0,Σ0)) =∞.

Thus, the solution of (12) withR = KL and the additional
constraints rank(Σ1) = κ and Σ0 = I is ill-posed.

Note that Proposition 3.2 implies that as η → 1, u? → 0.
Hence for the inlier component µ1 → 0K as η → 1 and
Σ1 = diag(1κ; 0K−κ). Therefore, in the limit, the inlier
distribution has the same mean as the prior distribution.
Furthermore, its covariance is obtained by an appropriate
projection of the covariance Σ0 onto a κ-dimensional sub-
space, independently of η. We similarly note that as η → 1,
Σ2 → diag(1κ;∞K−k), so that the outliers disperse. The
supplementary materials include the proof of Proposition
3.2 and a discussion that clarifies why the formulation and
proof of Proposition 3.2 are not sufficient for inferring the
effect of the W1 minimization on MAW.

Proposition 3.3 implies that the KL divergence is unsuit-
able for low-rank covariance modeling as it leads to an in-
finite value in the optimization problem.

4 EXPERIMENTS

We describe the competing methods and experimental
choices in §4.1. We report on the comparison with the com-
peting methods in §4.2. We demonstrate the importance of
the novel features of MAW in §4.3.

4.1 Competing Methods and Experimental Choices

We compared MAW with the following methods (descrip-
tions and code links are in the supplementary materials):
Deep Autoencoding Gaussian Mixture Model (DAGMM)
(Zong et al., 2018), Deep Structured Energy-Based Models
(DSEBMs) (Zhai et al., 2016), Isolation Forest (IF) (Liu
et al., 2008), Local Outlier Factor (LOF) (Breunig et al.,
2000), One-class Novelty Detection Using GANs (OC-
GAN) (Perera et al., 2019), One-Class SVM (OCSVM)
(Heller et al., 2003) and RSR Autoencoder (RSRAE) (Lai
et al., 2020).

We remark that IF, LOF and RSRAE were originally pro-
posed for outlier detection and we thus apply their trained
model for detecting novelties in the test data.

For MAW and the above four reconstruction-based meth-
ods, that is, DAGMM, DSEBMs, OCGAN and RSRAE,
we use the following structure of encoders and decoders,
which vary with the type of data (images or non-images).
For non-images, which are mapped to feature vectors of
dimension D, the encoder is a fully connected network
with output channels (32, 64, 128, 128 × 4). The de-
coder is a fully connected network with output channels
(128, 64, 32, D), followed by a normalization layer at the
end. For image datasets, the encoder has three convo-
lutional layers with output channels (32, 64, 128), kernel
sizes (5 × 5, 5 × 5, 3 × 3) and strides (2, 2, 2). Its output
is flattened to lie in R128 and then mapped into a 128 × 4
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dimensional vector using a dense layer (with output chan-
nels 128 × 4). The decoder of image datasets first applies
a dense layer from R2 to R128 and then three deconvolu-
tional layers with output channels (64, 32, 3), kernel sizes
(3×3, 5×5, 5×5) and strides (2, 2, 2). For all experiments,
the MAW discriminator is a fully connected network with
size (32, 64, 128, 1).

For MAW we set the following parameters, where addi-
tional details are in the supplementary materials. Intrinsic
dimension: d = 2; mixture parameter: η = 5/6, sam-
pling number: T = 5, and size of A (used for dimen-
sion reduction): 128 × 2. We further test the sensitiv-
ity of MAW to changes of the hyperparameters d and η
in the supplementary materials. The code is available at
https://github.com/JCL823/MAW.

4.2 Comparison of MAW with State-of-the-art
Methods

We use six datasets for novelty detection: COVID-19
Radiography database (Chowdhury et al., 2020), CIFAR-
10 (Krizhevsky, 2009), Caltech101 (Fei-Fei et al., 2004),
Fashion MNIST (Xiao et al., 2017), KDDCUP-99 (Dua &
Graff, 2017) and Reuters-21578 (Lewis, 1997). We dis-
tinguish between image datasets (COVID-19, CIFAR-10,
Catlech101 and Fashion MNIST) and non-image datasets
(KDDCUP-99 and Reuters-21578). We describe each
dataset, common preprocessing procedures and choices of
their largest clusters in the supplementary materials. Each
dataset contains several clusters (3 for COVID-19, 10 for
CIFAR-10, 11 largest ones for Caltech101, 10 for Fash-
ion MNIST, 2 for KDDCUP-99 and 5 largest ones for
Reuters-21578, respectively). We arbitrarily fix a class
and uniformly sample N training inliers and Ntest test-
ing inliers from that class. We let N = 160, 450, 100 ,
300, 6000, 350 and Ntest = 60, 150, 100 , 60, 1200, 140
for COVID-19, CIFAR-10, Caltech101, Fashion MNIST,
KDDCUP-99 and Reuters-21578, respectively. We fix c
in {0.1, 0.2, 0.3, 0.4, 0.5}, and uniformly sample outliers
for training from the rest of the clusters, while maintain-
ing a fraction of c outliers per inliers. We also fix ctest in
{0.1, 0.3, 0.5, 0.7, 0.9} and uniformly sample outliers from
the rest of the clusters for testing, while maintaining a frac-
tion of ctest per inliers.

Using all possible thresholds for the finite datasets, we
compute the AUC (area under curve) and AP (average pre-
cision) scores, while considering the outliers as “positive”.
For each fixed c = 0.1, 0.2, 0.3, 0.4, 0.5 we average
these results over the values of ctest, the different choices
of an inlier cluster (among all possible clusters), and three
runs with different random initializations for each of these
choices. We also compute the corresponding standard devi-
ations. We report these results in Fig. 2 and further specify
numerical values in the supplementary materials. We ob-

Figure 2: AUC (on left) and AP (on right) scores with train-
ing ratio of outliers per inliers c = 0.1, 0.2, 0.3, 0.4 and 0.5
for the six datasets.

serve state-of-the-art performance of MAW in all of these
datasets. There are very special instances, where other
methods perform better, for example, in Reuters-21578,
DSEBMs performs slightly better than MAW and OCSVM
has comparable performance. However, overall MAW is
the most competitive method considering all instances. In
the supplementary materials we compare the runtime of
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MAW with benchmark methods and further study the ac-
curacy of MAW in a different scenario, where the outliers
of the training and test sets have different characteristics.
We show that in this scenario MAW performs even better
than the regular scenario.

4.3 Testing the Effect of the Novel Features of MAW

We experimentally validate the effect of the following fea-
tures of MAW: the least absolute deviation for reconstruc-
tion, theW1 metric for the regularization of the latent distri-
bution, the GMM assumption, full covariance matrices re-
sulting from the dimension reduction component, the lower
rank constraint for the inlier mode and the use of a single
mode prior distribution. To this end, we consider the fol-
lowing alternative models.

MAW-MSE: It replaces the least absolute deviation loss
LVAE with the common mean squared error (MSE).

MAW-KL divergence: It replaces the Wasserstein dis-
tance in (9) with the KL-divergence.

MAW-same rank: It uses the same rank d for both Σ
(i)
1

and Σ
(i)
2 , instead of forcing Σ

(i)
1 to have lower rank d/2.

MAW-single Gaussian: It replaces the GMM for the latent
distribution with a single Gaussian with a full covariance
matrix.

MAW-diagonal cov.: It replaces the full covariance ma-
trices resulting from the dimension reduction component
by diagonal covariances. Its encoder directly produces 2-
dimensional means and diagonal covariances (one of rank 1
for the inlier mode and one of rank 2 for the outlier mode).

GMM prior: It replaces the single standard normal dis-
tribution prior with a bi-modal Gaussian distribution. One
mode is a standard normal distribution in Rd and the other
is Gaussian with zero mean and diagonal covariance matrix
whose first d/2 diagonal elements are ones and the rest are
zeros.

VAE: It has the same encoder and decoder structures as
MAW. Instead of a dimension reduction component, it uses
a dense layer which maps the output of the encoder to a 4-
dimensional vector composed of a 2-dimensional mean and
2-dimensional diagonal covariance. This is common for a
traditional VAE.

We compared the above 7 methods with MAW using two
datasets: KDDCUP-99 and COVID-19 with training ratio
of outliers per inliers c = 0.1, 0.2, 0.3 , 0.4 and 0.5. We
followed the experimental setting described in §4.1. Fig. 3
reports the averages and standard deviations of the com-
puted AUC and AP scores, where the corresponding nu-
merical values are further recorded in the supplementary
materials. The results indicate a clear decrease of accu-
racy when missing any of the novel components of MAW

Figure 3: AUC (on left) and AP (on right) scores for vari-
ants of MAW (missing a novel component) with training
ratio of outliers per inliers c = 0.1, 0.2, 0.3, 0.4 and 0.5,
using KDDCUP-99 and COVID-19.

or using a standard VAE (i.e., “VAE”). Nevertheless, the
use of a single diagonal matrix in “VAE” can help decrease
the capacity of the latent distribution and thus “VAE” may
perform better than the variants of MAW (but not MAW).
In some cases, the variants of MAW show a rather poor
performance and we believe it is due to the following rea-
sons: modeling the prior as a Gaussian mixture in “GMM
prior” does not help with outlier detection; the use of the
full covariance in “MAW-single Gaussian” may result in
high capacity; “MAW-MSE”, “MAW-KL divergence” and
“MAW-same rank” do not ensure either robustness or low-
rank modeling for the inliers, and thus may significantly in-
crease the capacity of the model so that learning from out-
liers is easier (especially for large c); and “MAW-diagonal
cov.” may limit the covariance of the outliers (though it is
often at least comparable to VAE).

4.4 Further Validation of GMM

To further support our claim that the GMM is helpful for
separating inliers and outliers in the latent space, we inves-
tigate the reconstruction errors of both MAW and MAW-
single Gaussian of §4.3 (which replaces the GMM with
a single Gaussian distribution with a full rank). We use
the KDDCUP-99 dataset with 1,000 inliers and 300 out-
liers in the training set, where the initial training of MAW
(or MAW-single Gaussian) is the same as in §4. In Fig. 4,
we demonstrate the reconstruction error distribution of data
points according to the following five scenarios.

1. MAW, inliers and inlier distribution: Apply the
trained MAW (with the corrupted model) to the inliers
of the training set, while using only the inlier mode in
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Figure 4: Demonstration of the distributions of the three
types of reconstruction errors obtained with MAW (left)
and the two types obtained with MAW-single Gaussian
(right).

the latent code and compute the reconstruction error
between the output and the input (the `2 norm of their
difference).

2. MAW, inliers and outlier distribution: Same as case
1, but replace the inlier mode with the outlier mode.

3. MAW, outliers and inlier distribution: Same as case
1, but replace the inliers (input of MAW) with the out-
liers.

4. MAW-single Gaussian and inliers: Same as case 1,
but replace MAW with MAW-single Gaussian.

5. MAW-single Gaussian and outliers: Same as 1, but
replace the inliers (as input of the trained MAW-single
Gaussian) with the outliers.

We can see from cases 1 and 2 above (which appear on the
left of Fig. 4) that if we try to reconstruct the inliers, then
the reconstruction errors with the outlier mode are higher
than those with the inlier mode. In particular, it is obvi-
ous that the inlier and outlier modes are different and do
not collapse. Although we did not supervisedly train the
inlier and outlier modes, it seems that the inliers align well
with the inlier distribution. Moreover, comparing cases 1
and 3 above (still left of Fig. 4), we can nicely distinguish
between the distributions of the reconstruction errors of the
inliers and the outliers. On the other hand, cases 4 and 5 (on
the right of Fig. 4) indicate that when using MAW-single
Gaussian instead of MAW, the distributions of reconstruc-
tion errors of the inliers and outliers are indistinguishable.
This experiment thus demonstrates the effectiveness of the
GMM of MAW in separating the inliers and outliers for this
particular experiment.

5 CONCLUSION AND FUTURE WORK

We introduced MAW, a robust VAE-type framework for
novelty detection that can tolerate high corruption of the
training data. We proved that the Wasserstein distance used

in MAW has better robustness to outliers and is more suit-
able to a low-dimensional inlier component than the KL
divergence. We demonstrated state-of-the-art performance
of MAW with a variety of datasets and experimentally val-
idated that omitting any of the new ideas results in a signif-
icant decrease of accuracy.

We would like to indicate three limitations of MAW. First,
there are some special instances, where other methods per-
formed better than MAW, though overall MAW outper-
formed the rest of the methods. Second, MAW is slow.
We expect that better implementation of its dimension re-
duction component can speed it up, so that it is as fast
as other methods that use multiple neural networks. At
last, MAW assumes the existence of both inlier and out-
lier modes for training (see assumptions of Props. 3.1 and
3.2). Indeed, one may check that the performance of MAW
(and RSRAE) are not as competitive when c = 0. Since we
assumed that the underlying distribution represented both
inliers and outliers, we did not report such results.

MAW has practical applications of societal impact, such as
medical diagnosis. One potential negative impact can arise
if MAW identifies outliers due to their belonging to under-
represented groups. In the future, we would thus like to
explore the overall fairness of MAW, possible fairer ver-
sions of it and the tradeoff between robustness and fairness
in our theoretical setting.

Another future plan is to extend and test some of our
ideas for the problem of robust generation, in particular,
for building generative networks which are robust against
adversarial training data. We also hope to further extend
our theoretical guarantees. For example, two problems that
currently seem intractable are the study of the W1 version
of Proposition 3.2 and of the minimizer in (15) (which is a
weaker version of (12)).
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SUPPLEMENTARY MATERIALS
We include additional explanations, proofs, demonstrations and experiments as follows: §A further clarifies MAW and
its implementation; §B examines the sensitivity of MAW to hyperparameters; §C compares the runtime of MAW with
benchmark methods; §D extends the previous numerical studies to a different type of outliers; §E extends our theoretical
discussion and proves all the stated propositions; §F reviews the details of the benchmark methods; §G reviews the details
of the datasets; and §H provides numerical tables for the results plotted in the different figures.

A ADDITIONAL EXPLANATIONS AND IMPLEMENTATION DETAILS OF MAW

In §A.1 we review the ELBO function and explain our robust version of ELBO. The basic mechanism of MAW is clarified
in §A.2. Additional implementation details of MAW are in §A.3. At last, §A.4 provides algorithmic boxes for training
MAW and applying it for novelty detection.

A.1 Obtaining LMAW by Modifying ELBO

A standard VAE framework would minimize the expected KL-divergence from p(z|x) to q(z|x) in Q, where the expecta-
tion is taken over p(x). By Bayes’ rule this is equivalent to maximizing the evidence lower bound (ELBO):

ELBO(q) = Ep(x)Eq(z|x) log p(x|z)− Ep(x)KL(q(z|x)‖p(z)) .

The first term of ELBO is the reconstruction likelihood. Its second term restricts the deviation of q(z|x) from p(z) and can
be viewed as a regularization term. LMAW is a more robust version of ELBO with a different regularization. Recall that for
p ≥ 1, we denote by Wp the p-Wasserstein distance in RD. For two probability distributions, µ, ν on RD,

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)
E(x,y)∼π ‖x− y‖p2

)1/p

,

where Π(µ, ν) is the set of joint distributions with µ and ν as marginals. MAW replaces Ep(x)KL(q(z|x)‖p(z)) with
W1(q(z), p(z)). We remark that the W1 distance cannot be computed between q(z|x) and p(z) and LMAW thus practically
replaces q(z|x) with its expected distribution, q(z) = Ep(x)q(z|x) (or a discrete approximation of this).

We emphasize that LMAW is not necessarily a lower bound of the likelihood. The W1 distance in LMAW can rather be
understood as a regularization involving the estimated posterior and prior distribution.

A.2 Insights on the Mechanism of MAW

We explain the basic mechanism of MAW for unsupervised alignment of the inliers with the inlier mode of the latent dis-
tribution. Since we do not have labels for the training set, we cannot supervisedly determine the inlier mode. Nevertheless,
the robust losses (the least absolute deviation and the W1 distance) guide the estimation of the inlier mode as they help
in ignoring the effect of the outliers. Least absolute deviation metrics have been shown to be robust to outliers in special
mathematical settings (Lopuhaa & Rousseeuw, 1991; Lerman & Maunu, 2018; Lai et al., 2020). The robustness of the
Wasserstein distance within a mathematical setting was studied in §3 of the main text. Here we would like to provide some
intuition on how the complex procedure of MAW succeeds by using these robust metrics.

Assume that the inliers are sampled from a distribution on a low-dimensional manifold that can be encoded by a Gaussian
on a low-dimensional latent space. Assume further that the outliers are arbitrary, but their percentage is smaller. Given these
assumptions, MAW aims to model the mixture component of the inliers in the latent space as a Gaussian with low-rank
covariance (and that of the outliers as a Gaussian with full-rank covariance).
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In order to provide some technical intuition for this model and show that it can fit the assumed data, let us suppose on the
contrary that during training, inliers and outliers are assigned to the wrong modes, and show that this can either not happen
or will be corrected.

We first assume a case of collapse during training, where both the inliers and outliers are modeled (in the latent space) by
a Gaussian distribution with a low-rank covariance. In this case, the W1 distance is minimized over a smaller set (due to
the constraint on the rank of the outlier mode) and thus the loss is increased.

We next assume another case of collapse during training, where both the inliers and outliers are modeled (in the latent
space) by a full-rank Gaussian. In this case it is most likely that the minimizer for the inliers will be full-rank, and thus due
to the assumed low-dimensional structure of the inliers, it will result in an increase of the reconstruction error.

At last, assume that during training the inliers are modeled (in the latent space) by a Gaussian with full-rank covariance
and the outliers are modeled (in the latent space) by a Gaussian with a low-rank covariance. One can note that this will
increase the reconstruction loss.

A.3 Additional Implementation Details of MAW

All NNs were implemented with TensorFlow (available at tensorflow.org) and trained for 100 epochs with batch
size 128. We apply batch normalization to each layer of any NN. For the VAE-structure of MAW, we use Adam with a
learning rate of 0.0005. For the WGAN-type discriminator of MAW, we perform RMSprop (Bengio & Monperrus, 2005)
with a learning rate of 0.0005, following the recommendation of Arjovsky et al. (2017) for WGAN. For all experiments,
the MAW discriminator is a fully connected network of size (32, 64, 128, 1). The matrixA and the network parameters for
encoders, decoders and discriminators are initialized by the Glorot uniform initializer (Glorot & Bengio, 2010).

The implementation details of the reconstruction-based methods are similar to those of MAW. In particular, we optimized
using Adam (Kingma & Ba, 2015) with a learning rate of 0.0005.

A.4 Algorithms for MAW

Algorithms 1 and 2 describe the training and application of MAW for novelty detection. We denote by θ, ϕ and δ the
trainable parameters of the encoder E , decoder D and discriminator Dis, respectively. Recall that A includes the trained
parameters of the dimension reduction component.

Algorithm 1 Training MAW

Input: Training data {x(i)}Li=1; initialized parameters θ, ϕ and δ of E , D and Dis, respectively; initialized A; weight η;
number of epochs; batch size I; sampling number T ; learning rate α

Output: Trained parameters θ, ϕ andA
1: for each epoch do
2: for each batch {x(i)}i∈I do
3: µ

(i)
0,1,µ

(i)
0,2, s

(i)
0,1, s

(i)
0,2 ← E(x(i))

4: µ
(i)
j ← ATµ

(i)
0,j , M

(i)
j ← ATdiag(s

(i)
0,j)A, j = 1, 2

5: Compute M̃ (i)
1 according to (6) and (7)

6: Σ
(i)
1 ← M̃

(i)
1 M̃

(i)T
1 , Σ

(i)
2 ←M

(i)
2 M

(i)T
2

7: for t = 1, · · · , T do
8: sample a batch {z(i,t)

gen }i∈I ∼ ηN (µ
(i)
1 ,Σ

(i)
1 ) + (1− η)N (µ

(i)
2 ,Σ

(i)
2 )

9: sample a batch {z(i,t)
hyp }i∈I ∼ N (0, I)

10: end for
11: (θ,A,ϕ)← (θ,A,ϕ)− α∇(θ,A,ϕ)LVAE(θ,A,ϕ) according to (8)
12: δ ← δ − α∇δLW1(δ) according to (10)
13: δ ← clip(δ, [−1, 1])
14: (θ,A)← (θ,A)− α∇(θ,A)LGEN(θ,A) according to (11)
15: end for
16: end for
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Algorithm 2 Applying MAW to novelty detection

Input: Test data {y(j)}Nj=1; sampling number T ; trained MAW model; threshold εT; similarity S(·, ·)
Output: Binary labels for novelty for each j = 1, . . . , N

1: for j = 1, . . . , N do
2: µ

(j)
0,1, s

(j)
0,1 ← E(y(j))

3: µ
(j)
1 ← ATµ

(j)
0,1, M

(j)
1 ← ATdiag(s

(j)
0,1)A

4: Compute M̃ (j)
1 according to (6) and (7)

5: Σ
(j)
1 ← M̃

(j)
1 M̃

(j)T
1

6: for t = 1, · · · , T do
7: sample z

(j,t)
in ∼ N (µ

(j)
1 ,Σ

(j)
1 )

8: ỹ(j,t) ← D
(
z

(j,t)
in

)
9: compute S(y(j), ỹ(j,t))

10: end for
11: S(j) ← T−1

∑T
t=1 S(y(j), ỹ(j,t))

12: if S(j) ≥ εT then
13: y(j) is a normal example
14: else
15: y(j) is a novelty
16: end if
17: end for

B SENSITIVITY TO SOME HYPERPARAMETERS

We examine sensitivity to choices of the intrinsic dimension (see §B.1) and the mixture parameter (see §B.2).

B.1 Sensitivity to the Intrinsic Dimension

Our default value of the intrinsic dimension is d = 2. Here we study the sensitivity of our numerical results to the
following choices intrinsic dimensions: d = 2, 4, 8, 16, 32 and 64, while using the KDDCUP-99 and COVID-19 datasets.
The training ratio of outliers per inliers c are in {0.1, 0.2, 0.3, 0.4, 0.5}. We compute the AUC and AP scores averaged
over the testing ratios of outliers per inliers, ctest = 0.1, 0.3, 0.5, 0.7 and 0.9, and over three runs of the same setting. Fig. 5
reports the averaged results and their standard deviations, which are indicated by error bars.

We can see that larger intrinsic dimensions generally result in better performances. However, the improvement is not sig-
nificant and not consistent for smaller dimensions. Furthermore, higher dimensions require more substantial computational
efforts for training.

B.2 Sensitivity to the Mixture Parameter

The default value of the mixture parameter η is 5/6. Here we study the sensitivity of the accuracy of MAW to the mixture
parameters: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 5/6, 0.9}. We use 5/6 ≈ 0.83, instead of the nearby value 0.8, since it was
already tested for MAW. The training ratios of outliers per inliers are 0.1, 0.2, 0.3, 0.4 and 0.5. Following the same
procedure of §B, we average the AUC and AP scores for both KDDCUP-99 and COVID-19. We report them in Fig. 6.

We notice that the AUC and AP scores mildly increase as η increases (though they may slightly decrease at 0.9). It seems
that MAW learns well the inlier mode with a sufficiently large inlier weight, where the variation in the accuracy as a
function of η is not large in general.
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Figure 5: AUC and AP scores with intrinsic dimensions d = 2, 4, 8, 16, 32 and 64 for KDDCUP-99 (on the left) and
COVID-19 (on the right), where c ∈ {0.1, 0.2, 0.3, 0.4, 0.5}

.
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Figure 6: AUC and AP scores with mixture parameters η = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 5/6 and 0.9 for KDDCUP-99
(on the left) and COVID-19 (on the right). From the top to the bottom row, the training ratios of outliers per inliers are
c = 0.1, 0.2, 0.3, 0.4 and 0.5, respectively.
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C RUNTIME COMPARISON

Table 1 summarizes runtimes of all the above experiments with c = 0.3. The initially computed runtimes are times
measured for completing single experiments with a single epoch. The table averages each such runtime over the different
classes and different outlier ratios for testing. We note that LOF, OCSVM and IF are faster than the rest of the methods
since they do not require training neural networks. Among the neural-networks-based methods, RSRAE is the fastest and
OCGAN, DAGMM and MAW are the slowest. Indeed, RSRAE has a single autoencoder and OCGAN, DAGMM and
MAW contain several neural networks. Another possible reason for the relative slowness of MAW is due to its dimension
reduction component, whose implementation in TensorFlow seems to be computationally expensive. However, it seems to
help achieve competitive performance in detecting outliers. We plan to investigate a more efficient implementation of the
dimension reduction component in the future.

Table 1: Runtimes (in seconds) of competing methods when the training ratio of outliers per inliers is c = 0.3.
Methods COVID-19 CIFAR-10 Caltech101 Fashion MNIST KDDCUP-99 Reuters-21578

LOF 0.30 ± 0.17 3.98 ± 0.13 0.24 ± 0.01 16.31 ± 1.01 3.23 ± 0.04 17.91 ± 1.98
OCSVM 0.17 ± 0.07 2.22 ± 0.09 0.12 ± 0.00 8.34 ± 2.36 9.08 ± 0.05 8.74 ± 1.47
IF 0.43 ± 0.01 1.86 ± 0.12 0.39 ± 0.01 2.86 ± 0.37 1.67 ± 0.03 10.54 ± 1.89
RSRAE 4.31 ± 0.45 8.49 ± 0.77 5.69 ± 0.36 23.69 ± 0.39 40.18 ± 0.33 6.22 ± 0.25
DSEBMs 48.30 ± 3.45 66.57 ± 2.35 147.15 ± 0.32 151.02 ± 7.67 216.02 ± 4.34 74.28 ± 2.09
OCGAN 182.79 ± 2.53 313.28 ± 0.13 679.44 ± 4.62 250.51 ± 0.24 2035.83 ± 8.34 343.02 ± 7.42
DAGMM 99.44 ± 5.76 134.36 ± 9.12 504.11 ± 11.31 353.65 ± 14.57 396.44 ± 7.65 177.30 ± 3.56
MAW 136.42 ± 0.16 1871.22± 16.03 217.32 ± 0.25 1441.97 ± 15.123 3166.62 ± 12.12 255.85 ± 2.97

D EXPERIMENTS WITH DIFFERENT TYPES OF OUTLIERS

In this section, we test the performance of MAW and the benchmark methods when the training and test sets are corrupted
by outliers with different structures. We generate a dataset, which we call “Mix Caltech101”, in the following way. We
fix the largest class of Caltech101 (containing airplane images) as the inlier class and randomly split it into the training
inlier class (68.75%) and testing inlier class (31.25%). We form the training set by corrupting the training inlier class
with random samples from the ten classes of CIFAR-10 (Krizhevsky, 2009) with training ratio of outliers per inliers
c ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. For the test set, we corrupt the testing inlier class by “tile images” from MVTech dataset
(Bergmann et al., 2019) with testing ratio of outliers per inliers ctest in {0.1, 0.3, 0.5, 0.7, 0.9}. The rest of the settings of
the experiments are identical to the description in §4.2 of the main text. We present the AUC and AP scores and their
standard deviations in Fig. 7.

Figure 7: AUC and AP scores with training ratio of outliers per inliers c ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for the Mix Caltech101
dataset.
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Clearly, the competitive advantage of MAW is also noticeable in this setting. We note that OCSVM, the traditional distance-
based method, and IF, the traditional density-based method, perform poorly in this scenario, whereas they performed well
in our original setting.

E ADDITIONAL THEORETICAL GUARANTEES FOR THE W1 MINIMIZATION

In §E.1 we fully motivate our focus on studying (12) in order to understand the advantage of the use of the Wasserstein
distance over the KL divergence in the framework of MAW. In §E.2 we prove Proposition 3.1. In §E.3, we discuss a
possible deviation of the clean theory of Proposition 3.2 from practice. In §E.4 we prove Proposition 3.2 and in §E.5 we
prove Proposition 3.3.

E.1 Motivation for Studying (12)

The implementation of any VAE or its variants, such as AAE, WAE and MAW, requires the optimization of a regularization
penalty R, which measures the discrepancy between the latent and prior distributions. This penalty is typically the KL
divergence, though one may use appropriate metrics such as W2 or W1. Thus one needs to minimize

R

(
1

L

L∑
i=1

q(z|x(i)), p(z)

)
(13)

over the variational family Q = {q(z|x)} indexed by some parameters. Here L is the batch size of the input data and∑L
i=1 q(z|x(i)) is its observed aggregated distribution.

Since the explicit expressions of the regularization measurements between aggregated distributions are unknown, it is not
feasible to study the minimizer of (13). We thus consider the following approximation of (13):

L∑
i=1

1

L
R
(
q(z|x(i)), p(z)

)
. (14)

We can minimize one term of this sum at a time, that, is minimize R (q(z|x), p(z)) over Q. This minimization strategy is
common in the study of the Wasserstein barycenter problem (Agueh & Carlier, 2011; Peyré & Cuturi, 2019; Chen et al.,
2018).

One of the underlying assumptions of MAW is that the prior distribution p(z) is Gaussian and q(z|x) is a Gaussian mixture.
That is, p(z) = N (z|µ0,Σ0) and q(z|x) = ηN (z|µ1,Σ1) + (1 − η)N (z|µ2,Σ2). This gives rise to the following
minimization problem

min
µ1,µ2∈RK ;Σ1,Σ2∈SK+

R
(
ηN (µ1,Σ1) + (1− η)N (µ2,Σ2),N (µ0,Σ0)

)
. (15)

Similarly to approximating (13) by (14), we approximate (15) by (12). We remark that in (12) we further assume that there
is a sufficiently small threshold ε > 0 for which ‖µ1 − µ2‖2 ≥ ε. This is a reasonable assumption since, in practice, if µ1

and µ2 are very close, the reconstruction loss will be large.

E.2 Proof of Proposition 3.1

Recall that µ0 ∈ RK is the mean of the prior Gaussian, ε > 0 is the fixed separation parameter for the means of the two
modes and η > 1/2 is the fixed mixture parameter. For i = 0, 1, 2, we denote the Gaussian probability distribution by
νi = N (µi,Σi). Since in our setting Σ0 = Σ1 = Σ2, we denote the common covariance matrix in SK++ by Σ. That is,
Σ = Σi for i = 0, 1, 2.

We first analyze the solution of (12) withR = Wp, where p ≥ 1, and then analyze the solution of (12) withR = KL.

The caseR = Wp, p ≥ 1: We follow the next three steps to prove that the minimizer of (12) satisfies µ1 = µ0.

Step I: We prove that

Wp(νi, ν0) ≡Wp(N (µi,Σ),N (µ0,Σ))

= ‖µi − µ0‖2 for p ≥ 1 and i = 1, 2 .
(16)
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First, we note that using the definition of Wp, p ≥ 1 and the common notation Π(νi, ν0) for the distribution on RK × RK
with marginals νi and ν0

W p
p (νi, ν0) = inf

π∈Π(νi,ν0)
E(x,y)∼π ‖x− y‖p2

≥ inf
π∈Π(νi,ν0)

∥∥E(x,y)∼πx− E(x,y)∼πy
∥∥p

2

= ‖µi − µ0‖p2 ,

(17)

where the inequality follows from the fact that ‖.‖p2 is convex and from Jensen’s inequality.

On the other hand, for i = 1 or i = 2, let x∗ be an arbitrary random vector with distribution νi, and let y∗ = x∗−µi+µ0.
The distribution of y∗ is Gaussian with mean µ0 and covariance Σi, that is, this distribution is ν0. Let π∗ be the joint
distribution of the random variables x∗ and y∗. We note that π∗ is in Π(νi, ν0) and that

E(x,y)∼π∗ ‖x− y‖p2 = E(x,y)∼π∗ ‖µi − µ0‖p2 = ‖µi − µ0‖p2 .

Therefore,

W p
p (νi, ν0) = inf

π∈Π(νi,ν0)
E(x,y)∼π ‖x− y‖p2

≤ E(x,y)∼π∗ ‖x− y‖p2 = ‖µi − µ0‖p2 .
(18)

The combination of (17) and (18) immediately yields (16).

Step II: We prove that (12) withR = Wp, p ≥ 1, is equivalent to

min
µ1,µ2∈RK ;

s.t. µ0,µ1,µ2:colinear
&‖µ1−µ2‖2≥ε

η ‖µ1 − µ0‖2 + (1− η) ‖µ2 − µ0‖2 .
(19)

We first note that (12) withR = Wp, p ≥ 1 is equivalent to

min
µ1,µ2∈RK

s.t. ‖µ1−µ2‖2≥ε

η ‖µ1 − µ0‖2 + (1− η) ‖µ2 − µ0‖2 . (20)

Indeed, this is a direct consequence of the expression derived in step I for R in this case. It is thus left to show that if µ′1,
µ′2 ∈ RK minimize (20), then we can construct µ̃′1, µ̃′2 ∈ RK that are colinear with µ0 and also minimize (20).

For any µ1 and µ2 in RK with ‖µ1 − µ2‖2 ≥ ε and for the given µ0 ∈ RK , we define µ̃0, µ̃1 and µ̃2 ∈ RK and
demonstrate them in Fig. 8. The point µ̃0 is the projection of µ0 onto µ1 − µ2 and µ̃i := µi + µ0 − µ̃0 for i = 1, 2. We
observe the following properties, which can be proved by direct calculation, though Fig. 8 also clarifies them:

‖µi − µ0‖2 ≥ ‖µ̃i − µ0‖2 for i = 1, 2,

and consequently,

η ‖µ1 − µ0‖2 + (1− η) ‖µ2 − µ0‖2 ≥ η ‖µ̃1 − µ0‖2 + (1− η) ‖µ̃2 − µ0‖2 ; (21)

‖µ̃1 − µ̃2‖2 = ‖µ1 − µ2‖2 ≥ ε; (22)

and
µ̃1, µ̃2, and µ0 are colinear. (23)

Clearly, the combination of (21), (22) and (23) concludes the proof of step II. That is, it implies that if µ′1, µ′2 ∈ RK

minimize (20), then µ̃′1 and µ̃′2 defined above are colinear with µ0 and also minimize (20).

Step III: We directly solve (19) and consequently (12) withR = Wp, p ≥ 1. Due to the colinearity constraint in (12), we
can write

µ0 = (1 + t)µ1 − tµ2 for t ∈ R. (24)

The objective function in (19) can then be written as

‖µ1 − µ2‖2 (η|t|+ (1− η)|1 + t|) ≥ ε (η|t|+ (1− η)|1 + t|) ,
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Figure 8: Illustration of the points µ̃0, µ̃1 and µ̃2 and their properties.

where equality is achieved if and only if ‖µ1 − µ2‖2 = ε. We thus define r(t) = η|t|+ (1− η)|1 + t| and note that

r(t) =


t+ (1− η), t ≥ 0

(1− 2η)t+ (1− η), 0 ≥ t ≥ −1

−t+ (η − 1), −1 ≥ t

and its derivative is

r′(t) =


1, t > 0

1− 2η, 0 > t > −1

−1, −1 > t.

The above expressions for r and r′ and the assumption that η > 1/2 imply that r(t) is increasing when t > 0, decreasing
when t < 0 and r(0) = 1 − η < η = r(1). Thus r has a global minimum at t = 0. Hence, it follows from (24) that the
minimizer of (12), and equivalently (12) withR = Wp, p ≥ 1 satisfies µ1 = µ0.

The caseR = KL: We prove that the solution of (12) with R = KL satisfies µ0 = ηµ1 + (1 − η)µ2. We practically
follow similar steps as the proof above.

Step I: We derive an expression for KL(νi||ν0), where i = 1, 2. We use the following general formula, which holds for
the case where Σ0, Σ1 and Σ2 are general covariance matrices in SK++ (see e.g., (2) in (Hershey & Olsen, 2007)):

KL(νi||ν0) =
1

2

(
log

det Σ0

det Σi
−K + tr(Σ−1

0 Σi) + (µi − µ0)TΣ−1
0 (µi − µ0)

)
. (25)

Since in our setting Σ1 = Σ2 = Σ, this expression has the simpler form:

KL(νi||ν0) =
1

2
(µi − µ0)TΣ−1(µi − µ0).

Step II: We reformulate the optimization problem. The above step implies that (12) withR = KL can be written as

min
‖µ1−µ2‖2≥ε

η(µ1 − µ0)TΣ−1(µ1 − µ0) + (1− η)(µ2 − µ0)TΣ−1(µ2 − µ0),

or equivalently,

min
‖µ1−µ2‖2≥ε

η
∥∥∥Σ− 1

2 (µ1 − µ0)
∥∥∥2

2
+ (1− η)

∥∥∥Σ− 1
2 (µ2 − µ0)

∥∥∥2

2
. (26)

We express the eigenvalue decomposition of Σ−1 as Σ−1 = UΛUT, where Λ ∈ SK+ , and U is an orthogonal matrix.
Applying the change of variables µ

′

i = Λ
1
2UTµi for i = 0, 1, 2, we rewrite (26) as

min∥∥∥µ′1−µ′2∥∥∥
2
≥ε

η
∥∥∥µ′1 − µ′0∥∥∥2

2
+ (1− η)

∥∥∥µ′2 − µ′0∥∥∥2

2
. (27)
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At last, applying the same colinearity argument as above (supported by Fig. 8) we conclude the following equivalent
formulation of (27):

min
µ
′
0,µ
′
1,µ
′
2 are colinear

&
∥∥∥µ′1−µ′2∥∥∥

2
≥ε

η
∥∥∥µ′1 − µ′0∥∥∥2

2
+ (1− η)

∥∥∥µ′2 − µ′0∥∥∥2

2 (28)

Step III: We directly solve (28). Due to the colinearity constraint, we can write

µ
′

0 = (1 + t)µ
′

1 − tµ
′

2 for t ∈ R (29)

and express the objective function of (28) as∥∥∥µ′1 − µ′2∥∥∥2

2

(
ηt2 + (1− η)(1 + t)2

)
≥ ε2

(
ηt2 + (1− η)(1 + t)2

)
,

where equality is achieved if and only if ‖µ′1 − µ′2‖2 = ε. We thus define r(t) = ηt2 + (1 − η)(1 + t)2 and note that
r′(t) = 2(t+(1−η)) and r′′(t) = 2, and thus conclude that r(t) obtains its global minimum at t = η−1. This observation
and (29) imply that the minimizers µ1 and µ2 of (12) withR = KL satisfy µ0 = ηµ1 + (1− η)µ2.

E.3 Some Remarks on Proposition 3.2

We clarify why the statement and proof of the proposition are not sufficient for explaining the effect of the W1 optimiza-
tion on MAW. We note that the inlier and outlier covariances, Σ1 and Σ2, obtained by Proposition 3.2, are diagonal.
Furthermore, the proof of Proposition 3.2 clarifies that the underlying minimization problem of this proposition may as-
sume without loss of generality that the inlier and outlier covariances are diagonal (see e.g., (31)). On the other hand, the
numerical results in §4.3 of the main text support the use of full covariances, instead of diagonal covariance. Nonethe-
less, we claim that the full covariances of MAW come naturally from the dimension reduction component of MAW. This
component also contains trainable parameters for the covariances and they will affect the weights of the encoder, that is,
will affect both the W1 minimization and the reconstruction loss. Thus the analysis of the W1 minimization component
is not sufficient for inferring the whole behavior of MAW. For tractability purposes, the minimization in (12) ignores the
dimension reduction component. For completeness we remark that there are two other differences between the use of (12)
in Proposition 3.2 and the way it arises in MAW that may possibly also result in the advantage of using full covariance
in MAW. First of all, the minimization in Proposition 3.2 uses R = W2, whereas MAW uses R = W1, which we find
intractable when using the rest of the setting of Proposition 3.2. Second of all, (12) with R = W1 is an approximation of
the minimization of W1

(
1
L

∑L
i=1 q(z|x(i)), p(z)

)
(see §E.1 for explanation), which is also intractable (even if one uses

R = W2).

E.4 Proof of Proposition 3.2

We follow the same steps of the proof of Proposition 3.1.

Step I: We immediately verify the formula

W2(N (µi,Σi),N (0, I)) =

√
‖µi‖22 +

∥∥∥Σ 1
2
i − I

∥∥∥2

F
for i = 1, 2. (30)

We use the following general formula, which holds for the case where Σ0, Σ1 and Σ2 are general covariance matrices in
SK+ (see e.g., (4) in (Panaretos & Zemel, 2019)): For i = 1, 2

W 2
2 (N (µi,Σi),N (µ0,Σ0)) = ‖µi − µ0‖22 + tr(Σi + Σ0 − 2(Σ

1
2
i Σ0Σ

1
2
i )

1
2 ) .

Indeed, (30) is obtained as a direct consequence of (E.4) using the identity

tr
(
Σi + I − 2Σ

1
2
i

)
= tr

((
Σ

1
2
i − I

)2
)

=
∥∥∥Σ 1

2
i − I

∥∥∥2

F
.
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Step II: We reformulate the underlying minimization problem in two different stages. We first claim that the minimizer of
(12) withR = W2 and the constraint that Σ1 is of rank κ and Σ2 is of rank K can be expressed as the minimizer of

min
µ1,µ2∈RKs.t. ‖µ1−µ2‖2=ε,

Σ1,Σ2 diagonal in RK×K
& rank(Σ1)=κ, rank(Σ2)=K

[
η

√
‖µ1‖22 +

∥∥∥Σ 1
2
1 − I

∥∥∥2

F
+ (1− η)

√
‖µ2‖22 +

∥∥∥Σ 1
2
2 − I

∥∥∥2

F

]
. (31)

In view of (12) and (30) we only need to prove that the minimizer of (31) is the same if one removes the constraint that Σ1

and Σ2 are both diagonal matrices and require instead that they are in ∈ SK+ . This is easy to show. Indeed, if for i = 1 or
i = 2, Σi ∈ SK+ , then it can be diagonalized as follows: Σi = UT

i ΛiUi, where Λi ∈ SK+ is diagonal andUi is orthogonal.

Hence, Σ
1
2
i = UT

i Λ
1
2
i Ui and∥∥∥Σ 1

2
i − I

∥∥∥2

F
=
∥∥∥UT

i Λ
1
2
i Ui − I

∥∥∥2

F
=
∥∥∥UT

i (Λ
1
2
i − I)Ui

∥∥∥2

F
=
∥∥∥Λ 1

2
i − I

∥∥∥2

F
.

Consequently,
W2(N (µi,Σi),N (0, I)) = W2(N (µi,Λi),N (0, I)) for i = 1, 2 ,

and the above claim is concluded.

Next, we vectorize the minimization problem in (31) as follows. We denote by R+ the set of positive real numbers. Let b
be a general vector in RK+ , a′ be a general vector in Rκ+ and a := (a′; 0K−κ) ∈ RK . Given, the constraints on Σ1 and

Σ2, we can parametrize the diagonal elements of Σ
1
2
1 and Σ

1
2
2 by a and b, that is, we set Σ

1
2
1 = diag(a) and Σ

1
2
2 = diag(b).

The objective function of (31) can then be written as

η

√
‖µ1‖22 + ‖a− 1K‖22 + (1− η)

√
‖µ2‖22 + ‖b− 1K‖22.

Combining this last expression and the same colinearity argument as in the proof of Proposition 3.1 in §E.2 (supported by
Fig. 8), (31) is equivalent to

min
µ1,µ2∈RK ,

b∈RK+ , a
′∈Rκ+, a=(a′;0K−κ),

(µ1;a),(µ2;b),(0K ;1K) are colinear
&‖µ1−µ2‖2=ε

[
η ‖(µ1;a)− (0K ; 1K)‖2 + (1− η) ‖(µ2; b)− (0K ; 1K)‖2

]
. (32)

Step III: We solve (32). By the colinearity constraint, we can write (0K ; 1K) = u(µ2; b)− (u− 1)(µ1;a), where u ∈ R.
We thus obtain that

(µ2; b)− (0K ; 1K) = (u− 1) ((µ1;a)− (µ2; b))

(µ1;a)− (0K ; 1K) = u ((µ1;a)− (µ2; b)) .
(33)

Furthermore, denoting the coordinates of a′ and b by {ai}κi=1 and {bi}Ki=1, we similarly obtain that

0K = uµ2 − (u− 1)µ1

1 = ubi − (u− 1)ai, 1 ≤ i ≤ κ
1 = ubi, d+ 1 ≤ i ≤ K

(34)

The last two of equations imply that
κ∑
i=1

(ai − bi)2 =
‖1κ − a′‖22

u2

and
K∑

i=κ+1

b2i =
K − κ
u2

.
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Combining (30), (33) and the above two equations, we rewrite the objective function of (32) as follows:(
η|u|+ |u− 1|(1− η)

)
× ‖(µ1;a)− (µ2; b)‖2

=
(
η|u|+ |u− 1|(1− η)

)
×

√√√√‖µ1 − µ2‖22 +
κ∑
i=1

(ai − bi)2 +
K∑

i=κ+1

b2i

≥ (η|u|+ |u− 1|(1− η))×

√
ε2 +

‖1κ − a′‖22
u2

+
K − κ
u2

=

{
(K − κ)

(
(1− η)

∣∣∣∣u− 1

u

∣∣∣∣+ η

)2

+ ε2
(
η|u|+ |u− 1|(1− η)

)2
+ ‖1κ − a′‖

2
2

(
(1− η)

∣∣∣∣u− 1

u

∣∣∣∣+ η

)2}1/2

, (35)

where equality is achieved if and only if ‖µ1 − µ2‖2 = ε. One can make the following two observations: u = 0 does not
yield a minimizer of (32), and for any u 6= 0, (35) obtains its minimum at a′ = 1κ. In view of these observations and the
derivation above, we define

f(u) := (K − κ)

(
(1− η)

∣∣∣∣u− 1

u

∣∣∣∣+ η

)2

+ ε2 (η|u|+ |u− 1|(1− η))
2
, (36)

and note that (32) is equivalent to
min
u6=0

√
f(u). (37)

We rewrite f(u) as

f(u) =



(K − κ)

(
u− 1

u
(1− η) + η

)2

+ ε2
(
ηu+ (1− η)(u− 1)

)2

, u ≥ 1

(K − κ)

(
1− u
u

(1− η) + η

)2

+ ε2
(
ηu+ (1− η)(1− u)

)2

, 1 ≥ u > 0

(K − κ)

(
u− 1

u
(1− η) + η

)2

+ ε2
(
ηu+ (1− η)(u− 1)

)2

, 0 > u

We denote

r1(u) := (K−κ)

(
u− 1

u
(1− η) + η

)2

+ ε2
(
ηu+ (1− η)(u− 1)

)2

and

r2(u) := (K−κ)

(
1− u
u

(1− η) + η

)2

+ ε2
(
ηu+ (1− η)(1− u)

)2

.

Their derivatives are
r′1(u) =

2

u3
(u− (1− η))

(
ε2u3 + (K − κ)(1− η)

)
and

r′2(u) =
2

u3

(
(2η − 1)u+ (1− η)

)
×
(
ε2(2η − 1)u3 − (K − κ)(1− η)

)
.

These expressions for r′1 and r′2 imply that the critical points for r1 are

u(1)
r1 = 1− η and u(2)

r1 = −
(

(K − κ)(1− η)

ε2

) 1
3

and the critical points for r2 are

u(1)
r2 = −

(
1− η
2η − 1

)
and u(2)

r2 =

(
(K − κ)(1− η)

ε2(2η − 1)

) 1
3

.
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We note that r1 is increasing on (u
(2)
r1 , 0) ∪ (u

(1)
r1 ,∞) and decreasing on (−∞, u(2)

r1 ) ∪ (0, u
(1)
r1 ). On the other hand, r2 is

increasing on (u
(1)
r2 , 0)∪ (u

(2)
r2 ,∞) and decreasing on (−∞, u(1)

r2 )∪ (0, u
(2)
r2 ). Since η > η? =

K − κ+ ε2

K − κ+ 2ε2
, u(2)
r2 ∈ (0, 1).

The derivative of f with respect to u is

f ′u(u) =


r′1(u), u > 0

r′2(u), 1 > u > 0

r′1(u), 0 > u.

So f(·) is increasing on (u
(2)
r1 , 0) ∪ (u

(2)
r2 ,∞) and decreasing on (−∞, u(2)

r1 ) ∪ (0, u
(2)
r2 ). The values of f at u(2)

r2 and u(2)
r1

are

f(u(2)
r2 ) =

((
(K − κ)(1− η)(2η − 1)2

ε2

) 1
3

+ (1− η)

)2

×

(
(K − κ)

1
3

(
ε2(2η − 1)

(1− η)

) 2
3

+ ε2

)
,

f(u(2)
r1 ) =

((
(K − κ)(1− η)

ε2

) 1
3

+ (1− η)

)2

×

(
(K − κ)

1
3

(
ε2

(1− η)

) 2
3

+ ε2

)
.

Consequently, the minimum of f is obtained at u? := u
(2)
r2 . By (33) and (34), the meansµ1, µ2 and the covariance matrices

Σ1, Σ2 satisfy: 0K = u?µ2 + (1 − u?)µ1, Σ1 = diag(1κ; 0K−κ) and Σ2 = diag(1κ; (u?)
−2

1K−κ). Moreover, the
norms of µ1 and µ2 can be computed from (34) as u?ε and (1− u?)ε, respectively.

E.5 Proof of Proposition 3.3

Notice that since Σ0 ∈ SK++, det(Σ0) > 0. On the other hand, since Σ1 ∈ SK+ with rank(Σ1) = κ < K, det(Σ1) = 0.
Therefore,

log
det(Σ0)

det(Σ1)
= log det(Σ0)− log det(Σ1) =∞.

This and (25) imply that KL(N (µ1,Σ1)||N (µ0,Σ0)) =∞.

F ADDITIONAL DETAILS ON THE BENCHMARK METHODS

We overview the benchmark methods compared with MAW, where we present them according to alphabetical order of
names. We will include all tested codes in a supplemental webpage.

For completeness, we mention the following links (or papers with links) we used for the different codes. For DSEBMs and
DAGMM we used the codes of (Golan & El-Yaniv, 2018). For LOF, OCSVM and IF we used the scikit-learn (Buitinck
et al., 2013) packages for novelty detection. For OCGAN we used its TensorFlow implementation from https://pypi
.org/project/ocgan. For RSRAE, we adapted the code of (Lai et al., 2020) to novelty detection.

All experiments were executed on a Linux machine with 64GB RAM and four GTX1080Ti GPUs.

We remark that for the neural networks based methods (DAGMM, DSEBMs, OCGAN and RSRAE), we followed similar
implementation details as the one described in §A.3 for MAW.

Deep Autoencoding GMM (DAGMM) (Zong et al., 2018): This method uses a deep autoencoder model. It optimizes
an end-to-end structure that contains both an autoencoder and an estimator for a GMM. Anomalies are detected using this
GMM. We remark that this mixture model is proposed for the inliers. An improved version of DAGMM was recently
proposed in (Fan et al., 2020).

Deep Structured Energy-Based Models (DSEBMs) (Zhai et al., 2016): Its decision is based on an energy function
which is the negative log probability that a sample follows the data distribution. An autoencoder is used for the energy-
based model in order to avoid the need of complex sampling.

Isolation Forest (IF) (Liu et al., 2008): It iteratively constructs special binary trees for the training set and identifies
anomalies in the test set as the ones with shortest average path lengths.

Local Outlier Factor (LOF) (Breunig et al., 2000): It measures the isolation of a data point from its surrounding neigh-
bors by estimating the local density of this point using its k nearest neighbors. In novelty detection, it identifies novelties
according to low density regions learned from the training data.
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One-class Novelty Detection Using GANs (OCGAN) (Perera et al., 2019): It is composed of four NNs: a denoising
autoencoder, two adversarial discriminators, and a classifier. It adversarially encourages the autoencoder to learn only the
inlier features.

One-Class SVM (OCSVM) (Heller et al., 2003): It estimates the margin of the training set and uses it as the decision
boundary for the test set. It commonly utilizes a radial basis function kernel.

Robust Subspace Recovery Autoencoder (RSRAE) (Lai et al., 2020): It uses an autoencoder with a linear RSR layer
and an `2,1-based penalty. The RSR layer extracts features of inliers in the latent code while helping to reject outliers. The
instances with higher reconstruction errors are viewed as outliers. RSRAE trains a model using the training data. We then
apply this model for detecting novelties in the test data.

G ADDITIONAL DETAILS ON THE DIFFERENT DATASETS

Below we provide additional details on the six datasets used in our experiments. We remark that each dataset contains sev-
eral clusters (3 for COVID-19, 10 for CIFAR-10, 11 largest ones for Caltech101, 10 for Fashion MNIST, 2 for KDDCUP-99
and 5 for Reuters-21578, ). Table 2 lists for each dataset (for both training and testing) the data types, numbers of clusters,
dimensions, numbers of instances and numbers of inliers and outliers.

Table 2: Summary of properties of the datasets.
Dataset information Training Testing

Datasets Type #Clusters Dimension #Instances #Inliers #Outliers #Inliers #Outliers

COVID-19 (Radiography) Image 3 64× 64× 3 15,161 160 160 ×c 60 60 ×ctest
CIFAR-10 Image 10 32× 32× 3 60,000 450 450 ×c 150 150 ×ctest
Caltech101 Image 11 32× 32× 3 9,146 100 100 ×c 100 100 ×ctest
Fashion MNIST Image 10 28× 28× 1 70,000 300 300 ×c 60 60 ×ctest
KDDCUP-99 Feature 2 120 494,021 6000 6000 ×c 1200 1200 ×ctest
Reuters-21578 Feature 5 26, 147 21,578 350 350 ×c 140 140 ×ctest

COVID-19 (Radiography) (Chowdhury et al., 2020): It contains chest X-ray images (RGB) labeled according to these
categories: COVID-19 positive, normal and bacterial Pneumonia cases. We resize the images to size 64 × 64 and rescale
the pixel intensities to lie in [−1, 1]. It is publicly available in https://www.kaggle.com/tawsifurrahman/co
vid19-radiography-database.

CIFAR-10 (Krizhevsky, 2009): It contains 10 categories of 32× 32 RGB images of transportation vehicles and animals.
We rescale the pixel intensities to lie in [0, 1]. The dataset is publicly available in https://www.cs.toronto.edu
/˜kriz/cifar.html.

Caltech101 (Fei-Fei et al., 2004): It contains RGB images of objects from 101 categories with identifying labels. Follow-
ing Lai et al. (2020), we use the largest 11 classes and preprocess their images to have size 32 × 32 and rescale the pixel
intensities to lie in [−1, 1]. It is publicly available in http://www.vision.caltech.edu/Image Datasets/
Caltech101.

Fashion MNIST (Xiao et al., 2017): It is an image dataset containing 10 categories of 28 × 28 grayscale images of
clothing and accessories items. We rescaled the pixel intensities to lie in [−1, 1]. We obtained the dataset from the Keras
dataset library https://keras.io/api/datasets/fashion mnist.

KDDCUP-99 (Dua & Graff, 2017): It is a classic dataset for intrusion detection. It contains feature vectors of connections
between internet protocols and a binary label for each feature vector identifying normal vs. abnormal ones. The abnormal
ones are associated with an “attack” or “intrusion”. The dataset is publicly available in http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html.

Reuters-21578 (Lewis, 1997): It contains 21,578 documents with 90 text categories having multi-labels. Following
Lai et al. (2020), we consider the five largest classes with single labels. We utilize the scikit-learn packages: TFIDF
and HashingVectorizer (Rajaraman & Ullman, 2011) to preprocess the documents into 26,147 dimensional vectors. It is
publicly available in https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+categor
ization+collection.

According to the above description, the numbers of clusters of these datasets are 3, 10, 11, 10, 2 and 5, respectively. We
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remark that COVID-19, CIFAR-10, Caltech101, Fashion MNIST and Reuters-21578 separate between training and testing
data points. For KDDCUP-99, we randomly split it into training and testing datasets of equal sizes.

H NUMERICAL RESULTS OF THE EXPERIMENTS

We present as tables the numerical values depicted in Figs. 2 and 3. Tables 3-14 report the averaged AUC and AP scores
with training outliers/inliers ratio c ∈ {0.1, 0.2, 0.3, 0.4, 0.5} that were depicted in Fig. 2. Each table describes one of the
averaged scores (AUC or AP) for one of the six datasets (COVID-19, CIFAR-10, Caltech101, Fashion MNIST, KDDCUP-
99 and Reuters-21578) and also indicates the standard deviation of each value. The outperforming methods are marked in
bold.

Tables 15-18 record the averaged AUC and AP scores with training outliers/inliers ratio c ∈ {0.1, 0.2, 0.3, 0.4, 0.5} that
were depicted in Fig. 3. Each table describes one of the averaged scores (AUC or AP) for one of either KDDCUP-99 or
COVID-19 and also indicates the standard deviation of each value. The outperforming methods are boldfaced.

Table 3: AUC scores of COVID-19.
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.652 ± 0.021 0.609 ± 0.018 0.576 ± 0.019 0.531 ± 0.020 0.504 ± 0.010
DAGMM 0.527± 0.068 0.545± 0.051 0.518 ± 0.062 0.504 ± 0.060 0.503 ± 0.057
DSEBMs 0.451± 0.000 0.451± 0.000 0.451 ± 0.000 0.451 ± 0.000 0.451 ± 0.000
IF 0.574 0.541 0.515 0.493 0.469
LOF 0.642 0.588 0.542 0.536 0.519
OCGAN 0.472± 0.000 0.472± 0.000 0.465 ± 0.000 0.445 ± 0.000 0.431 ± 0.000
OCSVM 0.528 0.528 0.528 0.535 0.521
RSRAE 0.535± 0.031 0.507± 0.028 0.456 ± 0.023 0.434 ± 0.018 0.407 ± 0.011

Table 4: AP scores of COVID-19.
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.459 ± 0.014 0.442 ± 0.011 0.424 ± 0.018 0.368 ± 0.015 0.353 ± 0.013
DAGMM 0.354± 0.053 0.390 ± 0.057 0.316 ± 0.052 0.357 ± 0.050 0.348 ± 0.047
DSEBMs 0.372± 0.000 0.375 ± 0.000 0.364 ± 0.000 0.360 ± 0.000 0.358 ± 0.000
IF 0.425 0.404 0.392 0.373 0.363
LOF 0.463 0.422 0.402 0.374 0.371
OCGAN 0.381± 0.000 0.381 ± 0.000 0.381 ± 0.000 0.373 ± 0.000 0.350 ± 0.000
OCSVM 0.315 0.315 0.315 0.372 0.365
RSRAE 0.388± 0.018 0.377 ± 0.016 0.355 ± 0.011 0.352 ± 0.010 0.340 ± 0.009

Table 5: AUC scores of CIFAR-10.
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.621 ± 0.013 0.609 ± 0.014 0.607 ± 0.012 0.600 ± 0.010 0.595 ± 0.013
LOF 0.582 0.574 0.559 0.551 0.539
OCSVM 0.595 0.587 0.580 0.564 0.570
IF 0.603 0.586 0.596 0.581 0.569
RSRAE 0.638 ± 0.010 0.607 ± 0.017 0.599 ± 0.023 0.610 ± 0.025 0.589 ± 0.023
DSEBMs 0.586 ± 0.006 0.584 ±0.006 0.580 ± 0.004 0.576± 0.006 0.556 ±0.006
OCGAN 0.501 ±0 0.501 ±0 0.499 ±0 0.487 ± 0 0.476 ±0
DAGMM 0.574 ± 0.030 0.557 ± 0.035 0.541 ±0.037 0.510 ± 0.0331 0.545 ± 0.037



Robust Variational Autoencoding with Wasserstein Penalty for Novelty Detection

Table 6: AP scores of CIFAR-10.
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.427 ± 0.010 0.419 ±0.012 0.414 ± 0.011 0.400±0.009 0.411 ±0.011
LOF 0.395 0.036 0.377 0.374 0.371
OCSVM 0.408 0.400 0.393 0.378 0.385
IF 0.416 0.395 0.403 0.389 0.373
RSRAE 0.434 ± 0.011 0.412 ±0.020 0.417 ± 0.022 0.391 ± 0.019 0.400 ± 0.014
DSEBMs 0.391 ±0.008 0.388 ± 0.008 0.386 ±0.004 0.382 ± 0.006 0.379±0.003
OCGAN 0.342 ± 0 0.340±0 0.339 ±0 0.337 ± 0 0.335±0
DAGMM 0.378 ±0.049 0.369 ±0.041 0.355 ± 0.030 0.308 ± 0.026 0.352 ± 0.047

Table 7: AUC scores of Caltech101.
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.801 ± 0.017 0.760 ± 0.028 0.700 ± 0.038 0.608 ± 0.031 0.570 ± 0.021
DAGMM 0.684 ± 0.100 0.588 ± 0.115 0.500± 0.100 0.509 ± 0.101 0.514 ± 0.095
DSEBMs 0.536 ± 0.011 0.612± 0.025 0.577 ± 0.030 0.564 ± 0.021 0.536 ± 0.021
IF 0.755 0.694 0.626 0.575 0.540
LOF 0.674 0.593 0.495 0.436 0.411
OCGAN 0.494 ± 0.000 0.494± 0.000 0.494± 0.000 0.500 ± 0.000 0.500 ± 0.000
OCSVM 0.682 0.618 0.577 0.538 0.516
RSRAE 0.774 ± 0.027 0.722 ± 0.041 0.664 ± 0.082 0.579 ± 0.047 0.568 ± 0.036

Table 8: AP scores of Caltech101.
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.634 ± 0.027 0.572 ± 0.039 0.531 ± 0.064 0.412 ± 0.029 0.414 ± 0.021
DAGMM 0.574± 0.088 0.422 ± 0.112 0.308 ± 0.102 0.351 ± 0.074 0.363 ± 0.076
DSEBMs 0.385± 0.003 0.472± 0.051 0.398±0.019 0.383 ± 0.023 0.365 ± 0.028
IF 0.545 0.486 0.430 0.304 0.371
LOF 0.460 0.400 0.337 0.304 0.290
OCGAN 0.362± 0.000 0.362± 0.000 0.362 ± 0.000 0.362 ± 0.000 0.362 ± 0.000
OCSVM 0.472 0.419 0.380 0.352 0.339
RSRAE 0.595± 0.038 0.551 ± 0.045 0.495 ±0.073 0.425 ± 0.040 0.443 ± 0.027

Table 9: AUC scores of Fashion MNIST
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.897 ± 0.013 0.879 ± 0.011 0.852 ± 0.022 0.830 ± 0.017 0.801 ± 0.016
DAGMM 0.607 ± 0.093 0.376 ± 0.070 0.427 ± 0.090 0.401 ± 0.078 0.411 ± 0.081
DSEBMs 0.730 ± 0.092 0.729 ± 0.105 0.739 ± 0.086 0.723 ± 0.106 0.687 ± 0.096
IF 0.893 0.875 0.843 0.834 0.827
LOF 0.569 0.507 0.476 0.468 0.458
OCGAN 0.542 ± 0.006 0.538 ± 0.004 0.544 ± 0.014 0.531 ± 0.003 0.525 ± 0.004
OCSVM 0.895 0.874 0.848 0.831 0.814
RSRAE 0.860 ± 0.022 0.848 ± 0.022 0.829 ± 0.042 0.831 ± 0.028 0.808 ± 0.028
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Table 10: AP scores of Fashion MNIST
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.788 ±0.013 0.754 ± 0.014 0.723±0.029 0.686 ± 0.025 0.672 ±0.021
DAGMM 0.482 ±0.051 0.303 ±0.057 0.334 ±0.113 0.318 ±0.056 0.330 ± 0.038
DSEBMs 0.600 ± 0.045 0.609± 0.120 0.613±0.089 0.605 ±0.086 0.565 ± 0.072
IF 0.768 0.724 0.693 0.665 0.642
LOF 0.382 0.331 0.308 0.301 0.294
OCGAN 0.504 ± 0.002 0.503 ± 0.003 0.500 ± 0.059 0.495 ± 0.001 0.493 ± 0.001
OCSVM 0.801 0.768 0.735 0.696 0.664
RSRAE 0.749 ± 0.029 0.736 ± 0.032 0.716 ± 0.048 0.683 ± 0.036 0.680 ± 0.042

Table 11: AUC scores of KDDCUP-99.
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.945 ± 0.028 0.906 ± 0.018 0.832 ± 0.016 0.775 ± 0.023 0.731 ± 0.017
DAGMM 0.614 ± 0.083 0.660 ± 0.109 0.584 ± 0.133 0.457 ± 0.099 0.521 ± 0.089
DSEBMs 0.514± 0.000 0.499 ± 0.000 0.497 ± 0.000 0.496 ± 0.000 0.496 ± 0.000
IF 0.811 0.850 0.807 0.750 0.706
LOF 0.480 0.527 0.516 0.527 0.530
OCGAN 0.651 ± 0.157 0.552 ± 0.157 0.617 ± 0.191 0.517 ± 0.146 0.628 ± 0.155
OCSVM 0.502 0.568 0.567 0.555 0.534
RSRAE 0.815 ± 0.031 0.839 ± 0.059 0.774 ± 0.086 0.735 ± 0.066 0.710 ± 0.056

Table 12: AP scores of KDDCUP-99.
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.765± 0.025 0.732 ± 0.015 0.647 ± 0.012 0.594 ± 0.014 0.556 ± 0.014
DAGMM 0.446 ± 0.047 0.506 ± 0.064 0.459 ± 0.087 0.373 ± 0.109 0.464 ± 0.998
DSEBMs 0.450 ± 0.000 0.447 ± 0.000 0.446 ± 0.000 0.444 ± 0.000 0.444 ± 0.000
IF 0.636 0.6331 0.562 0.493 0.457
LOF 0.391 0.407 0.392 0.394 0.391
OCGAN 0.582 ± 0.132 0.472 ± 0.163 0.525 ± 0.133 0.418 ± 0.136 0.535 ± 0.133
OCSVM 0.543 0.598 0.595 0.438 0.426
RSRAE 0.704 ± 0.048 0.698 ± 0.050 0.606 ± 0.065 0.584 ± 0.034 0.574 ± 0.046

Table 13: AUC scores of Reuters-21578.
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.885 ± 0.028 0.830 ± 0.013 0.770 ± 0.017 0.700 ± 0.002 0.648 ± 0.016
DAGMM 0.500 ± 0.000 0.511 ± 0.027 0.566 ± 0.110 0.559 ± 0.087 0.570 ± 0.091
DSEBMs 0.887 ± 0.012 0.825 ± 0.012 0.790 ± 0.015 0.690 ± 0.002 0.648 ± 0.010
IF 0.544 0.535 0.520 0.453 0.452
LOF 0.757 0.612 0.579 0.631 0.616
OCGAN 0.648 ± 0.127 0.477 ± 0.129 0.498 ± 0.140 0.519 ± 0.132 0.502 ± 0.099
OCSVM 0.882 0.817 0.785 0.673 0.640
RSRAE 0.786 ± 0.042 0.755 ± 0.034 0.716 ± 0.033 0.605 ± 0.001 0.494 ± 0.004
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Table 14: AP scores of Reuters-21578.
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.755 ± 0.041 0.677 ± 0.026 0.627 ± 0.029 0.518 ± 0.004 0.474 ± 0.013
DAGMM 0.316 ± 0.000 0.316 ± 0.013 0.365 ± 0.020 0.362 ± 0.015 0.372 ± 0.012
DSEBMs 0.763 ± 0.012 0.697 ± 0.011 0.666 ± 0.007 0.515 ± 0.003 0.473 ± 0.003
IF 0.368 0.372 0.365 0.301 0.298
LOF 0.580 0.438 0.421 0.498 0.486
OCGAN 0.408 ± 0.045 0.334 ± 0.098 0.365 ± 0.106 0.504 ± 0.083 0.497 ± 0.094
OCSVM 0.746 0.681 0.637 0.467 0.438
RSRAE 0.593 ± 0.051 0.563 ± 0.035 0.488 ± 0.036 0.403± 0.001 0.415 ± 0.003

Table 15: AUC scores of KDD-99 for variations of MAW
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.945 ± 0.028 0.906 ± 0.018 0.832 ± 0.016 0.775 ± 0.023 0.731 ± 0.017
MAW-MSE 0.844 ± 0.039 0.812 ± 0.032 0.746 ± 0.044 0.709 ± 0.020 0.675 ± 0.014
MAW-KL divergence 0.905 ± 0.026 0.863 ± 0.028 0.801 ± 0.029 0.752 ± 0.016 0.696 ± 0.018
MAW-same rank 0.912 ± 0.023 0.868 ± 0.011 0.797 ± 0.022 0.750 ± 0.012 0.699 ± 0.040
MAW-single Gaussian 0.914 ± 0.016 0.862 ± 0.021 0.796 ± 0.013 0.751 ± 0.040 0.701 ± 0.045
MAW-diagonal cov. 0.918 ± 0.023 0.858 ± 0.020 0.801 ± 0.044 0.743 ± 0.017 0.703 ± 0.015
VAE 0.821 ± 0.048 0.785 ± 0.027 0.732 ± 0.046 0.717 ± 0.018 0.685 ± 0.027
GMM prior 0.677 ± 0.009 0.635±0.013 0.604 ± 0.006 0.562 ± 0.015 0.517±0.014

Table 16: AP scores of KDDCUP-99 for variations of MAW
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.765 ± 0.025 0.732 ± 0.015 0.647 ± 0.012 0.594± 0.014 0.556 ± 0.014
MAW-MSE 0.715 ± 0.079 0.589 ± 0.058 0.524 ± 0.053 0.463±0.042 0.410 ± 0.028
MAW-KL divergence 0.735 ± 0.028 0.676 ± 0.028 0.618 ± 0.024 0.579±0.023 0.509±0.017
MAW-same rank 0.725 ± 0.028 0.681 ±0.015 0.622 ± 0.024 0.572 ±0.017 0.532 ±0.038
MAW-single Gaussian 0.737 ± 0.018 0.675 ±0.023 0.620 ± 0.025 0.569±0.036 0.519 ±0.044
MAW-diagonal cov. 0.724 ± 0.021 0.678 ± 0.035 0.589 ± 0.064 0.546 ±0.019 0.512 ±0.016
VAE 0.642 ± 0.030 0.555 ± 0.043 0.524 ± 0.028 0.478±0.024 0.450±0.015
GMM prior 0.604 ± 0.010 0.587±0.013 0.557 ± 0.009 0.534 ± 0.011 0.501±0.015

Table 17: AUC scores of COVID-19 for variations of MAW
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.652 ± 0.021 0.609 ± 0.018 0.576 ± 0.019 0.531 ±0.020 0.504±0.010
MAW-MSE 0.602 ± 0.022 0.554 ±0.063 0.528 ± 0.041 0.507± 0.014 0.479±0.021
MAW-KL divergence 0.614 ± 0.025 0.580 ± 0.026 0.508 ± 0.064 0.476 ± 0.023 0.463±0.016
MAW-same rank 0.604 ± 0.031 0.574 ± 0.048 0.527 ± 0.044 0.430 ± 0.017 0.408±0.021
MAW-single Gaussian 0.621 ± 0.027 0.586±0.029 0.507 ± 0.047 0.492±0.021 0.472±0.019
MAW-diagonal cov. 0.600 ± 0.029 0.586± 0.030 0.535 ± 0.035 0.446 ±0.028 0.439 ±0.038
VAE 0.619 ± 0.073 0.565±0.065 0.522 ± 0.049 0.508 ± 0.023 0.473±0.016
GMM prior 0.548 ± 0.012 0.514±0.008 0.489 ± 0.010 0.476 ± 0.011 0.469±0.009

Table 18: AP scores of COVID-19 for variations of MAW
Training ratio of outliers per inliers, c

Methods 0.1 0.2 0.3 0.4 0.5

MAW 0.459 ± 0.014 0.442 ± 0.011 0.424 ± 0.018 0.368±0.015 0.353±0.013
MAW-MSE 0.421 ± 0.015 0.395 ± 0.025 0.377 ± 0.012 0.332±0.013 0.328 ± 0.020
MAW-KL divergence 0.427 ± 0.016 0.403± 0.012 0.370 ± 0.021 0.322±0.017 0.313 ±0.013
MAW-same rank 0.422 ± 0.021 0.413 ±0.026 0.375 ± 0.019 0.344 ±0.023 0.335 ±0.017
MAW-single Gaussian 0.425± 0.019 0.409 ± 0.012 0.374 ± 0.016 0.339± 0.014 0.329±0.016
MAW-diagonal cov. 0.412 ± 0.016 0.397 ± 0.018 0.369 ± 0.012 0.343±0.009 0.330 ±0.009
VAE 0.412 ± 0.030 0.411 ± 0.043 0.379 ± 0.028 0.341±0.011 0.333±0.013
GMM prior 0.389 ± 0.009 0.382±0.006 0.362 ± 0.005 0.346 ± 0.009 0.309 ±0.0096


