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Abstract

Risk-averse Markov Decision Processes (MDPs)

have optimal policies that achieve high returns

with low variability, but these MDPs are often

difficult to solve. Only a few risk-averse objec-

tives admit a dynamic programming (DP) formu-

lation, which is the mainstay of most MDP and

RL algorithms. We derive a new DP formula-

tion for discounted risk-averse MDPs with En-

tropic Risk Measure (ERM) and Entropic Value

at Risk (EVaR) objectives. Our DP formulation

for ERM, which is possible because of our novel

definition of value function with time-dependent

risk levels, can approximate optimal policies in a

time that is polynomial in the approximation er-

ror. We then use the ERM algorithm to optimize

the EVaR objective in polynomial time using an

optimized discretization scheme. Our numerical

results show the viability of our formulations and

algorithms in discounted MDPs.

1 INTRODUCTION

A major concern in high-stakes applications of reinforce-

ment learning (RL), such as those in healthcare or finance,

is to quantify the risk associated with the variability of re-

turns. Since the standard expected objective does not cap-

ture the risk of random returns, concave risk measures have

emerged as one of the most popular tools to quantify this

risk in RL and beyond. They are sufficiently general to

capture a wide range of stakeholder preferences and are

more computationally convenient than many other alterna-

tives (Follmer and Schied, 2016). Conditional value-at-risk

(CVaR) is the best-known concave risk measure (Follmer

and Schied, 2016; Shapiro et al., 2014) and the most com-

monly used to model risk aversion in MDPs (Angelotti
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et al., 2021; Bauerle and Glauner, 2022; Bäuerle and Ott,

2011; Bisi et al., 2022; Brown et al., 2020; Chow and

Ghavamzadeh, 2014; Chow et al., 2015, 2018; Hiraoka

et al., 2019; Lobo et al., 2021; Osogami, 2012; Santara

et al., 2018; Tamar et al., 2014, 2015; Zhang et al., 2021).

The popularity of CVaR is mainly due to its intuitive in-

terpretation as the expectation of the undesirable tail of the

return random variable. Alas, solving risk-averse MDPs

with the CVaR objective (CVaR-MDP) poses a difficult op-

timization problem. One can only formulate a dynamic

program (DP) and a value function when the state space is

augmented with an additional continuous variable (Bäuerle

and Ott, 2011; Li et al., 2022; Pflug and Pichler, 2016a,b),

which significantly complicates the computation of the

value function and the implementation of the policy.

A popular remedy for the complexity of CVaR-MDPs is

to use nested, also known as iterated or Markov, CVaR

risk measure (Bauerle and Glauner, 2022; Defourny et al.,

2008; Osogami, 2011). MDPs with a nested CVaR objec-

tive admit a value function that can be solved efficiently

using DP. Unfortunately, nested CVaR approximates CVaR

poorly and has several properties that make it impractical,

e.g., it is difficult to interpret and is not law-invariant. The

latter property is because the risk value also depends on the

model dynamics and not only on the probability distribu-

tion of the returns (Follmer and Schied, 2016).

In this paper, we propose new algorithms for solv-

ing risk-averse discounted MDPs with two entropic

concave risk measures: the entropic risk measure

(ERM) (Follmer and Schied, 2016) and the entropic value-

at-risk (EVaR) (Ahmadi-Javid, 2012; Follmer and Schied,

2016). Entropic risk measures are important alternatives

to CVaR but their behavior in dynamic decision domains,

like MDPs, is not yet well understood. Prior work on

entropic risk measures in dynamic decision-making has

been limited to ERM in undiscounted and average-reward

MDPs (Borkar and Meyn, 2002; Neu et al., 2017), ERM

for stochastic programs (Dowson et al., 2021), and nested

EVaR-constrained models (Ahmadi et al., 2021a,b; Dixit

et al., 2021). We believe this paper is the first work that

investigates non-nested entropic risk measures in the dis-

counted setting, which is the typical objective in RL.
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We make two main contributions in this paper. As the first

one, we show in Section 3 that in a discounted ERM-MDP,

there exists an optimal deterministic Markov policy and

an optimal value function that can be computed using dy-

namic programming. It is well-known that ERM is unique

among law-invariant risk measures (Kupper and Schacher-

mayer, 2006) in that it satisfies the tower property (see The-

orem 2.1). However, the challenge with deriving DP equa-

tions with ERM in the discounted setting is that ERM is

not positively-homogeneous, which makes it impossible to

account for the discount factor. We hypothesize that this is

the reason most prior work on ERM-MDPs have focused

on undiscounted objectives (Borkar and Meyn, 2002; Neu

et al., 2017), despite the popularity of discounting. Our

main innovation in deriving the DP formulation is to com-

pute a value function that uses time-dependent risk levels

that decay exponentially over time to compensate for the

discount factor. The DP is optimal for finite-horizon ob-

jectives and computes optimal infinite-horizon policies to a

tolerance δ in O(S2A log(1/δ)) time, where S and A are

the number of states and actions in the MDP.

As the second contribution, we show in Section 4 that in a

discounted EVaR-MDP, there exists an optimal determin-

istic Markov policy and a policy that is arbitrarily close

to optimal can be computed using a sequence of dynamic

programs. This is particularly surprising because EVaR

does not satisfy the tower property (Theorem 2.1), which

is required for the existence of DP optimality equations.

To show this result, we reduce solving the EVaR-MDP to

solving a specific sequence of ERM-MDPs. In particular,

our EVaR algorithm runs in O(S2A( log(1/δ)δ )2) time. To

the best of our knowledge, this is the first polynomial-time

approximate algorithm for computing history-independent

policies for coherent law-invariant risk measures in dis-

counted MDPs.

Concurrently with our work, a state-augmentation ap-

proach has been proposed for solving discounted EVaR-

MDPs (Ni and Lai, 2022a,b). This approach to EVaR-

MDPs is inspired by a state augmentation method for solv-

ing CVaR-MDPs (Chow et al., 2015). Ni and Lai (2022a)

states that the augmented EVaR-MDP Bellman operator is

optimal with a sufficiently fine discretization of the aug-

mented state. However, we show counterexamples to the

optimality of these approaches in both EVaR-MDPs and

CVaR-MDPs (Hau and Petrik, 2023).

Our empirical results in Section 5 confirm the efficacy of

our algorithms. They outperform other techniques not only

when evaluated in terms of ERM and EVaR metrics but

also in terms of CVaR and VaR. This is not surprising be-

cause EVaR-MDP is easier to optimize than CVaR-MDP,

and EVaR closely approximates CVaR and VaR (Ahmadi-

Javid, 2012).

2 BACKGROUND

This section overviews the properties of MDPs and risk

measures that we will need in the remainder of the paper.

2.1 Markov Decision Processes

We assume a problem formulated as a discounted MDP,

defined by the tuple (S,A, r, p, s0, γ), where S = 1:S and

A = 1:A are the set of states and actions. The expres-

sion a:b denotes a sequence, or a set, a, a + 1, . . . , b. The

reward function r : S × A → R represents the reward re-

ceived in each state after taking an action. The transition

probabilities are p : S × A → ∆S , where ∆S is the proba-

bility simplex in R
S . Finally, s0 ∈ S is the initial state and

γ ∈ (0, 1] is the discount factor.

The most-general solution to an MDP is a randomized

history-dependent policy that at each time-step prescribes

a distribution over actions as a function of the history up to

that step (Puterman, 2005). We use ΠHR and ΠHD to de-

note the sets of all history-dependent randomized and de-

terministic policies, respectively. A randomized Markov

policy depends only on the time-step t and current state

st as π = (πt)
T−1
t=0 , where πt : S → ∆A. A policy π is

stationary when it is time-independent (all πt’s are equal),

in which case we omit the time subscript. We denote by

ΠMR and ΠSR, the sets of Markov and stationary random-

ized policies, and by ΠMD and ΠSD their deterministic

counterparts.

A common goal in an MDP is to maximize the discounted

sum of rewards received by following a policy. We use

R
π
t:T (s) to denote the random return of a policy π from

time-step t to T starting at state s ∈ S , and define it as

R
π
t:T (s) =

T−1∑

t′=t

γt
′
−t ·

Rπ

t′

︷ ︸︸ ︷

r(St′ , At′) | St = s , (1)

where St′ ∼ p(·|St′−1, At′−1), At′ ∼ πt′(·|St′), and Rπ
t′

are the random variables of state visited, action taken, and

reward received at a time-step t′ ∈ t:T−1. We refer to

T ∈ N
+ ∪ {∞} as the horizon with T = ∞ indicating

an infinite-horizon objective. When T = ∞, we restrict

the discount factor to γ < 1 to guarantee that Rπ
t:T is fi-

nite. While a discounted (γ < 1) finite-horizon objec-

tive is seldom used in practice, we use it later in the pa-

per as an intermediate step for solving the infinite-horizon

objective. Finally, we use ∆R = (maxs∈S,a∈A r(s, a) −
mins∈S,a∈A r(s, a))/(1−γ) to denote the maximum range

(span semi-norm) of the return random variable.

In standard risk-neutral MDPs, the objective is to maximize

the expected value of the return random variable R
π
T =

R
π
0:T (s0), that is,

max
π∈ΠHR

E [Rπ
T ] . (2)
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We denote the optimal policy in (2) by π⋆. Most MDP al-

gorithms rely on the concept of a value function in one way

or another. The value function vπ = (vπt )
T
t=0 for a policy

π ∈ ΠMD is a set of value functions vπt : S → R, t ∈ 0:T ,

each representing the expected return from a time-step t to

the horizon T . For each s ∈ S , we may write the value

function vπ as

vπt (s) = E [Rπ
t:T (s)] , (3)

where A ∼ π(·|s), S′ ∼ p(·|s,A), and vT (s) = 0. The

optimal value function v⋆ is simply the value function of

the optimal policy π⋆: v⋆t = vπ
⋆

t , ∀t ∈ 0:T . Both the value

function of a policy π and the optimal value function satisfy

Bellman equations (for all s ∈ S and all t ∈ 0:T−1):

vπt (s) = E
[
r(s,A) + γ · vπt+1(S

′)
]
,

v⋆t (s) = max
a∈A

E
[
r(s, a) + γ · v⋆t+1(S

′)
]
,

(4)

which allow us to compute them efficiently using DP. For

the infinite-horizon setting (T = ∞ and γ < 1), one can

show that there exists an optimal deterministic stationary

policy π⋆ ∈ ΠSD and the value functions are also station-

ary: vπ = vπt and v⋆ = v⋆t , for all t = 0:T−1.

Formulating the DP equations in (4) is only possible be-

cause of three important properties of the expectation op-

erator (Puterman, 2005; Shapiro et al., 2014). In particular,

the expectation operator E[·] is monotone, positive homo-

geneous, and satisfies the tower property. It is monotone

because E[X] ≥ E[Y ] whenever X ≥ Y , it is positively

homogeneous because E[c ·X] = c · E[X], and it satisfies

the tower property because E[E[X|Y ]] = E[X]. In these

equations, X and Y are any two random variables and c is

a positive constant.

2.2 Concave Risk Measures

Concave risk measures are a generalization of the expec-

tation operator E[·] that can account for the variability of

random variables. Formally, a concave risk measure ψ[·] is

defined as a mapping ψ : X→ R from the set of real-valued

random variables X to real numbers that is concave, mono-

tone, and translation invariant (Follmer and Schied, 2016).

We summarize some of the most relevant risk measures and

their properties in Appendix A.

Entropic Risk Measure (ERM) is the first risk measure

we study in this paper. ERM is a concave risk measure with

a parameter β ∈ R+ ∪ {∞}. It is defined for a random

variable X ∈ X as (Follmer and Schied, 2016)1

ERMβ [X] = −β−1 · log
(

E
[
e−β·X

])

. (5)

1Note that the ERM definition in (5) is for rewards; the defi-
nitions for cost does not negate the random variable X (Follmer
and Schied, 2016; Shapiro et al., 2014).

For the risk level β = 0, ERM equals to the expectation:

ERM0 [X] = limβ→0+ ERMβ [X] = E[X], while for

β →∞, ERM equals to the minimum value of the random

variable X: ERM∞ [X] = ess inf[X]. ERM is monotone

and satisfies the tower property. In fact, ERM is the only

law-invariant risk measure that satisfies the tower prop-

erty (Kupper and Schachermayer, 2006). Since we heavily

use this property of ERM in our results, we state it in the

following theorem and report its proof in Appendix B.

Theorem 2.1 (Tower Property). For any two random vari-

ables X1, X2 ∈ X, we have

ERMβ [X1] = ERMβ [ERMβ [X1 | X2]] ,

where the conditional ERM is defined analogously to a con-

ditional expectation (see Definition A.4).

Despite the properties listed above, ERM is rarely em-

ployed in practice because it is not positively homoge-

neous, that is, ERMβ [c ·X] ̸= c · ERMβ [X], which

gives rise to undesirable risk preferences. For instance,

a decision-maker guided by ERM may prefer an out-

come X over Y when the profit is measured in dollars:

ERMβ [X] > ERMβ [Y ], and yet the same decision-

maker may prefer Y over X when the profit is measured

in cents: ERMβ [100 ·X] < ERMβ [100 · Y ]. We analyze

ERM primarily because it has favorable properties in dy-

namic decision-making, such as the tower property (men-

tioned above), and more importantly, we use it as a building

block for our EVaR analysis.

Entropic Value-at-Risk (EVaR) is the second risk mea-

sure we study. EVaR was proposed as the tightest approx-

imation of the popular value-at-risk (VaR) using the Cher-

noff inequality (Ahmadi-Javid, 2012). EVaR is concave,

and unlike ERM, positively homogeneous, which makes it

a coherent risk measure. EVaR with a confidence param-

eter α ∈ [0, 1) for a random variable X ∈ X is defined

as (Ahmadi-Javid, 2012; Follmer and Schied, 2016)

EVaRα [X] = sup
β>0

(

ERMβ [X] +
1

β
log(1− α)

)

. (6)

The meaning of EVaR’s confidence level α is consistent

with the level in value-at-risk (VaR) and conditional value-

at-risk (CVaR), and we have EVaR0 [X] = E[X] and

limα→1 EVaRα [X] = ess inf[X]. Computing the supre-

mum in (6) is relatively easy because it involves maximiz-

ing a concave function over a single parameter (see propo-

sition 2.11 in Ahmadi-Javid and Pichler 2017).

There are several ways to give an intuitive explanation of

what EVaR measures. First, as mentioned above, EVaR

can be seen as the tightest pessimistic approximation of

both VaR and CVaR in the Chernoff bound sense (Ahmadi-

Javid, 2012). In many settings, as the one depicted in Fig-

ure 1, EVaR approximates CVaR very closely. We are not





Jia Lin Hau, Marek Petrik, Mohammad Ghavamzadeh

function for ERM-MDP with a specific time-dependent

risk, then it can be computed using DP. We report the proofs

for this section in Appendix C.

The objective in this section is to compute a policy that

maximizes the ERM of the return random variable R
π
T at

some given risk level β ≥ 0. That is, the objective is the

optimization in (7) for risk-averse MDPs with the risk mea-

sure ψ[·] set to ERMβ [·]:

max
π∈ΠHR

ERMβ [R
π
T ] . (8)

Although we formulate the objective in (8) in terms of

history-dependent randomized policies, we will prove later

in this section that there always exists a Markov (history-

independent) deterministic policy for (8). In the remain-

der of this section, we first treat the finite-horizon case

(T < ∞) and then extend the obtained results to the dis-

counted infinite-horizon case (T =∞ and γ < 1).

The closest objective to (8) studied in prior work is the

ERM-MDP with an average-reward objective (Borkar and

Meyn, 2002). Value iteration, policy iteration, and even

q-learning (Borkar, 2002) have been studied for this objec-

tive. However, the average reward criterion is not as popu-

lar in RL as the discounted infinite horizon objective. In ad-

dition, the example below illustrates why the existing for-

mulations do not readily extend to discounted ERM-MDPs.

Before defining the value function and deriving the corre-

sponding DP equations for ERM-MDP, we describe a sim-

ple example that illustrates how one may use the tower

property to derive such equations. The example also illus-

trates the challenge that discounting poses in ERM-MDP.

Example 1. Consider an MDP with a single action a, and

thus, a single policy π. Assume that the horizon is T = 2
and the initial state S0 is random. Recall that the return is

defined as Rπ
2 = r(S0, a) + γ · r(S1, a). When γ = 1, one

can directly use the tower property to decompose the return

into value functions as

ERMβ [R
π
2 ] = ERMβ [r(S0, a) + γ · r(S1, a)]

= ERMβ [r(S0, a) + ERMβ [γ · r(S1, a) | S0]]

= ERMβ [r(S0, a) + γ · ERMβ [r(S1, a) | S0]] (9)

= ERMβ [r(S0, a) + γ · v1(S1)] ,

where v1(S0) = ERMβ [r(S1, a) | S0]. While the above

derivation readily generalizes to the MDP with γ = 1, it is

not valid when γ < 1, because the equality in (9) requires

ERM to be positive homogeneous.

3.1 Finite Horizon ERM-MDP

Although ERM is not positively homogeneous, in the fol-

lowing new result we show that it has a similar property if

we allow for a change in the risk level.

Theorem 3.1 (Positive Quasi-homogeneity). For any ran-

dom variable X ∈ X and any constant c ≥ 0, we have

ERMβ [c ·X] = c · ERMβ·c [X] . (10)

Theorem 3.1 indicates that we can propagate the discount

factor γ out of ERM in (9), if we change the risk level of the

inner ERM to βγ. In particular, if we define the value func-

tion as v1(S0) = ERMβ·γ [r(S1, a) | S0], then the deriva-

tion in Example 1 works for any γ ∈ (0, 1). Generalizing

this intuition to the full ERM-MDP, we define the value

function vπ = (vπt )
T
t=0 for a policy π = (πt)

T−1
t=0 ∈ ΠMR

and the optimal value function v⋆ = (v⋆t )
T
t=0 in a state

s ∈ S as follows:

vπt (s) = ERMβ·γt [Rπ
t:T (s)] , (11)

v⋆t (s) = max
π∈Πt:T

MR

ERMβ·γt [Rπ
t:T (s)] , (12)

where Rπ
t:T (s) is defined by (1) and Πt:T

MR is the set of ran-

domized Markov policies for time-steps t:T−1.

As discussed above, it is important that the risk level in the

definition of value function in (11) depends on the time-

step t. As time progresses, the risk level βγt decreases

monotonically and the value function becomes less risk-

averse. Recall that in the risk-neutral setting, the risk level

is β = 0 and ERM0 [X] = E[X]. When we set β = 0
in (11), the value function becomes independent of t and

the value function reduces to that in risk-neutral MDPs.

The following theorem states the main result of this section.

It shows how the value functions defined in (11) and (12)

can be efficiently computed by a DP when T <∞.

Theorem 3.2 (Bellman Equations in ERM-MDP). For any

policy π ∈ ΠMR, its value function vπ = (vπt )
T
t=0 defined

in (11) is the unique solution to the following system of

equations for all s ∈ S ,

vπt (s) = ERMβ·γt

[
r(s,A) + γ · vπt+1(S

′)
]
, (13)

where A ∼ πt(·|s), S
′ ∼ p(·|s,A), and vπT (s) = 0.

Moreover, the optimal value function v⋆ = (v⋆t )
T
t=0 defined

in (12) is the unique solution to the following system of

equations for all s ∈ S ,

v⋆t (s) = max
a∈A

ERMβ·γt

[
r(s, a) + γ · v⋆t+1(S

′)
]
. (14)

Theorem 3.2 suggests several new important and surpris-

ing properties for ERM-MDP. First, it shows the existence

of value functions, both for any Markov policy and also the

optimal value function. Unlike with other risk measures,

these value functions do not require that the state space is

augmented. Second, the theorem shows that the value func-

tion can be computed efficiently using a dynamic program.

And finally, the next theorem built on Theorem 3.2 shows

that there always exists an optimal Markov (as opposed to

history-dependent) deterministic policy for the ERM-MDP,

and this policy is greedy w.r.t. the optimal value function.
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Theorem 3.3 (Optimal Policy in ERM-MDP). There exists

a Markov deterministic optimal policy π⋆ = (π⋆
t )

T−1
t=0 ∈

ΠMD for the optimization problem (8), which is greedy

w.r.t. the optimal value function v⋆ defined by (14), that

is,

π⋆
t (s) ∈ argmax

a∈A

ERMβ·γt

[
r(s, a) + γv⋆t+1(S

′)
]
, (15)

for all s ∈ S . Moreover, the optimal value function satisfies

that vπ
⋆

= v⋆.

The existence of a deterministic optimal policy in ERM-

MDP is surprising since many risk-averse formulations

require randomization (Delage et al., 2019; Lobo et al.,

2021; Steimle et al., 2021). Also surprisingly, ERM-MDP

does not admit a stationary optimal policy (π⋆ in (15) is

time-dependent) even when the horizon T is large or infi-

nite. This is in contrast to risk-neutral discounted infinite-

horizon MDPs which admit stationary optimal policies.

Given the results of Theorems 3.2 and 3.3, we can solve

the ERM-MDP objective (8) when the horizon is finite

(T < ∞) by adapting the standard value iteration (VI)

algorithm to this setting. This algorithm, whose pseudo-

code is shown in Algorithm 3 in Appendix C, computes

the optimal value function v⋆t backwards in time (t =
T, T − 1, . . . , 0) according to (14). The optimal policy is

greedy w.r.t. v⋆ and can be computed by solving the opti-

mization (15).

3.2 Infinite Horizon ERM-MDP

We now turn to deriving an algorithm that can solve the

ERM-MDP objective (8) when the horizon T is large or

infinite. Solving ERM-MDP in the infinite-horizon setting

is considerably more challenging than in finite-horizon, be-

cause the risk level and optimal policy are both time depen-

dent. The simplest way to address this issue is to truncate

the horizon at some T ′ <∞ and resort to an arbitrary pol-

icy for any t > T ′. The main limitation of this approach is

that T ′ may need to be very large to achieve a reasonably-

small approximation error.

In Algorithm 1, we propose an approximation that is su-

perior to the simple truncation of the planning horizon, de-

scribed above. Algorithm 1 first computes the optimal risk-

neutral value function v⋆∞ and (stationary) policy π⋆
∞ using

value or policy iteration algorithms (Puterman, 2005). It

uses policy π⋆
∞ to act for all time-steps t > T ′ and value

function v⋆∞ to approximate v⋆T ′ . This approach takes ad-

vantage of the fact that the risk level β · γt in (11) and (12)

approaches 0 as t gets larger, which means that the ERM

value function becomes close to the risk-neutral v⋆∞.

To quantify the quality of a policy π̂⋆ returned by Algo-

rithm 1, we now derive a bound on its performance loss. In

particular, we focus on how quickly the error decreases as

a function of the planning horizon T ′. This bound can be

Algorithm 1: VI for infinite-horizon ERM-MDP

Input: planning horizon T ′ <∞, risk level β > 0
Output: policy π̂⋆ = (π̂⋆

t )
∞
t=0 and value function

v̂⋆ = (v̂⋆t )
∞
t=0

Compute v⋆∞ and π⋆
∞ as the optimal solutions to the

risk-neutral infinite-horizon discounted problem ;

Compute (ṽ⋆t )
T ′

t=0 and (π̃⋆
t )

T ′
−1

t=0 using (14) and (15)

with horizon T ′ and terminal value ṽ⋆T ′ = v⋆∞ ;

Construct a policy (π̂⋆
t )

∞
t=0 , where π̂⋆

t = π⋆
∞ for

t ≥ T ′ and π̂⋆
t = π̃⋆

t , otherwise ;

Construct v̂⋆ analogously to π̂⋆;

return π̂⋆ , v̂⋆

used both to determine the planning horizon and to quantify

the improvement of Algorithm 1 over simple truncation.

Theorem 3.4. The performance loss of the policy π̂⋆ re-

turned by Algorithm 1 decreases with T ′ as

ERMβ

[

R
π⋆

∞

]

− ERMβ

[

R
π̂⋆

∞

]

≤
β · γ2T

′

·∆2
R

8
, (16)

where π⋆ is optimal in (8) and ∆R is the range of the re-

turn random variable R∞. Therefore, Algorithm 1 runs in

O(S2A log(1/δ)) time to compute a δ-optimal policy.

The proof of Theorem 3.4 reported in Appendix C uses the

Hoeffding’s lemma to bound the error between ERM and

expectation, and then propagates it backwards using stan-

dard DP techniques. Analysis analogous to Theorem 3.4

shows that when we simply truncate the planning horizon

at T ′ and follow an arbitrary policy thereafter, the perfor-

mance loss decreases proportionally to γT
′

as opposed to

γ2T
′

in (16). As a result, simple truncation requires a plan-

ning horizon T ′ that is at least twice longer than the one

used by Algorithm 1 to achieve the same performance.

Remark 1 (Quadratic dependence on ∆R). An attentive

reader may be puzzled by the fact that the bound in The-

orem 3.4 scales quadratically with the range of the returns

∆R. Given the quadratic dependence, one can make the

relative error arbitrarily small just by shrinking the rewards

appropriately. This is indeed true but is less useful than it

may seem at the first blush. Since ERM is not positively

homogeneous, scaling the rewards can change the optimal

policy, unlike in risk-neutral MDPs. To avoid changing the

set of optimal policies when scaling the rewards, one also

needs to scale the risk parameter β appropriately as dictated

by Theorem 3.1. When both r and β are scaled simultane-

ously, the relative error in Theorem 3.4 does not change.

In practice, one can compute bounds that are tighter than

the one in Theorem 3.4 by computing both an upper-bound

on the optimal value function and a lower-bound on the

value of the policy. It is easy to see that v⋆∞ is an upper-

bound on v⋆, which can be used to compute an upper-

bound on v⋆0 , and therefore, an upper-bound on the perfor-
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Algorithm 2: Algorithm for EVaR-MDP

Input: Desired error tolerance δ
Output: EVaR-MDP optimized policy π̂⋆

Let K be the smallest value that satisfies (20) ;

for k = 1, . . . ,K do

Compute vk, πk by solving ERM-MDP with risk

level βk defined in (19) ;

Let k⋆ ← argmaxk=1:K vk0 (s0) + β−1
k · log(1− α);

return Policy π̂⋆ = πk⋆

where π⋆ is optimal for (17).

Theorem 4.3 establishes the time complexity that Algo-

rithm 2 needs to compute a δ-optimal EVaR policy. Note

that the bound in Theorem 4.3 takes into account both the

errors due to the discretization in (19) and the truncated

horizon in Theorem 3.4 when solving the ERM-MDPs.

The proof of Theorem 4.3 is reported in Appendix D.

We report Algorithm 2 for solving EVaR-MDP because it

is conceptually simple and relatively easy to analyze. How-

ever, significant computational improvements are possible

in this setting. One approach to accelerate Algorithm 2 is

by realizing that Algorithm 1 computes value functions for

multiple risk levels β, γβ, γ2β, . . .. For example, running

Algorithm 1 with β = 0.5 computes v0 with risk level

β = 0.5, v1 with risk level β = 0.5γ, v2 with risk level

β = 0.5γ2 and so on. This observation can significantly

reduce the computational effort while introducing an addi-

tional small error due to the effective approximate horizon

T ′ being different for different grids over the risk level β.

5 NUMERICAL EVALUATION

In this section, we evaluate our EVaR-MDP algorithm nu-

merically on several tabular MDPs. We focus on the EVaR-

MDP objective for two reasons. First, as discussed in Sec-

tion 2, EVaR is a more practical risk measure than ERM

because it is coherent and approximates the popular VaR

and CVaR well. Second, the EVaR-MDP algorithm (Al-

gorithm 2) also evaluates the ERM-MDP algorithm (Algo-

rithm 1) since it uses it as a subroutine.

We assume that the objective is to solve an EVaR-MDP

for a confidence level α = 0.9. That is, we seek to find

a policy π that maximizes EVaR0.9 [R
π
T ]. The confidence

level α = 0.9 is a common choice in the risk-averse lit-

erature and the results are qualitatively insensitive to its

choice. The numerical evaluation assumes a finite horizon

T = 100, which makes it possible to evaluate the risk of

R
π
T by simulation. We sample 100,000 episodes of Rπ

T for

this evaluation.

To understand how the components of Algorithm 2 con-

tribute to the quality of its solution, we perform a small

ablation study that compares it with two simplified algo-

rithms: 1) naive grid that uses a uniform grid of values

βk, k = 1:K, such that β1 = 0 and βK = 10, instead of

what we propose in (19), and K is set to the same value

as in (19), and 2) naive level that uses the optimized grid

but does not adjust the risk level with the time-step when it

solves ERM-MDPs. Algorithm 2 uses the optimized grid

in (19) with δ and ∆R values given in Appendix E.

In addition to the ablation study, we also compare Algo-

rithm 2 with several risk-averse algorithms that optimize

objectives related to EVaR-MDPs. Specifically, we com-

pare it with risk-neutral MDP, nested CVaR (Bauerle and

Glauner, 2022), and nested EVaR (related to Ahmadi et al.

2021b), both with α = 0.9, and finally ERM (Algorithm 3)

and nested ERM, both with β = 0.5. The parameter α
was chosen to match the EVaR objective, but the parame-

ter β = 0.5 is chosen arbitrarily since no general method

exists to find a β that matches a given α. All the above

methods compute Markov policies. We also compare Al-

gorithm 2 with augmented CVaR (Chow et al., 2015) that

computes a history-dependent policy for CVaR-MDPs. We

implemented the augmented CVaR method using the faster

quantile-based approach described in section 4 of Li et al.

(2022). All algorithms were implemented in Julia with

the exception of augmented MDP which was implemented

both in R and Julia. The R implementation using quan-

tiles was significantly faster than the implementation of the

original algorithm (Chow et al., 2015) in Julia 1.8.

As described in the introduction the augmented CVaR-

MDP (Chow et al., 2015) may not compute an optimal

policy (Hau and Petrik, 2023). While augmented CVaR-

MDP is guaranteed to evaluate policies correctly, the dy-

namic program overestimates the true optimal value func-

tion and computes suboptimal policies. This is one possible

reason for why EVaR-MDP achieves a better CVaR objec-

tive than the augmented CVaR-MDP. We do not compare

with the augmented EVaR-MDP (Ni and Lai, 2022a,b) for

two main reasons. First, this algorithm is even slower than

the augmented CVaR-MDP because one needs to solve a

conic optimization instead of a linear optimization in each

time-step. Second, this augmented EVaR-MDP is not guar-

anteed to compute a correct (or even approximately cor-

rect) value function even when the policy is fixed (Hau and

Petrik, 2023).

To obtain a holistic picture of the relative performance

of the algorithms, we selected a diverse set of domains

with varying numbers of actions, discount factors, and lev-

els of uncertainty. These domains have all been used in

risk-averse and robust RL literature and are as follows:

machine replacement (MR) (Delage and Mannor, 2010),

gamblers ruin (GR) (Bäuerle and Ott, 2011; Li et al.,

2022), two classic inventory management problems (INV1)

and (INV2) (Ho et al., 2021), and river-swim (RS) (Strehl

and Littman, 2008).
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Table 2: EVaR0.9 [R
π
T ] for π returned by each method.

Method MR GR INV1 INV2 RS

Algorithm 2 -6.73 5.34 67.4 189 303
Naive grid -6.87 5.37 43.2 189 303
Naive level -10.00 4.17 64.6 188 217

Risk neutral -6.53 2.29 40.6 186 300
Nested CVaR -10.00 -0.02 -0.0 132 217
Nested EVaR -10.00 4.61 -0.0 164 217
ERM -6.72 5.19 50.7 178 217
Nested ERM -10.00 4.76 24.9 150 217

Augmented CVaR -7.06 3.64 49.0 82 93

Table 3: CVaR0.9 [R
π
T ] for π returned by each method.

Method MR GR INV1 INV2 RS

Algorithm 2 -4.62 7.87 76.6 195 382
Naive grid -4.63 7.91 47.8 195 381
Naive level -10.00 7.41 73.1 194 217

Risk neutral -4.56 5.47 52.3 193 379
Nested CVaR -10.00 0.00 0.0 135 217
Nested EVaR -10.00 7.12 0.0 169 217
ERM -4.58 7.64 56.0 182 217
Nested ERM -10.00 7.27 28.3 153 217

Augmented CVaR -4.83 8.27 55.1 82 101

Table 2 summarizes EVaR0.9 [R
π
T ] for policies π computed

by the algorithms described above. Bold font indicates

results within a 95% confidence interval of the best pol-

icy. The variation in these results is due to simulation used

to estimate the risk. We can make the following observa-

tions from the results. First, the particular design of Algo-

rithm 2 is important because it outperforms its ablated ver-

sions significantly on some domains. Second, the results

confirm that none of the nested risk measures can optimize

the static EVaR-MDP well. Even the risk-neutral policy

often outperforms the nested risk measures. Finally in Ta-

ble 3, we show that the results are similar when compared

in terms of the CVaR0.9 [R
π
T ] objective. This is not surpris-

ing since EVaR is often a good proxy for CVaR (Ahmadi-

Javid, 2012). Note that augmented CVaR is guaranteed to

be optimal for CVaR when the discretization is sufficiently

fine, which significantly increases the computation time.

It is also important to discuss the run-time of the algorithms

summarized in Table 4. We implemented all of them in

Julia and ran each one in less than a 30 seconds on a lap-

top computer with the exception of augmented CVaR that

we ran for up to 10 minutes. The difference in run-time

between solving the nested risk measures and computing

the ERM-MDP optimal value function (described in Theo-

rem 3.2) is negligible since they all evaluate nearly identical

dynamic programs. However, Algorithm 2 in our experi-

ments typically needs to solve between 20 and 50 ERM-

MDP problems, one for each βk, k = 1:K. This addi-

Table 4: Run-time for the algorithms in second.

Method MR GR INV1 INV2 RS

Algorithm 2 2.70 6.35 1.14 0.96 3.87
Naive grid 2.64 6.30 1.05 0.88 3.81
Naive level 2.79 6.38 1.19 0.92 3.95
Risk neutral 0.00 0.00 0.18 0.20 0.00
Nested CVaR 0.01 0.01 0.26 0.16 0.01
Nested EVaR 0.01 0.03 0.66 0.06 0.01
ERM 0.00 0.00 0.24 0.16 0.00
Nested ERM 0.01 0.01 0.10 0.02 0.01

Augmented CVaR 14.8 29.01 780 120 22.9

tional computation is significant, but we believe it can be

addressed. As described in Section 4, there are ways to

significantly speed up Algorithm 2, but we decided to fo-

cus on algorithms that are conceptually simple and can be

analyzed in this paper, and leave computational concerns

for future work.

6 CONCLUSION

We analyzed discounted MDPs with two risk measures:

ERM and EVaR that had not been studied in discounted

multi-stage decision-making literature. This lack of interest

is surprising because their properties make them especially

suitable for dynamic decision-making. We derived the first

exact DP formulation for ERM in discounted MDPs. We

also showed that the optimal value function and an optimal

deterministic Markov policy exist for ERM-MDP, and can

be computed using value iteration. We showed that EVaR-

MDP also has deterministic optimal policies, proposed a

new polynomial-time algorithm for computing them, and

demonstrated the algorithms numerically. Our numerical

results showed that our EVaR algorithm performs consis-

tently well across several domains and risk measures.
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entropy-regularized Markov decision processes. Arxiv,

2017.

X. Ni and L. Lai. EVaR optimization for risk-sensitive re-

inforcement learning, 2022a.

X. Ni and L. Lai. Policy gradient based entropic-var opti-

mization in risk-sensitive reinforcement learning. In An-

nual Allerton Conference on Communication, Control,

and Computing (Allerton), 2022b.

T. Osogami. Iterated risk measures for risk-sensitive

Markov decision processes with discounted cost. In Con-

ference on Uncertainty in Artificial Intelligence, pages

573–580, 2011.

T. Osogami. Robustness and risk-sensitivity in Markov

decision processes. In Advances in Neural Information

Processing Systems, 2012.

G. C. Pflug and A. Pichler. Time-consistent decisions

and temporal decomposition of coherent risk function-

als. Mathematics of Operations Research, 41(2):682–

699, 2016a.

G. C. Pflug and A. Pichler. Time-inconsistent multi-

stage stochastic programs: Martingale bounds. Euro-

pean Journal of Operational Research, 249(1):155–163,

2016b.

G. C. Pflug and A. Ruszczyński. Measuring risk for income

streams. Computational Optimization and Applications,

2005.

L. Prashanth and M. Ghavamzadeh. Actor-critic algorithms

for risk-sensitive MDPs. In Advances in Neural Informa-

tion Processing Systems (NIPS), pages 252–260, 2013.

L. Prashanth and M. Ghavamzadeh. Variance-constrained

actor-critic algorithms for discounted and average re-

ward mdps. Machine Learning Journal, 105(3):367–

417, 2016.

M. L. Puterman. Markov Decision Processes: Discrete

Stochastic Dynamic Programming. Wiley-Interscience,

2005.

F. Riedel. Dynamic coherent risk measures. Stochastic

processes and their applications, 2004.
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A MONETARY RISK MEASURES

Consider a probability space (Ω,F , P ). Let X : Ω → R be a space of F-measurable functions (space of F-measurable

random variables).

A.1 Basic Definitions

Definition A.1 (Monetary Risk Measure). A monetary risk measure is a function ψ : X→ R that maps a random variable

X ∈ X to real numbers and satisfies the following properties:

A1. Monotonicity:

X1 ≤ X2 (a.s.) =⇒ ψ [X1] ≤ ψ [X2] , ∀X1, X2 ∈ X ,

A2. Translation invariance:

ψ [c+X] = c+ ψ [X] , ∀c ∈ R, ∀X ∈ X .

Monetary risk measures are called coherent when they satisfy consistency and concavity properties as defined below. Well

known risk measures, like CVaR and EVaR are coherent.

Definition A.2 (Coherent risk measure). A monetary risk measure ψ : X → R is coherent if it satisfies the following

properties:

A3. Super-additivity:

ψ [X1 +X2] ≥ ψ [X1] + ψ [X2] , ∀X1, X2 ∈ X ,

A4. Positive homogeneity:

ψ [c ·X] = c · ψ [X] , ∀c ∈ R+, ∀X ∈ X

Concave risk measures, defined below, generalize the class of coherent risk measures by dropping the positive homogeneity

requirement and replacing it with concavity.

Definition A.3 (Concave risk measure). A monetary risk measure ψ [ : ]X → R is concave if it satisfies the following

properties:

A5. Concavity:

ψ [c ·X1 + (1− c)X2] ≥ c · ψ [X1] + (1− c) · ψ [X2] , ∀c ∈ [0, 1], ∀X1, X2 ∈ X .

Every coherent risk measure is a concave risk measure but a concave risk measure may not be coherent. For instance, the

Entropic Risk Measure (ERM), defined below, is concave but not incoherent.

Next, we summarize some other important properties of monetary risk measures that are relevant to our work. A risk

measure is law invariant if its value depends only on the probability distribution of the random variable as opposed also

on the values the random variable assigns to particular elements of the probability space (Shapiro et al., 2014). A risk

measure is dynamically consistent if it satisfies the tower property (Shapiro et al., 2014) and can be optimized using a

dynamic program (Artzner et al., 2004; Cvitanić and Karatzas, 1999; Delbaen, 2006; Dowson et al., 2021; Frittelli and

Gianin, 2004; Pflug and Ruszczyński, 2005; Riedel, 2004). Unfortunately, expectation and the minimum (Min) are the

only coherent risk measures that are law invariant, dynamically consistent.

A.2 Value-at-Risk

For a random variable X ∈ X, its value-at-risk with a confidence level α ∈ (0, 1), denoted by VaRα [X], is the (1 − α)-
quantile of X:

VaRα [X] = inf {x ∈ R | P [X ≤ x] > 1− α}

= sup {x ∈ R | P [X < x] ≤ 1− α}

= F−1
X (x),

where FX is the cumulative distribution function (cdf) of X . The last equality holds only when F−1
X exists.
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A.3 Conditional Value-at-Risk

For a random variable X ∈ X, its conditional value-at-risk CVaRα [X] with a confidence level α ∈ (0, 1) is defined as the

expectation of the worst (1−α)-fraction ofX , and can be computed as the solution of the following optimization problem:

CVaRα [X] = sup
ζ∈R

(

ζ −
1

1− α
· E
[
(ζ −X)+

]
)

.

It is easy to see that CVaR0 [X] = E[X] and limα→1 CVaRα [X] = ess inf[X], where the essential infimum of X is

defined as ess inf[X] = supζ∈R
P [X < ζ] = 0.

A.4 Entropic Risk Measure

For a random variable X ∈ X, its entropic risk measure ERMβ [X] with the risk parameter β ∈ (0,∞) is defined as

ERMβ [X] = −
1

β
log
(
E[e−βX ]

)
, β > 0.

The definition is extended to the interval [0,∞) ∪ {∞} as

ERM0 [X] = E[X]

ERM∞ [X] = ess inf[X] .

We also need a conditional ERM to construct the dynamic programs. This is defined as follows.

Definition A.4. The conditional ERM is defined for X1, X2 ∈ X as

ERMβ [X1 | X2] = −
1

β
log
(
E[e−βX1 | X2]

)
.

The following proposition shows that ERM indeed is not a coherent risk measure because it violates the assumption A4 in

Definition A.2.

Proposition A.5. There exists a random variable X such that ERMβ [c ·X] ̸= c · ERMβ [X].

The following lemma plays a crucial role in efficiently computing EVaR, defined below, which can be expressed in terms

of ERM.

Lemma A.6 ((Ahmadi-Javid, 2012)). The function t 7→ ERMt−1 [X] for any random variable X ∈ X and t > 0 is

concave and non-decreasing.

We use the following lemma in the analysis of EVaR solution approximation by discretization in this paper.

Lemma A.7. The function β 7→ ERMβ [X] for any random variable X ∈ X and β > 0 is continuous and non-increasing.

The following lemma, which represents a new result to the best of our knowledge, plays an important role in bounding

the difference between ERM and the expectation. This result serves to bound the error of replacing the risk-averse value

function by a risk-neutral value function in Algorithm 1.

Lemma A.8. Let X ∈ X be a bounded random variable such that xmin ≤ X ≤ xmax a.s. Then, for any risk level β > 0,

ERMβ [·] can be bounded as

E[X]−
β(xmax − xmin)

2

8
≤ ERMβ [X] ≤ E[X].

Proof. Recall that the Hoeffding’s lemma shows that for any ∀λ ∈ R, we may write (Boucheron et al., 2013; Massart,

2003)

0 < E[eλX ] ≤ exp

(

λ · E[X] +
λ2(xmax − xmin)

2

8

)

.

Applying log to both sides of the inequality above gives

log
(
E[eλX ]

)
≤ λE[X] +

λ2(xmax − xmin)
2

8
.
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Then, variable substitution λ = −β and algebraic manipulation shows that

log
(
E[e−βX ]

)
≤ −β · E[X] +

β2(xmax − xmin)
2

8

−
1

β
log
(
E[e−βX ]

)
≥ E[X]−

β(xmax − xmin)
2

8

Substituting the definition of ERM into the inequality above yields then the first desired inequality:

E[X]−
β(xmax − xmin)

2

8
≤ ERMβ [X] .

The second inequality in the lemma’s statement, ERMβ [X] ≤ E[X], follows immediately from the Donsker-Varadhan’s

Variational Formula.

The following lemma helps to show that a deterministic policy can attain the same return as a randomized policy when

the objective is an ERM. This result is not surprising and derives from the fact that the ERMβ [X] ≤ maxω∈ΩX for any

random variable X ∈ X defined over a finite probability space.

Lemma A.9. Let X : Ω → A be a random variable defined over a finite action set A and let g : A → R be a function

defined for each action. Then, for any β ≥ 0, we have

max
a∈A

g(a) = max
d∈∆A

ERMβ [g(X) | X ∼ d] .

Proof. We first prove that maxa∈A g(a) ≤ maxd∈∆A ERMβ [g(X) | X ∼ d]. Let a⋆ ∈ argmaxa∈A g(a) be an optimal

action. We now construct a policy d̄ ∈ ∆A as d̄(a⋆) = 1 and d̄(a) = 0, ∀a ∈ A \ {a⋆}. Substituting d̄ in the definition of

ERM yields that

ERMβ

[
g(X) | X ∼ d̄

]
= −β−1 · log

(

E
[
exp (−β · g(X)) | X ∼ d̄

])

= −β−1 · log
(

exp (−β · g(a⋆))
)

= g(a⋆) .

(21)

Using (21) and the fact that d̄ is a valid probability distribution in ∆A, we obtain the desired inequality as

max
a∈A

g(a) = g(a⋆) = ERMβ

[
g(X) | X ∼ d̄

]
≤ max

d∈∆A

ERMβ [g(X) | X ∼ d] .

To prove the converse inequality maxa∈A g(a) ≥ maxd∈∆A ERMβ [g(X) | X ∼ d], we define d⋆ as an optimal

distribution d⋆ ∈ argmaxd∈∆A ERMβ [g(X) | X ∼ d]. It will be convenient to use the dual representation of

ERMβ [g(X) | X ∼ d], which for for any d ∈ ∆A is defined as (see e.g., (Ahmadi-Javid, 2012))

ERMβ [g(X) | X ∼ d] = inf
d̄∈∆A, d̄≪d

{

E[g(X) | X ∼ d̄] +
1

β
KL(d̄∥d)

}

,

where KL is the KL-divergence and≪ denotes the absolute continuity of probability measures. Using this dual represen-

tation, we get the following upper-bound on ERMβ [g(X) | X ∼ d⋆]:

ERMβ [g(X) | X ∼ d⋆] = inf
d̄∈∆A

{

E[g(X) | X ∼ d̄] +
1

β
KL(d̄∥d⋆) | d̄≪ d⋆

}

≤ E[g(X) | X ∼ d⋆] +
1

β
KL(d⋆∥d⋆)

(a)
= E[g(X) | X ∼ d⋆]

(b)

≤ max
a∈A

g(a) ,

where (a) holds because KL(d∥d) = 0, and (b) follows because A is finite, and thus, for each d ∈ ∆A, we have

max
a∈A

g(a) ≥ E [g(X) | X ∼ d] .

This proves the second desired inequality since d⋆ ∈ ∆A and concludes the proof.
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The result in Lemma A.9 can be further generalized to a broader class of risk measures (Delage et al., 2019).

A.5 Entropic Value-at-Risk

For a random variable X ∈ X, its entropic value-at-risk with EVaRα [X] confidence level α ∈ (0, 1) is defined as

EVaRα [X] = sup
β>0

(

ERMβ [X] +
log(1− α)

β

)

. (22)

It is easy to see that EVaR0 [X] = E[X] and limα→1 EVaRα [X] = ess inf[X]. In addition, EVaR is a non-increasing

function in α and is bounded as:

ess inf[X] ≤ EVaRα [X] ≤ E[X].

EVaR was proposed as a tightest Chernoff-style lower bound on the popular VaR risk measure with the same confidence

level α. It is also a lower bound CVaR as the following lemma shows.

Lemma A.10 (proposition 3.2 in (Ahmadi-Javid, 2012)). The following inequalities hold for any α ∈ (0, 1) and a random

variable X ∈ X:

EVaRα [X] ≤ CVaRα [X] ≤ VaRα [X] .

The following lemma, which shows how the optimal solution of (22) scales with the scale of the random variable is

necessary when analyzing the properties of EVaR solutions.

Lemma A.11. Suppose that the supremum in (22) is attained by some β⋆ > 0 for a random variable X . Then, the

supremum in (22) is attained at c−1 · β⋆ for any random variable c ·X and a constant c > 0.

Proof. Using positive quasi-homogeneity (Theorem 3.1) of ERM and algebraic manipulation, we can reformulate (22) for

c ·X as

EVaRα [c ·X] = sup
β>0

(

ERMβ [c ·X] +
log(1− α)

β

)

= sup
β>0

(

c · ERMc·β [X] +
log(1− α)

β

)

= c · sup
β>0

(

ERMc·β [X] +
log(1− α)

c · β

)

= c · sup
β>0

(

ERMc·β [X] +
log(1− α)

c · β

)

= c · sup
τ>0

(

ERMτ [X] +
log(1− α)

τ

)

= c · EVaRα [X]

We used the variable substitution τ = c · β. Therefore, if the supremum is attained at τ⋆ for c · X , it is attained at

β⋆ = c−1 · τ⋆ for c ·X .

Note that the derivation above also confirms that EVaR is positively homogeneous.
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B PROOFS OF SECTION 2

The following proposition states a simple, but important property of the expectation operator which plays a crucial role in

formulating the dynamic programs. The property is known under several different names, including the tower property,

the law of total expectation, and the law of iterated expectations.

Proposition B.1 (Tower Property for Expectation (e.g., Proposition 3.4 in (Ross and Peköz, 2007))). Any two random

variables X1, X2 ∈ X satisfy that

E[X1] = E [E[X1 | X2]] .

A convenient way to represent ERM is to use its certainty equivalent form. This form relates the risk measure to the

popular expected utility framework for decision-making (Ben-Tal, 2007). In the expected utility framework, one prefers a

lottery (or a random reward) X1 ∈ X over X2 ∈ X if and only if

E[u(X1)] ≥ E[u(X2)] ,

for some increasing utility function u : R→ R.

The expected utility E[u(X)] is difficult to interpret because its units are incompatible with X . A more interpretable

characterization of the expected utility is to use the certainty equivalent z ∈ R, which is defined as the certain quantity that

achieves the same expected utility as X:

E[u(z)] = E[u(X)], and therefore, z = u−1(E[u(X)]) . (23)

Algebraic manipulation from (23) then shows that ERM for any X ∈ X can be represented as the certainty equivalent

ERMβ [X] = u−1(E[u(X)]) , (24)

for the utility function u : R→ R (see definition 2.1 in (Ben-Tal, 2007)) defined as

u(x) = β−1 − β−1 · exp (−β · x) .

Because the function u is strictly increasing, its inverse u−1 : R→ R exists and equals to

u−1(z) = −β−1 · log(1− β · z) .

Proof of Theorem 2.1. The property is trivially true when β = 0 from Proposition B.1 since ERM0 [=]E. The property

then follows by algebraic manipulation for β > 0 using the certainty equivalent representation in (24) as

ERMβ [ERMβ [X1 | X2]] = ERMβ

[
u−1 (E[u(X1) | X2])

]

= u−1
(
E
[
u
(
u−1 (E[u(X1) | X2])

)])

= u−1(E [E[u(X1) | X2]])

= u−1(E[u(X1)]) Proposition B.1

= ERMβ [X1] .
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C PROOFS OF SECTION 3

We start this section by reporting the pseudo-code for the value iteration (VI) algorithm in finite-horizon ERM-MDP

(Algorithm 3). This algorithm is an adaptation of the standard VI algorithm to the finite-horizon (T < ∞) setting. It

uses the results of Theorems 3.2 and 3.3, and first computes the optimal value function v⋆t backwards in time (t = T, T −
1, . . . , 0) according to (14), and then obtains the optimal policy as a policy greedy to v⋆ by solving the optimization (15).

Algorithm 3: VI for finite-horizon ERM-MDP

Input: Horizon T <∞, risk level β > 0, terminal value vT (s), ∀s ∈ S
Output: Optimal value (v⋆t )

T
t=0 and policy (π⋆

t )
T−1
t=0

Initialize v⋆T (s)← v′(s), ∀s ∈ S ;

for t = T−1:0 do

Update v⋆t using (14) and π⋆
t using (15);

return v⋆, π⋆ ;

Proof of Theorem 3.1. The property is trivially true for c = 0 or β = 0 because ERMβ [0] = 0 and ERM0[·] = E[·]. For

c > 0 and β > 0, the property follows by rearranging the terms as

ERMβ·c [X] = −
1

βc
log
(
E[e−β·c·X ]

)
=⇒ c · ERMβ·c [X] = −

1

β
log
(
E[e−β·c·X ]

)

= ERMβ [c ·X] .

Proof of Theorem 3.2. The proof is divided into two parts: the proof for vπ (Eq. 13) and a proof for v⋆ (Eq. 14).

Proof for vπ: For any fixed π ∈ ΠMR, we prove the claim for vπ by backward induction on t from t = T to t = 0. The

base case of the induction with t = T is trivial because by definition vT (s) = 0, ∀s ∈ S . To prove the inductive step, we

first assume that any function vt′ , t
′ = t + 1:T defined by (11) satisfies (13), and then show that the same is true for vπt .

By the induction hypothesis we can substitute the definition of vπt+1(S
′) from (11) into (13) and write

vπt (s) = ERMβ·γt

[
r(s,At) + γ · vπt+1(S

′)
]

= ERMβ·γt

[
r(s,At) + γ · ERMβ·γt+1

[
R

π
t+1:T (S

′)
]]

= ERMβ·γt

[

r(s,At) + γ · ERMβ·γt+1

[
T−1∑

t′=t+1

γt
′
−t−1 · r(St′ , At′) | St+1 = S′

]]

(a)
= ERMβ·γt

[

r(s,At) + ERMβ·γt

[
T−1∑

t′=t+1

γt
′
−t · r(St′ , At′) | St+1 = S′

]]

= ERMβ·γt

[

r(St, At) + ERMβ·γt

[
T−1∑

t′=t+1

γt
′
−t · r(St′ , At′) | St+1 = S′, At

]

| St = s

]

(b)
= ERMβ·γt

[

ERMβ·γt

[

r(St, At) +

T−1∑

t′=t+1

γt
′
−t · r(St′ , At′) | St+1 = S′, At

]

| St = s

]

= ERMβ·γt

[

ERMβ·γt

[
T−1∑

t′=t

γt
′
−t · r(St′ , At′) | St+1 = S′, At

]

| St = s

]

=

(c)
= ERMβ·γt

[
T−1∑

t′=t

γt
′
−t · r(St′ , At′) | St = s

]

= ERMβ·γt [Rπ
t:T (s)]

where (a), (b), and (c) come from the positive quasi-homogeneity (Theorem 3.1), translation invariance (A2 in Defini-

tion A.1), and tower (Theorem 2.1) properties of ERM. This derivation proves the inductive step and shows that any

function vπ that satisfies the Bellman equation in (13) satisfies the definition of value function in (11), and thus, is unique.
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Proof for v⋆: The proof of the Bellman equation for the optimal value function v⋆ proceeds by backward induction

analogously to the proof of (13) with the difference that it incorporates the optimization over actions. As before, the base

case with t = T is trivial because v⋆T (s) = 0, ∀s ∈ S by definition. To prove the inductive step, we first assume that any

function v⋆t′ , t
′ : t+ 1:T defined by (12) satisfies (14), and then show that the same is true for v⋆t .

In the proof of the inductive step, we use Lemma A.9, which shows how the maximization over actions can be replaced by

a maximization over randomized policies that are distributions over actions as

v⋆t (s) = max
a∈A

ERMβ·γt

[
r(s,At) + γ · v⋆t+1(S

′) | At = a
]

= max
d∈∆A

ERMβ·γt

[
r(s,At) + γ · v⋆t+1(S

′) | At ∼ d
]
. (25)

By the induction hypothesis we can substitute the definition of v⋆t+1(S
′) from (12) into (25) and write

v⋆t (s) = max
d∈∆A

ERMβ·γt

[

r(s,At) + γ max
π∈Πt+1:T

MR

ERMβ·γt+1 [Rπ
t:T (s)]

]

= max
d∈∆A

ERMβ·γt

[

r(s,At) + γ max
π∈Πt+1:T

MR

ERMβ·γt+1

[
T−1∑

t′=t+1

γt
′
−t−1r(St′ , At′) | St+1 = S′

]]

(a)
= max

d∈∆A

ERMβ·γt

[

r(s,At) + max
π∈Πt+1:T

MR

ERMβ·γt

[
T−1∑

t′=t+1

γt
′
−t · r(St′ , At′) | St+1 = S′

]]

= max
d∈∆A

ERMβ·γt

[

r(St, At) + max
π∈Πt+1:T

MR

ERMβ·γt

[
T−1∑

t′=t+1

γt
′
−t · r(St′ , At′) | St+1 = S′, At

]

| St = s

]

(b)
= max

d∈∆A

ERMβ·γt

[

max
π∈Πt+1:T

MR

ERMβ·γt

[

r(St, At) +

T−1∑

t′=t+1

γt
′
−t · r(St′ , At′) | St+1 = S′, At

]

| St = s

]

= max
d∈∆A

ERMβ·γt

[

max
π∈Πt+1:T

MR

ERMβ·γt

[
T−1∑

t′=t

γt
′
−t · r(St′ , At′) | St+1 = S′, At

]

| St = s

]

(c)
= max

π∈Πt:T
MR

ERMβ·γt

[
T−1∑

t′=t

γt
′
−t · r(St′ , At′) | St = s

]

= max
π∈Πt:T

MR

ERMβ·γt [Rπ
t:T (s)] ,

where (a) comes from the positive quasi-homogeneity (Theorem 3.1) property of ERM, (b) comes from the translation

invariance (A2 in Definition A.1) property of ERM, and (c) comes from the monotonicity (A1 in Definition A.1) and

tower (Theorem 2.1) properties of ERM. This derivation proves the inductive step and shows that any function v⋆ that

satisfies the Bellman equation in (14) satisfies the definition of value function in (12), and thus, is unique.

Proof of Theorem 3.3. Following the notation of chapter 4 in (Puterman, 2005), let Ht be the set of all histories up to

time t inclusively. Let the optimal history-dependent value function be u⋆t : Ht → R, t = 0:T−1. The value function

u⋆ = (u⋆t )
T
t=0 is achieved by the optimal history-dependent policy because the state and actions are finite, and thus, the

space of randomized history-dependent policies is compact.

The proof proceeds in three steps.

(i) First, we show that v⋆ attains the return of the optimal history-dependent value function:

u⋆t (ht) = v⋆t (st) ∀ht ∈ Ht, t = 0:T−1 ,

where st is the t-th and final state in the history ht. This result is a consequence of the dynamic programming formulation

in Theorem 3.2. An argument analogous to the proof of Theorem 4.4.2(a) in (Puterman, 2005) shows that u⋆t (ht) depends

only on st, which is the final state in the history ht.

Using the standard backward-induction argument on t, we assume that u⋆t+1(ht+1) = v⋆t+1(st+1) holds and then prove

that u⋆t (ht) = v⋆t (st). Let d⋆ ∈ ∆A be the part of a decision rule achieving u⋆ that decides about the actions that should
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be taken at time-step t. Applying Theorem 3.2 to the optimal history-dependent value function u⋆, we may write

u⋆t (ht)
(a)
= ERMβ·γt

[
r(st, At) + γ · u⋆t+1((ht, A, S

′)) | At ∼ d
⋆
]

(b)
= ERMβ·γt

[
r(st, At) + γ · v⋆t+1(S

′) | At ∼ d
⋆
]

= max
d∈∆A

ERMβ·γt

[
r(st, At) + γ · v⋆t+1(S

′) | At ∼ d
]

(c)
= max

a∈A
ERMβ·γt

[
r(st, a) + γ · v⋆t+1(S

′)
] (d)
= v⋆t (st) ,

where (a) follows from the fact that (i) the reward function depends only on the current state and not the full history and

(ii) the history at time-step t + 1, ht+1 is constructed by appending action At and state S′ to the history at time-step t:
ht+1 = (ht, At, S

′), (b) comes from the inductive hypothesis, (c) is the result of Lemma A.9, and (d) comes from (14) in

Theorem 3.2. This result shows that the optimal history-dependent randomized u⋆ and the optimal Markov deterministic

v⋆ value functions are equal in ERM-MDP.

(ii) The second part of the proof is to show that the value function of any (optimal) policy π⋆ ∈ ΠMD that is a solution to

the optimization problem (8) is equal to the optimal value function v⋆:

vπ
⋆

t (s) = v⋆t (s), ∀s ∈ S, t = 0:T .

This result follows using the standard backward induction argument and algebraic manipulation from Theorem 3.2. The

derivation relies on the fact that A is finite and the maximum in (14) exists and is achievable.

(iii) Here we show that any greedy policy to the optimal value function v⋆ is an optimal policy, that is, a solution to the

optimization problem (8). This is trivial from parts (i) and (ii) because the value function of the greedy policy to v⋆ is v⋆,

and we know from part (ii) that any policy that solves (8) also has value v⋆. Thus, the greedy policy is in fact optimal.

Proof of Theorem 3.4. It is important to reiterate the following definitions:

1. π⋆ = {π⋆
t }

∞
t=0 and v⋆ = vπ

⋆

= {v⋆t }
∞
t=0 are the optimal policy and optimal value function of the ERM-MDP in the

infinite-horizon discounted setting with T = ∞ and γ ∈ (0, 1). In other words, π⋆ is a solution to the ERM-MDP

optimization (8).

2. π⋆
∞ and v⋆∞ = v

π⋆

∞

∞ are the optimal policy and value function of the MDP in the risk-neutral infinite-horizon dis-

counted setting.

3. π̃⋆ = {π̃⋆
t }

T ′

t=0 and ṽ⋆ = vπ̃
⋆

= {ṽ⋆t }
T ′

t=0 are the optimal policy and value function of the finite-horizon discounted

ERM-MDP with risk level β, discount factor γ, horizon T ′, and the value function at horizon T ′ set to ṽ⋆T ′ = v⋆∞. In

other words, π̃⋆
t and ṽ⋆ are the outputs of Algorithm 3 with T = T ′ and v′ = v⋆∞.

4. π̂⋆ = {π̂⋆
t }

∞
t=0 and its value v̂⋆ = {v̂⋆t }

∞
t=0 are the policy and value function returned by Algorithm 1 that are

constructed as follows:

π̂⋆
t =

{

π̃⋆
t if 0 ≤ t < T ′,

π⋆
∞ if t ≥ T ′.

v̂⋆t = vπ̂
⋆

t =

{

ṽ⋆t = vπ̃
⋆

t if 0 ≤ t < T ′,

v⋆∞ = vπ∞

∞ if t ≥ T ′.

Our goal is to prove an upper-bound on the difference between the ERMβ [·] of the returns of policies π⋆ and π̂⋆:

ERMβ

[

R
π⋆

∞

]

− ERMβ

[

R
π̂⋆

∞

]

or equivalently vπ
⋆

0 (s0)− v
π̂⋆

0 (s0) .

As the first step of the proof, we bound the difference between the infinite-horizon γ-discounted risk-neutral and ERM

value functions of any policy π, at any time-step t = 0:∞, and any state s ∈ S as

0
(a)

≤ v∞π (s)− vπt (s) = E[Rπ
0:∞(s)]− ERMβ·γt [Rπ

t:∞(s)] (26)

= E[Rπ
0:∞(s)]− ERMβ·γt [Rπ

0:∞(s)]
(b)

≤
β · γt ·∆2

R

8
.
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(a) holds because E is an upper-bound on the ERM, and (b) follows from the result of Lemma A.8.

We now bound the difference between the optimal value function of the infinite-horizon discounted ERM-MDP, v⋆T ′ , and

the value function returned by Algorithm 1, vπ̂
⋆

T ′ , at the planning horizon T ′ and for any state s ∈ S as follows:

v⋆T ′(s)− vπ̂
⋆

T ′ (s)
(a)

≤ v⋆T ′(s)− v∞π̂⋆

T ′

(s) +
β · γT

′

·∆2
R

8
(b)

≤ v∞π⋆(s)− v∞π̂⋆

T ′

(s) +
β · γT

′

·∆2
R

8
(c)

≤
β · γT

′

·∆2
R

8
.

(a) follows from the RHS of (26) and the fact that π̂⋆
t = π⋆

∞, ∀t ≥ T ′, (b) comes from the fact that using the LHS

of (26), we have 0 ≤ v
⋆

∞ − v
π⋆

T ′ , and (c) is true because π̂⋆
T ′(s) = π⋆

∞(s) ∈ argmaxπ∈ΠMR
vπ∞(s), ∀s ∈ S , and thus,

vπ
⋆

∞ (s)− v
π̂⋆

T ′

∞ (s) is negative for all s.

As the second step of the proof, we construct the value function ut ∈ R
S from π̂⋆ for all t ∈ 0:T ′ and s ∈ S as

uT ′(s) = v
π̂⋆

T ′

∞ (s)−
β · γT

′

·∆2
R

8
= v

π⋆

∞

∞ (s)−
β · γT

′

·∆2
R

8
= v⋆∞(s)−

β · γT
′

·∆2
R

8
,

ut(s) = max
a∈A

ERMβ·γt

[
r(s, a) + γ · ut+1(S

′
t+1,a)

]
(27)

= ERMβ·γt

[

r(s, π̂⋆
t (s)) + γ · ut+1(S

′
t+1,π̂⋆

t
(s))
]

,

where S′
t+1,a denotes the random variable representing the state at time t+ 1 that follows by taking action a ∈ A in state

s at time t.

Note that ut has been constructed such that (i) it is a lower-bound on v̂⋆t = vπ̂
⋆

t and (ii) π̂⋆ is its greedy policy.

(i) is true because vπ̂
⋆

t = vπ̃
⋆

t = ṽ⋆t , which is the optimal finite-horizon ERM value function when we set ṽ⋆T ′ = v⋆∞, and

ut has been constructed as the optimal finite-horizon ERM value function when we set its value at the planning horizon

T ′ by a lower-bound of v⋆∞ from (26): uT ′ = v⋆∞ −
β·γT

′

·∆2
R

8 . We now provide a fomal proof for this. From (26), we

have vπ̂
⋆

T ′ (s) ≥ uT ′(s) for all s ∈ S . Then, assuming vπ̂
⋆

t+1(s) ≥ ut+1(s) for all s ∈ S (inductive hypothesis), we can use

backward induction on t to show that for all s ∈ S , we have

vπ̂
⋆

t (s)− ut(s) = ERMβ·γt

[

r(s, π̂⋆
t (s)) + γ · vπ̂

⋆

t+1(S
′
t+1,π̂⋆

t
(s))
]

− ERMβ·γt

[

r(s, π̂⋆
t (s)) + γ · ut+1(S

′
t+1,π̂⋆

t
(s))
]

(a)
= ERMβ·γt

[

γ · vπ̂
⋆

t+1(S
′
t+1,π̂⋆

t
(s))
]

− ERMβ·γt

[

γ · ut+1(S
′
t+1,π̂⋆

t
(s))
]

(b)
= γ ·

(

ERMβ·γt+1

[

vπ̂
⋆

t+1(S
′
t+1,π̂⋆

t
(s))
]

− ERMβ·γt+1

[

ut+1(S
′
t+1,π̂⋆

t
(s))
])

(c)

≥ 0 .
(28)

(a) is by subtracting the constant reward from both terms. This can be done because ERM is translation invariant. (b)

follows from the positive quasi-homogeneity of ERM (see Theorem 3.1). (c) follows from the monotonicity of ERM and

the inductive hypothesis.

(ii) is true because π̂⋆
t is a greedy policy to v̂⋆t , and since subtracting a constant from all states does not change the greedy

policy, it is also a greedy policy to ut. The last equality in (27) is the result of this fact.

As the third step of the proof, we show that for each s ∈ S and t = 0:T ′, we have

v⋆t (s)− ut(s) ≤ γ
T ′

−t β · γ
T ′

·∆2
R

8
. (29)

To prove (29) by induction, we first show that the inequality (29) holds for t = T ′, that is, v⋆T ′(s) − uT ′(s) ≤
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β·γT
′

·∆2
R

8 , ∀s ∈ S , as follows:

v⋆T ′(s)− uT ′(s) = v⋆T ′(s)− v⋆∞(s) +
β · γT

′

·∆2
R

8

= vπ
⋆

T ′ (s)− v⋆∞(s) +
β · γT

′

·∆2
R

8
(a)

≤ vπ
⋆

∞ (s)− v⋆∞(s) +
β · γT

′

·∆2
R

8

(b)

≤
β · γT

′

·∆2
R

8
.

(30)

(a) follows from the LHS of (26) that 0 ≤ vπ
⋆

∞ (s) − vπ
⋆

T ′ (s), and (b) comes from the fact that v⋆∞ is the optimal value

function of the infinite-horizon discounted risk-neutral MDP, and thus, v⋆∞(s) ≤ vπ
⋆

∞ (s).

Now assuming that (29) holds for t + 1 for each s ∈ S (inductive hypothesis), we use backward induction on t and show

that for all s ∈ S , we have

v⋆t (s)− ut(s)
(a)
= ERMβ·γt

[

r(s, π⋆
t (s)) + γ · v⋆t+1(S

′
t+1,π⋆

t
(s))
]

− ERMβ·γt

[

r(s, π̂⋆
t (s)) + γ · ut+1(S

′
t+1,π̂⋆

t
(s))
]

(b)

≤ ERMβ·γt

[

r(s, π⋆
t (s)) + γ · v⋆t+1(S

′
t+1,π⋆

t
(s))
]

− ERMβ·γt

[

r(s, π⋆
t (s)) + γ · ut+1(S

′
t+1,π⋆

t
(s))
]

(c)
= ERMβ·γt

[

γ · vπ
⋆

t+1(S
′
t+1,π⋆

t
(s))
]

− ERMβ·γt

[

γ · ut+1(S
′
t+1,π⋆

t
(s))
]

(d)
= γ ·

(

ERMβ·γt+1

[

vπ
⋆

t+1(S
′
t+1,π⋆(s))

]

− ERMβ·γt+1

[

ut+1(S
′
t+1,π⋆(s))

])

. (31)

(a) holds by the definition of v⋆t and ut, (b) follows from π̂⋆ being greedy to u, (c) is by subtracting the constant reward

from both terms which can be done because ERM is translation invariant, and finally (d) follows from the positive quasi-

homogeneity of ERM (see Theorem 3.1).

Now we can write the following sequence of inequalities:

vπ
⋆

t+1(s)− ut+1(s)
(a)

≤ γT
′
−t−1 ·

β · γT
′

· V 2

8
, ∀s ∈ S

ERMβ·γt+1

[

vπ
⋆

t+1(S)
]

− ERMβ·γt+1 [ut+1(S)]
(b)

≤ γT
′
−t−1 ·

β · γT
′

·∆2
R

8

γ · (ERMβ·γt+1

[

vπ
⋆

t+1(S)
]

− ERMβ·γt+1 [ut+1(S)]) ≤ γ
T ′

−t ·
β · γT

′

·∆2
R

8
. (32)

(a) follows from the inductive hypothesis and (b) comes from the monotonicity and translation invariance of ERM.

We can conclude the induction by combining (31) and (32).

Now that we proved (29), we can set t = 0 in it and use the fact that for all t ∈ 0:T ′, we have ut(s) ≤ v
π̂⋆

t (s), to write

v⋆0(s0)− u0(s0) ≤ γ
T ′

·
β · γT

′

·∆2
R

8
=⇒

vπ
⋆

0 (s0)− v
π̂⋆

0 (s0) ≤
β · γ2T

′

·∆2
R

8
,

which concludes the proof.
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Proof of Corollary 4.2. The result follows directly from Theorem 4.1.

Before stating the proof of Theorem 4.3, we report some results that we use there. The following lemma shows how to

decompose the approximation error of Algorithm 2.

Lemma D.3. Let π⋆ be the optimal solution to (17) and π̂⋆ be the policy returned by Algorithm 2 when it is executed with

a grid β1 < . . . < βK and calls to Algorithm 1 with horizon T ′. Then, for any α ∈ (0, 1), the approximation error of

Algorithm 2 can be bounded as

EVaRα

[

R
π⋆

∞

]

− EVaRα

[

R
π̂⋆

∞

]

≤ (34)

max

{

sup
β∈(0,β1)

h(β)− h(β1), max
k∈1:K−1

(

sup
β∈[βk,βk+1)

h(β)− h(βk)

)

, sup
β∈[βK ,∞)

h(β)− h(βK)

}

+
βK · γ

2T ′

·∆2
R

8
,

where the function h is defined by (18). Moreover, the bound for the finite-horizon objective is the same except the last term

that depends on T ′ is zero.

Proof. First, recall that Algorithm 2 calls Algorithm 1 for each value β1, . . . , βK in the grid and Algorithm 1 returns

an approximately optimal policy π̂⋆ for the ERM-MDP with the corresponding risk level βk and its corresponding value

function v̂k. In the following derivation, we use π̂k
t and v̂kt for t = 0:T, k = 1:K for the policy and value function,

respectively, computed for βk, by Algorithm 1. That is, the value function v̂kt uses ERM in the time steps 0:T ′−1 and the

standard risk-neutral value function v⋆∞ thereafter. In contrast, the value vπ̂
k

refers to the true ERM value function of the

policy π̂k.

Using arguments analogous to (28), one can show for each k = 1:K that

vπ̂
k

0 (s) ≤ v̂k0 (s), (35)

for each s ∈ S . Similarly, using arguments analogous to (30), one can show that

v̂k0 (s) ≤ v
π̂k

0 (s) +
βk · γ

2T ′

·∆2
R

8
, (36)

for each s ∈ S .

Given the definition of v̂, we can also define the EVaR objective function h : R→ R and its approximation in the discrete

points (βk)
K
k=1 as

h(β) = max
π∈ΠMR

(
ERMβ [R

π
∞] + β−1 · log(1− α)

)

= max
π∈ΠMR

(
vπ0 (s0) + β−1 · log(1− α)

)

h̃k = v̂k0 (s0) + β−1
k · log(1− α) .

The bound in (35) then implies for k = 1:K that

h(βk) ≤ h̃k. (37)

Note that π̂⋆ refers to the EVAR-MDP policy computed by Algorithm 2 and, therefore, π̂⋆ = π̂k⋆

for the optimal k⋆. Then,
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assuming that k⋆ ∈ argmaxk=1:K h̃k in Algorithm 2, we get that EVaRα

[
R

π⋆

∞

]
− EVaRα

[
R

π̂⋆

∞

]
= δ for

δ = EVaRα

[

R
π⋆

∞

]

− sup
β>0

(

ERMβ

[

R
π̂⋆

∞

]

+ β−1 · log(1− α)
)

≤ EVaRα

[

R
π⋆

∞

]

− vπ̂
⋆

0 (s0)− β
−1
k⋆ · log(1− α) Substitute feasible βk⋆

= EVaRα

[

R
π⋆

∞

]

− vπ
k
⋆

0 (s0)− β
−1
k⋆ · log(1− α) Choice of π̂⋆

≤ EVaRα

[

R
π⋆

∞

]

− v̂k
⋆

0 (s0)− β
−1
k⋆ · log(1− α) +

βk⋆ · γ2T
′

·∆2
R

8
From (36)

≤ EVaRα

[

R
π⋆

∞

]

− v̂k
⋆

0 (s0)− β
−1
k⋆ · log(1− α) +

βK · γ
2T ′

·∆2
R

8
Because βK ≥ βk⋆

= EVaRα

[

R
π⋆

∞

]

− max
k=1:K

h̃k +
βK · γ

2T ′

·∆2
R

8
From the optimality of k⋆

≤ EVaRα

[

R
π⋆

∞

]

− max
k=1:K

h(βk) +
βK · γ

2T ′

·∆2
R

8
From (37)

≤ sup
β>0

h(β)− max
k=1:K

h(βk) +
βK · γ

2T ′

·∆2
R

8
. From the definition of π⋆

The lemma then follows by decomposing the supremum above as

sup
β>0

h(β) = max

{

sup
β∈(0,β1)

h(β), sup
β∈[βk,βk+1)

h(β), sup
β∈[βk,∞)

h(β)

}

.

The following three lemmas now bound each one of terms in the maximum in (34).

Lemma D.4. The function h : R→ R defined in (18) satisfies that

sup
β∈(0,β1)

h(β)− h(β1) ≤
β1 ·∆

2
R

8
.

Therefore, for any δ > 0, supβ∈(0,β1) h(β)− h(β1) ≤ δ when

β1 ≤
8δ

∆2
R

.

Proof. Because the function β 7→ ERMβ [X] is non-increasing as shown in Lemma A.7 and β−1 · log(1−α) is increasing

for β > 0, we derive the bound as

sup
β∈(0,β1)

h(β)− h(β1) = sup
β∈(0,β1)

max
π∈ΠMR

(
ERMβ [R

π
∞] + β−1 · log(1− α)

)
−

max
π∈ΠMR

(
ERMβ1

[Rπ
∞] + β−1

1 · log(1− α)
)

≤ sup
β∈(0,β1)

max
π∈ΠMR

(
ERM0 [R

π
∞] + β−1 · log(1− α)

)
−

max
π∈ΠMR

(
ERMβ1

[Rπ
∞] + β−1

1 · log(1− α)
)

≤ max
π∈ΠMR

ERM0 [R
π
∞]− max

π∈ΠMR

ERMβ1
[Rπ

∞]

≤ max
π∈ΠMR

(ERM0 [R
π
∞]− ERMβ1

[Rπ
∞]) .

The lemma then follows readily by algebraic manipulation from Lemma A.8 because ERM0 [R
π
∞] = E[Rπ

∞].
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Lemma D.5. The function h : R→ R defined in (18) satisfies that

sup
β∈[βk,βk+1)

h(β)− h(βk) ≤ (β−1
k+1 − β

−1
k ) · log (1− α)

for each k ∈ 1:K. Therefore, for any δ > 0, supβ∈[βk,βk+1)
h(β)− h(βk) ≤ δ when

βk+1 ≤
βk · log(1− α)

βkδ + log(1− α)
(38)

and βkδ + log(1− α) < 0. If βkδ + log(1− α) ≥ 0, then βk+1 is not bounded from above.

Proof. From the definition of h and because the function β 7→ ERMβ [X] is non-increasing as shown in Lemma A.7 and

β−1 · log(1− α) is increasing for β > 0, we have

sup
β∈[βk,βk+1)

h(β)− h(βk) = sup
β∈[βk,βk+1)

max
π∈ΠMR

(
ERMβ [R

π
∞] + β−1 · log(1− α)

)
−

max
π∈ΠMR

(
ERMβk

[Rπ
∞] + β−1

k · log(1− α)
)

≤ sup
β∈[βk,βk+1)

max
π∈ΠMR

(
ERMβ [R

π
∞] + β−1

k+1 · log(1− α)
)
−

max
π∈ΠMR

(
ERMβk

[Rπ
∞] + β−1

k · log(1− α)
)

≤ sup
β∈[βk,βk+1)

max
π∈ΠMR

(ERMβ [R
π
∞]− ERMβk

[Rπ
∞]) +

(
β−1
k+1 · log(1− α)− β

−1
k · log(1− α)

)

≤ β−1
k+1 · log(1− α)− β

−1
k · log(1− α).

The lemma then follows readily by algebraic manipulation.

It is important to note that the multiplicative steps in Lemma D.5 increase with an increasing k. In particular, when

δβk = − log(1− α), the constraint on βk+1 becomes vacuous with βk+1 ≤ ∞. At this point, we know that βk is the last

grid point that needs to be evaluated in order to guarantee an error of δ.

Lemma D.6. The function h : R→ R defined in (18) satisfies that

sup
β∈[βK ,∞)

h(β)− h(βK) ≤
− log(1− α)

βK
.

Therefore, for any δ > 0, supβ∈[βK ,∞) h(β)− h(βK) ≤ δ when

βK ≥
− log(1− α)

δ
.

Proof. From the definition of h and because β 7→ ERMβ [X] is non-increasing and β−1 · log(1 − α) is increasing for

β > 0, we have

sup
β∈[βK ,∞)

h(β)− h(βK) ≤ sup
β∈[βK ,∞)

max
π∈ΠMR

(
ERMβ [R

π
∞] + β−1 · log(1− α)

)
−

max
π∈ΠMR

(
ERMβK

[Rπ
∞] + β−1

K · log(1− α)
)

(a)

≤ sup
β∈[βK ,∞)

max
π∈ΠMR

(ERMβ [R
π
∞])− max

π∈ΠMR

(
ERMβK

[Rπ
∞] + β−1

K · log(1− α)
)

≤ sup
β∈[βK ,∞)

max
π∈ΠMR

(ERMβ [R
π
∞]− ERMβK

[Rπ
∞])− β−1

K · log(1− α)

≤ −β−1
K · log(1− α).

(a) follows because β−1 · log(1 − α) is negative for all β ∈ [βK ,∞). The lemma then follows readily by algebraic

manipulation.
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Equipped with the above lemmas, we are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Suppose that Algorithm 2 is executed with the grid defined by (19) and (20), and with T ′ set as

T ′ =
log(8δ)− log(βK∆2

R
)

2 log γ
. (39)

Then, Lemmas D.3 to D.6 show that

EVaRα

[

R
π⋆

∞

]

− EVaRα

[

R
π̂⋆

∞

]

≤ 2δ.

It remains to show that the Algorithm 2 runs in time that is polynomial in 1/δ.

First, note that Algorithm 1 runs in time that is O(S2AT ′), assuming that v∞ is computed using value iteration for some

fixed γ < 1. Then using the choice of T ′ in (39), we have that evaluating a single βk takes O(S2A log(1/δ)) time.

Second, we need to upper-bound the value K since Algorithm 2 examines each one of these values. To emphasize that K
is a function of δ, we denote it as Kδ in the remainder of the proof. To upper-bound Kδ , we first construct a lower-bound

on each βk+1, ∀k ∈ 1:Kδ−1 using definition (19) and the fact that β1 ≤ βk as

βk+1 = βk ·
log(1− α)

βk · δ + log(1− α)

≥ βk ·
log(1− α)

β1 · δ + log(1− α)

≥ β1 ·

(
log(1− α)

β1 · δ + log(1− α)

)k

.

(40)

Here, we assume that β1 is sufficiently small such that βk · δ + log(1− α) < 0. Otherwise, we can use Kδ = 1 to achieve

the desired approximation error δ.

Recall that Kδ is chosen such that (20) is satisfied:

βKδ
≥
− log(1− α)

δ
.

Substituting the lower-bound on βKδ
from (40) we get that the sufficient condition for Kδ is that

β1 ·

(
log(1− α)

β1 · δ + log(1− α)

)Kδ−1

≥
− log(1− α)

δ
. (41)

Next, define a variable z as follows and substitute the value for β1 from (19) to get

z =
β1 · δ

− log(1− α)
=

8δ2

−∆2
R
· log(1− α)

. (42)

From the assumption that βk · δ + log(1 − α) < 0 and the fact that α ∈ (0, 1), we get that − log(1 − α) ∈ (0,∞) and,

thus, z ∈ (0, 1). Substituting the variable z into (41) yields that the sufficient condition for Kδ is that

(
1

1− z

)Kδ−1

≥
1

z
.

Taking the log of both sides and algebraic manipulation realizing that (1 − z)−1 ∈ (0,∞) gives that it is sufficient to

choose Kδ such that

Kδ =
log 1

z

log 1
1−z

+ 1 =
log 1

z
∑∞

n=1
zn

n

+ 1 ≤
1

z
· log

1

z
+ 1.

The derivation above follows by a MacLaurin expansion of the denominator which is valid because z ∈ (0, 1). The last

inequality follows because z > 0. Then, substituting the expression for z from (42), we get that

Kδ ∈ O

(
log(1/δ)

δ2

)

.

The complexity statement in the theorem then follows from the fact that running Algorithm 1 for each Kδ takes

O(S2A log(1/δ)) time.
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Table 5: VaR0.9 [R
π
T ] for π returned by each method.

Method MR GR INV1 INV2 RS

Algorithm 2 -2.82 10.80 87.80 202 500

Naive grid -2.90 10.80 52.60 202 501

Naive level -10.00 11.40 83.30 201 217

Risk neutral -2.90 12.60 67.50 202 499

Nested CVaR -10.00 0.00 0.00 138 217

Nested EVaR -10.00 10.30 0.00 173 217

ERM -3.00 9.75 62.40 187 217

Nested ERM -10.00 10.30 32.20 157 217

Augmented CVaR -3.18 12.56 55.80 82 110

Table 6: E [Rπ
T ] for π returned by each method.

Method MR GR INV1 INV2 RS

Algorithm 2 -1.01 14.30 114.00 218 873

Naive grid -1.01 14.30 63.20 219 873

Naive level -10.00 15.80 107.00 217 217

Risk neutral -0.98 17.10 128.00 219 871

Nested CVaR -10.00 0.00 0.00 142 217

Nested EVaR -10.00 14.60 0.00 182 217

ERM -0.99 14.20 76.40 197 217

Nested ERM -10.00 14.60 39.70 163 217

Augmented CVaR -2.36 14.55 69.68 135 101

E NUMERICAL RESULTS: DETAILS

E.1 Domain Details

For each domain, we also provide CSV files in supplementary material with the exact specifications of the domains we

use. The states in our tabular domains are identified with integer values 0, . . . , S − 1, and actions for each state s are

identified also with integer values 0, . . . , As − 1. Note that the action counts may be state-dependent. In our experiments,

we assume that the reward r : S × A × S → R depends both on the originating and the destination state. Each CSV file

has the following columns: “idstatefrom”, “idaction”, “idstateto”, “probability”, and “reward”. Each row entry specifies

a transition from “idstatefrom” after taking an ction “idaction” to state “idstateto” with the associated probability and

reward. It is important to note that each combination (“idstatefrom”, “idaction”, “idstateto”) is not necessarily unique;

repeated combinations indicate different transitions to the same state. These transitions need to be properly accounted for

when computing the risk of r(S,A, S′) since the associated rewards may be different.

E.1.1 Machine Replacement

This is the domain with the nominal transition probabilities described in (Delage and Mannor, 2010). We use the same

discount factor γ = 0.9 and the time horizon T = 100. The initial state s0 is that the machine is in the repair state R1

indexed as “idstate” = 1. The exact definition of the problem is given in machine.csv.

E.1.2 Gambler’s Ruin

This domain is based on a problem given in (Bäuerle and Ott, 2011). In this problem, a gambler starts with an initial capital

c0 can invest some of it in each time period. This investment doubles with a probability p and is lost with a probability

1 − p. The reward is zero until a target wealth level cf is achieved. The reward in the absorbing state cf is 1.0. The state

in this problem is the current, and the action is the investment. We use the initial capital c0 = 7, the target capital cf = 10,

the probability of win p = 0.7, and the discount factor γ = 0.95. For this domain, we use a longer horizon T = 200. The
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Table 7: Parameters of the inventory management problems.

Parameter INV1 INV2

γ 0.9 0.9

Smax 100 40

Amax 50 10

Distribution D Categorical Poisson, λ = 30
p 16 4.99

ch 0.3 0.05

cf 2 0.49

cv 5 2.49

precise definition of the problem is given in ruin.csv.

E.1.3 Inventory Management

This is a classical single-product stochastic inventory control problem (Puterman, 2005). The states S = {0, . . . , Smax}
represent the current stock of the product. The actions As = {0, . . . ,min{Amax, (Smax − s)}} for each state s ∈ S
represent the amount of product ordered. The integer-valued random variable D represents the random demand. At any

time step t, the next state St+1 is a random variable computed as

St+1 = [st + at −D]+ .

The amount of product sold computed in a time step is

lt = st − St+1 + at.

The revenue u and expenses e are computed as

ut = lt · p

xt =

{

ch · st· if at = 0

ch · st + cf + cv · at otherwise
.

Here, p is the purchase price and ch, cf , and cv are holding, fixed, and variable costs, respectively. The reward is then

rt = ut − xt.

The specific parameters that we use for the two inventory problems are summarized in Table 7. The time horizon for

both problems is T = 100. The exact specifications of the two inventory domains are given in inventory1.csv and

inventory2.csv.

E.1.4 Riverswim

This is an adapted version of the riverswim problem described in (Strehl and Littman, 2008). The discount factor in this

problem is γ = 0.9 and the horizon is T = 100.

E.2 Algorithms

E.2.1 Algorithm 2

We implemented the algorithm in Julia, closely following the pseudo-code in Algorithm 2. The grid of values βk are

selected according to (19) with the parameters δ and ∆R given in Table 8. We chose the value ∆R based on the reward

function structure of the problem and chose the tolerance value δ accordingly to be about 10% of the value function span.

For small problems, like MR, we reduced δ even further. Anecdotally, δ has a smaller impact on the solution’s quality than

∆R, but can significantly increase the computation time. The ERM-MDP sub-problem is solved exactly, which is possible

because the horizon is finite.
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Table 8: Parameters of Algorithm 2 for each benchmark problem.

Domain Tolerance δ Scale (1− γ) ·∆R

MR 2 20

GR 0.5 1

INV1 5 5

INV2 1 1

RS 1 1

E.2.2 Naive Grid

Follows the same approach as Algorithm 2, but uses βk, k = 1:K computed as

β1 = 105, βk =
10− β1
K − 1

.

The value K is chosen to be the same for each domain as the optimized K in (19).

E.2.3 Naive Level

Follows the same approach as Algorithm 2, but computes the value vk for βk by solving the following dynamic program

for each s ∈ S and t = 0:T−1 as

vkt (s) = max
a∈A

ERMβk

[
rsa + γ · vkt+1(S

′
sa)
]
,

where S′
sa is the random variable that represents the state that follows after taking an action a in state s.

E.2.4 Nested EVaR, CVaR, ERM

For any risk measure ψ : X → R, like CVaR and EVaR, solve computes the value v⋆ by solving the following dynamic

program for each s ∈ S and t = 0:T−1 as

v⋆t (s) = max
a∈A

ψ
[
rsa + γ · v⋆t+1(S

′
sa)
]
,

where S′
sa is the random variable that represents the state that follows after taking an action a in state s. Then, we evaluate

a greedy policy π⋆
t : S → A, t = 0:T−1 constructed to satisfy

π⋆
t (s) ∈ max

a∈A
ψ [rsa + γ · vt+1(S

′
sa)] .

For EVaR and CVaR, we use α = 0.9 and for ERM, we use β = 0.5.

E.2.5 ERM

We solve the optimal ERM value function and policy as described in Section 3 using β = 0.5

E.2.6 Augmented CVaR

We implemented the tabular version of the algorithm described in (Chow et al., 2015). We chose the discretization as

recommended in (Chow et al., 2015) with the maximum number of points so that the computation finished in at most 10

minutes (about 20 times longer than the computation of other methods). One of the sources of complexity in this algorithm

is that one needs to solve a linear program for every evaluation of the Bellman operator.

E.3 Results

Tables 9 and 10 show additional results for the algorithms and domains that we have compared. The results are broadly

consistent with the results for other risk measures, and we include them for the sake of completeness.
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Table 9: VaR0.9 [R
π
T ] for π returned by each method.

Method MR GR INV1 INV2 RS

Algorithm 2 -2.82 10.80 87.80 202 500

Naive grid -2.90 10.80 52.60 202 501

Naive level -10.00 11.40 83.30 201 217

Risk neutral -2.90 12.60 67.50 202 499

Nested CVaR -10.00 0.00 0.00 138 217

Nested EVaR -10.00 10.30 0.00 173 217

ERM -3.00 9.75 62.40 187 217

Nested ERM -10.00 10.30 32.20 157 217

Augmented CVaR -3.18 12.56 55.80 82 110

Table 10: E [Rπ
T ] for π returned by each method.

Method MR GR INV1 INV2 RS

Algorithm 2 -1.01 14.30 114.00 218 873

Naive grid -1.01 14.30 63.20 219 873

Naive level -10.00 15.80 107.00 217 217

Risk neutral -0.98 17.10 128.00 219 871

Nested CVaR -10.00 0.00 0.00 142 217

Nested EVaR -10.00 14.60 0.00 182 217

ERM -0.99 14.20 76.40 197 217

Nested ERM -10.00 14.60 39.70 163 217

Augmented CVaR -2.36 14.55 69.68 135 101


