
Solving Multi-Model MDPs by Coordinate Ascent and Dynamic Programming

Xihong Su1 Marek Petrik1

1Department of Computer Science , University of New Hampshire , Durham, NH, USA

Abstract

Multi-model Markov decision process (MMDP)

is a promising framework for computing policies

that are robust to parameter uncertainty in MDPs.

MMDPs aim to find a policy that maximizes the

expected return over a distribution of MDP mod-

els. Because MMDPs are NP-hard to solve, most

methods resort to approximations. In this paper,

we derive the policy gradient of MMDPs and pro-

pose CADP, which combines a coordinate ascent

method and a dynamic programming algorithm for

solving MMDPs. The main innovation of CADP

compared with earlier algorithms is to take the co-

ordinate ascent perspective to adjust model weights

iteratively to guarantee monotone policy improve-

ments to a local maximum. A theoretical analysis

of CADP proves that it never performs worse than

previous dynamic programming algorithms like

WSU. Our numerical results indicate that CADP

substantially outperforms existing methods on sev-

eral benchmark problems.

1 INTRODUCTION

Markov Decision Processes (MDPs) are commonly used

to model sequential decision-making in uncertain environ-

ments, including reinforcement learning, inventory con-

trol, finance, healthcare, and medicine [Puterman, 2014,

Boucherie and Van Dijk, 2017, Sutton and Barto, 2018]. In

most applications, like reinforcement learning (RL), param-

eters of an MDP must be usually estimated from observa-

tional data, which inevitably leads to model errors. Model

errors pose a significant challenge in many practical appli-

cations. Even small errors can accumulate, and policies that

perform well in the estimated model can fail catastrophi-

cally when deployed [Steimle et al., 2021b, Behzadian et al.,

2021, Petrik and Russel, 2019, Nilim and El Ghaoui, 2005].

Therefore, it is important to develop algorithms that can

compute policies that are reliable even when the MDP pa-

rameters, such as transition probabilities and rewards, are

not known exactly.

Our goal in this work is to solve finite-horizon multi-model

MDPs (MMDPs), which were recently proposed as a vi-

able model for computing reliable policies for sequential

decision-making problems [Buchholz and Scheftelowitsch,

2019b, Steimle et al., 2021b, Ahluwalia et al., 2021, Hal-

lak et al., 2015]. MMDPs assume that the exact model,

including transition probabilities and rewards, is unknown,

and instead, one possesses a distribution over MDP models.

Given the model distribution, the objective is to compute

a Markov (history-independent) policy that maximizes the

return averaged over the uncertain models. MMDPs arise

naturally in multiple contexts because they can be used to

minimize the expected Bayes regret in offline reinforcement

learning [Steimle et al., 2021b].

Because solving MMDPs optimally is NP-hard [Steimle

et al., 2021b, Buchholz and Scheftelowitsch, 2019b], most

algorithms compute approximately-optimal policies. One

line of work has formulated the MMDP objective as a mixed

integer linear program (MILP) [Buchholz and Scheftelow-

itsch, 2019b, Lobo et al., 2020, Steimle et al., 2021b].

MILP formulations can solve small MMDPs optimally when

given sufficient time, but they are hard to scale to large

problems [Ahluwalia et al., 2021]. Another line of work

has sought to develop dynamic programing algorithms for

MMDPs [Steimle et al., 2021b, Lobo et al., 2020, Buchholz

and Scheftelowitsch, 2019b, Steimle et al., 2018]. Dynamic

programming formulations lack optimality guarantees, but

they exhibit good empirical behaviors and can be used as the

basis for scalable MMDP algorithms that leverage reinforce-

ment learning or value functions, or policy approximations.

In this paper, we identify a new connection between pol-

icy gradient and dynamic programming in MMDPs and

use it to introduce Coordinate Ascent Dynamic Program-

ming (CADP) algorithm. CADP improves over both dy-

Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:2016–2025.

namic programming and policy gradient algorithms for

MMDPs. In fact, CADP closely resembles the prior state-

of-the-art dynamic programming algorithm, Weight-Select-

Update (WSU) [Steimle et al., 2021b], but uses adjustable

model weights to improve its theoretical properties and em-

pirical performance. Compared with generic policy gradient

MMDP algorithms, CADP reduces the computational com-

plexity, provides better theoretical guarantees and better

empirical performance.

Although we focus on tabular MMDPs in this work, al-

gorithms that combine dynamic programming with policy

gradient, akin to actor-critic algorithms, have an impres-

sive track record in solving large and complex MDPs in

reinforcement learning. Similarly to actor-critic algorithms,

the ideas that underlie CADP generalize readily to large

problems, but the empirical and theoretical analysis of such

approaches is beyond the scope of this paper. It is also im-

portant to note that one cannot expect the policy gradient in

MMDP to have the same properties as in ordinary MDPs.

For example, recent work shows that policy gradient con-

verges to the optimal policy in tabular MDPs [Bhandari and

Russo, 2021, Agarwal et al., 2021], but one cannot expect

the same behavior in tabular MMDPs because this objective

is NP-hard.

Finally, our CADP algorithm can serve as a foundation

for new robust reinforcement learning algorithms. Most

popular robust reinforcement learning algorithms rely on

robust MDPs in some capacity. Robust MDPs maximize

returns for the worst plausible model error (e.g., [Iyengar,

2005, Ho et al., 2021, Goyal and Grand-Clement, 2022]) but

are known to generally compute policies that are overly

conservative. This is a widely recognized problem, and

several recent frameworks attempt to mitigate it, such as

percentile-criterion [Delage and Mannor, 2010, Behzadian

et al., 2021], light-robustness [Buchholz and Scheftelow-

itsch, 2019a], soft-robustness [Derman et al., 2018, Lobo

et al., 2020], and distributional robustness [Xu and Mannor,

2012]. Multi-model MDPs can be seen as a special case

of light-robustness and soft-robustness, and CADP can be

used, as we show below, to improve some of the existing

algorithms proposed for these general objectives.

The remainder of the paper is organized as follows. We

discuss related work in Section 2. The multi-model MDP

framework is defined in Section 3. In Section 4, we derive

the policy gradient of MMDPs and present the CADP al-

gorithm, which we then analyze theoretically in Section 5.

Finally, Section 6 evaluates CADP empirically.

2 RELATED WORK

Numerous research areas have considered formulations or

goals closely related to the MMDP model and objectives. In

this section, we briefly review the relationship of MMDPs

with other models and objectives; given the breadth and

scope of these connections, it is inevitable that we omit

some notable but only tangentially relevant work.

Robust and soft-robust MDPs Robust optimization is an

optimization methodology that aims to reduce solution sen-

sitivity to model errors by optimizing for the worst-case

model error [Ben-Tal et al., 2009]. Robust MDPs use the

robust optimization principle to compute policies to MDPs

with uncertain transition probabilities [Nilim and El Ghaoui,

2005, Iyengar, 2005, Wiesemann et al., 2013]. However, the

max-min approach to model uncertainty MDPs has been pro-

posed several times before under various names [Satia and

Lave, 1973, Givan et al., 2000]. Robust MDPs are tractable

under an independence assumption popularly known as rect-

angularity [Iyengar, 2005, Wiesemann et al., 2013, Petrik

and Russel, 2019, Goyal and Grand-Clement, 2022, Mannor

et al., 2016]. Unfortunately, rectangular MDP formulations

tend to give rise to overly conservative policies that achieve

poor returns when model errors are small. Soft-robust, light-

robust, and distributionally-robust objectives assume some

underlying Bayesian probability distribution over uncertain

models and use risk measures to balance the average and

the worst returns better [Xu and Mannor, 2012, Lobo et al.,

2020, Derman et al., 2018, Delage and Mannor, 2010, Sa-

tia and Lave, 1973]. Unfortunately, virtually all of these

formulations give rise to intractable optimization problems.

Multi-model MDPs MMDP is a recent model that can be

cast as a special case of soft-robust optimization [Steimle

et al., 2021b, Buchholz and Scheftelowitsch, 2019b]. The

MMDP formulation also assumes a Bayesian distribution

over models and seeks to compute a policy that maximizes

the average return across these uncertain models [Buchholz

and Scheftelowitsch, 2019b]. Even though optimal policies

in these models may need to be history-dependent, the goal

is to compute Markov policies. Markov policies depend only

on the current state and time step and can be more practical

because they are easier to understand, analyze, and imple-

ment [Petrik and Luss, 2016]. Existing MMDP algorithms

either formulate and solve the problem as a mixed inte-

ger linear program [Buchholz and Scheftelowitsch, 2019b,

Steimle et al., 2021a, Ahluwalia et al., 2021], or solve it

approximately using a dynamic programming method, like

WSU [Steimle et al., 2021b].

POMDPs One can formulate an MMDP model as a par-

tially observable MDP (POMDP) in which the hidden

states represent the uncertain model-state pairs [Kael-

bling et al., 1998, Steimle et al., 2021b, Buchholz and

Scheftelowitsch, 2019b]. Most POMDP algorithms com-

pute history-dependent policies [Kochenderfer et al., 2022],

and therefore, are not suitable for computing Markov poli-

cies for MMDPs [Steimle et al., 2021b]. On the other

hand, algorithms for computing finite-state controllers in

POMDPs [Vlassis et al., 2012] or implementable poli-

cies [Petrik and Luss, 2016, Ferrer-Mestres et al., 2020]

2017

compute stationary policies. Stationary policies are inappro-

priate for the finite-horizon objectives that we target.

Bayesian Multi-armed Bandits MMDPs are also related

to Bayesian exploration and multi-armed bandits. Similarly

to MMDPs, Bayesian exploration seeks to minimize the

Bayesian regret, which is computed as the average regret

over the unknown MDP model [Lattimore and Szepesvári,

2020]. Most research in this area has focused on the bandit

setting, which corresponds to an MDP with a single state.

MixTS is a recent algorithm that generalizes Thompson

sampling to the full MDP case [Hong et al., 2022]. MixTS

achieves a sublinear regret bound but computes policies that

are history dependent and, therefore, are not Markov. We

include MixTS in our empirical comparison and show that

Markov policies cannot achieve sublinear Bayes regret.

Policy Gradient As discussed in the introduction, CADP

combines policy gradient methods with dynamic program-

ming. Policy gradient methods are widespread in reinforce-

ment learning and take a first-order optimization to policy

improvement. Many policy gradient methods are known

to be adaptations of general unconstrained or constrained

first-order optimization algorithms—such as Frank-Wolfe,

projected gradient descent, mirror descent, and natural gra-

dient descent—to the return maximization problem [Bhan-

dari and Russo, 2021]. CADP builds on these methods but

uses dynamic programming to perform more efficient gradi-

ent updates reusing much more prior information than the

generic techniques.

3 FRAMEWORK: MULTI-MODEL MDPS

In this section, we formally describe the MMDP framework

and show how it arises naturally in Bayesian regret mini-

mization. We also summarize WSU, a state-of-the-art dy-

namic programming algorithm, to illustrate the connections

between CADP and prior dynamic programming algorithms.

MMDPs A finite-horizon MMDP comprises the horizon

T , states S , actions A, modelsM, transition function p, re-

wards r, initial distribution µ, model distribution λ [Steimle

et al., 2021b]. The symbol T = {1, . . . , T} is the set

of decision epochs, S = {1, . . . , S} is the set of states,

A = {1, . . . , A} is the set of actions, andM = {1, . . . ,M}
is the set of possible models. The function pm : S × A →
∆S , m ∈ M is the transition probability function, which

assigns a distribution from the S-dimensional probability

simplex ∆S to each combination of a state, an action, and

a model m from the finite set of modelsM. The functions

rmt : S × A → R,m ∈ M, t ∈ T represent the reward

functions. µ is the initial distribution over states. Finally,

λ = (λ1, . . . , λM) represents the set of initial model proba-

bilities (or weights) with λm ∈ (0, 1) and
∑

m∈M
λm = 1.

Note that the definition of an MMDP does not include a

discount factor. However, one could easily adapt the frame-

work to incorporate the discount factor γ ∈ [0, 1]. It is

sufficient to define a new time-dependent reward function

r̂mt = γt−1rmt and solve the MMDP with this new reward

function.

Before describing the basic concepts necessary to solve

MMDPs, we briefly discuss how one may construct the

modelsM and their weights λm in a practical application.

The model weights λm ∈ (0, 1) may be determined by ex-

pert judgment, estimated from empirical distributions using

Bayesian inference, or treated as uniform priors [Steimle

et al., 2021b]. Prior work assumes that the decision maker

has accurate estimates of model weights λm or treats model

weights as uniform priors [Steimle et al., 2021b, Bertsimas

et al., 2018]. Once λm,m ∈ M is specified, the value of

λm does not change.

The solution to an MMDP is a deterministic Markov policy

πt : S → A, t ∈ T from the set of deterministic Markov

policies Π. A policy πt(s) prescribes which action to take in

time step t and state s. It is important to note that the action

is non-stationary—it depends on t—but it is independent of

the model and history. The policies for MMDPs, therefore,

mirror the optimal policies in standard finite-horizon MDPs.

To derive the policy gradient, we will also need randomized

policies ΠR defined as πt : S → ∆A, t ∈ T .

The return ρ : Π→ R for each policy π ∈ Π is defined as

the mean return across the uncertain true models:

ρ(π) = E
λ

[

E
π,pm̃,µ

[

T
∑

t=1

rm̃t (s̃t, ãt) | m̃

]]

. (1)

m̃, s̃t and ãt are random variables.

The decision maker seeks a policy that maximizes the return:

ρ∗ = max
π∈Π

ρ(π) . (2)

As with prior work on MMDPs, we restrict our attention

to deterministic Markov policies because they are easier

to compute, analyze, and deploy. While history-dependent

policies can, in principle, achieve better returns than Markov

policies, our numerical results show that existing state-of-

the-art algorithms compute history-dependent policies that

are inferior to the Markov policies computed by CADP.

Next, we introduce some quantities that are needed to de-

scribe our algorithm. Because an MMDP for a fixed model

m ∈M is in ordinary MDP, we can define the value func-

tion vπt,m : S → R for each π ∈ Π, t ∈ T , and s ∈ S as

[Puterman, 2014]

vπt,m(s) = E

[

T
∑

t′=t

rmt′ (s̃t′ , ãt′) | s̃t = s, m̃ = m

]

. (3)

The value function also satisfies the Bellman equation

vπt,m(s) =
∑

a∈A

πt(s, a) · q
π
t,m(s, a) , (4)

2018

where state-action value function qπt,m : S × A → R is

defined as

qπt,m(s, a) = rmt (s, a) +
∑

s′∈S

pmt (s′ | s, a) · vπt+1,m(s′).

(5)

The optimal value function v∗t,m : S → R is the value func-

tion of the optimal policy π∗
m ∈ Π and satisfies that

v∗t,m(s) = max
a∈A

q∗t,m(s, a), s ∈ S,

where q∗t,m = q
π∗

m

t,m.

Unlike in an MDP, the value function does not represent the

value of being in a state because the model m is unknown.

Bayesian regret minimization The multiple models in

MMDPs can originate from various sources [Steimle et al.,

2021b]. We now briefly describe how these models can arise

in offline RL because this is the setting we focus on in the

experimental evaluation. In offline RL, the decision maker

needs to compute a policy π ∈ Π using a logged dataset

of state transitions D = (t, si, ai, s
′
i). In Bayesian offline

RL, the decision maker is equipped with a prior distribution

κ ∈ ∆M over the (possibly infinite) set of modelsM and

uses the dataD to compute a posterior distribution λ ∈ ∆M.

The goal is then to find a policy π̂ ∈ Π that minimizes the

Bayes regret

π̂ ∈ argmin
π∈Π

E
λ
[

ρm̃(π∗
m̃)− ρm̃(π)

]

, (6)

where ρm : Π→ R for m ∈M is the return for the model

m and each policy. Note that m̃ is the random variable

that represents the model. A policy is optimal in (6) if and

only if it is optimal in (2) because the expectation operator is

linear. The minimum regret policy can then be approximated

by an MMDP using a finite approximation of the posterior

distribution λ.

Dynamic Programming Algorithms The simplest dy-

namic program algorithm for an MMDP is known as

Mean Value Problem (MVP) [Steimle et al., 2021b]. MVP

first computes an average transition probability function

p̄t : S ×A → ∆S , t ∈ T for each s, s′ ∈ S , a ∈ A as

p̄t(s
′ | s, a) =

∑

m∈M

λm · p
m
t (s′ | s, a) .

and the average reward function r̄t : S ×A → R, t ∈ T as

r̄t(s, a) =
∑

m∈M

λm · r
m
t (s, a) .

One can then compute a policy π̄ ∈ Π by solving the MDP

with the transition function p̄ and a reward function r̄ using

standard algorithms [Puterman, 2014].

A more sophisticated dynamic programming algorithm,

WSU, significantly improves over MVP [Steimle et al.,

2021b]. WSU resembles value iteration and updates the

policy π̂t : S → A and state-action value function vπ̂t,m for

each model m ∈M backward in time. After initializing the

value function vπ̂t,m to 0 at time t = T for each m ∈ M,

it computes qπ̂t,m from (5) at time t = T − 1. The policy

π̂t at time t = T − 1 is computed by solving the following

optimization problem:

π̂t(st) ∈ argmax
a∈A

∑

m∈M

λm · q
π̂
t,m(st, a), ∀st ∈ S. (7)

The optimization in (7) chooses an action that maximizes

the weighted sum of the values of the individual mod-

els [Steimle et al., 2021b]. After computing π̂t for t = T−1,

WSU repeats the procedure for T − 2, T − 3, . . . , 1.

It is essential to discuss the limitations of WSU that CADP

improves on. At each time step t ∈ T, T − 1, . . . , 1, WSU

computes the policy π̂t that maximizes the sum of values

of models weighted by the initial weights λ1, . . . , λM . But

using the initial weights λ1, . . . , λM here is not necessarily

the correct choice. Recall that each model m has potentially

different transition probabilities. Simply being a state st
reveals some information about which models are more

likely. One should not use the prior distribution λ1, . . . , λM ,

but instead the posterior distribution conditional on being

in state st. This is what CADP does, and we describe it in

the next section.

4 CADP ALGORITHM

We now describe CADP, our new algorithm that com-

bines coordinate ascent with dynamic programming to solve

MMDPs. CADP differs from WSU in that it appropriately

adjusts model weights in the dynamic program.

In the remainder of the section, we first describe adjustable

model weights in Section 4.1. These weights are needed in

deriving the MMDP policy gradient in Section 4.2. Finally,

we describe the CADP algorithm and its relationship to

coordinate ascent in Section 4.3.

4.1 MODEL WEIGHTS

We now give the formal definition of model weights. Infor-

mally, a model weight bπt,m(s) represents the joint probabil-

ity of m being the true model and the state at time t being

s when the agent follows a policy π. The value bπt,m(s) is

useful in expressing the gradient of ρ(π).

Definition 4.1. An adjustable weight for each model m ∈
M, policy π ∈ Π, time step t ∈ T , and state s ∈ S is

bπt,m(s) = P [m̃ = m, s̃t = s] , (8)

where S0 ∼ µ, m̃ ∼ λ, and s̃1, . . . , s̃T are distributed

according to pm̃ of policy π.

2019

Although the model weight bπt,m(s) resembles the belief

state in the POMDP formulation of MMDPs, it is different

from it in several crucial ways. First, the model weight

represents the joint probability of a model and a state rather

than a conditional probability of the model given a state.

Recall that in a POMDP formulation of an MMDP, the latent

states areM×S , and the observations are S . Therefore, the

POMDP belief state is a distribution overM×S . Second,

model weights are Markov while belief states are history-

dependent. This is important because we can use the Markov

property to compute model weights efficiently.

Computing the model weights b directly from Definition 4.1

is time-consuming. Instead, we propose a simple linear-time

algorithm. At the initial time step t = 1, we have that

bπ1,m(s) = λm · µ(s), ∀m ∈M, s ∈ S, π ∈ Π. (9)

The weights for any t′ = t+1 for any t = 1, . . . , T −1 and

any s′ ∈ S can than be computed as

bπt′,m(s′) =
∑

st,a∈S×A

pm(s′|st, a)πt(st, a)b
π
t,m(st) .

(10)

Intuitively, the update in (10) computes the marginal proba-

bility of each state at t+ 1 given the probabilities at time t.
Note that this update can be performed for each model m
independently because the model does not change during

the execution of the policy.

Note that the adjustable model weights bπt,m(s′) are Markov

because we only consider Markov policies Π. As discussed

in the introduction, we do not consider history-dependent

policies because they can be much more difficult to imple-

ment, deploy, analyze, and compute.

4.2 MMDP POLICY GRADIENT

Equipped with the definition of model weights, we are now

ready to state the gradient of the return with respect to the

set of randomized policies.

Theorem 4.1. The gradient of ρ defined in (1) for each

t ∈ T , ŝ ∈ S , â ∈ A, and π ∈ ΠR satisfies that

∂ρ(π)

∂πt(ŝ, â)
=

∑

m∈M

bπt,m(ŝ) · qπt,m(ŝ, â) , (11)

where q and b are defined in (5) and (10) respectively.

Please see the appendix for the proof of this theorem.

4.3 ALGORITHM

To formalize the CADP algorithm, we take a coordinate as-

cent perspective to reformulate the objective function ρ(π).

In addition to establishing a connection between optimiza-

tion and dynamic programming, this perspective is very

useful in simplifying the theoretical analysis of CADP in

Section 5.

The return function ρ(π) can be seen as a multivariate func-

tion with the policy at each time step seen as a parameter:

ρ(π) = ρ(π1, . . . , πt, . . . , πT)

where πt = [πt(s1, a1), . . . , πt(sS , aA)] for each t ∈ T
with si ∈ S and aj ∈ A.

The coordinate ascent (or descent) algorithm maximizes

ρ(π) by iteratively optimizing it along a subset of coordi-

nates at a time [Bertsekas, 2016]. The algorithm is useful

when optimizing complex functions that simplify when a

subset of the parameter is fixed. Theorem 4.1 shows that

the return ρ function has exactly this property. In particular,

while ρ is non-linear and non-convex in general, the follow-

ing result states that the function is linear for each specific

subset of parameters.

Corollary 4.2. For any policy π̄ ∈ Π and t ∈ T , the

function πt 7→ ρ(π̄1, . . . , πt, . . . , π̄T) is linear.

Proof. The result follows immediately from (11), which

shows that ∂ρ/∂πt(s, a) =
∑

m∈M
bπt,m(s) · qπt,m(s, a)

which is constant in πt(s, a) for each s ∈ S, a ∈ A, and

t ∈ T . Therefore, we have that ∂2ρ/∂πt(s, a)
2 = 0 and

the function πt 7→ ρ(π̄1, . . . , πt, . . . , π̄T) is linear by the

multivariate Taylor’s theorem.

Ordinary coordinate ascent applied to ρ(π) proceeds as fol-

lows. It starts with an initial policy π0 = (π0
1 , . . . , π

0
T).

Then, at each iteration n = 1, . . . , it computes πn from

πn−1 by iteratively solving the following optimization prob-

lem for each t ∈ T :

πn
t ∈ argmax

π̂t∈RS×A

ρ(πn−1
1 , . . . , π̂t, . . . , π

n
T) (12)

From Corollary 4.2, this is a linear optimization prob-

lem constrained to a simplex for each state individually.

Therefore, using the standard optimality criteria over a sim-

plex (e.g, Ex. 3.1.2 in [Bertsekas, 2016]) we have that the

optimal solution in (12) for each s ∈ S satisfies that

πn
t (s) ∈ argmax

a∈A

∑

m∈M

bπ
n−1

t,m (s) · qπ
n

t,m(s, a). (13)

πn can be solved by enumerating over the finite set

of actions. This construction ensures that we get a se-

quence of policies π0, π1, π2, . . . with non-decreasing

returns:ρ(π0) ≤ ρ(π1) ≤ ρ(π2) ≤

While the coordinate ascent scheme outlined above is simple

and theoretically appealing, it is computationally inefficient.

The computational inefficiency arises because computing

2020

Algorithm 1 OptimizePolicy

Input: MMDPs, Model weights bπ
n−1

Output: πn = (πn
1 , . . . , π

n
T)

1: Initialize vπ
n

T+1,m(sT+1) = 0, ∀m ∈M

2: Initialize πn ← πn−1

3: for t = T, T − 1, . . . , 1 do

4: for Every state st ∈ S do

5: Update πn
t (st) according to (13) with bπ

n−1

t (st)
6: Update vπ

n

t,m(st) according to (4) for each m ∈M
7: end for

8: end for

9: return πn

Algorithm 2 CADP: Coordinate Ascent Dynamic Program-

ming

Input: MMDP, π0

Output: Policy π ∈ Π

1: n← 0
2: repeat

3: n← n+ 1
4: bπ

n−1

← model weights from (10) using πn−1

5: πn ← OptimizePolicy (MMDP, bπ
n−1

)
6: until ρ(πn) = ρ(πn−1)
7: return πn

the weights b and value functions q necessary in (13) re-

quires one to update the entire dynamic program. The coor-

dinate ascent algorithms must perform this time-consuming

update in every iteration. To mitigate this computational

issue, CADP interleaves the dynamic program with the co-

ordinate ascent steps so that we reduce the updates of b and

v to a minimum.

Conceptually, CADP is composed of two main components.

Algorithm 1 is the inner component that uses dynamic pro-

gramming to compute a policy πn for some given adjustable

model weights bπ
n−1

. This algorithm uses the value func-

tion of visiting a state from (13) to choose an action in each

state that maximizes the expected value of the action for

each st ∈ S .

At any time step t, the maximization attempts to improve

the action to take at time step t. A curious feature of the

update in (13) is that it relies on two different policies, πn−1

and πn. This is because it assumes that the weights bt′ are

computed for t′ ≤ t using policy, πn−1, which is the policy

the decision maker follows up to time step t. The policy for

t > t′ would have been updated using the dynamic program

and, therefore, is denoted as πn.

The second component of CADP is described in Algo-

rithm 2. This algorithm starts with some arbitrary policy

π0 and then alternates between computing the adjustable

model weights and improving the policy using Algorithm 1.

The initial policy π0 can be arbitrary and computed using

an algorithm like MVP, WSU or a randomized policy.

A single iteration of CADP has the time complexity of

O(TS2AM) similar to running value iteration for each one

of the models. The number of iterations could be quite large.

In the worst case, the algorithm may run an exponential

number of iterations, visiting a significant fraction of all

deterministic policies. We show, however, in the following

section that the algorithm cannot loop and that each iteration

either terminates or computes a better policy. In contrast,

the complexity of a plain coordinate ascent iteration over all

parameters would be O(T 2S3A2M).

It is also interesting to contrast CADP with WSU. Recall

that the limitation of WSU stems from the fact that (7) re-

lies on the initial model weights that do not depend on the

current state and time. We propose to use instead adjustable

model weights, which represent the joint probability of the

current state and the model at each time step t. The fol-

lowing sections show that using these adjustable weights

enables CADP’s favorable theoretical properties and im-

proves empirical solution quality.

5 ERROR BOUNDS

In this section, we analyze the theoretical properties of

CADP. In particular, we show that CADP will never de-

crease the return of the current policy. As a result, CADP

can never cycle and terminates in a finite time. We also con-

trast MMDPs with Bayesian multi-armed bandits and show

that one cannot expect an algorithm that computes Markov

policies to achieve sublinear regret.

The following theorem shows that the overall return does not

decrease when the local value function does not decrease.

Theorem 5.1. Suppose that Algorithm 2 generates a policy

πn = (πn
t)

T
t=1 at an iteration n, then ρ(πn) ≥ ρ(πn−1).

Please see the appendix for the proof of this theorem.

Theorem 5.1 implies that Algorithm 2 must terminate in

finite time. This is because the algorithm either terminates

or generates policies with monotonically increasing returns.

With a finite number of policies, the algorithm must eventu-

ally terminate.

Corollary 5.2. Algorithm 2 terminates in a finite number

of iterations.

Given that the iterations of CADP only improve the return

of the policy, one may ask why the algorithm may fail to

find the optimal policy. The reason is that the algorithm

makes local improvements to each state. Finding the glob-

ally optimal solution may require changing the policy in

two or more states simultaneously. The policy update in

each one of the states may not improve the return, but the

simultaneous update does. This property is different from

2021

the situation in MDPs, where the best action at time t is

independent of the actions at times t′ < t.

It is also important to acknowledge the limitations of our

analysis. One could ensure that iterations of CADP do not

decrease the policy’s return by accepting improving policy

changes only. CADP does better than this. It finds the im-

proving changes and converges to a type of local maximum.

The computed policy is a local maximum in the sense that

no single-state updates can improve its return.

Given the connection between MMDPs and Bayesian ban-

dits, one may ask whether it is possible to give regret bounds

on the policy computed by CADP. The main difference be-

tween CADP and multi-armed bandit literature is that we

seek to compute Markov policies, while algorithms like

Thompson sampling compute history-dependent policies.

We show next that it is impossible to achieve guaranteed

sublinear regret with Markov policies.

The regret of a policy π is defined as the average perfor-

mance loss with respect to the best possible policy:

RT (π) = max
π̄∈ΠH

ρT (π̄)− ρT (π),

where ΠH is the set of all history-dependent randomized

policies and ρT is the return for the horizon of length T .

The following theorem shows that it is impossible to achieve

sublinear regret with Markov policies.

Theorem 5.3. There exists an MMDP for which no Markov

policy achieves sub-linear regret. That is, there exists no

π ∈ Π, c > 0, and t′ > 0 such that

Rt(π) ≤ c · t for all t ≥ t′ .

Please see the appendix for the proof of this theorem.

6 NUMERICAL EXPERIMENTS

Algorithms In this section, we compare the expected return

and runtime of CADP to several other algorithms designed

for MMDPs as well as baseline policy gradient algorithms.

We also compare CADP to related algorithms proposed

for solving Bayesian multi-armed bandits and methods that

reformulate MMDPs as POMDPs.

Our evaluation scenario is motivated by the application of

MMDPs in Bayesian offline RL as described in Section 3.

That is, we compute a posterior distribution over possible

models m ∈ M using a dataset and a prior distribution.

Then, we construct the MMDP by sampling training MDP

models from the posterior distribution. We evaluate the com-

puted policy using a separate test sample from the same

posterior distribution.

Domains Riverswim (RS): This is a larger variation [Be-

hzadian et al., 2021] of an eponymous domain proposed to

test exploration in MDPs [Strehl and Littman, 2008]. The

MMDP consists of 20 states, 2 actions, 100 training mod-

els, and 700 test models. The training models are used to

compute the policy, and test models are used to evaluate its

performance. As in machine learning, this helps to control

over-fitting. The discount factor is 0.9.

Population (POP): The population domain was proposed

for evaluating robust MDP algorithms [Petrik and Russel,

2019]. It represents a pest control problem inspired by the

types of problems found in agriculture. The MMDP consists

of 51 states, 5 actions, 1000 training models, and 1000 test

models. The discount factor is 0.9. Population-small (POPS)

is a variation of the same domain that comprises a limited

set of 100 training models and 100 test models.

HIV: Variations of the HIV management domains have

been widely used in RL literature and proposed to eval-

uate MMDP algorithms [Steimle et al., 2021b]. The pa-

rameter values are adapted from Chen et al. [Chen et al.,

2017], and the rewards are based on Bala et al. [Bala and

Mauskopf, 2006]. In this case study, the objective is to find

the sequence that maximizes the expected total net monetary

benefit (NMB). The MMDP consists of 4 states, 3 actions,

50 training models, and 50 test models. The discount factor

is 0.9.

Inventory (INV): This model represents a basic inventory

management model in which the decision makers must op-

timize stocking models at each time step [Ho et al., 2021].

The MMDP consists of 20 states, 11 actions, 100 training

models, and 200 test models. The discount factor is 0.95.

Our CADP implementation initializes the policy π0 to the

WSU solution, sets the weights λm,m ∈M to be uniform,

and has no additional hyper-parameters. We compare CADP

with two prior MMDP algorithms: WSU, MVP [Steimle

et al., 2021b] described in Section 3. We also compare

CADP with two new gradient-based MMDP methods: mir-

ror descent and natural gradient descent [Bhandari and

Russo, 2021], which use the gradient derived in Theo-

rem 4.1.

We also compare CADP with applicable algorithms de-

signed for models other than MMDPs. A natural algo-

rithm for solving MMDPs is to reduce them to POMDPs.

Therefore, we compare CADP with QMDP approximate

solver [Littman et al., 1995] and BasicPOMCP solver [Sil-

ver and Veness, 2010] for POMDP planning. Recall that

POMDP algorithms compute history-dependent policies,

which are more complex but could, in principle, outperform

Markov policies. Another method for solving MMDPs is to

treat them as Bayesian exploration problems. We, therefore,

also compare CADP with MixTS [Hong et al., 2022], which

uses Thompson sampling to compute history-dependent ran-

domized policies. The original MixTS algorithm assumes

that one does not observe the current state and only observes

the rewards; we adapt it to our setting in the appendix. All

2022

rithms for a horizon 50 on domain POPS. The runtime of

WSU is 0.95 minutes, but the return that WSU obtains is

−1915. The runtime taken by CADP is 5.6 times as much

as WSU, but the return for CADP is -1067, which is sig-

nificantly greater than what WSU achieves. MixTS is a

sampling-based algorithm that is guaranteed to perform

well over long horizons but has no guarantees for short hori-

zons. However, this assumption may not hold in this domain,

which could cause MixTS to perform poorly. The mirror

descent algorithm and CADP obtain the same return on the

domain HIV, but CADP performs significantly better than

the mirror descent algorithm on other domains. Therefore,

CADP outperforms those approaches with some runtime

penalty.

7 CONCLUSIONS AND FUTURE WORK

This paper proposes a new efficient algorithm, CADP, which

combines a coordinate ascent method and dynamic pro-

gramming to solve MMDPs. CADP incorporates adjustable

weights into the MMDP and adjusts the model weights each

iteration to optimize the deterministic Markov policy to the

local maximum. Our experiment results and theoretical anal-

ysis show that CADP performs better than existing approx-

imation algorithms on several benchmark problems. The

only drawback of CADP is that it needs several iterations to

obtain a converged policy and increases the computational

complexity. In terms of future work, it would be worth-

while to scale up CADP to value function approximation

and consider richer soft-robust objectives. It also would be

worthwhile to design algorithms that add limited memory

to the policy to compute simple history-dependent policies.

Acknowledgements We thank the anonymous reviewers

for their comments. This work was supported, in part, by

NSF grants 2144601 and 1815275.

References

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav

Mahajan. On the theory of policy gradient methods:

optimality, approximation, and distribution shift. The

Journal of Machine Learning Research, 22(1):4431–4506,

2021.

Vinayak S Ahluwalia, Lauren N Steimle, and Brian T Den-

ton. Policy-based branch-and-bound for infinite-horizon

multi-model Markov decision processes. Computers &

Operations Research, 126:105–108, 2021.

Mohan V Bala and Josephine A Mauskopf. Optimal as-

signment of treatments to health states using a Markov

decision model. Pharmacoeconomics, 24(4):345–354,

2006.

Bahram Behzadian, Reazul Hasan Russel, Marek Petrik,

and Chin Pang Ho. Optimizing percentile criterion using

robust MDPs. In International Conference on Artificial

Intelligence and Statistics (AISTATS). PMLR, 2021.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Ne-

mirovski. Robust optimization. Princeton University

Press, 2009.

Dimitri P Bertsekas. Nonlinear Programming. Athena

Scientific, 3rd edition, 2016.

Dimitris Bertsimas, John Silberholz, and Thomas Trikalinos.

Optimal healthcare decision making under multiple math-

ematical models: application in prostate cancer screening.

Health Care Management Science, 21(1):105–118, 2018.

Jalaj Bhandari and Daniel Russo. On the linear convergence

of policy gradient methods for finite MDPs. In Interna-

tional Conference on Artificial Intelligence and Statistics

(AISTATS). PMLR, 2021.

Richard J Boucherie and Nico M Van Dijk. Markov decision

processes in practice. Springer, 2017.

Peter Buchholz and Dimitri Scheftelowitsch. Light robust-

ness in the optimization of Markov decision processes

with uncertain parameters. Computers and Operations

Research, 108:69–81, 2019a.

Peter Buchholz and Dimitri Scheftelowitsch. Computation

of weighted sums of rewards for concurrent MDPs. Math-

ematical Methods of Operations Research, 89(1):1–42,

2019b.

Qiushi Chen, Turgay Ayer, and Jagpreet Chhatwal. Sensitiv-

ity analysis in sequential decision models: a probabilistic

approach. Medical Decision Making, 37(2):243–252,

2017.

Erick Delage and Shie Mannor. Percentile optimization for

Markov decision processes with parameter uncertainty.

Operations Research, 58(1):203–213, 2010.

Esther Derman, Daniel Mankowitz, Timothy A Mann, and

Shie Mannor. Soft-robust actor-critic policy-gradient. In

Uncertainty in Artificial Intelligence (UAI), 2018.

Jonathan Ferrer-Mestres, Thomas G Dietterich, Olivier Buf-

fet, and Iadine Chades. Solving K-MDPs. In Interna-

tional Conference on Automated Planning and Schedul-

ing (ICAPS), volume 30, 2020.

Robert Givan, Sonia Leach, and Thomas Dean. Bounded-

parameter Markov decision processes. Artificial Intelli-

gence, 122(1):71–109, 2000.

Vineet Goyal and Julien Grand-Clement. Robust Markov

decision processes: beyond rectangularity. Mathematics

of Operations Research, 48:203–226, 2022.

2024

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contex-

tual Markov decision processes. arXiv:1502.02259v1,

2015.

Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann.

Partial policy iteration for L1-robust Markov decision

processes. Journal of Machine Learning Research, 22(1):

12612–12657, 2021.

Joey Hong, Branislav Kveton, Manzil Zaheer, Mohammad

Ghavamzadeh, and Craig Boutilier. Thompson sampling

with a mixture prior. In International Conference on

Artificial Intelligence and Statistics (AISTATS). PMLR,

2022.

Garud N Iyengar. Robust dynamic programming. Mathe-

matics of Operations Research, 30(2):257–280, 2005.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R

Cassandra. Planning and acting in partially observable

stochastic domains. Artificial Intelligence, 101(1-2):99–

134, 1998.

Mykel J Kochenderfer, Tim A Wheeler, and Kyle H Wray.

Algorithms for decision making. MIT press, 2022.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms.

Cambridge University Press, 2020.

Michael L Littman, Anthony R Cassandra, and Leslie Pack

Kaelbling. Learning policies for partially observable envi-

ronments: Scaling up. In Machine Learning Proceedings.

1995.

Elita A Lobo, Mohammad Ghavamzadeh, and Marek Petrik.

Soft-robust algorithms for batch reinforcement learning.

arXiv preprint arXiv:2011.14495, 2020.

Shie Mannor, Ofir Mebel, and Huan Xu. Robust MDPs with

k-rectangular uncertainty. Mathematics of Operations

Research, 41(4):1484–1509, 2016.

Arnab Nilim and Laurent El Ghaoui. Robust control of

Markov decision processes with uncertain transition ma-

trices. Operations Research, 53(5):780–798, 2005.

Marek Petrik and Ronny Luss. Interpretable policies for

dynamic product recommendations. In Uncertainty in

Artificial Intelligence (UAI), 2016.

Marek Petrik and Reazul Hasan Russel. Beyond confi-

dence regions: tight bayesian ambiguity sets for robust

MDPs. Advances in Neural Information Processing Sys-

tems (NeurIPS), 32, 2019.

Martin L Puterman. Markov decision processes: discrete

stochastic dynamic programming. John Wiley & Sons,

2014.

Jay K Satia and Roy E Lave. Markovian decision processes

with uncertain transition probabilities. Operations Re-

search, 21:728–740, 1973.

David Silver and Joel Veness. Monte-carlo planning in large

pomdps. Advances in Neural Information Processing

systems (NIPS), 2010.

Lauren N Steimle, David L Kaufman, and Brian T Den-

ton. Multi-model Markov decision processes. Technical

report, Optimization-online, 2018.

Lauren N Steimle, Vinayak S Ahluwalia, Charmee Kamdar,

and Brian T Denton. Decomposition methods for solv-

ing Markov decision processes with multiple models of

the parameters. IISE Transactions, 53(12):1295–1310,

2021a.

Lauren N Steimle, David L Kaufman, and Brian T Denton.

Multi-model Markov decision processes. IISE Transac-

tions, 53(10):1124–1139, 2021b.

Alexander L Strehl and Michael L Littman. An analysis

of model-based interval estimation for Markov decision

processes. Journal of Computer and System Sciences, 74

(8):1309–1331, 2008.

Richard S Sutton and Andrew G Barto. Reinforcement

learning: an introduction. The MIT Press, 2018.

Nikos Vlassis, Michael L Littman, and David Barber. On

the computational complexity of stochastic controller op-

timization in POMDPs. ACM Transactions on Computa-

tion Theory, 4(4):1–8, 2012.

Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Ro-

bust Markov decision processes. Mathematics of Opera-

tions Research, 38(1):153–183, 2013.

Huan Xu and Shie Mannor. Distributionally robust Markov

decision processes. Mathematics of Operations Research,

37(2):288–300, 2012.

2025

	Introduction
	Related Work
	Framework: Multi-model MDPs
	CADP Algorithm
	Model Weights
	MMDP Policy Gradient
	Algorithm

	Error Bounds
	Numerical Experiments
	Conclusions and Future Work

