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Abstract

Multi-model Markov decision process (MMDP)
is a promising framework for computing policies
that are robust to parameter uncertainty in MDPs.
MMDPs aim to find a policy that maximizes the
expected return over a distribution of MDP mod-
els. Because MMDPs are NP-hard to solve, most
methods resort to approximations. In this paper,
we derive the policy gradient of MMDPs and pro-
pose CADP, which combines a coordinate ascent
method and a dynamic programming algorithm for
solving MMDPs. The main innovation of CADP
compared with earlier algorithms is to take the co-
ordinate ascent perspective to adjust model weights
iteratively to guarantee monotone policy improve-
ments to a local maximum. A theoretical analysis
of CADP proves that it never performs worse than
previous dynamic programming algorithms like
WSU. Our numerical results indicate that CADP
substantially outperforms existing methods on sev-
eral benchmark problems.

1 INTRODUCTION

Markov Decision Processes (MDPs) are commonly used
to model sequential decision-making in uncertain environ-
ments, including reinforcement learning, inventory con-
trol, finance, healthcare, and medicine [Puterman, 2014,
Boucherie and Van Dijk, 2017, Sutton and Barto, 2018]. In
most applications, like reinforcement learning (RL), param-
eters of an MDP must be usually estimated from observa-
tional data, which inevitably leads to model errors. Model
errors pose a significant challenge in many practical appli-
cations. Even small errors can accumulate, and policies that
perform well in the estimated model can fail catastrophi-
cally when deployed [Steimle et al., 2021b, Behzadian et al.,
2021, Petrik and Russel, 2019, Nilim and EI Ghaoui, 2005].

Therefore, it is important to develop algorithms that can
compute policies that are reliable even when the MDP pa-
rameters, such as transition probabilities and rewards, are
not known exactly.

Our goal in this work is to solve finite-horizon multi-model
MDPs (MMDPs), which were recently proposed as a vi-
able model for computing reliable policies for sequential
decision-making problems [Buchholz and Scheftelowitsch,
2019b, Steimle et al., 2021b, Ahluwalia et al., 2021, Hal-
lak et al., 2015]. MMDPs assume that the exact model,
including transition probabilities and rewards, is unknown,
and instead, one possesses a distribution over MDP models.
Given the model distribution, the objective is to compute
a Markov (history-independent) policy that maximizes the
return averaged over the uncertain models. MMDPs arise
naturally in multiple contexts because they can be used to
minimize the expected Bayes regret in offline reinforcement
learning [Steimle et al., 2021b].

Because solving MMDPs optimally is NP-hard [Steimle
et al., 2021b, Buchholz and Scheftelowitsch, 2019b], most
algorithms compute approximately-optimal policies. One
line of work has formulated the MMDP objective as a mixed
integer linear program (MILP) [Buchholz and Scheftelow-
itsch, 2019b, Lobo et al., 2020, Steimle et al., 2021b].
MILP formulations can solve small MMDPs optimally when
given sufficient time, but they are hard to scale to large
problems [Ahluwalia et al., 2021]. Another line of work
has sought to develop dynamic programing algorithms for
MMDPs [Steimle et al., 2021b, Lobo et al., 2020, Buchholz
and Scheftelowitsch, 2019b, Steimle et al., 2018]. Dynamic
programming formulations lack optimality guarantees, but
they exhibit good empirical behaviors and can be used as the
basis for scalable MMDP algorithms that leverage reinforce-
ment learning or value functions, or policy approximations.

In this paper, we identify a new connection between pol-
icy gradient and dynamic programming in MMDPs and
use it to introduce Coordinate Ascent Dynamic Program-
ming (CADP) algorithm. CADP improves over both dy-
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namic programming and policy gradient algorithms for
MMDPs. In fact, CADP closely resembles the prior state-
of-the-art dynamic programming algorithm, Weight-Select-
Update (WSU) [Steimle et al., 2021b], but uses adjustable
model weights to improve its theoretical properties and em-
pirical performance. Compared with generic policy gradient
MMDP algorithms, CADP reduces the computational com-
plexity, provides better theoretical guarantees and better
empirical performance.

Although we focus on tabular MMDPs in this work, al-
gorithms that combine dynamic programming with policy
gradient, akin to actor-critic algorithms, have an impres-
sive track record in solving large and complex MDPs in
reinforcement learning. Similarly to actor-critic algorithms,
the ideas that underlie CADP generalize readily to large
problems, but the empirical and theoretical analysis of such
approaches is beyond the scope of this paper. It is also im-
portant to note that one cannot expect the policy gradient in
MMDP to have the same properties as in ordinary MDPs.
For example, recent work shows that policy gradient con-
verges to the optimal policy in tabular MDPs [Bhandari and
Russo, 2021, Agarwal et al., 2021], but one cannot expect
the same behavior in tabular MMDPs because this objective
is NP-hard.

Finally, our CADP algorithm can serve as a foundation
for new robust reinforcement learning algorithms. Most
popular robust reinforcement learning algorithms rely on
robust MDPs in some capacity. Robust MDPs maximize
returns for the worst plausible model error (e.g., [Iyengar,
2005, Ho et al., 2021, Goyal and Grand-Clement, 2022]) but
are known to generally compute policies that are overly
conservative. This is a widely recognized problem, and
several recent frameworks attempt to mitigate it, such as
percentile-criterion [Delage and Mannor, 2010, Behzadian
et al., 2021], light-robustness [Buchholz and Scheftelow-
itsch, 2019a], soft-robustness [Derman et al., 2018, Lobo
et al., 2020], and distributional robustness [ Xu and Mannor,
2012]. Multi-model MDPs can be seen as a special case
of light-robustness and soft-robustness, and CADP can be
used, as we show below, to improve some of the existing
algorithms proposed for these general objectives.

The remainder of the paper is organized as follows. We
discuss related work in Section 2. The multi-model MDP
framework is defined in Section 3. In Section 4, we derive
the policy gradient of MMDPs and present the CADP al-
gorithm, which we then analyze theoretically in Section 5.
Finally, Section 6 evaluates CADP empirically.

2 RELATED WORK

Numerous research areas have considered formulations or
goals closely related to the MMDP model and objectives. In
this section, we briefly review the relationship of MMDPs

with other models and objectives; given the breadth and
scope of these connections, it is inevitable that we omit
some notable but only tangentially relevant work.

Robust and soft-robust MDPs Robust optimization is an
optimization methodology that aims to reduce solution sen-
sitivity to model errors by optimizing for the worst-case
model error [Ben-Tal et al., 2009]. Robust MDPs use the
robust optimization principle to compute policies to MDPs
with uncertain transition probabilities [Nilim and El Ghaoui,
2005, Iyengar, 2005, Wiesemann et al., 2013]. However, the
max-min approach to model uncertainty MDPs has been pro-
posed several times before under various names [Satia and
Lave, 1973, Givan et al., 2000]. Robust MDPs are tractable
under an independence assumption popularly known as rect-
angularity [Iyengar, 2005, Wiesemann et al., 2013, Petrik
and Russel, 2019, Goyal and Grand-Clement, 2022, Mannor
et al., 2016]. Unfortunately, rectangular MDP formulations
tend to give rise to overly conservative policies that achieve
poor returns when model errors are small. Soft-robust, light-
robust, and distributionally-robust objectives assume some
underlying Bayesian probability distribution over uncertain
models and use risk measures to balance the average and
the worst returns better [Xu and Mannor, 2012, Lobo et al.,
2020, Derman et al., 2018, Delage and Mannor, 2010, Sa-
tia and Lave, 1973]. Unfortunately, virtually all of these
formulations give rise to intractable optimization problems.

Multi-model MDPs MMDP is a recent model that can be
cast as a special case of soft-robust optimization [Steimle
et al., 2021b, Buchholz and Scheftelowitsch, 2019b]. The
MMDP formulation also assumes a Bayesian distribution
over models and seeks to compute a policy that maximizes
the average return across these uncertain models [Buchholz
and Scheftelowitsch, 2019b]. Even though optimal policies
in these models may need to be history-dependent, the goal
is to compute Markov policies. Markov policies depend only
on the current state and time step and can be more practical
because they are easier to understand, analyze, and imple-
ment [Petrik and Luss, 2016]. Existing MMDP algorithms
either formulate and solve the problem as a mixed inte-
ger linear program [Buchholz and Scheftelowitsch, 2019b,
Steimle et al., 2021a, Ahluwalia et al., 2021], or solve it
approximately using a dynamic programming method, like
WSU [Steimle et al., 2021b].

POMDPs One can formulate an MMDP model as a par-
tially observable MDP (POMDP) in which the hidden
states represent the uncertain model-state pairs [Kael-
bling et al., 1998, Steimle et al., 2021b, Buchholz and
Scheftelowitsch, 2019b]. Most POMDP algorithms com-
pute history-dependent policies [Kochenderfer et al., 2022],
and therefore, are not suitable for computing Markov poli-
cies for MMDPs [Steimle et al., 2021b]. On the other
hand, algorithms for computing finite-state controllers in
POMDPs [Vlassis et al., 2012] or implementable poli-
cies [Petrik and Luss, 2016, Ferrer-Mestres et al., 2020]
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compute stationary policies. Stationary policies are inappro-
priate for the finite-horizon objectives that we target.

Bayesian Multi-armed Bandits MMDPs are also related
to Bayesian exploration and multi-armed bandits. Similarly
to MMDPs, Bayesian exploration seeks to minimize the
Bayesian regret, which is computed as the average regret
over the unknown MDP model [Lattimore and Szepesvri,
2020]. Most research in this area has focused on the bandit
setting, which corresponds to an MDP with a single state.
MixTS is a recent algorithm that generalizes Thompson
sampling to the full MDP case [Hong et al., 2022]. MixTS
achieves a sublinear regret bound but computes policies that
are history dependent and, therefore, are not Markov. We
include MixTS in our empirical comparison and show that
Markov policies cannot achieve sublinear Bayes regret.

Policy Gradient As discussed in the introduction, CADP
combines policy gradient methods with dynamic program-
ming. Policy gradient methods are widespread in reinforce-
ment learning and take a first-order optimization to policy
improvement. Many policy gradient methods are known
to be adaptations of general unconstrained or constrained
first-order optimization algorithms—such as Frank-Wolfe,
projected gradient descent, mirror descent, and natural gra-
dient descent—to the return maximization problem [Bhan-
dari and Russo, 2021]. CADP builds on these methods but
uses dynamic programming to perform more efficient gradi-
ent updates reusing much more prior information than the
generic techniques.

3 FRAMEWORK: MULTI-MODEL MDPS

In this section, we formally describe the MMDP framework
and show how it arises naturally in Bayesian regret mini-
mization. We also summarize WSU, a state-of-the-art dy-
namic programming algorithm, to illustrate the connections
between CADP and prior dynamic programming algorithms.

MMDPs A finite-horizon MMDP comprises the horizon
T, states S, actions A, models M, transition function p, re-
wards 7, initial distribution i, model distribution \ [Steimle
et al., 2021b]. The symbol 7 = {1,...,T} is the set
of decision epochs, S = {1,...,S} is the set of states,
A={1,..., A} isthe setof actions,and M = {1,..., M}
is the set of possible models. The function p™: S x A —
AS. m € M is the transition probability function, which
assigns a distribution from the S-dimensional probability
simplex A% to each combination of a state, an action, and
a model m from the finite set of models M. The functions
ri': S x A — Rym e M,t € T represent the reward
functions. p is the initial distribution over states. Finally,
A= (A1,..., A\y) represents the set of initial model proba-
bilities (or weights) with A, € (0,1) and Zme M Am =1L

Note that the definition of an MMDP does not include a
discount factor. However, one could easily adapt the frame-

work to incorporate the discount factor v € [0,1]. It is
sufficient to define a new time-dependent reward function
7 = 4!~ 1y and solve the MMDP with this new reward
function.

Before describing the basic concepts necessary to solve
MMDPs, we briefly discuss how one may construct the
models M and their weights \,, in a practical application.
The model weights A, € (0,1) may be determined by ex-
pert judgment, estimated from empirical distributions using
Bayesian inference, or treated as uniform priors [Steimle
et al., 2021b]. Prior work assumes that the decision maker
has accurate estimates of model weights A, or treats model
weights as uniform priors [Steimle et al., 2021b, Bertsimas
et al., 2018]. Once \,,,m € M is specified, the value of
Am does not change.

The solution to an MMDP is a deterministic Markov policy
m: S — A, t € T from the set of deterministic Markov
policies II. A policy 7 (s) prescribes which action to take in
time step ¢ and state s. It is important to note that the action
is non-stationary—it depends on t—but it is independent of
the model and history. The policies for MMDPs, therefore,
mirror the optimal policies in standard finite-horizon MDPs.
To derive the policy gradient, we will also need randomized
policies ITg defined as ;: S — A4, t € T.

The return p: 11 — R for each policy m € 1I is defined as
the mean return across the uncertain true models:

~ T -
E™PH [Z (5, ar) | mH NG

t=1

p(m) = E

m, $; and a; are random variables.

The decision maker seeks a policy that maximizes the return:

*
p" = maxp(r). 2
As with prior work on MMDPs, we restrict our attention
to deterministic Markov policies because they are easier
to compute, analyze, and deploy. While history-dependent
policies can, in principle, achieve better returns than Markov
policies, our numerical results show that existing state-of-
the-art algorithms compute history-dependent policies that

are inferior to the Markov policies computed by CADP.

Next, we introduce some quantities that are needed to de-
scribe our algorithm. Because an MMDP for a fixed model
m € M is in ordinary MDP, we can define the value func-
tionvzmz S - Rforeachm €Il,t € T,and s € S as
[Puterman, 2014]

T
=E | ri'G,an) |G =sm=m|. )

t'=t

Uf,m(S)

The value function also satisfies the Bellman equation

v?m(s) = Z 7Tt(87 Cl) . qgm(‘% a‘) ) (4’)

acA
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where state-action value function ¢f,,: S x A — R is
defined as

GFm(s,a) = 1" (s,0) + Y p*(s' | 8,0) - 0Ty ().

s’eS
&)
The optimal value function v} ,,,: § — R is the value func-
tion of the optimal policy 7, € II and satisfies that

Uy (8) = max G m(s,a), seS,

where ¢; ,,, = qz m.
Unlike in an MDP, the value function does not represent the
value of being in a state because the model m is unknown.

Bayesian regret minimization The multiple models in
MMDPs can originate from various sources [Steimle et al.,
2021b]. We now briefly describe how these models can arise
in offline RL because this is the setting we focus on in the
experimental evaluation. In offline RL, the decision maker
needs to compute a policy m € II using a logged dataset
of state transitions D = (¢, s;, a;, s;). In Bayesian offline
RL, the decision maker is equipped with a prior distribution
x € AM over the (possibly infinite) set of models M and
uses the data D to compute a posterior distribution A € AM.
The goal is then to find a policy 7 € II that minimizes the
Bayes regret

7 € argminE* [p" (m5,) = p™(m)] ©)
where p™ : II — R for m € M is the return for the model
m and each policy. Note that m is the random variable
that represents the model. A policy is optimal in (6) if and
only if it is optimal in (2) because the expectation operator is
linear. The minimum regret policy can then be approximated
by an MMDP using a finite approximation of the posterior
distribution .

Dynamic Programming Algorithms The simplest dy-
namic program algorithm for an MMDP is known as
Mean Value Problem (MVP) [Steimle et al., 2021b]. MVP
first computes an average transition probability function
P Sx A— AS te T foreachs,s’ €S, ac Aas

ﬁt(s/ | Saa) = Z Am pln(sl | S,Cl) .
meM
and the average reward function 7: S x A — Rt € T as
7i(s,a) = Z Am 17 (s,a) .
meM

One can then compute a policy 7@ € II by solving the MDP
with the transition function p and a reward function 7 using
standard algorithms [Puterman, 2014].

A more sophisticated dynamic programming algorithm,
WSU, significantly improves over MVP [Steimle et al.,

2021b]. WSU resembles value iteration and updates the
policy 7t;: & — A and state-action value function vZ m for
each model m € M backward in time. After initializing the
value function v,’;f m to 0attime t = T for each m € M,
it computes qf’ m from (5) at time ¢ = T — 1. The policy
7y attime t = 1" — 1 is computed by solving the following
optimization problem:

7e(se) € arggleaj( %;w)\m ~q2m(st,a), Vs €S. (7)

The optimization in (7) chooses an action that maximizes
the weighted sum of the values of the individual mod-
els [Steimle et al., 2021b]. After computing 74 fort = T'—1,
WSU repeats the procedure for 7' — 2,7 — 3,..., 1.

It is essential to discuss the limitations of WSU that CADP
improves on. At each time stept € 7,7 — 1,...,1, WSU
computes the policy 7; that maximizes the sum of values
of models weighted by the initial weights A1, ..., Apr. But
using the initial weights Aq, ..., Ays here is not necessarily
the correct choice. Recall that each model m has potentially
different transition probabilities. Simply being a state s;
reveals some information about which models are more
likely. One should not use the prior distribution Ay, ..., Aaz,
but instead the posterior distribution conditional on being
in state s;. This is what CADP does, and we describe it in
the next section.

4 CADP ALGORITHM

We now describe CADP, our new algorithm that com-
bines coordinate ascent with dynamic programming to solve
MMDPs. CADP differs from WSU in that it appropriately
adjusts model weights in the dynamic program.

In the remainder of the section, we first describe adjustable
model weights in Section 4.1. These weights are needed in
deriving the MMDP policy gradient in Section 4.2. Finally,
we describe the CADP algorithm and its relationship to
coordinate ascent in Section 4.3.

4.1 MODEL WEIGHTS

We now give the formal definition of model weights. Infor-
mally, a model weight b7, (s) represents the joint probabil-
ity of m being the true model and the state at time ¢ being
s when the agent follows a policy 7. The value b7 ,,,(s) is
useful in expressing the gradient of p(7).

Definition 4.1. An adjustable weight for each model m €
M, policy w € I1, time step t € T , and state s € S is

where Sy ~ p, m ~ A, and §q,..
according to p™ of policy 7.

., 87 are distributed

2019



Although the model weight b7, (s) resembles the belief
state in the POMDP formulation of MMDPs, it is different
from it in several crucial ways. First, the model weight
represents the joint probability of a model and a state rather
than a conditional probability of the model given a state.
Recall that in a POMDP formulation of an MMDP, the latent
states are M x S, and the observations are S. Therefore, the
POMDP belief state is a distribution over M x S. Second,
model weights are Markov while belief states are history-
dependent. This is important because we can use the Markov
property to compute model weights efficiently.

Computing the model weights b directly from Definition 4.1
is time-consuming. Instead, we propose a simple linear-time
algorithm. At the initial time step ¢ = 1, we have that

The weights forany ¢’ =¢+1foranyt =1,...,7 —1 and
any s’ € S can than be computed as

VmeM,seS,mell. (9

Z pm(s’\st,a)wt(st,a)bf’m(st).

st,a€ESXA

bm(s') =

(10)
Intuitively, the update in (10) computes the marginal proba-
bility of each state at ¢t 4+ 1 given the probabilities at time .
Note that this update can be performed for each model m
independently because the model does not change during
the execution of the policy.

Note that the adjustable model weights b7, (s") are Markov
because we only consider Markov policies II. As discussed
in the introduction, we do not consider history-dependent
policies because they can be much more difficult to imple-
ment, deploy, analyze, and compute.

4.2 MMDP POLICY GRADIENT

Equipped with the definition of model weights, we are now
ready to state the gradient of the return with respect to the
set of randomized policies.

Theorem 4.1. The gradient of p defined in (1) for each
teT,s5€S8, ac A andw € 1ly satisfies that

Op(m)  _ o
m B Z btﬂ’ﬂ(s)'qnm(&a)v

meM

where q and b are defined in (5) and (10) respectively.

Please see the appendix for the proof of this theorem.

4.3 ALGORITHM

To formalize the CADP algorithm, we take a coordinate as-
cent perspective to reformulate the objective function p(r).

In addition to establishing a connection between optimiza-
tion and dynamic programming, this perspective is very
useful in simplifying the theoretical analysis of CADP in
Section 5.

The return function p(7) can be seen as a multivariate func-
tion with the policy at each time step seen as a parameter:

p(m) =p(m1,. .., Ty, 71)

where 7, = [m:(s1,01),...,7(ss,a4)] foreach t € T
with s; € Sand a; € A.

The coordinate ascent (or descent) algorithm maximizes
p(m) by iteratively optimizing it along a subset of coordi-
nates at a time [Bertsekas, 2016]. The algorithm is useful
when optimizing complex functions that simplify when a
subset of the parameter is fixed. Theorem 4.1 shows that
the return p function has exactly this property. In particular,
while p is non-linear and non-convex in general, the follow-
ing result states that the function is linear for each specific
subset of parameters.

Corollary 4.2. For any policy 7 € Il and t € T, the
function 7y — p(T1,...,Tt,...,7r) is linear.

Proof. The result follows immediately from (11), which
shows that dp/0mi(s,a) = > cabFm(s) - Gl (s, a)
which is constant in (s, a) for each s € S, a € A, and
t € T. Therefore, we have that 9%p/07;(s,a)?> = 0 and
the function 7wy — p(71,..., 7, ..., 7r) is linear by the
multivariate Taylor’s theorem. O

Ordinary coordinate ascent applied to p(7) proceeds as fol-
lows. It starts with an initial policy 7° = (#{,...,7%).
Then, at each iteration n = 1,..., it computes 7" from
7"~ ! by iteratively solving the following optimization prob-
lem for each t € T

(12)

n n—1 ~ n
7y € argmax p(m] ", .. Wy, )

frtERSXA

From Corollary 4.2, this is a linear optimization prob-
lem constrained to a simplex for each state individually.
Therefore, using the standard optimality criteria over a sim-
plex (e.g, Ex. 3.1.2 in [Bertsekas, 2016]) we have that the
optimal solution in (12) for each s € S satisfies that

7y ($) € argmax Z bf;;l(s) . qznm(s,a). (13)
acA mem

n™ can be solved by enumerating over the finite set

of actions. This construction ensures that we get a se-
quence of policies 7°, 7', 72,... with non-decreasing

returns:p(7¥) < p(7!) < p(n?) < ...

While the coordinate ascent scheme outlined above is simple
and theoretically appealing, it is computationally inefficient.
The computational inefficiency arises because computing
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Algorithm 1 OptimizePolicy

Input: MMDPs, Model weights pe" !
Output: 7" = (77, ..., 7})
1: Initialize U%LM(STH) =0,YmeM
2: Initialize 7" < 7"~1
3:fort=T,T—1,...,1do
4:  for Every state s, € S do
5: Update 77" (s;) according to (13) with b7 (s;)
6
7
8
9

Update v],, (s;) according to (4) for each m € M
end for
: end for
: return 7"

Algorithm 2 CADP: Coordinate Ascent Dynamic Program-
ming
Input: MMDP, 7°
Output: Policy 7 € II
:n+0
. repeat
n<n+1

1

2

3

4 b™" " < model weights from (10) using 7"~
5

6

7

1
7™ < OptimizePolicy (MMDP, ™" )

:until p(7") = p(7"~ 1)

: return 7"

the weights b and value functions ¢ necessary in (13) re-
quires one to update the entire dynamic program. The coor-
dinate ascent algorithms must perform this time-consuming
update in every iteration. To mitigate this computational
issue, CADP interleaves the dynamic program with the co-
ordinate ascent steps so that we reduce the updates of b and
v to a minimum.

Conceptually, CADP is composed of two main components.
Algorithm 1 is the inner component that uses dynamic pro-
gramming to compute a policy 7" for some given adjustable
model weights b™" " This algorithm uses the value func-
tion of visiting a state from (13) to choose an action in each
state that maximizes the expected value of the action for
each s; € S.

At any time step ¢, the maximization attempts to improve
the action to take at time step ¢. A curious feature of the
update in (13) is that it relies on two different policies, 77!
and 7. This is because it assumes that the weights b;s are
computed for ¢ < t using policy, 7, which is the policy
the decision maker follows up to time step ¢. The policy for
t > ¢’ would have been updated using the dynamic program
and, therefore, is denoted as 7.

The second component of CADP is described in Algo-
rithm 2. This algorithm starts with some arbitrary policy
7Y and then alternates between computing the adjustable
model weights and improving the policy using Algorithm 1.
The initial policy 7° can be arbitrary and computed using

an algorithm like MVP, WSU or a randomized policy.

A single iteration of CADP has the time complexity of
O(TS? AM) similar to running value iteration for each one
of the models. The number of iterations could be quite large.
In the worst case, the algorithm may run an exponential
number of iterations, visiting a significant fraction of all
deterministic policies. We show, however, in the following
section that the algorithm cannot loop and that each iteration
either terminates or computes a better policy. In contrast,
the complexity of a plain coordinate ascent iteration over all
parameters would be O(T2S3 A2 M).

It is also interesting to contrast CADP with WSU. Recall
that the limitation of WSU stems from the fact that (7) re-
lies on the initial model weights that do not depend on the
current state and time. We propose to use instead adjustable
model weights, which represent the joint probability of the
current state and the model at each time step ¢. The fol-
lowing sections show that using these adjustable weights
enables CADP’s favorable theoretical properties and im-
proves empirical solution quality.

S ERROR BOUNDS

In this section, we analyze the theoretical properties of
CADRP. In particular, we show that CADP will never de-
crease the return of the current policy. As a result, CADP
can never cycle and terminates in a finite time. We also con-
trast MMDPs with Bayesian multi-armed bandits and show
that one cannot expect an algorithm that computes Markov
policies to achieve sublinear regret.

The following theorem shows that the overall return does not
decrease when the local value function does not decrease.

Theorem 5.1. Suppose that Algorithm 2 generates a policy
7" = (7)_, at an iteration n, then p(7™) > p(7"~1).

Please see the appendix for the proof of this theorem.

Theorem 5.1 implies that Algorithm 2 must terminate in
finite time. This is because the algorithm either terminates
or generates policies with monotonically increasing returns.
With a finite number of policies, the algorithm must eventu-
ally terminate.

Corollary 5.2. Algorithm 2 terminates in a finite number
of iterations.

Given that the iterations of CADP only improve the return
of the policy, one may ask why the algorithm may fail to
find the optimal policy. The reason is that the algorithm
makes local improvements to each state. Finding the glob-
ally optimal solution may require changing the policy in
two or more states simultaneously. The policy update in
each one of the states may not improve the return, but the
simultaneous update does. This property is different from
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the situation in MDPs, where the best action at time ¢ is
independent of the actions at times ' < ¢.

It is also important to acknowledge the limitations of our
analysis. One could ensure that iterations of CADP do not
decrease the policy’s return by accepting improving policy
changes only. CADP does better than this. It finds the im-
proving changes and converges to a type of local maximum.
The computed policy is a local maximum in the sense that
no single-state updates can improve its return.

Given the connection between MMDPs and Bayesian ban-
dits, one may ask whether it is possible to give regret bounds
on the policy computed by CADP. The main difference be-
tween CADP and multi-armed bandit literature is that we
seek to compute Markov policies, while algorithms like
Thompson sampling compute history-dependent policies.
We show next that it is impossible to achieve guaranteed
sublinear regret with Markov policies.

The regret of a policy 7 is defined as the average perfor-
mance loss with respect to the best possible policy:
Ry(rm) = max pr(7) — pr(r),
melly
where Ilj; is the set of all history-dependent randomized
policies and pr is the return for the horizon of length T'.

The following theorem shows that it is impossible to achieve
sublinear regret with Markov policies.

Theorem 5.3. There exists an MMDP for which no Markov
policy achieves sub-linear regret. That is, there exists no
m eIl ¢>0, andt’ > 0 such that

Ri(m)<c-t forall t>1t.

Please see the appendix for the proof of this theorem.

6 NUMERICAL EXPERIMENTS

Algorithms In this section, we compare the expected return
and runtime of CADP to several other algorithms designed
for MMDPs as well as baseline policy gradient algorithms.
We also compare CADP to related algorithms proposed
for solving Bayesian multi-armed bandits and methods that
reformulate MMDPs as POMDPs.

Our evaluation scenario is motivated by the application of
MMDPs in Bayesian offline RL as described in Section 3.
That is, we compute a posterior distribution over possible
models m € M using a dataset and a prior distribution.
Then, we construct the MMDP by sampling training MDP
models from the posterior distribution. We evaluate the com-
puted policy using a separate fest sample from the same
posterior distribution.

Domains Riverswim (RS): This is a larger variation [Be-
hzadian et al., 2021] of an eponymous domain proposed to

test exploration in MDPs [Strehl and Littman, 2008]. The
MMDP consists of 20 states, 2 actions, 100 training mod-
els, and 700 test models. The training models are used to
compute the policy, and test models are used to evaluate its
performance. As in machine learning, this helps to control
over-fitting. The discount factor is 0.9.

Population (POP): The population domain was proposed
for evaluating robust MDP algorithms [Petrik and Russel,
2019]. It represents a pest control problem inspired by the
types of problems found in agriculture. The MMDP consists
of 51 states, 5 actions, 1000 training models, and 1000 test
models. The discount factor is 0.9. Population-small (POPS)
is a variation of the same domain that comprises a limited
set of 100 training models and 100 test models.

HIV: Variations of the HIV management domains have
been widely used in RL literature and proposed to eval-
uate MMDP algorithms [Steimle et al., 2021b]. The pa-
rameter values are adapted from Chen et al. [Chen et al.,
2017], and the rewards are based on Bala et al. [Bala and
Mauskopf, 2006]. In this case study, the objective is to find
the sequence that maximizes the expected total net monetary
benefit (NMB). The MMDP consists of 4 states, 3 actions,
50 training models, and 50 test models. The discount factor
is 0.9.

Inventory (INV): This model represents a basic inventory
management model in which the decision makers must op-
timize stocking models at each time step [Ho et al., 2021].
The MMDP consists of 20 states, 11 actions, 100 training
models, and 200 test models. The discount factor is 0.95.

Our CADP implementation initializes the policy 7° to the
WSU solution, sets the weights \,,, m € M to be uniform,
and has no additional hyper-parameters. We compare CADP
with two prior MMDP algorithms: WSU, MVP [Steimle
et al., 2021b] described in Section 3. We also compare
CADP with two new gradient-based MMDP methods: mir-
ror descent and natural gradient descent [Bhandari and
Russo, 2021], which use the gradient derived in Theo-
rem 4.1.

We also compare CADP with applicable algorithms de-
signed for models other than MMDPs. A natural algo-
rithm for solving MMDPs is to reduce them to POMDPs.
Therefore, we compare CADP with QMDP approximate
solver [Littman et al., 1995] and BasicPOMCP solver [Sil-
ver and Veness, 2010] for POMDP planning. Recall that
POMDP algorithms compute history-dependent policies,
which are more complex but could, in principle, outperform
Markov policies. Another method for solving MMDPs is to
treat them as Bayesian exploration problems. We, therefore,
also compare CADP with MixTS [Hong et al., 2022], which
uses Thompson sampling to compute history-dependent ran-
domized policies. The original MixTS algorithm assumes
that one does not observe the current state and only observes
the rewards; we adapt it to our setting in the appendix. All
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Figure 1: Mean Returns of CADP with Different Initial
Policies at Different Iterations

Table 1: Mean return p(7) on the Test Set of Policies 7
Computed by Each Algorithm. HIV Values are in 1000s.

Algorithm RS POP POPS INV HIV
CADP 204 -361 -1067 323 42
WSU 203 -542  -1915 323 42
MVP 201 =704 -2147 323 42
Mirror 181 -1650 -3676 314 42
Gradient 203 -542  -1915 323 42
MixTS 167 -1761 -2857 327 -1
QMDP 190 - - - 40
POMCP 58 — — - 30
Oracle 210 -168 -882 332 53

algorithms were implemented in Julia 1.7, and the source
code is available at https://github.com/suxh2019/CADP.

Return First, Figure 1 compares the mean returns attained
in the CADP computation, initialized with WSU, MVP
and a randomized policy change with different iterations
on domain POPS. From the 3rd iteration on, the mean
returns of CADP with the three initial policies are essentially
identical. The only difference is that CADP initialized with
WSU terminates one iteration earlier.

Second, Table 1 summarizes the returns, or solution quality,
of the algorithms on HIV domain for horizon length 7" = 15
and other domains for horizon length 7" = 50 evaluated on
the rest set. Table 2 summarizes the standard deviation of
returns of the algorithms on five domains. The results for
other time horizons, which are reported in the appendix, are
very similar. The algorithm “Oracle” describes an algorithm
that knows that the true model and its returns are the means
of each model’s optimal values. Note that Oracle’s return
may be a lose upper bound on the best possible return. If
the runtime of a method is greater than 900 minutes, the
method is considered to fail to find a solution and is marked
with ‘~’. BasicPOMCP and QMDP approximate solvers fail
to find solutions on domains POP, POPS, and INV.

Table 2: Standard deviation of returns of algorithms. HIV
values are in 1000s.

Algorithm RS POP POPS INV HIV
CADP 96 1081 1986 47 11
WSU 98 1346 3119 49 11
MVP 89 2018 3577 48 11
Mirror 69 2150 4494 52 11
Gradient 98 1346 3119 49 11
MixTS 223 4398 5454 58 26
QMDP 213 - - - 64
POMCP 72 - - - 55
Oracle 93 1032 1868 47 14

Table 3: Run-times to compute a policy 7 in minutes.

Algorithm RS POP POPS INV HIV
CADP 0.29 69.66 5.39 0.88 0.0053
wSu 0.08 33.65 095 045 0.0016
MVP 0.05 27.60 0.36 0.22 0.0002
Mirror 1.06 67.88 444 288 0.0111
Gradient 0.46 40.78 1.52  0.79 0.0042
MixTS 0.07 28.06 0.59 0.34 0.0018
QMDP 712 - - - 0.7100
POMCP 68 - - - 0.2066

Run-time Table 3 summarizes the runtime of several al-
gorithms on the domains for horizon length 7' = 50. All
algorithms were executed on a Ubuntu 20.04 with 3.0 GHz
Intel processor and 32 GB of RAM. BasicPOMCP and
QMDP approximate solvers fail to compute a policy on do-
mains POP, POPS, and INV in a reasonable time. MVP runs
fastest. MixTS runs slower than MVP but faster than other
algorithms. The CADP method needs several iterations to
get the policy that achieves the local maximum. As we ex-
pected, the time taken by CADP to solve these instances
is several times as much as WSU. How quickly the CADP
converges depends on the length of the time horizon and the
number of iterations performed.

Discussion Our results show that CADP consistently
achieves the best or near-best return in all domains and
time horizons. This is remarkable because it only looks for
Markov policies, whereas several other algorithms consider
the richer space of history-dependent policies. The compu-
tational penalty that CADP incurs compared to just solving
the average model, as done by MVP, is only a factor of
3-10. In comparison, state-of-the-art POMDP solvers were
unable to solve most of the domains within a factor of 100
of CADP’s runtime.

Let us take a closer look at the performance of the algo-
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rithms for a horizon 50 on domain POPS. The runtime of
WSU is 0.95 minutes, but the return that WSU obtains is
—1915. The runtime taken by CADP is 5.6 times as much
as WSU, but the return for CADP is -1067, which is sig-
nificantly greater than what WSU achieves. MixTS is a
sampling-based algorithm that is guaranteed to perform
well over long horizons but has no guarantees for short hori-
zons. However, this assumption may not hold in this domain,
which could cause MixTS to perform poorly. The mirror
descent algorithm and CADP obtain the same return on the
domain HIV, but CADP performs significantly better than
the mirror descent algorithm on other domains. Therefore,
CADP outperforms those approaches with some runtime
penalty.

7 CONCLUSIONS AND FUTURE WORK

This paper proposes a new efficient algorithm, CADP, which
combines a coordinate ascent method and dynamic pro-
gramming to solve MMDPs. CADP incorporates adjustable
weights into the MMDP and adjusts the model weights each
iteration to optimize the deterministic Markov policy to the
local maximum. Our experiment results and theoretical anal-
ysis show that CADP performs better than existing approx-
imation algorithms on several benchmark problems. The
only drawback of CADP is that it needs several iterations to
obtain a converged policy and increases the computational
complexity. In terms of future work, it would be worth-
while to scale up CADP to value function approximation
and consider richer soft-robust objectives. It also would be
worthwhile to design algorithms that add limited memory
to the policy to compute simple history-dependent policies.
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