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Abstract
We propose a novel quadratic programming
formulation for estimating the corruption levels in
group synchronization, and use these estimates to
solve this problem. Our objective function exploits
the cycle consistency of the group and we thus
refer to our method as detection and estimation
of structural consistency (DESC). This general
framework can be extended to other algebraic and
geometric structures. Our formulation has the
following advantages: it can tolerate corruption
as high as the information-theoretic bound, it does
not require a good initialization for the estimates of
group elements, it has a simple interpretation, and
under some mild conditions the global minimum
of our objective function exactly recovers the
corruption levels. We demonstrate the competitive
accuracy of our approach on both synthetic and
real data experiments of rotation averaging.

1. Introduction
Group synchronization (GS) is a critical mathematical
problem that has broad applications in statistics and
computer science. It assumes a mathematical group G
and a graph G([n], E) where [n] = {1, 2, . . . , n} and E
is the set of edges. Each node i of the graph is assigned
an unknown group element g∗i , where the star superscript
designates ground-truth information. At each edge ij ∈ E,
one observes noisy and corrupted measurements gij of the
ground-truth group ratio g∗ij = g∗i g

∗−1
j . The GS problem

asks to recover the unknown group elements, {g∗i }i∈[n], from
the observed group ratios, {gij}ij∈E . The most well-known
group synchronization problem is rotation averaging in 3D
computer vision, where G is SO(3). It asks to recover the
absolute rotations of objects from the possibly corrupted
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and noisy relative rotations between pairs of objects. The
rotation averaging problem plays a central role in many
3D computer vision tasks such as structure from motion
(SfM) and simultaneous localization and mapping (SLAM).
Other examples of group synchronization include phase
synchronization (G = SO(2)) with applications to cryo-
electron microscopy imaging, permutation synchronization
(G = Sn) with applications to multi-object matching,
and Z2-synchronization (G = Z2) with applications to
correlation clustering and community detection.

In many real scenarios, the observed group ratios are highly
corrupted. In order to handle the high corruption, it is critical
to estimate the corruption levels. In order to quantify them we
assume a predefined bi-invariant metric on G, which we de-
note by d. The bi-invariance property of d means that for any
g1, g2, g3 ∈ G, d(g1, g2) = d(g3g1, g3g2) = d(g1g3, g2g3).
Using d, the corruption level of edge ij ∈ E is

s∗ij = d(gij , g
∗
ij). (1)

The primary goal of this work is to develop a principled
and interpretable framework to estimate {s∗ij}ij∈E without
requiring a good initialization, and to robustly estimate the
group elements using the estimated {s∗ij}ij∈E .

For this purpose we exploit the cycle-consistency constraint.
It uses the group identity e as follows:

g∗ijg
∗
jkg

∗
ki = e for any ij, jk, ki ∈ E, (2)

In principle, one can utilize the cycle-consistency constraints
for longer cycles, whereas we focus on 3-cycles for
simplicity and for computational efficiency.

We propose a general solution for GS, which we refer to as
Detection and Estimation of Structural Consistency (DESC).
The terminology “structural consistency” refers to the in-
duced cycle consistency constraint. We believe that this
framework can also be generalized to other algebraic or geo-
metric structure constraints in other application areas, such as
low-rankness, low dimensionality, coplanarity of points in a
Euclidean space, transitivity of ordering in the ranking prob-
lem, etc. Nevertheless, in order to keep this presentation fo-
cused and clear, we restrict it to GS. Similarly, we discuss the
most refined procedures of DESC for the group SO(3) only.

1.1. Previous Works

Group synchronization was commonly applied to the
discrete groups Z2 and Sn (Bandeira, 2018; Cucuringu,



Robust Group Synchronization via Quadratic Programming

2015; Ling, 2020; Chen et al., 2014; Pachauri et al., 2013)
and the Lie group SO(d) (Singer, 2011; Wang & Singer,
2013; Eriksson et al., 2018). Its most common formulation
uses least squares (LS) minimization:

gi = argmin
gi∈G

∑
ij∈E

d2(gig
−1
j , gij). (3)

Since the domain of this minimization is a nonconvex
group, it is often relaxed to an eigendecomposition problem
(Cucuringu, 2015; Singer, 2011; Pachauri et al., 2013;
Ling, 2020), or a semidefinite programming (SDP) problem
(Bandeira, 2018; Singer, 2011; Chen et al., 2014), or when
G is a Lie group it is solved locally and iteratively by tangent
space approximations of the manifold (Govindu, 2004).
For discrete groups, such as Z2 and Sn, this formulation is
robust to corruptions. However, when G is a Lie group, such
as G = SO(d), then it is sensitive to outliers. In this case,
robustness to outliers can be achieved by either introducing
a robust objective function, or applying an outlier detection
algorithm to preprocess the corrupted data.

A common robust formulation is ℓp-minimization with 0 <
p ≤ 1 (Wang & Singer, 2013; Chatterjee & Govindu, 2017;
Hartley et al., 2011), where d2 in (3) is replaced with dp. It
is often solved by the iteratively reweighted least squares
(IRLS). The main limitation of IRLS is that it requires good
initialization of group elements and may easily get stuck at
local minima in the presence of high noise and corruption. A
recent work by Maunu & Lerman (2020) uses an energy based
on Tukey depth to achieve provable robust synchronization
to arbitrary outliers, but it also requires local initialization.

Outlier detection methods for GS utilize cycle-consistency
constraints to distinguish between clean and corrupted edges.
In particular, Zach et al. (2010) suggested two methods,
based on belief propagation and linear programming.
Agarwal et al. (2020) proposed a similar linear programming
approach for the different ranking problem. Shen et al. (2016)
classified an edge as clean according to its appearance in a
consistent cycle (note that such an approach cannot handle
self-consistent corruption). We remark that both IRLS and
outlier detection methods eventually rely on accurate assign-
ment of edge weights. For outlier detection, the edge weights
are binary, where zero weight corresponds to removing an
edge. However, the binary weights do not exactly reflect the
corruption levels and may thus result in suboptimal estimates
for group elements. IRLS updates the edge weights from the
estimated corruption levels. However, the corruption levels
are heuristically estimated in an iterative procedure, which
is sensitive to the initialized estimates of the group elements.

The recent cycle-edge message passing (CEMP) (Lerman &
Shi, 2021) overcomes the aforementioned drawbacks of both
IRLS and outlier detection methods. It estimates the corrup-
tion levels without requiring a good initialization or solving
weighted least squares, even when the corruption is high.

Given a set of 3-cycles, for each 3-cycle ijk, CEMP first
computes the cycle inconsistency: dij,k = d(gijgjkgji, e).
It then estimates the edge corruption level from those cycle
inconsistencies via message passing between cycles and
edges. However, the message passing procedure is hard
to interpret as it does not explicitly optimize an objective
function. Moreover, both its performance and theory rely on
a set of reweighting parameters. A recent message passing
least squares (Shi & Lerman, 2020) framework combines
CEMP-like iterations with IRLS and achieves superior
performance on a variety of datasets. However, it remains
heuristic and lacks theoretical guarantees.

Few previous works for GS (Birdal et al., 2018; Sun et al.,
2019; Birdal et al., 2020) further estimate the distribution of
the group elements. They aim to address scene ambiguities
and for this purpose assume special probabilistic models.
Our proposed work estimates the distribution of corruption
levels, assuming that a deterministic condition holds. This
estimated distribution is merely used to improve the estima-
tion of the corruption levels, though it might be used in the
future for statistical inference and uncertainty quantification.

A common theoretical setting in GS assumes the uniform
corruption model (UCM). In this model, the graph G is
generated by the Erdős-Rényi model G(n, p), where p is
the probability of connecting two nodes. An edge is then
independently corrupted with probability q. If ij ∈ E is cor-
rupted, then gij is i.i.d. sampled from a Haar measure on G,
otherwise, gij = g∗ij . Under UCM, the information theoretic
sample complexity for the exact recovery of group elements
is n/ log n = O(p−1(1− q)−2) (Chen et al., 2016). For Z2

and Sn-synchronization, spectral and SDP methods match
this bound (Cucuringu, 2015; Bandeira, 2018; Chen et al.,
2014; Ling, 2020). However, for Lie group synchronization,
it is a challenging open problem to prove that an algorithm
can match the information theoretic sample complexity. The
best sample complexity bound for SO(2) and SO(3) was es-
tablished for CEMP: n/ log n = O(p−2(1− q)−8) (Lerman
& Shi, 2021), but there is a clear gap with the desired bound.

1.2. This Work

In view of the limitations of the previous methods, we
summarize the contributions of our proposed DESC.

• DESC is a novel quadratic programming framework
for estimating the corruption levels of edges in GS. Its
minimization formulation provides a simple interpretation.
We prove that under mild conditions, the global minimum
recovers the corruption levels

• We show that under UCM, the sample complexity of
our QP formulation is n/ log n = O(p−2(1 − q)−2). It
matches the dependence of the information-theoretic
bound on q, unlike previous methods

• Our QP formulation is parameter free and does not require
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good initialization even in highly corrupted scenarios. We
demonstrate that a naive projected gradient descent is able
to obtain satisfying corruption estimates

• For rotation averaging, we develop an algorithm for
estimating the absolute rotations using the corruption
levels that are estimated from our QP framework (we refer
to both the latter framework and the former algorithm
as DESC). Both synthetic and real data experiments
demonstrate the state-of-the-art accuracy of this algorithm

The rest of the paper is organized as follows: §2 presents
the framework of DESC for GS, its theoretical guar-
antees and the DESC algorithm for rotation averaging;
§3 tests DESC on synthetic and real datasets; and §4
concludes this work. The supplemental code is in
https://github.com/ColeWyeth/DESC

2. The DESC Framework
We explain DESC as follows: §2.1 introduces notation
and preliminary observations; §2.2 and §2.3 formulate and
motivate the DESC framework for corruption estimation;
§2.4 demonstrates the theory of this formulation under UCM;
§2.5 describes the optimization method that we adopted
to solve this formulation; §2.6 clarifies its computational
complexity; §2.7 explains how to generally recover group el-
ements using the output of our framework; and §2.8 presents
our refined DESC algorithm for rotation averaging, and, in
particular, its initialization, which we refer to as DESC-init.

2.1. Preliminaries

The (noiseless) adversarial corruption model assumes that
the set of edges E is partitioned to Eg of good (clean) edges,
where gij = g∗ij , and Eb of bad (corrupted) edges, where
gij ̸= g∗ij . For each ij ∈ E, let Cij := {k : ik, jk ∈ E}
and Gij := {k : ik, jk ∈ Eg}. While Cij and Gij are
sets of the nodes, we also view them as sets of cycles ijk
containing edge ij, where k ∈ Cij or Gij , respectively.
When addressing the adversarial corruption model we
further assume that for each ij ∈ E,Gij is nonempty. Recall
that d is a bi-invariant metric on G and assume WLOG that
it is scaled so that d(g1, g2) ∈ [0, 1] for any g1, g2 ∈ G.
Therefore, s∗ij ∈ [0, 1] for all ij ∈ E. We take advantage
of the cycle inconsistency dij,k = d(gijgjkgji, e) and its
following property (Lerman & Shi, 2021):

Proposition 2.1. For any ij ∈ E and k ∈ Cij ,
|dij,k − s∗ij | ≤ s∗ik + s∗jk, (4)

and consequently,
dij,k = s∗ij if ik, jk ∈ Eg. (5)

Note that (5) states that the cycle inconsistency of cycle ijk is
an exact estimator of the corruption level of edge ij whenever
k ∈ Gij . Since we assumed that Gij is nonempty for any
ij ∈ E, s∗ij must be supported on the set {dij,k}k∈Cij . The

distribution of s∗ij can thus be written as the probability mass
for k ∈ |Cij |: p∗

ij(k) = 1{k∈Gij}/|Gij |, where 1 is the indi-
cator function. Indeed, by (5), p∗

ij only has positive mass on
the k’s such that dij,k = s∗ij , so the distribution concentrates
on the true value of s∗ij . Let ∆(m) denote the simplex of
length m, that is, ∆(m) = {x ∈ Rm : x ≥ 0, ∥x∥1 = 1},
wherex ≥ 0means that all coordinates ofx are nonnegative.
Let ∆′(|Cij |) denote the subset of ∆(|Cij |) with zero
coordinates whenever k /∈ Gij . Using this notation,
p∗
ij ∈ ∆′(|Cij |) ⊂ ∆(|Cij |).

2.2. General Formulation and Motivation

Let dij ,v
∗
ij ∈ R|Cij | denote the vectors such that dij(k) =

dij,k and v∗
ij(k) = s∗ik + s∗jk for k ∈ Cij , respectively. We

notice the following interesting relationship of p∗
ij and s∗ij :

Proposition 2.2. For any ij ∈ E
p∗⊤
ij dij = s∗ij and p∗⊤

ij v∗
ij = 0. (6)

Proof. We prove the following more general result that
implies (6) and we will be used later:

p⊤
ijdij = s∗ij and p⊤

ijv
∗
ij = 0, for pij ∈ ∆′(|Cij |). (7)

The definition of ∆′(|Cij |) and (5) imply the first equality as
follows: p⊤

ijdij =
∑

k∈Gij
pij(k)dij,k = s∗ij . The second

equality follows from pij(k)v
∗
ij(k) = pij(k)1{k∈Gij}(s

∗
ik+

s∗jk) = pij(k)1{s∗ik+s∗jk=0}(s
∗
ik + s∗jk) = 0. Since

pij ∈ ∆′(|Cij |), (7) implies (6).

We remark that (6) only relies on the assumption that
|Gij | > 0, and does not assume any probabilistic model.

DESC aims to estimate both {p∗
ij}ij∈E and {s∗ij}ij∈E ,

while directly using Proposition (2.2). The “detection”
task in DESC refers to finding p∗

ij , which is equivalent to
detecting the set of “good” cycles ijk such that dij,k = s∗ij .
The “estimation” task in DESC refers to estimating s∗ij . For
ij ∈ E, let pij ∈ R|Cij | and sij ∈ R denote the estimates
by DESC of p∗

ij and s∗ij . We also define vij ∈ R|Cij | by
vij(k) = sik + sjk for k ∈ Cij , so vij estimates v∗

ij .

DESC aims to solve the following optimization problem.
min

{sij}ij∈E ,{pij}ij∈E

∑
ij∈E

p⊤
ijvij (8)

subject to sij = p⊤
ijdij , ij ∈ E

pij ∈ ∆(|Cij |), ij ∈ E.
Note that the constraints in (8) and the fact that d was scaled
to be in [0, 1] (so dij,k ≤ 1) imply that pij(k) and sij in (8)
are between 0 and 1. This formulation is clearly motivated by
Proposition (2.2). Indeed, the first equation of (6) is the first
constraint of DESC (the other constraint of DESC just spec-
ifies the domain of pij). In order to try to enforce the second
equation of (6) we aim to minimize the cumulative sum of
the positive terms {p∗⊤

ij v∗
ij}ij∈E . When the minimum value

is 0, then the second equation of (6) is satisfied for all ij ∈ E.

https://github.com/ColeWyeth/DESC
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Another interpretation of (8) arises when bounding the cu-
mulative estimation error of {s∗ij}ij∈E , using the constraints
in (8) as well as (4):∑

ij∈E

|sij − s∗ij | =
∑
ij∈E

∣∣p⊤
ijdij − s∗ij

∣∣ (9)

=
∑
ij∈E

∣∣∣∣∣∣
∑

k∈Cij

pij(k)
(
dij(k)− s∗ij

)∣∣∣∣∣∣
≤
∑
ij∈E

∑
k∈Cij

pij(k)
∣∣dij(k)− s∗ij

∣∣
≤
∑
ij∈E

∑
k∈Cij

pij(k)(s
∗
ik + s∗jk) =

∑
ij∈E

p⊤
ijv

∗
ij .

Therefore, (8) minimizes an approximate upper bound for
the cumulative error, where vij replaces v∗

ij in the right hand
side (RHS) of (9).

2.3. DESC as a Quadratic Program

Plugging the first constraint of (8) into the objective function
of (8) yields a quadratic objective function in {pij}ij∈E :∑

ij∈E

∑
k∈Cij

pij(k)(sik + sjk)

=
∑
ij∈E

∑
k∈Cij

pij(k)
(
p⊤
ikdik + p⊤

jkdjk

)
. (10)

Therefore, in order to minimize (8) it is sufficient to find all
minimizers of the RHS of (10) of the form {p̂ij}ij∈E . The
first constraint of (8) is not needed in the latter minimization,
but it yields the additional minimizers of the form {ŝij}ij∈E

of (8) as follows:
ŝij = p̂⊤

ijdij for ij ∈ E. (11)
Thus, the quadratic programming formulation of DESC is

min
{pij}ij∈E
⊂∆(|Cij |)

∑
ij∈E

∑
k∈Cij

pij(k)
(
p⊤
ikdik + p⊤

jkdjk

)
, (12)

where in view of (11), there is a one-to-one correspondence
between the minimizers of (12) and (8).

2.4. Theory for the DESC Framework

We show that under some mild conditions, the global
minimum of the DESC formulation exactly recovers s∗ij .

Theorem 2.3. If |Gij | ≥ 1 ∀ij ∈ E and ∀k ∈ Cij dij,k > 0
whenever ij, jk or ki /∈ Eg, then any global minimum of
(8) exactly recovers the corruption levels {s∗ij}ij∈E

Proof. Let {p̂ij}ij∈E be a minimizer of (12) and {ŝij}ij∈E

be defined by (11) (so {p̂ij}ij∈E , {ŝij}ij∈E is a minimizer
of (8)). We will show that ŝij = s∗ij for all ij ∈ E and will
thus conclude the stated exact recovery.

If p̂ij ∈ ∆′(|Cij |), then sij = p⊤
ijdij = s∗ij , where the first

equality is due to the first constraint in (8) and the second
one is due to (7). Consequently, ŝij = s∗ij and the corruption
levels are exactly recovered.

To conclude the proof we will show that p̂ij ∈ ∆′(|Cij |).
Assume on the contrary that p̂ij(k) > 0 for some k /∈ Gij .
Since k /∈ Gij , WLOG we assume that ik ∈ Eb. By
our assumption on cycle-inconsistencies, we obtain that
dik,l > 0 for all l ∈ Cik. Thus, sik = p⊤

ikdik > 0 (since all
elements of dik are positive and at least one element of pik is
positive). Consequently, pij(k)sik > 0 and the value of (10)
is strictly greater than 0. This contradicts the assumption that
{pij}ij∈E is a global minimum.

We provide two immediate corollaries of Theorem 2.3.

Corollary 2.4. Assume that G is a compact Lie group. If
for any ij ∈ E, |Gij | ≥ 1, and for any ij ∈ Eb, gij is
i.i.d. sampled from an absolutely continuous distribution
over G, then with probability 1 any global minimum of (8)
exactly recovers the corruption levels {s∗ij}ij∈E .

Proof. We claim that the assumptions of this corollary imply
the conditions of Theorem 2.3 with probability 1. Indeed,
if ijk is a 3-cycle that contains at least one edge in Eb, where
WLOG this bad edge is ij, then Pr(dij,k = 0) = Pr(gij =
gik gkj) = 0 due to the continuity of the density of gij . Thus
with probability 1, dij,k > 0.

We remark that Corollary 2.4 does not assume a specific
probabilistic distribution and thus it is more general than
previous probabilistic results by Wang & Singer (2013).

Corollary 2.5. Assume a compact Lie group G and data
generated by UCM with n nodes, probability p of connecting
two nodes p, and probability q of corrupting an edge. Then
for n/ log n ≥ 10/(p2(1 − q)2), with probability at least
1 − n−0.7 any global minimum of (8) exactly recovers the
corruption levels {s∗ij}ij∈E .

Proof. It suffices to show that under the assumption of
this corollary, |Gij | ≥ 1 is satisfied with high probability.
We first observe that Xk := 1{k∈Gij}, for k ∈ [n], are
i.i.d. Bernoulli random variables with mean µ = p2(1− q)2.
Applying the Chernoff bound to Xk yields

Pr(|Gij | ≥ 1) = Pr
( 1
n

∑
k∈[n]

Xk ≥ µ

np2(1− q)2

)
> 1− e

− 1
3

(
1− 1

np2(1−q)2

)2
p2(1−q)2n

. (13)
If n/ log n ≥ 10/(p2(1 − q)2), then 1/(np2(1 − q)2) <
1/10 for n > 2 and thus (13) implies that

Pr(|Gij | ≥ 1) > 1− e−
27
100p

2(1−q)2n.
By taking a union bound over ij ∈ E and applying the
assumption n/ log n ≥ c/(p2(1 − q)2) for c ≥ 10, we
obtain that

Pr(min
ij∈E

|Gij | ≥ 1) > 1− n2e−
27
100p

2(1−q)2n

≥1− n2e−
27c
100 logn = 1− n2− 27c

100 ≥ 1− n−0.7.
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Corollary 2.4 implies that the sample complexity for the
DESC framework is n/ log n = Ω(p−2(1 − q)−2), where
the order of 1− q matches the information-theoretic one. On
the other hand, as explained in Lerman & Shi (2021), due to
the use of 3-cycles one cannot improve the dependence on p.

2.5. Optimization of the DESC Framework

We optimize the quadratic program in (12) by a projected
gradient descent (PGD) method. At each iteration t, let
{s(t)ij }ij∈E and {p(t)

ij }ij∈E be the corresponding estimates
of a minimizer of (8) (which is equivalently obtained via
(12) and (11)). Denote the objective function in (12) by
f({pij}ij∈E) and its gradient with respect to pij at the
estimates p(t)ij and s

(t)
ij , ij ∈ E, by

∇(t)
ij f :=

(
∂f

∂pij(k)

)
k∈Cij

∣∣∣∣∣ {pij}ij∈E={p(t)
ij

}ij∈E

{sij}ij∈E={s(t)
ij

}ij∈E

, (14)

where
∂f

∂pij(k)
(15)

= sik + sjk +

∑
l∈Cij

pil(j) + pjl(i)

 dij,k.

Recall that for each ij ∈ E, pij ∈ ∆(|Cij |). Note that
∆(|Cij |) is contained in the hyperplane

Hij := {x ∈ R|Cij | :

|Cij |∑
i=1

xi = 1}

and that Hij is the tangent space of ∆(|Cij |) in R|Cij |.
We further note that the orthogonal projector onto Hij is
11⊤/|Cij |, where 1 is the all-one vector of length |Cij |.
Therefore the corresponding Riemannian gradient (Boumal,
2020) is

∇̃(t)
ij f = (I − 11⊤/|Cij |)∇(t)

ij f,

where I denotes the identity matrix.

Our projected gradient descent method updates p
(t+1)
ij

at each iteration using the Riemannian gradient and then
projects onto ∆(|Cij |). That is, for ij ∈ E

p̃
(t+1)
ij = p

(t)
ij − αt∇̃(t)

ij f and

p
(t+1)
ij = Proj∆(|Cij |)(p̃

(t+1)
ij ).

The projector onto ∆(|Cij |) can be computed following the
method of Wang & Carreira-Perpinán (2013): For each fixed
ij ∈ E,

p
(t+1)
ij = max(p̃

(t+1)
ij − τ, 0), (16)

where the parameter τ ∈ R is the solution of∑
k∈Cij

max(p̃
(t+1)
ij (k)− τ, 0) = 1.

We remark that h(τ) =
∑

k∈Cij
max(p̃

(t+1)
ij (k) − τ, 0)

is a piecewise linear function where the endpoints of the
piecewise intervals are {p̃(t+1)

ij (k)}k. We order p̃(t+1)
ij (k)

by their values from low to high, and find k such that
h(p̃

(t+1)
ij (k)) ≤ 1 and h(p̃

(t+1)
ij (k + 1)) > 1. In this way,

the range of τ is narrowed down to [p̃(t+1)
ij (k), p̃

(t+1)
ij (k+1)),

and on this interval h(τ) is a linear function and h(τ) = 1
can be easily solved.

We refer to this procedure as DESC-PGD and summarize
it in Algorithm 1. We remark that our proposed PGD is
analogous to the Riemannian gradient descent method in
Boumal (2020), except that our projection onto the simplex
is not a valid retraction.
Algorithm 1 DESC-PGD
Input: {gij}ij∈E , {dij,k}k∈Cij , tmax

Steps:
p
(0)
ij = 1/|Cij | ij ∈ E

for t = 1 : tmax do
p̃
(t)
ij = p

(t−1)
ij − αt−1∇̃(t−1)

ij f ij ∈ E

p
(t)
ij = Proj∆(|Cij |)(p̃

(t)
ij ) ij ∈ E

s
(t)
ij = (p

(t)
ij )

⊤dij ij ∈ E
end for

Output: ŝij = stmax
ij

In practice, to accelerate the implementation of DESC,
instead of using all the 3-cycles, one may use a randomly
sampled subset. That is, for each ij ∈ E, Cij is a randomly
sampled set of nodes k such that ik, jk ∈ E.

2.6. Computational Complexity of DESC-PGD

At each iteration of DESC-PGD, the gradient computation
in (15) requires the sum of pil(j) and pjl(i) over l ∈ Cij for
each ij ∈ E, which takesO(|E|c) computation time where c
is the average of |Cij |. The projection onto ∆(|Cij |) has the
same O(|E|c) complexity. Since the complexity of comput-
ing dij,k is alsoO(|E|c), the per-iteration time complexity of
DESC isO(|E|c), which is exactly the same as that of CEMP.

2.7. Estimation of General Group Elements

We follow ideas of Lerman & Shi (2021) to estimate the
group elements, {g∗i }i∈[n] ⊂ G, using {ŝij}ij∈E . We
assume that G is a subgroup of the orthogonal group O(D).
For this purpose we use the graph connection weight (GCW)
matrix (Singer & Wu, 2012), which aims to approximately
solve the following weighted least squares problem:

min
{gi}i∈[n]⊂G

∑
i∈[n]

∑
j∈Ni

wijd
2(gig

−1
j , gij), (17)

where Ni = {j : ij ∈ E} is a set of neighboring nodes of i
andwij is a normalized graph weight such that

∑
j∈Ni

wij =

1. In practice, we compute wij by normalizing ŝ
−3/2
ij . We

represent each group element, gi, by a D × D orthogonal
matrix and stack these matrices to form an nD × D block
matrix Y whose i-th block is the matrix representation of gi.
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We initially estimate Y by finding the top D eigenvectors of
the block matrix X , where the (i, j)-th black of X is wijgij ,
and each gij is represented as its corresponding orthogonal
matrix. Then we project each block of the initially estimated
Y onto G to obtain the estimated group elements.

2.8. A Refined Solution for Rotation Averaging

For rotation averaging, we propose using the DESC-based
GCW procedure of §2.7 to initialize the absolute rotations.
We then suggest using the ŝij’s obtained by DESC-PGD to
improve the IRLS algorithm of Chatterjee & Govindu (2017)
and thus refine the initialized rotations.

We first briefly review the latter IRLS algorithm. For i ∈ [n]

and t ∈ N, let R(t)
i denote the absolute rotation matrix esti-

mated by IRLS at iteration t. For ij ∈ E, let Rij denote the
input relative rotation matrix. IRLS updates at each iteration
the estimated absolute rotations. Given R

(t−1)
i , i ∈ [n], it

solves an optimization problem for the matrices ∆R
(t)
i , i ∈

[n], which satisfy R
(t)
i = R

(t−1)
i ∆R

(t)
i (note that ∆R

(t)
i

approaches I as t approaches infinity). The desired opti-
mization is the weighted least squares of (17) with iteratively
updated edge weights, w(t)

ij , ij ∈ E, where gi, gj , gij are

replaced by ∆R
(t)
i , ∆R

(t)
j , (R(t−1)

i )⊤RijR
(t−1)
j , respec-

tively. This formulation is further approximated by mapping,
at each iteration, the rotation matrices inSO(3) to the tangent
space of I , so(3), by the matrix logarithm, log. We denote
the mapped elements by ∆Ω

(t)
i = log∆R

(t)
i , i ∈ [n], and

∆Ω
(t)
ij = log((R

(t−1)
i )⊤RijR

(t−1)
j ), ij ∈ E. (18)

Chatterjee & Govindu (2017) approximate (17) by
minimizing over {∆Ω

(t)
i }i∈[n] ⊂ so(3) the function∑

ij∈E

w
(t)
ij ∥∆Ω

(t)
i −∆Ω

(t)
j −∆Ω

(t)
ij ∥

2
F , (19)

Next, they compute for any edge ij ∈ E the residual
r
(t)
ij := ∥∆Ω

(t)
i − ∆Ω

(t)
j − ∆Ω

(t)
ij ∥F /

√
2π2 and update

the weights by w
(t+1)
ij = (r

(t)
ij )−3/2. The basic idea is that

edges with higher residuals are likelier to be corrupted and
thus should be assigned smaller weights.

We modify this IRLS procedure as follows. First, we initialize
the rotations by GCW, which uses the output of DESC-PGD
(see §2.7). Our numerical experiments indicate that this ini-
tialization is often more accurate than IRLS (Chatterjee &
Govindu, 2017). Second, we replace the residuals r(t)ij in

IRLS by a convex combination of r(t)ij and DESC-estimated

ŝij , where the coefficient of r(t)ij is t/(t+ 1). Consequently,
the information from the residual is increasingly emphasized
and ŝij is mainly used to guide IRLS to escape the local min-
ima in the first few iterations. At last, after computing the
edge weights, we assign the weight 10−8 to a certain percent-
age of the edges with the lowest weights (the chosen percent-

age at iteration t is min(5t , 20)). We do not assign 0 weights
(i.e., completely remove them) in order to avoid a discon-
nected graph. The last two ideas are also used in MPLS (Shi
& Lerman, 2020)). Nevertheless, our rotation refinement is
also different from MPLS in the following ways. First, MPLS
uses a minimal spanning tree to initialize rotations which re-
sults in inaccuracies when all edges are noisy. Second, MPLS
also uses a message passing unit to update edge weights in
each iteration, which is more complex than our method.

Algorithm 2 describes our overall solution to rotation
averaging, which we refer to as DESC-SO(3), or just DESC.
We refer to the initialization of this solution (obtained in the
second step of Algorithm 2) by DESC-init.

Algorithm 2 DESC-SO(3) (DESC)
Input: {Rij}ij∈E , {dij,k}k∈Cij

Steps:
Compute {ŝij}ij∈E by DESC-PGD
Initialize {R0

i }i∈[n] by DESC-based GCW (see §2.7).
t = 0
w

(0)
ij = min(ŝ

−3/2
ij , 108) ij ∈ E

while not convergent do
t = t+ 1
Compute ∆Ω

(t)
ij according to (18) ij ∈ E

Find {∆Ω
(t)
i }i∈[n] as the minimizer of (19) over so(3)n

R
(t)
i = R

(t−1)
i exp(∆Ω

(t)
i ) i ∈ [n]

r
(t)
ij = ∥∆Ω

(t)
i −∆Ω

(t)
j −∆Ω

(t)
ij ∥F /(

√
2π) ij ∈ E

h
(t)
ij = (t · r(t)ij + ŝij)/(t+ 1) ij ∈ E

w
(t)
ij = min((h

(t)
ij )

−3/2, 108) ij ∈ E
τt = min(5t , 20)

w
(t)
ij = 10−8 for τt% of edges with the highest h(t)

ij

end while
Output:

{
R

(t)
i

}
i∈[n]

3. Experiments
We test our methods for rotation averaging. In §3.1, we
describe the implementation details of all tested algorithms.
In §3.2 we report the estimation of the corruption levels and
rotations on synthetic data generated by UCM for SO(3).
In §3.3, we compare the performance of different algorithms
on the Photo Tourism dataset (Wilson & Snavely, 2014).

3.1. Implementation Details of All Algorithms

We first compare our QP scheme with the following linear
programming (LP) method for estimating corruption levels:

min
sij

∑
ij∈E

sij (20)

subject to |sij − dij,k| ≤ sik + sjk

0 ≤ sij ≤ 1,
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where the first constraint is due to (4). We solve (20) using
the default Matlab CVX LP solver. Using this solution for
the corruption levels, one can apply the same post-processing
as DESC to estimate the rotations (see §2.7). This LP formu-
lation is very similar to that of Agarwal et al. (2020) except
that Agarwal et al. (2020) is designed for rank aggregation.
It is also similar to that of Zach et al. (2010), but Zach et al.
(2010) with an additional penalty in the form of the sum over
cycles of maximal corruption levels within each cycle. The
objective function in (20) is based on the assumption that
the overall corruption level of the graph is small and thus
does not apply to highly corrupted scenarios. In contrast,
DESC aims to enforce the orthogonality of vij and pij (see
(8)), which seems also relevant to high corruption.

We also compare DESC with DESC-init and competitive
GS methods. We test two versions of IRLS: IRLS-GM
(Chatterjee & Govindu, 2013) and IRLS-ℓ1/2 (Chatterjee &
Govindu, 2017), while using their default implementations.
These versions use the Geman McClure (GM) and ℓ1/2
losses. We implement CEMP (Lerman & Shi, 2021) and
MPLS (Shi & Lerman, 2020) using the codes provided by the
respective papers, with their default parameters. Following
Lerman & Shi (2021), we use CEMP for recovering the
corruption levels and both CEMP+MST and CEMP+GCW
to recover rotations. CEMP+MST uses the minimum
spanning tree (MST) as a post-processing step to estimate
rotations, and CEMP+GCW uses GCW as in §2.7.

For the synthetic data experiments, we ran DESC with
a constant step size of 0.01. The maximum number of
iterations was set to 100. We noticed that increasing this
number improved the accuracy, but we preferred a reasonable
runtime (we will discuss the tradeoff between the two later).
To further reduce the runtime, we also sampled (without
replacement) a subset of the cycles of each edge. The number
of cycles sampled was chosen as one quarter of the median
number of cycles per edge, or at least 30. For edges with
fewer cycles than the sample number, all cycles were used.
No other parameters needed to be tuned.

For real data, due to the large sizes of the datasets, we
increased the step size to 1 in order to accelerate the conver-
gence and we decreased the maximum number of iterations
to 30. Otherwise, all parameter settings were identical.

3.2. Synthetic Data Experiments

We compare DESC and other algorithms on synthetic data
generated according to UCM, with and without noise. The
underlying graph is generated by an Erős-Rényi model
G(n, p) where n = 100 and p = 0.5 (two nodes are
connected by an edge with probability p). The group is
G = SO(3) and we represent its elements (rotations) by
3 × 3 rotation matrices. Let Haar(SO(3)) denote the
Haar (or “uniform”) probability measure on SO(3) and for

ij ∈ E, letWij be a 3×3Wigner matrix (with i.i.d. standard
normal elements). For 0 ≤ q < 1 and σ ≥ 0, the following
corruption model generates the rotation measurements:

gij =

{
Proj(g∗ij + σWij), with probability 1− q;

g̃ij ∼ Haar(SO(3)), with probability q.

That is, a group element is corrupted with probability q and
in this case it is i.i.d. sampled from the “uniform” measure on
SO(3) and otherwise its value is obtained by adding noise to
the the ground-truth group ratio g∗ij with constant noise level
σ. The resulting noisy matrix is then projected to SO(3).

Figure 1. Left: mean absolute error for corruption estimation of both
DESC and linear programming, Right: log mean error in degrees
for the rotation estimates of DESC and linear programming.

Using synthetic data generated from this model, we first com-
pare our QP formulation with the LP formulation of §3.1.
Since both of them aim to find the corruption levels, we com-
pute the following absolute error for corruption estimation:

1

|E|
∑
ij∈E

|ŝij − s∗ij |. (21)

Figure 1 shows the absolute mean errors for corruption
estimation and log mean errors for rotation estimation of
both LP and QP with σ = 0 and varying q. In its first plot (on
left), QP performs significantly better than LP for corruption
estimation when q ≥ 0.4. This is due to the underlying
assumption of the LP formulation that the overall edge
corruption level is small. In its second plot (on right), DESC
significantly outperforms LP with all values of q > 0. For
fair comparison, we post-processed LP for rotation estima-
tion with the same steps of Algorithm 2. Interestingly, even
when q is small, the rotation estimates of LP are much worse
than DESC, unlike the corruption estimates. The reason is
that LP tends to underestimate the corruption levels due to
its objective function. Underestimation of a small fraction
of corruption levels as nearly 0 results in nearly infinite
edge weights of the corresponding edges and consequently
inaccurate rotation estimation. Due to the overall poor
performance of LP, we ignore it in the rest of the experiments.

Next, we ran all algorithms, except LP, on synthetic datasets
generated with q = 0, 0.1, 0.2, . . . , 0.8 and both σ = 0



Robust Group Synchronization via Quadratic Programming

Table 1. Average of the mean and median errors (in degrees) for rotation estimates across the 13 datasets of Photo Tourism
DESC DESC-init IRLS-GM IRLS-L 1

2
CEMP-MST CEMP-GCW MPLS

mean 3.5119 3.8354 3.9644 3.8447 4.1447 3.9191 3.7142
median 1.5938 1.8516 1.7255 1.7201 1.7975 2.0339 1.7032

Figure 2. Mean and median errors (in degrees) for rotation
estimation of different algorithms (see legend) using the synthetic
data with varying q and σ. Top: mean, bottom: median, left: σ = 0
and right σ = 0.1. We applied log base 10 to the y axis.

and σ = 0.1. Figure 2 reports the mean and median errors
of rotation estimates by all tested methods. Because the
values varied by several orders of magnitude, we used a
logarithmic scale (base 10) for the y-axis. In all cases, DESC
is comparable to MPLS. We note that DESC-init consistently
outperforms CEMP-GCW, where both methods use the same
GCW postprocessing for rotation estimation.

Figure 3 shows the absolute estimation errors of the
corruption levels (see (21)) by DESC and CEMP using a
logarithmic y-axis scale as in Figure 2. We note that overall
the accuracy of DESC and CEMP for corruption estimation
is comparable. In particular, in terms of the mean estimation
error, DESC is more successful when q is small, whereas
CEMP is more advantageous when q is large. In terms of
the median error, DESC consistently outperforms CEMP
for almost all values of q when σ = 0 and is several orders
of magnitudes more accurate. When σ = 0.1, DESC yields
slightly higher median error than that of CEMP for high q,
and has much lower median error than CEMP for low q.

The per-iteration runtimes of DESC and CEMP on synthetic
data were 0.06 and 0.02 seconds, respectively. While
DESC is fast per iteration, it requires dozens of iterations
to converge, making it slower than CEMP, even though both

Figure 3. Mean and median absolute error of corruption estimation
for DESC and CEMP using the synthetic data. The upper two plots
show the means and the lower two plots show the medians. The
y axis uses a logarithmic scale with base 10.

of them have the same order of computational complexity.

3.3. Real Data Experiments

For experiments with real data, we used the Photo Tourism
dataset, which was introduced in Wilson & Snavely (2014).
It contains hundreds of images along with the approximate
ground truth rotations estimated by the bundler software
(Snavely et al., 2006). The relative rotations are estimated
following the pipeline presented in Ozyesil & Singer (2015).
We ran DESC along with the above benchmarks (excluding
LP) on the 14 Photo Tourism datasets.

Figures 4 and 5 report the mean and median rotation errors,
respectively, in degrees. The Gendarmenmarkt dataset is not
included because all methods performed very poorly on it,
with over 30 degrees error, which skewed the scale of the
y axis. We note that DESC is overall competitive. The per-
formance of all methods widely vary, though they are fairly
consistent with each other for most datasets. Table 1 shows
the average of the mean and median errors of all methods
across all datasets. DESC performs the best by both metrics.

Next, we tested the ability of DESC to estimate edge corrup-
tions. Figures 6 and 7 report the mean and median error of
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Figure 4. Mean error (in degrees) of rotation estimation for each
algorithm on 13 of the Photo Tourism datasets.
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Figure 5. Median error (in degrees) of rotation estimation for each
algorithm on 13 of the Photo Tourism datasets.

corruption estimation, respectively, of both DESC and CEMP.
Clearly, DESC is more successful than CEMP in recovering
the corruption levels. In particular, the median error of DESC
is more than 50% lower than that of CEMP on six datasets.

4. Conclusion
We proposed DESC, a novel framework for estimating the
corruption levels of group ratios in group synchronization.
It has a clear interpretation and we proved its exact recovery
under a mild generic condition. We also established a tight
recovery bound in terms of the corruption parameter under
UCM. We proposed a simple numerical strategy that aimed to
solve the optimization problem of DESC. We explained how
to use it to solve the underlying group elements. We further
refined this solution for the special case of rotation averaging.
Our experiments on synthetic and real data of rotation aver-
aging indicated that our proposed method often outperforms
CEMP in corruption estimation and is competitive with
state-of-the-art algorithms for rotation averaging.
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Figure 6. Mean absolute error for the corruption estimates of DESC
and CEMP on 13 of the Photo Tourism datasets.

Alamo

Ellis 
Isla

nd

Madrid Metropolis

Montreal Notre Dame

NYC Library

Notre Dame

Piazza del Popolo

Piccadilly

Roman Forum

Tower of London

Union Square

Vienna Cathedral

Yorkminster
0

0.002

0.004

0.006

0.008

0.01

0.012

M
ed

ia
n 

ab
so

lu
te

 e
rr

or
 fo

r c
or

ru
pt

io
n 

es
tim

at
es

DESC
CEMP

Figure 7. Median absolute error for the corruption estimates of
DESC and CEMP on 13 of the Photo Tourism datasets.

Nevertheless, our method also has some limitations. First,
our gradient descent algorithm is typically slower than
CEMP. Second, when initializing the group elements, our
edge weights are updated by ŝ

−3/2
ij , which is quite heuristic.

Consequently, an improvement in corruption estimation may
not always result in improvement in rotation estimation.

In the future, we would like to study faster algorithms for opti-
mizing our DESC formulation, and optimal ways of assigning
edge weights under certain probabilistic models. We also
plan to extend the idea behind our DESC framework to other
tasks with structural consistency, such as subspace recovery
and rank aggregation. We can also generalize our method to
incorporate longer cycles in order to handle sparse graphs.
For better numerical efficiency, we can use the ideas of
Guibas et al. (2019) for sampling a smaller set of clean cycles.
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