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ABSTRACT. In a recent paper, the author introduced a rich
class NC*(R) of “noncommutative C*” functions R — C whose op-
erator functional calculus is k-times differentiable and has derivatives
expressible in terms of multiple operator integrals (MOIs). In the
present paper, we explore a connection between free stochastic calcu-
lus and the theory of MOIs by proving an It6 formula for noncommu-
tative C? functions of self-adjoint free Itd processes. To do this, we
first extend P. Biane and R. Speicher’s theory of free stochastic calcu-
lus — including their free It6 formula for polynomials — to allow free It6
processes driven by multiple freely independent semicircular Brownian
motions. Then, in the self-adjoint case, we reinterpret the objects ap-
pearing in the free It6 formula for polynomials in terms of MOIs. This
allows us to enlarge the class of functions for which one can formulate
and prove a free It6 formula from the space originally considered by
Biane and Speicher (Fourier transforms of complex measures with two
finite moments) to the strictly larger space NC?(R). Along the way,
we also obtain a useful “traced” Ité formula for arbitrary C? scalar
functions of self-adjoint free It6 processes. Finally, as motivation, we
study an It6 formula for C? scalar functions of N x N Hermitian
matrix [td processes.
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1 INTRODUCTION

1.1 MOTIVATION

P. Biane and R. Speicher developed in [4] a theory of free stochastic calculus
with respect to semicircular Brownian motion that has yielded many fruitful
applications — e.g., to the theories of free SDEs [6, 14, 20, 28], entropy [3],
and transport [11]; analysis on Wigner space [4, 29]; and the calculation of
Brown measures [18, 24, 15, 22]. In this paper, we present an extension and
reinterpretation of this free stochastic calculus that naturally connects the It6-
type formulas thereof to the theory of multiple operator integrals (MOIs) via the
class NCk(R) of noncommutative C* functions (Definition 4.1.5) introduced
by the author in [34].

Our main results (Theorems 3.5.3 and 4.3.4) are “free Itd formulas” for
scalar functions of self-adjoint “free It6 processes” with respect to a n-tuple
(z1,...,2n) of freely independent semicircular Brownian motions. As a conse-
quence of the work of D.-V. Voiculescu [40], (x1,...,2,) is in a precise sense the
large-N limit of a n-tuple (X 1(N), e ,X,(,N)) of independent Brownian motions
on the space of N x N Hermitian matrices. Therefore, interesting formulas
involving (z1,...,z,) are often best motivated by studying formulas involving
(Xl(N), . ,X,(lN)) and then (formally or rigorously) taking N — oo. This is
certainly true for our formulas. In Appendix A, we study some independently
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interesting matrix stochastic calculus formulas that motivate the present pa-
per’s main results. In order to explain the appearance of MOIs, we discuss a
special case of one of these formulas.

In this preliminary discussion and in Appendix A, we assume familiarity with
the theory of continuous-time stochastic processes and stochastic integration,
though these subjects are not used elsewhere in the paper. Please see [8, 27] for
some relevant background. Fix a filtered probability space (Q, %, (%;)i>0, P),
with filtration satisfying the usual conditions, to which all processes we discuss
will be adapted.

We begin by recalling the statement of It6’s formula from classical stochastic
analysis. Let V and W be finite-dimensional inner product spaces, and let
M = (M(t))¢>0 be a continuous V-valued semimartingale. Itd’s formula says
that if F € C?(V; W), then

dF(M(t)) = DF(M(t))[dM(8)] + %DQF(M(t))[dM(t% aM(@), (1)

where D¥F is the k'™ Fréchet derivative of F. The DF(M)[dM] term in
Equation (1) is the differential notation for the stochastic integral against M
of the Hom(V; W) = {linear maps V' — W }-valued process DF(M). The
notation for the second term (the “Ité correction term”) in Equation (1) is

to be understood as follows. Let e1,...,e, € V be a basis for V, and write
M = Z?:l ]\416Z Then

/0 D2F(M(s))[dM(s), dM(5)] = 3 / D2F(M(s))es, e;] dM;(s) dM; (s),

ij=1

De, 0, F(M(s))

where dM;(s) dM;(s) = d{(M;, M;))(s) denotes Riemann-Stieltjes integration
against the quadratic covariation ((M;, M;)) of M; and M,. Our present mo-
tivation is an application of Equation (1) to matrix-valued processes M and
maps F arising from scalar functional calculus.

NotATION 1.1.1. Fix N € N.

(a) Write My (C) for the set of N x N complex matrices and My (C)s, for
the set of M € My (C) such that M* = M.

(b) Write (A, B)y == N Tr(B*A) = N2tr(B*A) for all A, B € My(C), where
tr = %Tr is the normalized trace. Note that (-, -) y restricts to a real inner
product on the real vector space My (C)ga.-

(c) For M € My(C)so and A € o(M) = {eigenvalues of M} C R, write
PM € My(C) for (the standard representation of) the orthogonal pro-
jection onto the A-eigenspace of M. For a function f: o(M) — C, write
FM) = 3o TN PM € Mpy(C). Recall that the Spectral Theo-
rem for Hermitian matrices says precisely that if M € My (C)sa, then

M =5 coon APM = idyan (M).
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Now, let (Xl(N), . ,X,(IN)) = (Xi,...,X,) be a n-tuple of independent stan-
dard (Mn(C)sa, (-, -)~n)-valued Brownian motions, and let M be a My(C)-
valued stochastic process satisfying

n L
dM(t) = > " Ay(t) dXi(t) Bij(t) + K(t) dt (2)

for continuous adapted My (C)-valued processes A;;, Bjj, K. The term
A;;(t) dX;(t) Bi;(t) above is the differential notation for the stochastic inte-
gral against X; of the End(My(C)) = Hom(My (C); My (C))-valued process
[0,00) x Q23 (t,w) = (Mn(C) 5 E — A;j(t,w) E B;j(t,w) € My(C)). Such
processes M are special kinds of N x N matriz Ité processes (Definition A.3).
Finally, for f € C?(R), define

7f(/\)7f(:u) and f[Q](AMV) — f[l](Avﬂ)ff[l](Aay)
A—u ) ) M—V

to be the first and second divided differences (Definition 3.3.1 and Proposi-
tion 3.3.2) of f, respectively.

THEOREM 1.1.2. If M is as in Equation (2), M* = M, and f € C*(R), then

dfM@) = > IO P dd () PO + 3 Cit) dt,
\pu€o(M(t)) i=1

where the process C; above is given by

¢
C; = Z Z PPN ) (PY Ay tr(By PY Aiy) B P
Jsk=1X\,p,vec(M)

+ P,<\/1Aik tI’(BikPiMAij) BZ]Plfw)
REMARK 1.1.3. This is the special case of Thm. A.11 with U; = Z§:1 Aij®@B;;.

This result is proven from It6’s formula using the quadratic covariation rules
(Theorem A.7)

A(t)dX;(t)B(t)dX; (t)C(t) = 6;; A(t)tr(B(¢))C(t) dt and (3)
A(t)dX;(t)B(t) dt C(t) = A(t) dt B(t)dX;(t)C(t) = A(t) dt B(t) dt C(t) =0 (4)
and a result (Theorem A.9) of Yu.L. Daletskii and S.G. Krein [12] saying that

if f € C*(R) and fy(c) denotes the map My (C)sa 3 M — f(M) € My(C),
then fMN(C) e C? (MN((C)sa; MN((C)) with

DfuyoM)[Bl = > U uPYBP)Y and (5)
A, u€o (M)
D fuwoy(M)[By, Bol = S 0\ ) (P B PY B,PM
X\, v€o(M)

+ PV B,PY B P)), (6)
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for all M, B, By, By € My(C)sa. One of the main results of this paper is the
formal large-N limit of (a generalization of) Theorem 1.1.2 that arises — at
least heuristically — by taking N — oo in Equations (3)-(6).

Loosely speaking, Voiculescu’s results from [40] imply that there is an oper-
ator algebra A with a “trace” 7: A — C and “freely independent processes”
T1,.. T [0,00) =Ry — Agy = {a € A: a* =a} called semicircular Brown-
tan motions such that

w(P(xV @), XN () & r(Pai (), i, (1))

almost surely (and in expectation) as n — oo, for all 41,...,4, € {1,...,n},
times t1,...,t. > 0, and polynomials P in r noncommuting indeterminates.
Now, using Biane and Speicher’s work from [4], one can make sense of stochas-
tic differentials a(t) dx;(t) b(t) when a,b: Ry — A are “continuous adapted
processes.” Imagining then a situation in which

(A,B,C) = (AN BWN) N « 7 (a,b,c)

as N — oo, we might expect to be able to take N — oo in Equations (3)-(4)
and thus to get quadratic covariation rules

a(t) dx; (t) b(t) dz; (t) c(t) = 65 a(t) 7(b(t)) c(t) dt and (7)

a(t) dz;(t) b(t) dt c(t) = a(t) dtb(t) dx; (t) c(t) = a(t) dtb(t) dte(t) = 0. (8)
Interpreted appropriately, these rules do in fact hold (Theorem 3.2.5). How
about Equations (5)-(6)? In this operator algebraic setting, we would be
working with the map f.: Ass — A defined via functional calculus by
Asa @ m — f(m) = fa(m) fdP™ € A, where P™ is the projection-valued
spectral measure of m (Section 2.1). Therefore, it would be appropriate to
guess that one could replace the sums Z/\GU(M) - PM in Equations (5)-(6) with

integrals fg(m) -dP™. Explicitly, we might expect that if f € C?(R), then
fa € C?*(Asa; A) and

Dfa(m)[t] = / N / T PN P ) e (9)

D? fa(m)[br, bo] = / / / FEO 1, v) (P™(dN)by P™(dys)by P™ (dv)
o(m)Jo(m)Jo(m)

+Pm(d)\)bng(d,u)ble(du)), (10)

for all m,b,b1,bs € Asa. (These integrals do not actually make sense with

standard projection-valued measure theory. We shall ignore this subtlety for
now.) Finally, consider a process m: Ry — A satisfying

n V4
ZZ i3 () das(£) biy () + k(1) dt (11)
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for some continuous adapted processes a;j, b;j, k: Ry — A. Such processes m
are special kinds of free Ité processes (Definition 3.2.1). Formally combining
Equations (7)-(10) and applying the hypothetical Itd formula

d fa(m(t)) = Dfa(m(t))ldm(t)] + %DQfA(m(t))[dm(t), dm(t)]
then gives the following guess.

PSEUDOTHEOREM 1.1.4. If m is as in Eq. (11), m* = m, and f € C*(R), then

n

m(t)) — ] w0 (g\) dm(t) PO o
4.f(m(t)) / o / oy SO PO () PO ) 43ty

i=1

where

Y/
6=Y / N / N / IO ) (P70 P )P 00

J,k=1
+ P™ (d)\)aikT(bikPm (du)aij)biij(du)).

As we hinted above, the integrals in Equations (9)-(10) and the pseudothe-
orem above are purely formal: a priori, it doesn’t make sense to integrate
operator-valued functions against projection-valued measures. In fact, this is
precisely the (nontrivial) problem multiple operator integrals (MOIs) were in-
vented to solve. However, even with the realization that a MOI is the right
object to consider when interpreting Pseudotheorem 1.1.4, the relevant MOIs
do not necessarily make sense for arbitrary f € C?(R). This is where non-
commutative C? functions come in. The space NC?(R) C C?(R) is essentially
tailor-made to ensure that MOI expressions such as the ones above make sense
and are well-behaved. (For example, the derivative formulas (9)-(10) are proven
rigorously in [34] for f € NC?(R).) The result is that we are able to turn Pseu-
dotheorem 1.1.4 into a (special case of a) rigorous statement — Theorem 4.3.4
— if we take f € NC?(R). Moreover, we demonstrate in Example 4.3.8 that
Theorem 4.3.4 generalizes and conceptually clarifies Proposition 4.3.4 in [4],
Biane and Speicher’s free It6 formula for a certain class (strictly smaller than
NC?%(R)) of scalar functions.

1.2 SUMMARY AND GUIDE TO READING

In this section, we describe the structure of the paper and summarize our
results. All the results in the paper are proven both for n-tuples of freely inde-
pendent semicircular Brownian motions and n-tuples of x-freely independent
circular Brownian motions. To ease the present exposition, we summarize only
the statements in the semicircular case.

DOCUMENTA MATHEMATICA 27 (2022) 1447-1507



FREE ITO FORMULA FOR NC? FUNCTIONS 1453

Section 2.1 contains a review of some terminology and relevant results from free
probability theory, for example the concepts of filtered W*-probability spaces
and (semi)circular Brownian motions. Section 2.2 contains a review of the
various topological tensor products of which we shall make use, for example
the von Neumann algebra tensor product .

In Section 3.1, we review Biane and Speicher’s construction from [4] of the
free stochastic integral of certain “biprocesses” against semicircular Brownian
motion. More specifically, if (A, (A¢)i>0,7) is a filtered W*-probability space
and x: Ry — Ag, is a semicircular Brownian motion, then fot u(s)#dz(s) € Ay
is defined for certain maps u: Ry — ARAP, where A°P is the opposite of
A. The # stands for the operation determined by (a ® b)#c = acb, and the
free stochastic integral fot u(s)#dx(s) is determined in an appropriate sense by
fg(l[n,m)a@b)(s)#d:c(s) = (a@b)#[x(riAt)—x(raAt)] = a(z(riAt)—z(raAt))b
whenever r1 < ry and a,b € A,,. Now, fix n freely independent semicircular
Brownian motions x1,...,%,: Ry — As,. In Section 3.2, we define a free 1t6
process (Definition 3.2.1) as a process m: Ry — A that satisfies (the integral
form of) an equation

dm(t) =Y wi(t)#dr;(t) + k(t) dt (12)
i=1
for biprocesses u1,...,u,: Ry — ARA° and a process k: R, — A. Then

we prove a product rule for free Itd processes (Theorem 3.2.5) that makes
the quadratic covariation rules (7)-(8) rigorous. This product rule is a “well-
known” generalization of Biane and Speicher’s product formula (the n = 1 case,
Theorem 4.1.2 in [4]). It is “well-known” in the sense that it is used regularly in
the literature, and it was proven in the “concrete” setting (the Cuntz algebra)
as Theorem 5 in [30]. However, it seems that — until now — the literature lacks
a full proof of this formula in the present “abstract Wigner space” setting.

In Section 3.3, we define divided differences fI*! and noncommutative deriva-
tives % f of various scalar functions f. When f is a polynomial, &' f corre-
sponds to Voiculescu’s free difference quotient from [41]. In Section 3.4, we use
the free It6 product rule to prove a “functional” It6 formula for polynomials
of free Itd processes (Theorem 3.4.4), which says that if m is a free Itd process
satisfying Equation (12), then

n

dp(m(t)) = Oplm(®)#dm(1) + 5 > A yplm(t))d,
i=1

where A,p(m) is defined (Notation 3.4.1 and Definition 3.4.2) in terms of the
second noncommutative derivative 9%p of p. This formula generalizes Proposi-
tion 4.3.2 in [4] (the n =1 case).

Our first main result comes in Section 3.5, where we use the free It6 for-
mula for polynomials, some beautiful symmetry properties of the objects in
the formula, and an approximation argument to prove a “traced” It6 formula
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(Theorem 3.5.3) for all C? functions of self-adjoint free It6 processes. (The
aforementioned symmetry properties allow one to avoid the multiple-operator-
integral-related complications mentioned in the previous section.) This formula
says that if 1) m is a free Itd process satisfying Equation (12), 2) m* = m,
and 3) f: R — C is a function that is C? on a neighborhood of the closure of

Uisoo(m(t)), then

‘W) = ()

Srtm) = (7o) ro) +3 > [ LI, @),

where p, ., is the finite Borel measure on R2 determined by

/ )‘jl :U/jZ Pm,u; (d)‘a dlu/) = <(mj1 ® ij )ui; ui>L2(T®T°P)
R2
= () (o © )

for j1,j2 € Ng. The result is not stated in exactly this way, but this in-
terpretation is derived in Remark 3.5.4. As an application, we demonstrate
in Example 3.5.5 how to use Theorem 3.5.3 to give simple, computationally
transparent (re-)proofs of some key identities from [18, 24, 15, 22] that are
used in the computation of Brown measures of solutions to various free SDEs.
The original proofs of these identities proceeded via rather unintuitive power
series arguments, and understanding what was really happening in these argu-
ments was the original motivation for the present study of functional free 1t
formulas. We note that Theorem 3.5.3 is also motivated in the appendix; the
corresponding matrix stochastic calculus formula is given in Corollary A.12.
In Section 4.1, we define — following [34] — the space NC*(R) of noncom-
mutative C* functions R — C (Definition 4.1.5) and describe large classes of
examples (Theorem 4.1.8). For the purposes of this discussion, there is just one
important thing to know. Write Wy (R) for the space of functions R — C that
are Fourier transforms of Borel complex measures on R with & finite moments
(Definition 4.1.7). Now, write Wy (R)joc for the space of functions f: R — C
such that for all 7 > 0, there exists g € W (R) satisfying f[_,..} = gl—r.s-
Then we have

Wi(R)oe € NCF(R), for all k € N. (13)

=

Please see Theorem 4.1.8 and the sketch of its proof for references to the relevant
parts of [34].

In Section 4.2, we review the portion of the theory of multiple operator integrals
(MOIs) that is relevant to this paper. Most importantly, we lay out what is
needed to make sense of the MOIs in Pseudotheorem 1.1.4 when f € NC?(R).
This brings us to Section 4.3, which contains our second main result: the
functional free It formula for noncommutative C? functions (Theorem 4.3.4),
a generalization of the rigorous version of Pseudotheorem 1.1.4 and an extension
— in the self-adjoint case — of the free It6 formula for polynomials to functions
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in NC?(R). It says that if 1) m is a free Itd satisfying Equation (12), 2)
m* =m, and 3) f € NC?(R), then

d f(m(t)) = Of (m(t))#dm(t) ZAumf
- / / FUO, ) PO (dA) dim(t) P70 (dp)
o(m(t))Jo(m(t))
Fo Y A fm)d,  (14)
=1

where A, f(m) (defined officially in Definition 4.3.2) is determined, in a certain
sense (Corollary 4.3.7 and Remark 4.3.9), as a quadratic form by

1
5 Agonf(m / ) / ( . FEOL, A2, A3) P™ (A1) ar (bP™ (d)o)a)bP™ (dXs)

for a,b € A. Recall from the previous section that fIH(\, u) = f()‘) {L(“) nd

[ }()\,u, v) = W are, respectively, the first and second divided
differences of f. Now, Biane and Speicher also established a formula (Propo-
sition 4.3.4 in [4]) for f(m) when f € W)(R) and m is a self-adjoint free It6
process driven by a single semicircular Brownian motion. In Example 4.3.8, we
show that when n =1 and f € Wa(R), Equation (14) recovers Biane and Spe-
icher’s formula. Owing to the strict containment in Equation (13), this means
that not only have we extended Biane and Speicher’s formula to the case n > 1,
but we have also — through the use of MOIs — meaningfully enlarged the class
of functions for which it can be formulated.

2 BACKGROUND

2.1 FREE PROBABILITY

In this section, we discuss some basic definitions and facts about free probabil-
ity, noncommutative LP-spaces, noncommutative martingales, and free Brow-
nian motions. We assume the reader is familiar with these, and we recall only
what is necessary for the present application. For a proper treatment of the
basics of free probability, please see [31] or [32].
A pair (A, p) is called a *-PROBABILITY SPACE if A is a unital *-algebra and
p: A — Cis a STATE — i.e., ¢ is C-linear, unital (p(1) = 1), and positive
(p(a*a) > 0 for a € A). We say that a collection (A;);er of (not necessarily
*-)subalgebras of A is FREELY INDEPENDENT if ¢(a;---a,) = 0 whenever
plar) = -+ = plap) =0 and a1 € A;y,...,a, € A;, with iy # i9,i0 # i3,
yin—2 # Gp—1,in—1 7 in. We say that a collection (a;);cs of elements of A
is (*-)FREELY INDEPENDENT if the collection of (x-)subalgebras generated by
these elements is freely independent.
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Let H be a complex Hilbert space and B(H) := {bdd. linear maps H — H}.
A voN NEUMANN ALGEBRA is a unital x-subalgebra of B(H) that is closed
in the weak operator topology (WOT). A pair (A, 7) is a W*-PROBABILITY
SPACE if A is a von Neumann algebra and 7: A — C a TRACE — i.e., T is a
state that is tracial (7(ab) = 7(ba) for a,b € A), faithful (7(a*a) = 0 implies
a = 0), and normal (o-WOT continuous). All -probability spaces considered
in this paper will be W*-probability spaces. For more information about von
Neumann algebras, please see [17].

Fix now a W*-probability space (A, 7). If a € A is normal, i.e., a*a = aa™,
then the *-DISTRIBUTION of «a is the Borel probability measure

fra(dA) = 7(P*(dA))

on the spectrum o(a) C C of a, where P*: B,(,) — A is the PROJECTION-
VALUED SPECTRAL MEASURE of a, i.e., the projection-valued measure charac-
terized by the identity a = fa(a) AP?%(d\). Please see Chapter IX of [10] for
the basics of projection-valued measures and the Spectral Theorem. Recall in
particular that f(a) = [, f(A) P*(d\) = fa(a) fdP* € A for all bounded
Borel measurable functions f: o(a) — C.

Let pf° :== 6o and, for ¢t > 0,

1
i€ (ds) = 5t (4t — s?) 1 ds

be the semicircle distribution of variance t. Notice that if £ > 0, then supp p§° is
equal to [-2v/%,2v/t] C R, so that if a € A is normal and has *-distribution p5°,
then a € Ag,. Such an element a is called a SEMICIRCULAR ELEMENT OF
VARIANCE t. We call b € A a CIRCULAR ELEMENT OF VARIANCE ¢t if

b= %(al + iag)

for two freely independent semicircular elements ai,as € Ag, of variance t.
Since —ao is still semicircular, we have that if b € A is a circular element of
variance t, then b* is as well.

It is worth mentioning that there is a more general algebraic/combinatorial
definition of *-distribution, and one may define (semi)circular elements in a *-
probability space in a more “intrinsic” way using the notion of free cumulants.
Please see [32] for this approach. Since we shall not need this combinatorial
machinery, we content ourselves with the analytic definition above.

Next, we turn to noncommutative LP-spaces. Please see [13] for a detailed
development of the basic properties of noncommutative LP-spaces.

NoTATION 2.1.1 (NONCOMMUTATIVE LP-SPACES). Let (A,7) be a W*-
probability space. If p € [1, 00), then we define
1 * \END
lallze(ry = 7(jal")> = 7((a"a)?)?,
for all a € A, and LP(A, 7) to be the completion of A with respect to the norm
|- [|o(r).- We also define L®(A,7) = Aand || - ||poo(ry = || - la = - |
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Similar to the classical case, we have noncommutative Hélder’s inequality:
if a1,...,an € A, then |lar---anllLeizy < [la1|lpeir) - [lan| en () whenever
D1y P, € [1,00] and pyt +-- -4 p ' = p~!. This allows us to extend mul-
tiplication to a bounded n-linear map LP* (A, 1) x --- x LP» (A, 1) — LP(A, 7).
In addition, there is a dual characterization of the noncommutative LP-norm:
if a € A, then we have ||a|[z»(r) = sup{7(ab) : b € A, ||b][za(ry < 1} whenever
p~ 1+ ¢! = 1. This leads to the duality relationship LI(A,7) = LP(A, 7)*,
via the map a +— (b — 7(ab)), when p~' + ¢! = 1 and p # oo, as in the
classical case. Moreover, the o-WOT on A coincides with the weak* topology
on LY (A, 7)* 2 L>®(A, 1) = A

Finally, we briefly discuss noncommutative martingales and free Brownian mo-
tions. For this, we recall that if B C A is a W*-SUBALGEBRA — i.e., a WOT-
closed *-subalgebra — then there is a unique positive linear map 7[- | B]: A — B
such that 7[biabs | B] = bi7[a | B]bs, for all a € A and by,by € B. We call
7[- | B] the CONDITIONAL EXPECTATION ONTO B. It was introduced in [39]. It
extends to a (weak) contraction LP(A, 1) — LP(B, ), for all p € [1,00]. When
p = 2, we get the orthogonal projection of L?(A,7) onto L?(B,7) C L2(A, 7).
In particular, as it is often useful to remember, if a € A and b € B, then

b=rla| B] < 7(boa) = 7(bod), for all by € B.

This implies, for instance, that if a is freely independent from B, then we have
Tla | B] = 7(a)l = 7(a).

Now, an increasing collection (A)i>o of W*-subalgebras of A is called a
FILTRATION of A, and the triple (A, (A¢)t>0,7) is called a FILTERED W*-
PROBABILITY SPACE. Fix a filtration (A;)i>0 of A and p € [l,00]. A
LP-PROCESS a = (a(t))i>0: Ry — LP(A,7) is ADAPTED (TO (Ai)i>0) if
a(t) € LP(As,7) C LP(A,7), for every ¢ > 0. An adapted LP-process
m: Ry — LP(A,7) is called a NONCOMMUTATIVE LP-MARTINGALE (WITH RE-
SPECT TO ((A¢)i>0,7)) if 7[m(t) | As] = m(s) whenever 0 < s <t < oco. If
p = oo, then we shall omit the “LP” from these terms.

An adapted process m: Ry — A is called a (SEMI)CIRCULAR BROWNIAN MO-
TION (IN (A, (Ai)i>0,7)) if m(0) = 0 and m(t) — m(s) is a (semi)circular ele-
ment of variance ¢t —s that is x-freely independent from A, when 0 < s < t < oo.
More concisely, m(0) = 0 and m has “free (semi)circular increments.” It fol-
lows from the comments about conditional expectation and the free incre-
ments property that (semi)circular Brownian motion is a noncommutative
martingale. Also, if m is a circular Brownian motion, then the processes
V2Rem = \%(m +m*) and v2Imm = ﬁ(m — m*) are freely independent

semicircular Brownian motions.

2.2 TENSOR ProDUCTS

In this section, we set notation for and review some information about several
topological tensor products of which we shall make use.
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NOTATION 2.2.1. Write ® for the algebraic tensor product, ®- for the Hilbert
space tensor product, ®ui, for the minimal (or spatial) C*-tensor product, ®
for the (spatial) von Neumann algebra tensor product, and @, for the Banach
space projective tensor product.

Though we assume the reader has some familiarity with these tensor products,
we recall their definitions/constructions for convenience. Let (H,(-,-)y) and
(K, {-,-)k) be Hilbert spaces. There exists a unique inner product (-,)gg,x
on H ® K determined by <h1 ® ki,he ® k/’2>H®2K = <h1,h2>H<k/’1,k?2>K, for
all hi,ho € H and ki,ko € K. The Hilbert space tensor product H ®o K
is the defined to be the completion of H ® K with respect to (-, )gg,x. If
a € B(H) and b € B(K), then there exists unique a ® b € B(H ®3 K)
such that (a ®2 b)(h ® k) = ah ® bk, for all h € H and k € K. Moreover,
lla ®2 bl B(rg.K) = llallB(m) |10l B(k)- It is not difficult to show that the linear
map B(H)® B(K) — B(H ®3 K) determined by a ® b — a ®2 b is an injective
s-homomorphism when B(H) ® B(K) is given the tensor product x-algebra
structure. This allows us to view B(H)® B(K) as a *-subalgebra of B(H ®2 K)
and justifies writing, as we shall, ¢ ® b instead of a ®2 b. In particular, if
A C B(H) and B C B(K) are C*-algebras, then we may naturally view A® B
as a x-subalgebra of B(H ®2 K). The minimal C*-tensor product A ®yin B of A
and B is the operator norm closure of A® B in B(H ®, K). If in addition A and
B are von Neumann algebras, then A®B is the WOT closure — equivalently, by
the Kaplansky Density Theorem, the o-WOT closure — of A® B in B(H ®2 K).
If 7, and 7 are traces on A and B, respectively, then we write 7 &7 : AQB — C
for the unique trace on A®B determined by (11 ®72)(a ® b) = 71(a) 72(b), for
all a € A and b € B. This is the TENSOR PRODUCT TRACE on A®B. For more
information on ®min and ®, please see Chapter 3 of [5] or Chapter 11 of [26].

Now, let (V.|| - |lv) and (W, ]| - ||lw) be Banach spaces. For u € V ® W, define

n n
[ullye, w = nf { Yo loilvilwsllw :u=7"v;® wj}-

j=1 j=1

Then [|-[|y/¢_w is a norm on V@ W, and the projective tensor product VR,W
is defined as the completion of V' @ W with respect to || - [|/¢_y,. This tensor
product satisfies the type of universal property that the algeraic tensor product
satisfies: it bounded-linearizes bounded bilinear maps. If V' and W are in addi-
tion Banach algebras, then V&, W is also a Banach algebra with multiplication
extending the tensor product multiplication on V @ W.

There is also a concrete description of the elements of V&, W. Indeed, it can
be shown that every element u € V®,W admits a decomposition

o0 o0
uw=Y vy ®@wy with > |lvn|lv]lwn|lw < oo (15)
n=1 n=1
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and that
oo oo
lullyve w = inf{ Z vnllv lwallw = u = Z vp, ® wy, as in Equation (15)}
n=1 n=1

Please see Chapter 2 of [37] for a proper development. This has a number of
consequences. The most relevant one for us will be a description of A®,B for
C*-algebras A and B.

PROPOSITION 2.2.2. Let A and B be C*-algebras and tmin: AQ-B = ARmin B
be the natural map obtained by applying the universal property of ®x to the
inclusion A Q@ B — A Quin B. Then tmin 18 injective.

This follows from Proposition 2.2 and the remark following it in [21]. From
Proposition 2.2.2 and the concrete description of V&,.W above, we see that if
A C B(H) and B C B(K) are C*-algebras, then A%, B can be represented as
the subalgebra of B(H ®2 K) of elements u € B(H ®2 K) admitting a decompo-
sition uw =Y | a, ® b, € B(H ®2 K) such that (ap)nen € AN (b)) nen € BY,
and Y | |lan|| 5(m)l|bnll B(x) < co. In particular, we have the chain of inclu-
sions A® B C A®,B C A ®@min BC B(H ®2 K).

3 FREE STOCHASTIC CALCULUS I: POLYNOMIALS AND THE TRACED FOR-
MULA

3.1 THE FREE STOCHASTIC INTEGRAL AGAINST (SEMI)CIRCULAR BROW-
NIAN MOTION

In this section, we review Biane and Speicher’s construction from [4] of the free
stochastic integral against semicircular Brownian motion and use it to define
free stochastic integrals against circular Brownian motion. We begin by setting
notation for a few useful algebraic operations.

NoTAaTION 3.1.1. Let H be a complex Hilbert space and A C B(H) be a von
Neumann algebra.

(a) A°P is the opposite von Neumann algebra of A, i.e., the von Neumann
algebra with the same addition, *-operation, and topological structure as
A but the opposite multiplication operation a-b:=ba. If 7: A — Cis a
trace, then we write 7°P: A°P — C for the induced trace on A4°P.

(b) We write (-)"»: ARA® — ARA°P for the unique o-WOT continuous
(and isometric) linear map determined by (a ® b)"® = b ® a. Also, write
u* == (u*)", for all u € ARAP, where (-)* denotes the standard tensor
product x-operation on ARA°P (e.g., (a ® b)* = a* ® b*).

(c) We write #: A%,A°° — B(A) = {bounded linear maps A — A} for the
bounded linear map — and, actually, algebra homomorphism — determined
by #(a®b)c = ach. Also, we write u#c := #(u)c, for all u € A®,.A°P and
c € A. Note that if u € A®, AP C ARA°P, then u*, u™, u* € AR, AP
and (u#c)* = (u*)#c*, for all ¢ € A.
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(d) (Not used until Section 3.4) Write Ba((A®.A°P)?%; AR.A°P) for the space
of bounded bilinear maps (A®A°P)% — ARA°P, and write

#5 1 (ADAP)® 5 By((ADA)% ADAP)
for the bounded linear map determined by
#?(Ul ® uz @ usz)[v1, V2] = u1v1UVIU3

for uy,us, us,v1,v2 € ADAP. If A € (ARAP)®=3 and u,v € ARAP,
then we write A#S [u,v] = #5 (A)[u,v].

REMARK 3.1.2. If H is finite-dimensional and A = B(H), then one can use
elementary linear algebra to show that #: A®,A® = A ® AP — B(A) is
a linear isomorphism. Moreover, # is a x-homomorphism when A ® A°P is
given the tensor product *-operation and B(A) is given the adjoint operation
associated to the Hilbert-Schmidt inner product on A = B(H). This is why
we have chosen to write (-)* for the tensor product #-operation on A&A°P; in
[4], the symbol (-)* is used for the operation (-)* from (b).

Some justification is in order for what is written in (a) and (b) above. First,
we observe that A°P is, indeed, a von Neumann algebra. Abstractly, A°P is
clearly a C*-algebra with a predual (the same predual as A). Concretely, AP
can be represented on the dual H* of H via the transpose map

BH)>a— (H*>¢w—loae€ H*) € B(H").

This map is a *-anti-homomorphism that is a homeomorphism with respect to
the WOT and the o-WOT, so the image of A under the transpose map is a von
Neumann algebra isomorphic to A°P. Next, using this representation of A°P,
we confirm that (-)™® is well-defined. Certainly, the condition in the definition
determines a linear map (-)™*: A ® A°° — A ® A°P. What remains to be
confirmed is that the latter linear map is o-WOT continuous and isometric.
To see this, write (-)7: H ® H* — H ®5 H* for the conjugate-linear surjective
isometry determined by h ® (-, k) — k ® (-, h). Then it is easy to show that

W™ g, = (un’, §f>H®2Hw

for all u € A® A C B(H ®2 H*) and &,n € H ®2 H*. This implies both
desired conclusions.

Next, we define simple biprocesses and their integrals against arbitrary func-
tions. For the remainder of this paper, fix a filtered W*-probability space

(‘Aa (At)tZOa T)'

DEFINITION 3.1.3 (BIPROCESSES). A map u: Ry — A®.A°P is called a BIPRO-
cEss. If u(t) € Ay ® AP, for every ¢ > 0, then u is called ADAPTED. If there
is a finite partition 0 = tg < t; < -+ < t, < oo of Ry such that, for all
i € {1,...,n}, u is constant on [t;_1,t;), and u(t) = 0 for t > t,, then u is
called sSIMPLE. We write S for the space of simple biprocesses and S, C S for
the subspace of simple adapted biprocesses.
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NOTATION 3.1.4 (INTEGRALS OF SIMPLE BIPROCESSES). If u € S, then

w=3 A, ultior)
=1

for some partition 0 =ty < --- < t, < o0o. If m: Ry — A is any function, then
we define

n

/0 u(t)#dm(t) = /0 u#dm = Zu(ti,l)#[m(ti) —m(t;—1)] € A.

i=1

By standard arguments (from scratch or using the basic theory of finitely ad-
ditive vector measures), the element fOOO u#dm does not depend on the chosen
decomposition of u, and S > u — fooo u#dm € A is linear.

Note that if u € S and r, s > 0 are such that r < s, then 1|, jyu € S and u* € S.
Thus the statement of the lemma below, the proof of which we leave to the
reader, makes sense.

LEMMA 3.1.5 (PROPERTIES OF INTEGRALS OF SIMPLE BIPROCESSES). Let
m: Ry — A be any function and u € S. Fiz r,s > 0 with r < s, and define

/ u(t)#dm(t) = / ugdm = / (L, syu)#dm € A.
T T 0
Then

(i) S3uw [Tult)#dm(t) € A is linear;

(ii) ([updm)” = [°u*pdm*;

(iii) if u € S, and m is adapted, then fo u#dm = (fot u#dm) is adapted;

t>0

(iv) if u(t) = 0 for all t > s > 0, then [ u(t)#dm(t) = [ u(t)dm(t)

whenever sy, S2 > s; and

(v) [Zu)#dm(t) = [ u(t)#dm(t) — [ u(t)#dm(t).

Next, we introduce a larger space of integrands for the case when m is a
(semi)circular Brownian motion. Notice that a simple biprocess

u: Ry = A® AP C LP(ARAP, TRTP)

is a compactly supported simple — in particular, Bochner integrable! — map
Ry — LP(ARA, 7@7°P), for all p € [1, 00].

IFor information on the Bochner integral, please see Appendix E of [9].
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NOTATION 3.1.6. Fix p,q € [1, 0], and let (B,n) be a W*-probability space.

(a) Foru e LL (Ry;LP(B,n)) = L{ (R4, Lebesgue; LP(B, 7)), define

loc

1
t q
[ullLgzr(n) = (/0 ||U(3)qu(n) ds) and

el ooy = ( / ()12, ) ds>

for t > 0 (with the obvious modification for ¢ = c0). Of course, |||l 1212,

Q=

comes from the “inner product” <U,U>L$L2(n) = f()t(u(s), v(8)) L2 () ds.
(b) Define
L3P =S, C L*(Ry; LP(ARAP, 7&7°P)) and
AP =TS, C L} .(Ry; LP(AQAP, 7@7°P)),

where the first closure above takes place in the Banach space
L?(Ry; LP(ARA°P, 7®7°P)) and the second takes place in the Fréchet
space L (Ry; LP(ARA°P, T&T°P)). We write

loc
L2 = L*° C L*(R;; ARAP) and
AZ = A2 C LR (R 5 ADAP)

for the case p = oc.

To be clear, the L9- and L{ -spaces above are the Bochner L?- and L -spaces.

REMARK 3.1.7. The use of £ and A above is inspired by the notation used in
8] for the classical case. Biane and Speicher use the notation % in [4] for the
space £2P, though their definition is stated as an abstract completion of S,.
Also, we note that simple biprocesses take values in A® AP C ARy A°P, and
A Qmin AP € ARA°P is a norm-closed subspace. In particular, all elements
of A? actually take values (almost everywhere) in A ®@pin A°P. In other words,
A2 C L2 (Ri; A ®@min A°P).

loc

Only the case p = oo will matter to us in later sections. However, we note that
in the case p = 2, there is an It6 Isometry, just as in the classical case. It says
that if : Ry — A is a semicircular Brownian motion (or, in fact, a circular
Brownian motion), then

t t
< / U#dz; / ’U#d.CC> = <U7U>L?L2(T®TOP)7
0 0 L2(7)

for all w,v € S, and ¢t > 0. Please see Proposition 3.1.1 in [4]. We now focus
on the case p = oo.
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THEOREM 3.1.8 (BIANE-SPEICHER [4]). Let z: Ry — Ag be a semicircular
Brownian motion and z: Ry — A be a circular Brownian motion. Fiz u € S,
and m € {z,z, z*}.

(i) [, u#dm is a noncommutative martingale.

(11) (L*°-BURKHOLDER-DAVIS-GUNDY (BDG) INEQUALITY) We have

It follows that the map {(r1,r2) : 0 <11 < ra} 3 (s,t) — f; u#tdm € A
1S continuous.

| utyrdz(v)] <2vlulapmorn.
0

Proof. If m = z, then item (i) is Proposition 2.2.2 in [4]. The inequality in
item (ii) is Theorem 3.2.1 in [4]. The remainder of the claims in the theorem

(i.e., those for m € {z,z*}) follow from the corresponding claims for m = x
1

because z = %(xl +ix9) and z* = ﬁ(xl — ix9), where 21 = v/2Rez and
o = v/2Im 2z are (freely independent) semicircular Brownian motions. O

COROLLARY 3.1.9. Retain the setup of Theorem 3.1.8, and fit s > 0. The
linear map

/' -#dm: S, = C([s,00);.A)

extends uniquely to a continuous linear map A* — C([s,o0);.A), which we
notate the same way. If u € A%, then fo u#tdm is a continuous noncommutative
martingale that satisfies the identities

t t s t * t
/ u#dm:/ u#dm—/ u#tdm and (/ u#dm) :/ w*#dm™,
s 0 0 s s

and the bounds
t t
/ utdzx|| < 2\/5(/ ||u(r)|\%w(7®70p) dr) and

t t %
| | s s4< / |u<r>||%w<7®7w>dr>

fort>s and e € {1,+}. Similar comments apply to fooo ugtdm for u € L2.

2

DEFINITION 3.1.10 (FREE STOCHASTIC INTEGRAL). For every u € A% and
m € {x,z,2*} as above, the process fo u#tdm from Corollary 3.1.9 is called the
FREE STOCHASTIC INTEGRAL OF u AGAINST m.
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We end this section by giving a large class of examples of members of A?P.
Note that u € AP if and only if Lopnu € L2%P, for all t > 0. We shall use this
freely below.

PROPOSITION 3.1.11. Suppose that u: Ry — A ®min A°P is (norm) right-
continuous, locally bounded, and adapted, i.e., u(t) € A Qmin As¥ for allt > 0.
If p € [1,00] and v € A*P, then uv € A*P. The latter juxtaposition is the
(pointwise) usual action of ARA®P on LP(ARAP, T&TP).

Proof. First, note that if 0 < s <t < co and w € A; ® AP, then we have
L hwo € L£%P. (Approximate v by simple adapted biprocesses to see this.) We
claim this holds for w € As ®min AP as well. Indeed, let (wy,)nen be a sequence
in A;®ASP converging in the norm topology to w. By noncommutative Holder’s
Inequality, we have

||1[s,t)wn U= 1[s,t)wv||L2LP('r®'r°P) < Hwn - w||L°°(T®T°p)”vHLfLP(‘r@TOP) — 0,
Le, lpwnv = 1z ywo in L*(Ry; LP(ARAP, 7®7°P)) as n — oco. Thus

L pwo € L*P, as claimed.
Now, let t > 0, and define

L, cyu(5)
1

n
u' =

%

for n € N. Then u”v € £2? by the previous paragraph. Since u is right-
continuous, u" — 1jg yu pointwise in A @min AP € ARAP as n — co. In
particular, " v — 1jg yu v pointwise in LP(ARAP, 7®7°P) as n — oo. Also,
SUPyeN [Ju™ UHLP(T®T°P) < 1[0,t)||UHLP(T®T°P) SUPo<r<t HU(T)HL“’(T@T”P)’ which is
in L?*(R) because u is locally bounded. Therefore, by the Dominated Conver-
gence Theorem,

Hunv - 1[0,t)UU||L2LP(T®T°P) = Hunv - UUHL?LP(T(@TOP) —0
asn — 0o0. Thus u™ v — 1jg yuvin L*(Ry; LP(AQAP, 7®&7°P)) as n — co. We

conclude 1jg puv € L£%? and therefore, since t > 0 was arbitrary, uv € A%?,
as desired. |

COROLLARY 3.1.12. Suppose that u: Ry — A iy AP is RCLL, i.e., u is
(norm) right-continuous and the left limit u(t—) = lims ~ u(s) € A Qmin A°P
exists for each t > 0. If u is adapted, p € [1,00], and v € A>P, then uv € A*P.

Proof. If u is RCLL, then u is right-continuous and locally bounded, so Propo-
sition 3.1.11 applies. [l
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EXAMPLE 3.1.13. Suppose u: R, — A®,.A°P is continuous with respect to
[ -1l ag. 400 and u(t) € A @, AP, for all t > 0. Since AR, AP C A @pin AP
and [|-[| g 400 < ||+ [| A@min.acr, u satisfies the hypotheses of Proposition 3.1.11
(even Corollary 3.1.12). A common example of this form is

i=1 t>0

i=1

for continuous adapted processes a1,b; ..., an,bn: Ry — A.

3.2 FRrEeE ITO PrODUCT RULE

In this section, we set up and prove an It6 product rule for free It6 processes
(Theorem 3.2.5). We begin by officially introducing free Itd processes. Recall
that (A, (At)i>0,7) is a fixed W*-probability space.

DEFINITION 3.2.1 (FREE ITO PROCESS). Fix n € N and n freely independent
semicircular Brownian motions z1,...,o,: Ry — Asa. A FREE ITO PROCESS
is a process m: Ry — A satisfying

dm(t) = i w; () #dxi(t) + k(t) dt, ie., (16)

= m()+Y" /O ws (1) () + /O k(t) dt,

where m(0) € Ao, u; € A% for all i € {1,...,n}, and k: R, — A is locally
Bochner integrable and adapted. If w: Ry — A®.A°P is continuous and
adapted (as in Example 3.1.13), then we write

n

w(t)#dm(t) =Y (w(t) ui(t))#dri(t) + w(t)#k(t) dt, ie.,

=1

/. w(t)#dm(t) = w(0)#m(0) + Z /O'(w(t) u; (t))#dx; (t) + / w(t)#k(t) dt,

0 0

where the multiplication wu,; occurs in ARA°P. If w = a ® b for continuous
adapted a,b: Ry — A, then we write

a(t) dm(t) b(t) == w(t)#dm(t) = (a(t) @ b(t))#dm(t).

Note that if k is as above, then [ k(t)dt: Ry — A is adapted because A; C A
is norm-closed, for all ¢ > 0. In particular, free Itd processes are continuous and
adapted. Also, if m and w are as above, then wu; € A? by Corollary 3.1.12,
and w#k: Ry — A is locally Bochner integrable because k is locally Bochner
integrable and Ry > ¢t — #(w(t)) € B(A) is continuous. In particular, both
the free stochastic integrals and the Bochner integrals in second part of the
definition above make sense.
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Now, suppose that z1, ..., z,: Ry — A are x-freely independent circular Brow-
nian motions. If k: Ry — A is locally Bochner integrable and adapted,
UL, V1, ..., Un, Un € A%, and m: Ry — A satisfies

=3 (ui(t)#dzi(t) + vi(t)#dz] (t)) + k(t) dt, (17)

i=1

then m is a free It6 process driven by 2n freely independent semicircular
Brownian motions. Indeed, if z; = v2Rez; and y; = v2Imz, then
T1,Y1 .- Tn,Yn: Ry — Ag, are freely independent semicircular Brownian mo-
tions, and m satisfies

Z )+ v;(0)#d; (t) +i(u;(t) — v; (1)) #dy; (1) + k(t) dt.

Next, we introduce the operations that show up in the free It6 product rule.

NOTATION 3.2.2. Let my: A® A — A be the linear map induced by multipli-
cation and

My =myo(lda®7Ridy): ARARA— A,

i.e., M; is the linear map determined by M,(a ® b ® ¢) = a7(b) c = 7(b) ac.
Now, for u,v € A® AP, let

Qr(u,0) =M (1®v) - (u1)), (18)

where - is multiplication in A® AP R A, ie., Q;: (AR AP) X (A® AP) > A
is the bilinear map determined by Q,(a ® b,c® d) = a7(bc) d.

In [4], M, is written as 0, and @, is written as ((-,-)). Note that, us-
ing the universal property of the projective tensor product, we can extend
M, to a bounded linear map A¥3® — A and @Q, to a bounded bilin-
ear map (A®,A°°)? — A. Unfortunately, however, the multiplication map
ma: A® A — A is not bounded with respect to || - ||p(rgr) (Proposi-
tion 3.6 in [16]), so there is no hope of extending M, to a bounded linear
map A Qmin A @min A — A, let alone AQARA — A. Nevertheless, using
the following elementary but crucial algebraic observation, we learn that the
“tracing out the middle” in the definition implies that ), can be extended to
a bounded bilinear map (A®A°P)% — A.

LEmMA 3.2.3. Ifu,v e A®R A°® and a,b,c,d € A, then
T(aM-((18v)- (b©c@d)-(u®1))) = (T&77)((a®@1) (b 1)uv™ (1@c)(d® 1)),
where the juxtapositions on the right hand side are multiplications in A® A°P.
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Proof. Tt suffices to assume u = a; ® by and v = ¢; ® dy are pure tensors. In
this case, we have
T(aM-(1®v) (b®c®d) - (u®1))) =7(aba;7(biccr)did)
= (1@ 7%)((abaydrd) @ (c1 - ¢ - by))
=(T@7m?)(a®1)(b@1)(a1 ® 1)(d1 @ c1)(d @ c)(1 ® b))
=) ((1@b)(a®1)(b®1)(a1®1)(d @c)(1@c)(d®1))
=(T@7P)((a®1)(b®1)(a1 ®b1)(d1 ®c1)(1®c)(d®1)),

where in the second-to-last equality we used traciality of 7 ® 7°P. [l
In particular, if u,v € A® A°? and a € A, then
T(aQr(u,v)) = (T&7°)((a ® Ljuv™). (19)

Now, note that the right hand side of Equation (19) makes sense for arbitrary
u,v € ARAP and a € L'(A, 7). We may therefore use the duality relationship
LY(A,7)* = L>=(A,7) = A to extend the definition of Q,. Specifically, if
u,v € ARAP, a € LY(A, 1), and £, (a) = (T1&7°P)((a ® 1)uv™), then

[luv(@)] < [l(a @ 1)uo™|

< ”a ® 1HL1(T®T°F’)HUU HL“(T@TOP)

Ll (T®To°P)

= [lall 1 r) [lu0™ || Lo (@ o) -

Thus [[€uvllpra,r) < [[uv™®|| Lo (z@rory < 00. In particular, since A is dense
in L'(A,7), the following definition makes sense and extends the algebraic
definition of Q.

DEFINITION 3.2.4 (EXTENDED DEFINITION OF Q). If u,v € ARA°P, then we
define @ (u,v) to be the unique element of A such that

7(a Q- (u,v)) = (T&7°)((a ® Huw™),
for all a € A (and thus a € L1(A,7)).

It is clear from the definition that the map Q;(u,v) is bilinear in (u,v). Also,
by the paragraph before Definition 3.2.4, if u,v € A®.A°P, then

190 (1, o)l = Nuallzr e < N Lo rrony < ull e rromy 0l rron)-
Therefore, by the Cauchy-Schwarz Inequality, if u,v € L (R4 ; AR.AP), then
QT(U ’U) € LIOC(R+’ A) and

||QT(U7 ’U)”L%L“(T) < ”u”L%LN(T@TOP) ”vHLfL“(T@TOP)a (20)

for all t > 0. It is then easy to see — by starting with simple adapted biprocesses
and then taking limits — that if u,v € A?, then Q.(u,v) € L _(Ry;A) is
adapted (i.e., has an adapted representatlve). This is all the information we
need about (), so we are now in a position to state the free Itd6 product rule.
(However, please see Remark 4.3.9 for additional comments about Q.)
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THEOREM 3.2.5 (FREE ITO PRODUCT RULE). The following formulas hold.

(i) Suppose that x1,...,x,: Ry — Ag, are freely independent semicircular
Brownian motions. If, for each £ € {1,2}, m¢: Ry — A is a free Ité
process satisfying

dmy(t Z wei(t)#d(t) + ke(t) dt,
then
d(myma)(t) = dmy () ma(t) + ma (t) dma(t) + Z Q (uni(t), uzi(t)) dt,

i.e., dmq(t) dma(t) = Y0 Qr(u14(t), ugsi(t)) dt in the classical notation.

(ii) Suppose that z1,...,zn: Ry — A are x-freely independent circular Brow-
nian motions. If, for each £ € {1,2}, my: Ry — A is a free Ité process
(driven by z1, ..., zn) satisfying

n

dmg(t) =Y (uei(t)#dzi(t) + ve(t)#dz] (1)) + ka(t) dt,

i=1
then

d(mlmg)(t) = dm1 (t) mao (t) + ml(t) dm2 (t)

i=1

e., dmy(t)dma(t) = 331 (Qr(uri(t), v2i(t)) + Qr (v1i(t), uai(t))) dt in

the classical notation.

By the comments following Definition 3.2.1, item (ii) follows from item (i) with
twice as many semicircular Brownian motions. Before launching into the proof
of item (i), we perform a useful example calculation.

EXAMPLE 3.2.6. Let z: Ry — A be a circular Brownian motion. Written in
the classical notation for quadratic covariation, Theorem 3.2.5.(ii) says that

a(t)dz"(£)b(t)dz(t)e(t) = a(t)T(b(t))c(t)dt and (21)
a(t)dz=()b(t)d=" (t)e(t) = a(t)d=*(t)b(t) d C() a(t) dt b(t)dz" (t)c(t)

(t) dt b(t) dt c(t) (22)

for ¢ € {1,%} and continuous adapted processes a,b,c: R — A. Now,
let ni,ns € N be natural numbers, and fix continuous adapted processes
a1,b1...,Gn,,bpy,01,d1 ..., Cpyydny, k: Ry — A, Suppose that m: Ry — A
is a free It6 process satisfying
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ni n2

dm(t) =" ai(t) d=(O) bi(t) + > e;(t) =" () dj(8) + k(t)dt.  (23)

i=1 j=1

Such m show up frequently “in the wild.” It is often necessary — especially
when m is not self-adjoint — to work with |m|?> = m*m. The free It6 product
rule says that djm|?(t) = dm*(t) m(t) + m*(t) dm(t) + dm*(t) dm(t). Let us
derive an expression for dm*(t) dm(t). First, we have

ng ni
dm™(t) = Z d;(t) dz(t) (1) + Z bj (t) dz*(t) aj (t) + k*(t) dt.
j=1 i=1
Therefore, by the free It product rule (in the form of Equations (21)-(22)),
na ni
dm*(t) dm(t) = (Z di(t) dz(t) ¢ () + Y b5 (t) dz"(t) a] (t))
j=1 i=1

X (i a;(t) dz(t) bi(t) + i ¢;(t) dz"(t) d; (0)

= 3 a0 7(c, (1) (1)) dyy (1)t

J1,92=1

ny
+ 0 b ) (a), () ai, (1) biy (1) dt.
i1,ia=1
Now, let h € Ag be arbitrary, and suppose g: R. — A satisfies

dg(t) = g(t) dz(t) and g(0) = h,

i.e., g is FREE MULTIPLICATIVE BROWNIAN MOTION starting at h. Then, letting
A € C and ga(t) == g(t) — A1 = g(t) — A, we have dgx(t) = g(t)dz(t) and
dgx(t) = dz*(t) g*(t). Therefore, by the formula above, we have

dlgxl*(t) = dgi(t) gr(t) + g(t) dga(t) + dgi(t) dga(t)

)
= dg}(t) gx(t) + gx(t) dgx(t) + 17(g" (t)g(t))1 dt
= dz*(t) g*(t) gx(t) + gx(t) g(t) d=(t) + 7(|g(t)[?) dt.

We shall use this equation in Example 3.5.5.

We now turn to the proof of Theorem 3.2.5.(i). Our approach is similar to
that of Biane and Speicher, though we use less free probabilistic machinery by
mimicking a classical approach to calculating the quadratic covariation of It
processes: computing a L2-limit of second-order Riemann-Stieltjes-type sums.
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NOTATION 3.2.7 (PARTITIONS). Let T’ > 0and I ={0 =ty < --- < t, =T}
be a partition of [0,T]. If ¢ € I, then we write t_ € II for the member of II to
the left of ¢; more precisely, (t9)— = tg and (¢;)— = t;—1 whenever 1 <14 < n.
In addition, if ¢t € II, then At = t — t_, and |II| := maxsern As. Finally,
if V is a vector space, F': [0,T] — V is a function, and ¢ € II, then we write
AF=F(t)— F(t-) and F'' =3 1115 oF(s=): [0,T] = V.

LEMMA 3.2.8. If my and mqy are as in Theorem 3.2.5.(i) and T > 0, then
L*°- lim (Aymy) (Aymz) = mi(T)ma(T) — mq(0)m2(0)

|TTI|—0
tell

_ /OT dma (t) ma(t) — /OT ma (t) dmo(t),

where the limit is over partitions II of [0,T].

Proof. If I is a partition of [0, 7], then
o = ma(T)mz(T) — m1(0)m2(0)

> (ma(t)ma(t) — ma(t-)ma(t-))

tell

= Z ((m1 (t,) + Atml)(mg(t,) + Atm2) —mq (t,)m2(t,))

tell

— Z ((Atml)mg(t,) +my(t-) Ayme + (Atml) (Atmg))

tell

T T
- / dmy (t) m(t) + / mi () dma(t) + Y (Asma) (Avma).
0 0 Py

Now, since my is continuous — and therefore uniformly continuous — on
[0,T], mi' — my uniformly on [0,7] as |II] — 0. Therefore, by the L>-
BDG Inequality (and the vector-valued Dominated Convergence Theorem),
[ dma(8) m5(8) = [ dma(t)ma(t) and [, mI() dma(t) — [, ma(t) dma(t)
in A as |II] — 0. It then follows from the calculation above that

Z (Atml) (Atmg) — mq (T)mg(T) — ml(O)mg(O)

tell
T T
— / dml(t) mao (t) — / ml(t) de (t)
0 0
in A as |II] — 0, as desired. O
LEMMA 3.2.9. Let x1,...,x,: Ry — Ag, be freely independent semicircular

Brownian motions, and fix s,t > 0 such that s < t. For all N € N and
ke {0,...,N}, define ty,n = NT_ks + %t. If a € Ag, then

N
L% lim (zi(tkyN) - zi(tk,LN))a(:cj (te,N) — zj(tk,LN)) = (t—s) 7(a) di;,

N—o00
k=1

foralli,je{l,...,n}.
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Proof. By writing a = (a—7(a)1)47(a)1, it suffices to prove the formula when a
is centered and when a = 1. To this end, write Ay yx; == z;(te.N) —Ti(tk—1,N),
and fix 4,5 € {1,...,n}. First, note that if k¥ # ¢, then A5, Ap nTi, Do N
are freely independent; and if in addition ¢ # j, then Ag, Ap nvxi, Ap N,
A Nxj, Agnz; are freely independent. (This is because s = ton < tin
when k > 1.) Second, recall that ||z;(r1) — z;(r2)| = 24/|r1 — r2| whenever
r1,72 > 0. Therefore, by definition of free independence, if either 1) i = j and
ac{beAs:7(b)=0}or2)i#jandac {be As;:7(b) =0} U {1}, then

N 2 N
E Ak,N-TiaAk,N-Tj = E T(Ak,N.Tja*Ak7N.TiAg7N.TiGA&N,TJ‘)
k=1 L2(7) =1

N

T(AkﬁN:Eja*AkyN:CiAkyN:Ci aAkyN:L'j)
1
+ E T(Ak7N$ja*Ak,N.TiAg7N$iaAg,ij)
k#£L

ke

k

I
M=

T(Ak,ija*Ak7N.TiAk7N.Ti a Ak,ij)

=
Il

1

(t—s)

16
<ol o,

as N — oo. The only case that remains is ¢ = j and a = 1. To take care of
this case, note that if k # ¢, then the elements (A yx;)? — (t, N — tk—1,n5) and
(Ap nzi)? — (toy — te—1.n) are freely independent and centered. Thus

T(((Akaxi)Q — (ten — tre1,n)) (Agnzi)® = (ten — té—l,N))) =0,

from which it follows — as above — that

2 2

N
> (D nwi)® = (t—s)
k=1

N
> (Aknwi)? = (tey — tro1n))
k=1

L2(T) L2(7)

[
WE

T(((Ak,Nzi>2 — (te,n — tk*LN))Q)

B
Il
—

(t—s)?
N

(th,n — th—1,n)? = -0

I
WE

=~
Il
_

as N — oo. The third equality holds because = := Ay yz; is semicircular with
variance 1 ==ty N — tx—1,N, SO

T(x?) = CprP

whenever p € Ny, where C), = ﬁ (2;) is the p'" Catalan number. [l
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Proof of Theorem 3.2.5.(i). By the L°°-BDG Inequality, Equation (20), and
the vector-valued Dominated Convergence Theorem, it suffices to prove the
formula when ug; € S,, for all £ € {1,2} and i € {1,...,n}. By Lemma 3.2.8,
it therefore suffices to prove that if "> 0 and uy; € S,, then

L2— lim (Atm1) Atm2 = / QT Ulz uQ%( )) dt

where the limit is over partitions IT of [0, T]. To this end, write a; = [ ke(t) dt
for ¢ € {1,2}. Then

Z (Atml) (Ath) = Z (Atal + A¢(my — 111)) (Ataz + A¢(mg — (12))

tell tell

= Z Ay(my —a1) Ay(me — az) + Z (Arar) (Agms)
tell tell

+ Z At(ml — al) Atag.
tell

Since Aap = ft ke(s)ds for t € I, we have

3 (Avar) (Agm)

tell

< A, Z A
_gleaﬁd\ sm2|\t€H|| tarl|

T
< max ||Agma]| / k1 (t)|| dt — 0 and
sell 0

Z At (m1 — al) Atag

tell

< max [ A (m1 = a)[| Y 1A e

tell

T
< max | Ay(m1 — ar)]| / ks ()] dt — 0
sell 0

as |TII| — 0 because mo and my — a; are continuous — and therefore uniformly

continuous — on [0,7]. In particular, if we write I;[u] == [ ugdx; for u € A?
and i € {1,...,n}, then we have
L2 li A A =11 Ay i
\H1|§0 ( tml)( tm2 ‘Hﬁfgoz Z ¢ (Li[u1s]) D¢ (1 [UQJ])
tell tell¢,g=1

Thus the proof is complete if we can show that

£ Jim S AD AGED =5, [ Qu. o) (24

|TTI|—0
tell

for all u,v € S, and 7,5 € {1,...,n}. Since Equation (24) is bilinear in (u,v),
it suffices to prove it assuming that u = 1j5, ;,)a®b and v = 1[4, +,)c®d, where
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[s1,t1), [s2,t2) € [0,T), a,b € As,, ¢,d € As,, and either [s1,t1) N [s2,t2) =0
or [s1,t1) = [s2,t2). We take both cases in turn, but we first observe that if
wE S,, i €{1,...,n}, and t € II, then

[e'e] t
Ay (L;[w]) :/ (1[t71t)w)#daci :/ wdx;.
0 t

In particular, if w =0 on [t_,t), then A¢(L;[w]) = 0.

Case 1: [s1,t1) N[s2,t2) = 0. In this case, the observation at the end of the
previous paragraph gives immediately that ), iy A¢(L;[u]) A¢(1;[v]) = 0 when
ITT] is sufficiently small. But also Q. (u,v) = 0, so Equation (24) holds.

Case 2: [s1,t1) = [s2,t2) =: [s,t). Fix N € N, let {txn : 0 < k < N} be
as in Lemma 3.2.9, and suppose that Il is a partition on [0,7] such that
{tk, v : 0 <k <N} CIly. If IIy| = 0 as N — oo, then

L% Em S A (L) AL ) = L Jim 30 ALlu]) A b))

N
= L% lim a(xi(tk,N) — xi(fk_l,zv))bc(xj(tk,zv) —x; (tk—l,N))d

N—o0
k=1

T
= (t—s)at(bc)dd;; = 0 /0 Q- (u(t),v(t)) dt

by the observation made just before the previous paragraph, the definition of I;,
Lemma 3.2.9, and the definition of Q. This completes the proof. (|

COROLLARY 3.2.10. Ifmy and mo are as in Theorem 3.2.5.(1) and T > 0, then

L>°- lim (Atm1) (Ath) = Z:/O QT(uli(t)aUQi(t)) dt,

|TI|—0
tell

where the limit is over partitions of [0,T].

Proof. Combine Lemma 3.2.8 and Theorem 3.2.5. |

3.3 NONCOMMUTATIVE DERIVATIVES

In this section, we define noncommutative derivatives of various scalar func-
tions. We begin by defining divided differences and collecting their relevant
properties.

DEFINITION 3.3.1 (DIVIDED DIFFERENCES). Let S C C and f: S — C be
a function. Define fl% := f and, for k € N and distinct Ay oy A1 €S,
recursively define

SEUOG ) = IO A M)

LISV = .
f ( 1 ; k+1) )\k_)\k-i-l

We call f* the k*" DIVIDED DIFFERENCE of f.
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PROPOSITION 3.3.2 (PROPERTIES OF DIVIDED DIFFERENCES). Fiz S C C,
functions f,g: S — C, and k € N. In addition, write

Y = {(81,...,Sk)€le_:Sl-i----—l—skgl}.
(i) ¥ is a symmetric function.

(ii) If S =R and f € C*(R) orif S = C and f: C — C is entire, then

k k
f[k]()\l, ey )\k+1) = / f(k) <Z Sj)\j + <1 - Z%) )\k-',-l) d81 N -dsk,
Xk j=1 j=1

for all distinct A1, ..., Ag+1 belonging to R or C, respectively. In particu-
lar, if f € C*(R), then fI*! extends uniquely to a (symmetric) continuous
function R¥t1 — C; and if f: C — C is entire, then fI¥! extends uniquely
to a (symmetric) continuous function C*+*1 — C. We shall use the same
notation for these extensions.

(iii) If M,..., Ag+1 € S are distinct, then

k

(fg)[k]()‘la .o ")‘k-i-l) = me()‘la .. ")‘j-‘rl)g[k_j] ()‘j-i-la .o -’)‘k+1)'
§=0

If S =R and f,g € C*(R), then the product formula above holds for all
Ay A1 ERIFS =C and f,g: C — C are entire, then the formula
holds for all Ay,..., Ap+1 € C.

Sketch of proof. Each item is proven by induction on k. For item (i), one shows
that if A1,..., Ax41 € S are distinct, then

k+1
IO e) =D FOD) [T =)
i=1 J#i

which is clearly symmetric in its arguments. For (ii), one proceeds from
the identity %Z(“) = fol f/@EX + (1 — t)p) dt, which follows in either case
from the Fundamental Theorem of Calculus. (Please see the proof of Proposi-
tion 2.1.3.(ii) in [34] for details.) The induction argument for item (iii) proceeds
straightforwardly from the definitions. We encourage the reader to work out the

details when k € {1, 2}, since these are the cases of interest in this paper. [

Next, we work out two important examples of divided differences.

EXAMPLE 3.3.3 (DIVIDED DIFFERENCES OF POLYNOMIALS). Fix a polyno-
mial p(A) = > ¢\ € C[)], viewed as an entire function C — C. If
A= (A1,..., A\ks1) € CFH1 has distinct entries, then

p[k](k):iciz)‘ézici oA, (29)

i=0  |§|=i—k =0 §eNyt:|6|=i—k
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where |§| = 01 + - -- 4 dg41 is the order of § = (01,...,0,41) € NETL (Empty
sums are, by convention, zero.) As is the case with many properties of divided
differences, Equation (25) may be proven by induction on k. Please see Ex-
ample 2.1.5 in [34]. By continuity — i.e., Proposition 3.3.2.(ii) — we have that
Equation (25) holds for all A € CF*1. In particular, p/*l € C[Aq, ..., Aes1].

EXAMPLE 3.3.4 (DIVIDED DIFFERENCES OF Wk FUNCTIONS). Suppose that
1 is a Borel complex measure on R and f(\) = [ € u(d) for X € R. If
Je 117 |u|(d§) < o0, in which casef € Wi(R) (Deﬁn1t1on 4.1.7), then f € C*(R)
and f(N) = [L(i)*e € pu(d€), for all A € R. In particular, by Proposi-
tion 3.3.2. ( i), we have

FH / / (ig)Fei N g ME T M€ i (dE) dsy - sy, (26)
3k

for all A= (A1,..., A1) € REFL

We now move on to noncommutative derivatives. Let A be a unital C-algebra
and ai,...,ax+1 € A be commuting elements. Then there exists a unique
unital algebra homomorphism

V(g )* C[)\l,...,)\k+1]—>A

1oy k1

determined by A; — a;, 1 <j <k-+1.

DEFINITION 3.3.5 (NONCOMMUTATIVE DERIVATIVES OF POLYNOMIALS).
Let A be a unital C-algebra, and fix a = (ay,...,ax+1) € A**L. For j be-
tween 1 and k + 1, write

i = 186-1) g a; @ 1®(k+1-j) ¢ g®(k+1)
Now, for p(A) = >, ;A" € C[)\], we define
0" p(a) = klevi,, aw.y (0") =k pH (@, ... aksr)
= k! Z c; Z atlsl R & ailjjll c A®(k+1) (27)
i=0  |8|=i—k

to be the k*® NONCOMMUTATIVE DERIVATIVE of p evaluated at a. We often
write 0 := 3! and consider dp(ay,as) as an element of A ® A°P. Finally, write

oFp(a) == 8*pla,...,a)
k+1times
for a single element a € A.

Now, fix a unital C*-algebra B. We use analysis to define k" noncommutative
derivatives (in B) of C* functions. First, note that if ai,...,ax+1 € Bsa, then

ay @19k 1801 ®a;® 180+1=9) 18k g g, e BOUHD) C BOmin(k+D)
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is a list of commuting self-adjoint elements in B®=in(*+1) with joint spectrum
o(ar)x---xo(ags1) C REFL (Please see [7].) The following definition therefore
makes sense using multivariate functional calculus.

DEFINITION 3.3.6 (NONCOMMUTATIVE DERIVATIVES OF C¥ FUNCTIONS). For
a=(ai,...,ax+1) € BEFY and f € C*(R), we define

" fla) = k! f¥ (a1 @ 1%F,.. . 1%% @ ajpq) € BOmin(iFD)

to be the kKTH NONCOMMUTATIVE DERIVATIVE of f evaluated at a. As before,
we often write d := 9 and consider df(ay,az) as an element of B @iy BOP.
Also, write

O f(a) :=0"f(a,...,a)
——

k41 times
for a single element a € Bg,.
Of course, if we view B®(*+1) as a subalgebra of B®=in(*+1)  Definition 3.3.6

agrees with Definition 3.3.5 when f = p € C[)\]. We end this section with an
important example.

EXAMPLE 3.3.7 (NONCOMMUTATIVE DERIVATIVES OF W}, FUNCTIONS). Let
pand f be as in Example 3.3.4, and suppose again that [, |€IF |p](d€) < oo. If
a=(ai,...,ar+1) € BEFL it follows from Equation (26) that

akf(a) = k;l/ /(ig)keisﬁm ®- - .®eisk£ak ®€i(172§:1 Sj)Eak+1M(d€) dsy - - - dsy
YrJR

where the above is an iterated Bochner integral in B&=i»(**1)  When k = 1, we
note for later use that actually df (a1, a2) = ifol Jpéet @ e!=taz 1y (de) dt
is an iterated Bochner integral in B&.BP C B Qmin BP (with respect to
| I3, ger) because the map [0,1] x R 3 (£,€) = e @ e'17D2 € Bo, BP
is continuous.

3.4 FUNCTIONAL FREE ITO FORMULA FOR POLYNOMIALS

In this section, we prove the “functional” It6 formula for polynomials of free
Itd processes (Theorem 3.4.4). We begin by defining the object that appears
in the correction term.

NoTAaTION 3.4.1. For p € C[\], m € A, and u,v € A® AP, write

Ay pp(m) = %MT((I ®@v)-*p(m)- (u®1)+(1®@u)-*p(m)-(ve1)), (28)

where - is multiplication in A4 ® A°P ® A.
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As was the case when we defined ),, we can make still make sense of the
formula defining A, ,p(m) when u,v € A®,A°°. And again, though the
formula does not make sense as written when u,v € A Qmuin AP (let alone
u,v € ARA°P), we can use Lemma 3.2.3 to extend A. .p(m): (A® A°P)? — A
to a bounded bilinear map (A®.4°P)? — A. At this time, we advise the reader
to review Notation 3.1.1.(d), as we shall henceforth make heavy use of the #5
operation defined therein.

Fix p € C[\] and m € A. For a € L*(A,7) and u,v € ARAP, define

1, _ ) )
lpuw(a) = §(T®T0p) (a®1)®p(m®1,1®@m,m®1)#§ [uv"™ +vu™, 1®1]).
If a € Aand u,v € A® A°P, then Lemma 3.2.3 and Equation (27) imply

T(a Au,vp(m)) =lpun(a). (29)

We use this equation to extend the definition of A. .p(m). Indeed, note that if
u,v € ARAP, then

1 . _
1€p ol L1y < 5Ha2p(m<g>1, 1@m, m® 1)#8 [uv™ +ou®, 1®1]HL«»<T®TOP>-

Thus, by the duality relationship L' (A, 7)* = A, the following definition makes
sense and extends the algebraic definition of A, ,p(m).

DEFINITION 3.4.2 (EXTENDED DEFINITION OF A, ,p(m)). For a polynomial
p € C[}], an element m € A, and tensors u,v € ARAP, we define A, ,p(m)
to be the unique element of A such that

T(aAuyvp(m)) =lpun(a),
for all a € A (and thus a € L*(A,7)). Also, we write A,p(m) = A, ,p(m).

It is clear from the definition that A, ,p(m) is trilinear in (u,v,p) and sym-
metric in (u,v). Also, if n € Ny and p,(A) = A", then, by Equation (27) and
the paragraph before Definition 3.4.2, we have

”Au,vpn (m) || = ”gpn,u,v HLl(A,r)*

1 . .
< -2 Z (m @ 1)° (uv™ + vu™?) (1 @ m)% (m @ 1)%

[8]|=n—2

Lo (T®T°P)
< 2||u||L°°(T®T°P)Hv||L°°(T®T°P)
§ [ ds
X Z Hm®1HL100(7—®-,—019)||1®mHL200(7—®7—0p)Hm®lHLdoc(T@Top)
[6]|=n—2
= n(n = Dlm|" 2 ull Lo (r@rom V]| Lo (r@ror) - (30)

Therefore, if u,v € L2 _(Ry; ARAP) and m € C(R4;A), then we have that

loc

Ay vp(m) € L (Ry;A) and

loc

1A wwpn (M) Lt poer) < 10 = D)lml|7 27 s 1l L2000 (rrom) 01| 12200 (o)
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for all t > 0. It is then easy to see that if u,v € A? and m: R, — A is
continuous and adapted, then A, ,p(m) € Li_(Ry;A) is adapted as well.

loc
The last fact we shall need about A, ,p(m) to prove the functional free It6

formula for polynomials is the following product rule. (However, please see
Remark 4.3.9 for additional comments about A, ,p(m).)

LEMMA 3.4.3 (PrRODUCT RULE FOR A, ,p(m)). If p,q € C[)\], then
Auw(pg)(m) = Auop(m) g(m) + p(m)Ay,q(m)
+ Q- (Op(m) u,dq(m)v) + Q,(Op(m) v, dg(m) u),
for allm e A and u,v € AQA°P.

Proof. By Proposition 3.3.2.(iii) and the definition of 92, if A is a unital C-
algebra and p, ¢ € C[A], then

9*(pq)(a1,az,a3) = 8°p(a1,az,a3)(1 ® 1@ q(az))
+(p(a1) ® 1® 1)9%q(a1, az, as)
+2(dp(a1, a2) ® 1)(1 ® dq(az, asz)),

for all a1,a2,a3 € A. Applying this to the algebra A = ARA°P and writing
1 =1®1 for the identity in AR.AP to avoid confusion, we have

Fpg)(m©1,1@mme1)=d*pme1,1emme1)(1®1eq@me1))
+(pme) 1) (mo1,1em,mae1)
+2(0p(m®1,10m)®1)(1®dq(1@m,m® 1)),

for all m € A. Now, notice that if uy,us € ARAP and A € (AR.A°P)®3, then
(w1 ®1®1)AQ1 @1 ® u2))#5[c, d] = ur (A#5 [e, d])ua.

Since p(m® 1) =p(m)®1 and ¢(m ® 1) = ¢(m) ® 1, it follows from the above
that if a € A, then

7(a Auw(pg)(m))

(r&m) ((a @ 1)(p(m) © 1)0%(m © 1,1 ® m,m & 15 [ur™ +vu™, 1))

r&r7)((a @ D(@p(m ® 1,19 m) 9 1)
1® dg(1 @ m,m @ 1)))#5 [uv™ + vu?,1])

(T@TOP)(((q(m) a) ® 1)0*p(m @ 1,1 @ m, m @ 1)#§ [uv™ + vu?, 1])
(T@7°P) (((ap(m)) ® DO%qm @ 1,1 @ m,m @ 1)#5 [uv™ + vu™?, 1)) + R,
(q(m) a Auﬁvp(m)) JrT(ap(m)Auﬁvq(m)) + Rq,

7(a Aw,vp(m) g(m))
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where R, is equal to
(r®&7°P) ((a®1)((Op(m®1, 1om)®1)(100q(1em, m@1)))#5 [uv™ +vu, 1]).

But now, note that if Py(A1, Xa) = AT'AP2, Pa(A1, Xo) = AJAS2, up = m@ 1,
and us = 1 ® m, then

@) ((a @ 1)((P1(u1 © 1,1 @ ug) @ 1)(1 @ Pa(uz ® 1,1 @ uy)))#5 [uv™, 1])
= (T®@7")((a ® 1)u] uvfl‘pug2ug1u‘152) = (r®7")((a ® 1)u’flu§2u(uflug%)f”p)

= (@) ((a® 1) Pi(m ® 1,1 @ m)u(Pa(m ® 1,1 @ m)v)™")

by traciality of 7®7°P, the fact that us = 1 ® m commutes with both a ® 1 and
u; = m ® 1, and the identity u]™ = uy. By linearity, the above formula holds
for all P, P2 € C[A1, A2]. Applymg the formula to P; = pl!l and P, = ¢! gives

R, = (r@7)((a @ 1)0p(m)u(dq(m)v)"™)
+(r®7°) ((a ® 1)0p(m)v(9q(m)u)"™)
= 7(a Q7(0p(m) u, dq(m) v)) + 7(a Q- (Ip(m) v, Ig(m) w)).

This completes the proof. [l

This, together with the free It6 product rule, gives the functional free Ito
formula for polynomials.

THEOREM 3.4.4 (FUNCTIONAL FREE ITO FORMULA FOR POLYNOMIALS). Fiz
a polynomial p € C[)].

(i) Suppose that x1,...,x,: Ry — Ag, are freely independent semicircular
Brownian motions. If m is a free Ité process satisfying Equation (16),

then dp(m(t)) = Op(m(t))#dm(t) + 3 371 Ay, yp(m(t)) dt.

(ii) Suppose that z1,...,zn: Ry — A are x-freely independent circular Brow-
nian motions. If m is a free Itd process satisfying Equation (17), then

dp(m(t)) = Op(m(t)#dm(t) + 371 Du,(t),0,p(m(t)) dt.

REMARK 3.4.5. In either case, the map Ry > t — 9p(m(t)) € A®,A°P is
clearly continuous and adapted. In particular, if ¢ € LIOC(RJr; A) and u € A2,
then dp(m)#¢ € Li (Ri;A) and, by Corollary 3.1.12, Op(m)u € A2, Thus all
of the integrals in the statement of Theorem 3.4.4 make sense.

Proof. Using the comments after Definition 3.2.1, it is easy to see that item (ii)
follows from item (i) with twice as many semicircular Brownian motions. It
therefore suffices to prove item (i). To this end, let p, ¢ € C[\] be polynomials,
and suppose that the formula in item (i) holds for both p and ¢q. Then the free
Ité product rule (Theorem 3.2.5), Proposition 3.3.2.(iii), the definition of 0,
and Lemma 3.4.3 give
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d(pq)(m(t)) = dp(m(t)) q(m(t)) + p(m(t)) dg(m(t)) + dp(m(t)) d q(m(t))
= (1 ® q(m(t))op(m(t)) + (p(m(t)) ® 1)0q(m(t)))#dm(t)

0o
£ 37 (5 (Aupln) atm(®) + pm(0) A0, alm(0)

i=1

+Q4%Wﬁ»m®ﬁﬂmwﬁmm)ﬁ
= (pq)(m(t))#dm(t) ZAUM pa)(m(t)) dt.

Thus the formula of interest holds for the polynomial pq as well.

Next, note that the formula holds trivially for p(A\) = po(A) = 1 and
p(A) = p1(A) = A Now, let n > 1, and assume the formula holds for
p(A) = pn(X) = A". By what we just proved, this implies the formula holds
for p(A) = pn(MN)p1(\) = A" = p,,11(\). By induction, the formula holds for
P = pn, for all n € Ny. Since {p,, : n € Ny} is a basis for C[\], we are done. O

3.5 THE TRACED FORMULA

From Theorem 3.4.4 and a symmetrization argument, we obtain a highly useful
“traced” formula. Before stating it, giving examples, and proving it, we present
a rigorous proof of a “folklore” characterization of when a free Itd process is
self-adjoint.

PROPOSITION 3.5.1. Suppose that x1,...,x,: Ry — Ag, are freely independent
semicircular Brownian motions. For each £ € {1,2}, let my be a free Ité process
satisfying dmg(t) = >, we;(£)#dx;(t) + ke(t) dt. Then my = mo if and only
if m1(0) = ma(0), k1 = k2 a.e., and uy; = ug; a.e. for alli.

Proof. Let m be a free Ito process satisfying Equation (16). It suffices to
show that m = 0 if and only if m(0) = 0, ¥ = 0 almost everywhere, and
uy = -+ = u, = 0 almost everywhere. The “if” direction is obvious. For the
converse, notice that if m = 0, then

0=dm"(t) =Y uf(t)#dx;(t) + k*(t) dt,
=1
so that

0 = d(mm*)(t) = dm(t) m*(t) + m(t) dm* (t) + Z Q- (ui(t), uX(t)) dt

=D Qr(wit),ul (1)) dt

by the free It6 product rule. In other words, fot Yoy Qr(ui(s),uf(s))ds = 0,
for all ¢t > 0. By, for instance, the (vector-valued) Lebesgue leferentlamon
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Theorem, this implies Y " | Q- (u;(t), uX(t)) = 0 for almost every ¢t > 0. We
claim that this implies u; = --- = u, = 0 almost everywhere. Indeed, if
u € ARA°P is arbitrary, then, by definition of Q,

T(Qr (u, u*)) = (T&TP) (u(u*)™) = (r&7°)(uu”)
= (T®T°p)(u* = [lullZ2 (o).

Our claim is then proven by an appeal to the faithfulness of 7®7°P. We are
left with fo s)ds =0 for all ¢ > 0. Again from the Lebesgue Differentiation
Theorem, we conclude that £ = 0 almost everywhere. O

COROLLARY 3.5.2. A free Ité process m as in Equation (16) satisfies m* = m if
and only if m(0)* =m(0), k* =k a.e., and u} = u; a.e. for all i. Also, a free
1té process m as in Equation (17) satisfies m* = m if and only if m(0)* = m(0),
k* =k a.e., and u} = v; a.e. for alli.

We now state the traced formula.

THEOREM 3.5.3 (TRACED FUNCTIONAL FREE ITO FORMULA). The following
formulas hold.

(i) Suppose that x1,...,2,: Ry — Ag, are freely independent semicircular
Brownian motions. If m is a free Ité process satisfying Equation (16)

and f € C[A], then

(f(m) = r(1m) + [ (T(f’(m(t)) 0

0

l\D|>—‘

+3 2B (" ()0 (m () wi(t))dt.  (31)

If m* =m (i.e., m(0)* = m(0), k* =k a.e., and u} = u; a.e. for alli),
then Equation (31) holds for any f: R — C that is C? in a neighborhood
of the closure of U;sq a(m(t)).

(ii) Suppose that z1,...,zn: Ry — A are x-freely independent circular Brow-
nian motions. If m is a free It process satisfying Equation (17) and
f € C[\], then

(fm) = (7 m@) + [ ({7 m(®) k(1)

+ @) (o (1) Of (m(t) wit) ) dt. (32)

i=1

If m* =m (i.e., m(0)* = m(0), k* =k a.e., and u} = v; a.e. for all i),
then Equation (32) holds for any f: R — C that is C? in a neighborhood
of the closure of U;sq a(m(t)).
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REMARK 3.5.4. Let m be as in Equation (16). Note that when m* = m and
f:R — C is C? on a neighborhood of the closure of | J,~,0(m(t)), we have
(T&TP) (u; ™ Of'(m) wi) = (Of' (M) s, us) L2(r@ror) because v = u}. By the
functional-calculus-based definition of df'(m), we may therefore read Equa-
tion (31) (almost everywhere) more pleasantly as

) - 1 F ) = f'(w)
@) = (£ ) RO) + 53 [ S5

. Prt),ui(t) (AN, dp),

where oy, (dX, dp) = (PO EM (AN, dp) wi, i) 12 (r@rov). Here, PMELIEM g
the projection-valued joint spectral measure of the pair (m®1,1®m). Similar
comments apply to Equation (32).

Before proving this theorem, we demonstrate its utility.

ExAMPLE 3.5.5. Fix a circular Brownian motion z: Ry — A. Also, let
a1,b1 ..., Gn,by, k: Ry — A be continuous adapted processes and m: Ry — A
be a free It6 process satisfying

dm(t) = (ai(t) dz(t) bi(t) + ci(t) dz"(t) di(t)) + k(t) dt.

i=1

Now, suppose in addition that m > 0 (i.e., m* = m and o(m(t)) C R} when-
ever t > 0). For example, if m is as in Equation (23) and m = |m|* = m*m,
then, as is shown in Example 3.2.6, m is a free Itd process of the form we have
just described.
Now, let ¢ > 0, and define f.(\) = log(A +¢) for A > —¢ and f. = 0 on
(=00, —¢]. Then f. € C®((—¢,00)) and J,~,0(m(t)) € Ry C (—¢,00). Also,
if \, 4 > —e, then -

1 A+e) ' —(pt+e)! 1

o0 = 57z and GO = = = e

Thus
fL(m) = (m+e)~" and 9f.(m) = (f)MN(m@1,10m) = —(m+e) "' @(m+e)~".
In particular, if u =" a; ®b; and v = Y . | ¢; @ d;, then

,Uflipafé(m)u - _ Z (d] ® Cj)((m + 5)_1 ® (m + 5)_1)(ai ® bz)

ij=1

(dj(m+e)~ta;)®(bi(m+e)~tey)

It follows from Theorem 3.5.3 and the Fundamental Theorem of Calculus that

%T(fs(m(t))) = 7(f2m®)) k(1)) + (&) (v™* (1) D f2(m(t)) u(t))

X T(bi(t)(m(t) + E)flcj (t)), (33)
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for all ¢ > 0. Special cases of Equation (33) have shown up in the calculation
of Brown measures of solutions to various free SDEs. Please see [18, 24, 15,
22]. Thus far, such equations are proven in the literature using power series
arguments. Theorem 3.5.3 provides a more intuitive/natural way to do such
calculations.

For concreteness, we demonstrate how Equation (33) can be used to re-prove
a key identity (Lemma 5.2 in [18]) that B.K. Driver, B.C. Hall, and T.A.
Kemp use in the process of computing the Brown measure of free multiplicative
Brownian motion. Similar calculations can be used to re-prove formulas in
24, 15, 22].

We return to the setup of the end of Example 3.2.6, i.e., dg(t) = g(t) dz(t) and
g(0) = h € Ap. We then take gy == g — X for A € C and m = |g)|?>. As we
showed in Example 3.2.6,

dm(t) = gx(t) g(t) d=(t) + d="() g™ () ga(t) + (g™ (¢) g()) di.
By Equation (33),

& rlog(m(t) +2)) = ((m() + ) yrle" (1) (1)

(g () or (Y m (1) + ) g5 g ) r((mlt) +) 7). (34)
But now, 7(g*gx(m +¢)~'g3g) = 7((m + ) ~'g399"95),
(g°g) = 7((m + )" (m +€)g"g),

and

(m+€)g"g—9399"9r =979+ 939:9"9 — 93997 9r = €9"g
because gy = g — A, and A = A1 commutes with all elements. From Equa-
tion (34), we then get

%TU%ﬂMﬂ*AF+@):ENGMU*AF+€YWMMQTMMU*AF+€Y5

for all ¢ > 0. This is equivalent to (a generalization to arbitrary starting point
of) Lemma 5.2 in [18].

We now begin the proof of Theorem 3.5.3, the keys to which are the following
identities.

LEMMA 3.5.6. If p € C[\], m,k € A, and u,v € ARA°P, then
T(Op(m)#k) = 7(p'(m) k) and T(Auﬁvp(m)) = (T®T°p)(vﬂip8p/(m) u)

Proof. Fix n € Ny, define and p,(\) := A™. For the first identity, note that

RUNIOTTI SRS g

01+02=n—1 51+02=n—1
=71(nm™ k) = 7(p),(m) k).
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By linearity, the first desired identity holds for all p € C[A]. Proving the second
identity is slightly more involved. We begin by making two key observations.
First, fix a polynomial P € C[A1, A2, A3] and two elements uj,us € ARAP
that commute. If we define g(A1, A2) == P(A1,A2,A1) and 1 :=1® 1, then

(T®T°p)(P(u1 ®R11,10us®1, 101 Q@ up)#5u, 1]) = (7®7°P)(q(u1, uz) u),

as the reader may easily verify. (The computation is similar to that of R, in the
proof of Lemma 3.4.3.) Second, (7®7°P)(u™") = (7®7°P)(u). This is because
(T®7°P)(a @ b) = 7(a) T(b) = 7(b) T(a) = (T®7°P)(b ® a) whenever a,b € A,
and A ® A°P is o-weakly dense in AR.A°P. Now, note that

(Q(UI; u2) u)flip — uflipq(ul’ u2)f1ip — uflipq(ufllip, u;lip). (35)

Combining these observations and appealing again to traciality of 7®7°P, we
get that if in addition u}™ = ug, and if w € ARA°P satisfies w™™ = w, then

(T@TOP)(P(ul R11L,10us®1,1®1Qu;)#S|[w, 1]) = (1®7°P) (r(u1,u2) w),
(36)
where
Q()‘la)‘2)+q()‘25)‘1) P()‘la)‘Qa)‘l)—i_P()‘Qa)‘la)‘Q)

7‘()\1,)\2): 5 = 2 .

Now, if P = 2pl?, then

P(A1, A2, A1) + P(A2, A1, A2)
2
= pA (A1, A2, A1) + B (N2, M, A2) = (0) (A, ),

T(Al, )\2) =

as can be seen by taking A3 — A; in the definition of pl? (A1, A2, A3) and using

the symmetry of pll. Therefore, if we apply Equation (36) with P = 2pl?,

Uy =m®1,upg=1®m, and w = %(uv“‘" + vu™?), then we obtain

1, _ ) .
7(Auwp(m)) = §(T®T0p)(6p/(m) (uwv™ + vu™?)) (37)
by definition of A, ,p(m) and noncommutative derivatives. To complete the
proof, notice that if ¢ € C[A;, \2] is symmetric, u; and wug satisfy u]™ = ua,

and w € ARA°P is arbitrary, then, by Equation (35),

(1&7°P) (q(u1, uz) w) = (T&7°P) ((q(u1, uz) w)**) = (r&TP) (w"*q(uz, u1))
- (T®T°p)(wm"q(u1,u2)) = (T®T°p)(q(u1,u2) wmp).

Therefore, Equation (37) reduces to
7(Aupp(m)) = (r&T)(0p'(m) uv™) = (r&7°P)(v™*0p'(m) u),

as desired. O
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Proof of Theorem 3.5.3. We prove Theorem 3.5.3.(i) using Theorem 3.4.4.(3).
Theorem 3.5.3.(ii) follows in the exact same way from Theorem 3.4.4.(ii). Fix
freely independent semicircular Brownian motions z1,...,x,: Ry — As,, and
suppose that m is a free Itd process satisfying Equation (16).

Since free stochastic integrals against x; are noncommutative martingales that
start at zero, they have trace zero. Thus, applying 7 to the result of Theo-
rem 3.4.4.(i), bringing 7 (which is bounded-linear) into the Bochner integrals,
and appealing to Lemma 3.5.6, we have

(p(m)) = r(p(m(0) + [ (r(@p(m() k) + 5 )

0

T(Aui(t)p(m(t)))) dt

i=1

5 DB (W (1) Oy (m(1)) wa(r) )
i=1

for all p € C[\].

Suppose now that m* = m and U C R is an open set containing (J,~, o(m(t))
such that f € C?(U). Since m is continuous in the operator norm, m is locally
bounded in the operator norm. In particular, K; = (Jy<,<;0(m(s)) € U is
compact. Next, fixt > 0, and let V; C R and g; € C%(R) be such that V; is open,
K, CV; CU, and g = f on V;. By the Weierstrass Approximation Theorem,
there is a sequence (¢qn)nen of polynomials such that, for all j € {0,1,2},

q%) — ggj) uniformly on compact subsets of R as N — oo. In particular,
() — (g™ uniformly on compact subsets of R? as N — oo. But now,

rlav(m(t) = lax (m(0) + [ (+(d(m() k()

5 (7P (uf (5) Ol (m(5)) wi(5)) ) ds,

N =
INgh

Il
i

3

for all N € N, by the previous paragraph. By basic operator norm estimates
on functional calculus and the Dominated Convergence Theorem, we can take
N — oo in this identity to conclude

rlanm(t)) = (an(m(O) + [ (+(aitm(s) k()

+

N =
INgh

(T®Top) (u?ip(s) agi (m(s)) Uj (S))) ds.

i=1

But g; = f on V; D K; and thus (¢g;)!! = ()" on K; x K;. We therefore have
that g:(m(s)) = f(m(s)) and 9¢'(m(s)) = df'(m(s)), for all s € [0,t]. Since
t > 0 was arbitrary, this completes the proof. [l
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4  FREE STOCHASTIC CALCULUS II: NONCOMMUTATIVE C?2
FUNCTIONS

4.1 NONCOMMUTATIVE C* FUNCTIONS

We now briefly discuss the class NC*¥(R) of noncommutative C* functions
introduced in [34], which contains proofs of all the statements in this section.

NotATION 4.1.1. If Q is a set and ¢: Q@ — C is a function, then we write
l@llee(0) = sup,eq leWw)]. If F is a o-algebra of subsets of €, then we
write £°(Q,.7) = {bounded (%, Bc)-measurable functions ! — C}. For the
duration of this section, fix k¥ € N and, for each j € {1,...,k 4+ 1}, a Polish
space (i.e., a complete separable metric space) €2; with Borel o-algebra Bg;.
Also, write Q == Q1 X -+ X Qpy1.

We now define the integral projective tensor product
£ (le Bfll )®z t ®Z£OO (Qk+17 BQk+1 )7

the idea for which comes from the work of V.V. Peller [35]. Formally, we
shall replace the > 2, in the decomposition (15) of elements of the classical
projective tensor product (of £>°-spaces) with an integral fz -dp over a o-finite
measure space. Here is a precise definition.

DEFINITION 4.1.2 (IPTPSs). A (*°-INTEGRAL PROJECTIVE DECOMPOSITION
(IPD) of a function ¢: Q@ — C is a choice (X, p,¢1,...,¢r+1) of a o-finite
measure space (3, 7, p) and, for each j € {1,...,k+1}, a product measurable
function ¢;: Q; x ¥ — C such that o;(-,0) € £°(2;, B,;) whenever o € X,

/ZH<P1('a0)||e°°(91>"'||@k+1('a0)||ew(nk+1)P(dU) <oo, and  (38)
plw) = / 01(w1,0) - Ypy1 (W1, 0) p(do), for all w € Q,
Y

where we write w = (w1, ..., wkt+1). Also, for any function ¢: Q — C, define

k+1
H@Héw(ﬂl,Bgl)®,_-m®ié°°(9k+1,89k+l) = inf/z H ||50j('7‘7)”é°°(ﬂj) p(do),
j=1
where (2, p, 01, .., pr+1) is a £2°-IPD of ¢ and inf () := co. Finally, we define

o (le BQl)®i e ®1£OO (Qk+17 BQk+1)

= {90 € EOO(QaBQ) : ||(JDHZ‘X’(Ql,Bnl)®i~~®il°"(Qk+1730k+1) < OO}

to be the INTEGRAL PROJECTIVE TENSOR PRODUCT (IPTP) OF THE SPACES
e (le BQl)a oo agoo(QkJrlv BQk+1)'
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It is not obvious that the integral in Equation (38) makes sense. In fact,
the function being integrated is not necessarily measurable, but it is “almost
measurable,” i.e., measurable with respect to the p-completion of 5. For a
proof, please see Lemma 2.2.1 in [34].

It is easy to see that if p: Q@ — C is a function, then

[elle= ) < 1¢lle=(01,Ba,)@; @10 (@180, )"

It is also the case that £>°(Qy, Bq, )®; - - @0 (Qpey1, Ba,,,) € (2, Bq) is a
x-subalgebra with respect to pointwise operations and that

(goo(Ql’ BQI)@M o '®i£m(Qk+17 BQk+1)7 Il - ||€°°(Ql1591)®i“‘®iéw(9k+1189k+1))

is a Banach x-algebra. For proofs, please see Proposition 2.2.3 in [34].

NOTATION 4.1.3 (THE Spack CF(R)). For ¢: R¥! — C and r > 0, define
||50||T7k+1 = ||50|[—T,r]k+1||goc —rrl B &;(kt1) € [0,00]
(=7 B—r,m)

Now, if f € C¥(R), then we define

k
[ fllew = Hmem-H € [0,00] and
=0

CH(R) = {g€ C*R): llgllew . < oo, for all r >0},
where || - |lr,1 = || - [l ((=r,r))-

Note that CF(R) C C*(R) is a linear subspace, and {|| - e + 7 > 0}
is a collection of seminorms on CI¥I(R). This collection of seminorms makes

CI(R) into a Fréchet space — actually, a Fréchet x-algebra. This is proven as
Proposition 3.1.3.(iv) in [34].

EXAMPLE 4.1.4 (PoLyNOMIALS). Fix n € N. For each j € {1,...,k+ 1} and
¢ € {1,...,n}, fix a bounded Borel measurable function ;,: Q; — C. If
P(w) = > Y1e(wr) - Yrg1,e(wisr), for all w € Q, then it is easy to see
that ¢ € £°°(Qy, Ba, )®; - - - @il> (g1, By, ) with

n

Hw||Z°°(Ql,Bgl)®i~~~®il°°((2k+1,ng+1) < Z [¥1,elless r) = - l1¥rt1,ell e (440
=1

In particular, if P € C[Aq,..., Agt1], then

P|[_T’T]k+1 S ([77"7 T]a B[—T,r])®i(k+1)

Y

for all 7 > 0. Therefore, by Example 3.3.3, C[\] C C[F/(R).
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This brings us to the definition of NC*(R).

DEFINITION 4.1.5 (NONCOMMUTATIVE C* FUNCTIONS). We define
NC*(R) := C[)\] € cHI(R)

to be the space of NONCOMMUTATIVE C* FUNCTIONS. To be clear, the closure
above takes place in the Fréchet space CI*/(R).

REMARK 4.1.6. The idea for the name of NC*(R) comes from parallel work by
D.A. Jekel, who, in Section 18 of [25], defined an abstract analogue of NC*(R)
via completion and using classical projective tensor powers of C([—r, r]) in place
of the integral projective tensor powers of £°°([—r, 7], B[_,.,). Jekel notates his
space of noncommutative C* functions as C¥ (R). By definition of C¥_(R), the
inclusion C[\] < NC¥(R) extends uniquely to a continuous map linear map
C* (R) — NC*(R).

Since C[)\] C CI*/(R) is a *-subalgebra, NC*(R) is a Fréchet x-algebra in its own
right. We record many examples of noncommutative C* functions in Theorem
4.1.8 below.

DEFINITION 4.1.7 (WIENER SPACE). Write M (R, Br) for the space of Borel
complex measures on R. For u € M (R, Bg), write |u| for the total variation
measure of 1, pi(g) == |p|(R) for the total variation norm of x, and

Hexy = / €]F Jul(de) € [0, o0]

for the “.k* moment” of |u|. The k*" WIENER SPACE Wj(R) is the set of
functions f: R — C such that there exists (necessarily unique) p € M (R, Bg)
with i) < oo and

) = /R e u(de),

for all A € R. Finally, we define Wy, (R)joc to be set of functions f: R — C such
that for all 7 > 0, there exists g € Wy (R) such that f|_,.,; = gl—r.-

THEOREM 4.1.8 (NIKITOPOULOS [34]). Write BF**°(R) for the homogeneous
(k, 00, 1)-Besov space (Definition 3.3.1 in [3]]) and C’llf)f (R) for the space of C*
functions whose k" derivatives are locally e-Hélder continuous (Definition 3.5.8
in [34]).
(i) C*1(R) C Wi(R)ioe € NCF(R), and Wi (R) is dense in NC*(R).
(ii) BY>°(R) C NC*(R) and CF(R) € NC*(R), for all & > 0.
(iii) Wi(R)ioe C NC*(R). Specifically, C* 3 (R) \ Wi(R)ioc # 0.

=
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Sketch of proof. We outline the highlights of the proof and refer the reader
to [34] for details. First, we record a property of NC*(R) that we shall use.
For S C Ck(R), write Sjoc for the set of f € C*(R) such that for all r > 0,
there exists g € S such that f|;_,,} = g|(—r.,- Proposition 3.1.3.(ii) in [34] says
that if S C C[*] (R), then Sjoc €S C Cl¥] (R), where the closure takes place in
the Fréchet space C/*/(R). Since NC*(R) C CI¥I(R) is closed, we have that if
S C NCK(R), then Sjoc €S C NCK(R).
(i) The containment C*+(R) C Wy, (R)joc is proven using elementary Fourier
analysis as Lemma 3.2.3.(iii) in [34]. More specifically, one proves that if
f € CHI@R), r > 0, and ., € CX(R) satisfies 7. = 1 on [—r,7], then
W = o f e F e f)€)dE € Wi(R), where F(g)(€) = fy e g()dX is
the Fourier transform of g.
Now, one may use Equation (26) to show that Wy (R) C CI*/(R) (Lemma 3.2.4
in [34]). It follows that C[\] C C**1(R) € Wi(R)ioe € Wi(R) C C*(R), and
thus N Ck( C Wi(R). To complete the proof of this item, we must show
that Wi (R) C NCk(R). To this end, let f = [; e pu(df) € Wi(R). For
€ N, deine jn(d€) = 1nm(®) u(d6) and o o [ % pn(de) € WilR).
Then one has f, — f in C[F(R) as n — oo, so it suffices to assume that
|| has compact support. If |u| has compact support, then we may define
N) = [ 320 L2585 pu(dg) € C[N], for all n € N. One then has that g, — f
in CI*/(R) as n — co. For details, please see Theorem 3.2.6 in [34].
(ii) Using a result of Peller (Theorem 5.5 in [35]), Littlewood-Paley decom-
positions, and the previous item, one can prove B"™(R) C NC¥(R). Thus
B (R)joc € NC*(R). But if & > 0, then one also has CF¢(R) C B¥*°(R)y,.,

loc
SO C{Zf( ) € NC¥(R). For details, please see Section 3.3 of [34].
(iii) Lemma 3.4.3 in [34] says that if ¢ € C(R) has compact support and
h € C*(R) satisfies h*) = g, then h € Wj(R)joc if and only if § = F(g) is
integrable. Lemma 3.4.4 in [34] gives an example of a compactly supported
function x € C%3(R) such that & is not integrable. Therefore, if f € C¥(R)

and f®) =k, then f € C*3(R) \ Wi(R)oe € NC*(R) \ Wi(R)1oc. O

This collection of results paints the picture that a function only has to be “a
tiny bit better than C*” to be noncommutative C*. However, a function does
not have to belong locally to W (R) to belong to NC¥(R). Though we shall
not need it, it is also the case that NC*(R) € C*(R) (Theorem 4.4.1 in [34]).

4.2 MuLTIPLE OPERATOR INTEGRALS (MOISs)

In the next section, we shall define and/or interpret the quantities df(m)#k
and A, , f(m) in terms of multiple operator integrals (MOIs). In this section,
we state the definitions and facts from the vast and rich theory of MOIs that
we need for the present application. Please see A. Skripka and A. Tomskova’s
book [38] for a thorough and well-organized survey of the MOTI literature and
its applications.
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For the duration of this section, fix a complex Hilbert space H, a von Neumann
algebra M C B(H), k € N, and a = (a1, ...,ar41) € MEFL. For the present
application, we shall use the “separation of variables” approach, developed in
[35, 2, 36, 33], to defining the MOI

(I“w)[b]=/( )---/( )w(A)P“l(dAl)bl---P“k(d)\k)ka“k+1(d)\k+1)
Ap+4+1 ai

for b € M* and ¢ € 1°°(0(a1), Bo(a1))®i - - - @il (0(ak+1), Bo(ay,,))- To moti-
vate the definition, let (3, p, 1, ..., k1) be a £°-IPD of ¢. We would like

(1) 5] = /( . /( | / o1(M10) - et Meg1, 0) pldo)
o(ar+41 ai

x PU(dA) by - - - P (dAg) b P+ (A1)

:// / ©01(A1,0)  @pt1(Agt1,0)
> U(ak+1) U(al)

x P (dA;) by - - - P (dAg) b P+ (A1) p(do)

:/ (/ e1(,0) dP™ bl-"/ Pr(,0) dP by
Y o(a1) o(ak)

X/ Pr+1(0) dPak“) p(do)
o(akt1)

= /E p1(a1,0) by - - - or(ar, o) by eri1(art1, o) p(do). (39)

The integral in Equation (39) will become the definition of (I%p)[b]. First,
we must explain what kind of integral this is. If (X,5¢,p) is a measure
space and F': ¥ — B(H) is a map, then we say that F' is POINTWISE PET-
TIS INTEGRABLE if, for every hy,he € H, (F(-)h1,h2): ¥ — C is (4, Bc)-
measurable and [y, [(F(0)h1, he)| p(do) < co. In this case, by Lemma 4.2.1 in
[34], there exists unique T' € B(H) such that (T'hy, hs) fE o)h1, ha) p(do),
for all hq, ho G H moreover, T € W*(F(o) : ¢ € ¥). We shall write
Js Fdp= [ F( (da) := T for this operator. Note that if F': ¥ — B(H) is
Bochner mtegrable then it is also pointwise Pettis integrable, and the opera-
tor T coincides with the Bochner p-integral of F'.

ProrposiTiON 4.2.1. If ¢ € £ (O’(al),Ba(al)> ®1€ ( (ak+1)7Ba(ak+1)):
(3, 0,015+ Pkt1) @8 a £°-IPD of ¢, and by, .. bk € M, then the map

Y30 ¢1(ar,0) b prlak, o) by pr+1(ags1,0) € M

s pointwise Pettis integrable.

Proof. Please see Corollary 4.2.4 in [33] or Theorem 4.2.4.(i) in [34]. O
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Crucially, the pointwise Pettis integral in Equation (39) is also independent of
the chosen ¢>°-IPD.

THEOREM 4.2.2 (WELL-DEFINITION OF MOIs). Fiz
2 S > (O’(al), Ba’(al))®i e ®1£OO (U(ak+1>, BU(ak+1))7

b= (blﬂ"'vbk) € Mk7 and a £>*-IPD (27p7§017---7§0k+1) Of@

(i) The pointwise Pettis integral

(1) [b] = /E<P1(a1a0) by - prlak, o) by pr+1(ak+1, o) p(do) € M

is independent of the chosen £>°-IPD.
(ii) The assignment @ — (I%p)[b] is linear.
(i6) NIZVEN < 0l o8008 s B, I ]

Proof. We prove or give references for each item in turn.

(i) For a proof in the case where H is separable, please see Theorem 2.1.1 in
[36] (or Lemma 4.3 in [2] for a more restrictive class of ¢>°-IPDs). For H not
necessarily separable (in a very general setting), please see Theorem 4.2.12 in
[33]. For a proof that the separable case implies the general case in the present
setting, please see the sketch of Theorem 4.2.4.(ii) in [34].

(ii) Please see Proposition 4.3.1.(i) in [33] or Theorem 4.2.4.(iii) in [34].

(iii) For o € X, write F(0) :== ¢1(a1,0) b1 - - - pr(ak, 0) b pr+1(ak+1,0). Then

IE () < ller(ar, ) 1ol -- - llw (an, o) [Hbx[ or+1(art1; o)l
< N1 0)llese (@) == Nor1 (5 O)llese (o 102l - - 1x]l-

Therefore,

vyl = [ 7

Sup{|<</ de>h17h2>| : hl,hz GH, ||h1H,||h2|| S 1}
b

= sup { /E<F(U)h1, h2) p(do)

k+1

< bull--- el / TT 125 (+0) i~ (o £(d0)-
j=1

thi,he € Hy |[ha, [[he| < 1}

Taking the infimum over ¢*°-IPDs of ¢ gives the desired bound. |

This development allows us to make the definition we wanted.
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DEFINITION 4.2.3 (MULTIPLE OPERATOR INTEGRAL). If
pe > (U(al)a Ba(al))®i T ®1£oo (a(ak—i-l)a Ba’(ak+1))

and b= (by,...,b;) € M* then we define
/ / @(A) P (dAr) by - - - P (dAk) b, P+ (dAk41) (40)
o(ak+1) o(a1)

to be the element (I%y)[b] € M from Theorem 4.2.2.(i). We call the k-linear
map [%p: M*¥ — M the MULTIPLE OPERATOR INTEGRAL (MOI) of ¢ with
respect to (P, ..., P®+1),

EXAMPLE 4.2.4 (POLYNOMIALS). Fix P(X) =}~ 524 ¢s X e ClA, . Aya)-
By Example 4.1.4 and the definition of MOIs, if b = (by, ..., bx) € M¥, then
(I*P)[b] = Z c5al by - - alrby, ai’ff.
|6|<d
In particular, by Example 3.3.3 and Equation (27), if p € C[}], then
(19022pY[b] = Op(ay, as)#b and (41)

1
(Iul’uz’ugpm) [v1,v2] = 532P(U1, U2, ug)#5 V1, va), (42)

for all aj,as € Asa, b € A, up,us,uz € (ARAP)g,, and vy, vy € ARAP.
Recall that (A, (At)e>0,7) is our fixed filtered W*-probability space, and the
operations # and #35 are defined in Notation 3.1.1.

Because of the correction term %Auﬂ, f(m) term in the functional free It6
formula(s) to come, we shall also need to understand MOIs of the form
Jotan) Ja Jo(ar) #(A1, A2, Ag) P21 (dA1) by p(d2) ba P22 (dAs), where A is a Pol-

ish space and p is a Borel complex measure on A.

LEMMA 4.2.5. Let A be a Polish space and u be a Borel complex measure on A.
If o € £2°(0(a1), Bo(ay)) @il ™ (A, BA)@il> (0 (a2), By(ay)) and

Oy \g) = / (M1 Ao As) u(dAe)
A

for (A1, A3) € o(a1) x o(az), then pH € E"O(U(al),Bg(al))@)if"o((f(ag),Bg(az)).
Henceforth, if by,ba € M, then we shall write

/ / / (p()\l,)\g,)\g)Pal (d)\l)bl ,u(d)\g)bg P (d)\g)
o(az) JA Jo(ar)

for the element (I%%2pH)[b1bs] € M.
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Proof. Let (X, p, 1, p2, ©3) be a £>-integral projective decomposition of . If
we define

¢1(A1,0) = <P1(>\1a0)/ p2(X2,0) p(dA2) and @5 (Xs,0) = p3(As,0),
A
for all \y € o(a1), A3 € o(az),0 € X, then it is easy to see that (X, p, ¢}, ¢%) is
a (>°-IPD of ¢*. O

It follows from the proof above and Definition 4.2.3 that

/ / / (p()\l,)\g,)\g)Pal (d)\l)bl ,u(d)\g)bg P (d)\g)
o(az) JA Jo(ar)

:/ZM(@2(HU))<P1(@1,U)5152903(a2,0)p(d0) (43)

whenever (X, p, 1, @2, ©3) is a £*°-integral projective decomposition of ¢, where
1i(p2(-0)) = [, 02(A, o) p(dA).

4.3 FUNCTIONAL FREE ITO FORMULA FOR NC?(R)

In this section, we finally prove our Ité6 formula for noncommutative C?
functions of self-adjoint free It6 processes (Theorem 4.3.4). Recall that
(A, (A¢)i>0,7) is a fixed filtered W*-probability space.

We begin by identifying 0 f(m)#k as a MOL.

LEMMA 4.3.1. If f € W1(R)ioc and a1, a2 € Asa, then
0f(a1,a2) € AR, AP and Of(ay,az)#b = (Ial’a2f[1])[b],
for all b € A. Moreover, the map
A% 3 (a1,a2) = Of (a1,a2) € AD AP
18 continuous.

Proof. Fix a1,as € Aga, and let # > 0 be such that o(a1) Uo(az) C [—r,7].
By definition of W1(R)c, there is some g = [; €€ pu(d€) € Wi (R) such that

g|[—r,r] = f|[—r,r]- In particular, g[l]|[—r,r]2 = f[1]|[—r,r]2- Thus
df(ar,a2) = dg(ar, az) € A®r AP (44)

by Example 3.3.7. Moreover, since A®,A° 3 u — u#b € A is bounded-linear,
the same example gives

1
dg(ar. b = [ [ ()b uga) i
oy i i(1— du
— ztalb i(1—t)as P de) dit
L, e 007 ) lag
= (1maagll) (5] = (11 £ 1) o],

for all b € A, where the third identity holds by Equation (26) and the definition
of MOls.
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For the continuity claim, note that the map

1
Az, 2 (a1,a2) = / /(25) et @ et1=ha2 () dt € A&, AP
o Jr

is continuous by the vector-valued Dominated Convergence Theorem. In partic-
ular, (a1,a2) — 9g(a1,as) is continuous. Since Equation (44) holds whenever
o(a1)Uo(az) C [—r,7] (i-e., whenever |la1]| < 7 and ||az|| < r), we conclude that
(a1,az) = Of(a1,az) is continuous on {(a1,as) € A2, : |lai| < r, |laz| < r}.
Since r > 0 was arbitrary, we are done.

Since C?(R) € W1 (R)joc (Theorem 4.1.8.(i)), the conclusion of Lemma 4.3.1
holds for all f € C?(R). Thus Equation (41) is a special case of Lemma 4.3.1.
Next, we make sense of A, ,f(m) in terms of MOIs. If f € CP(R), m € As,,
and u,v € ARA°P, then we define

liuw(a) = (T®T°p)((a ®1) (Im®1’1®m’m®1f[2]) [ur™ +vu™P 1 ® 1]),
for all a € L'(A, 7). By Theorem 4.2.2.(iii),

1€ ull 2 camye < (RO ME B 00 4 0w, 1@ 1| g on

|,u,vf1ip + vu i

2 _ _
S Hf{ ]Heoo(a-(m)de(m))®i3 Loo(,,-@;,—op) ||1 X 1||Lao(7-®7—0p)
< 2||f[2] ||é°°(a(m),l§’a(m))®i3 ||u||L°°('r®'r°P)||v||L°°(T®T°P) < 0.
In particular, the following definition makes sense.

DEFINITION 4.3.2. If f € C2(R), m € A, and u,v € ARA°P, then we define
A, »f(m) to be the unique element of A such that

T(alAy,f(m)) = (®@7°P)((a® 1) (Im®1’1®m’m®1f[2]) [u™™ + vu™, 1 ® 1)),
for all a € A (and thus a € L1(A,7)). Also, write A, f(m) = Ay f(m).

By Equation (42), Definition 4.3.2 agrees with Definition 3.4.2 when both defi-
nitions apply (i.e., when f € C[\] and m € Ag,). Also, if f € CPI(R), m € A,
and u,v € ARA°P, then

A0 f (M) = 1€5u0llLr(am)-
< 2Hf[2] Heoo(a-(m)7lga(m))®i3||u||L°°(T®T°p)||v||L°°(T®T°p) (45)

by the paragraph before Definition 4.3.2.

LEMMA 4.3.3. If f € NC*(R), m € C(Ry; Asa), and u,v € L2 _(Ri; ARA°P),
then Ay f(m) € L, (Ry;A) and

loc
1Auuf (M)l iz < 20| FB,, sllellzzros r@roey [0l L2 (r@ror)

for allt >0, where ry == ||m| e oo (r) = SUpg<s<¢ [[M(5)]]-
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Proof. When f € C[)\], we know from Section 3.4 that A, , f(m) € L (R;.A).
The claimed bound follow from applying Equation (45) pointwise and then
using the Cauchy-Schwarz Inequality. If f € NC?(R) is arbitrary, then there is
a sequence (qn) yen of polynomials converging in NC?(R) (i.e., in CP(R)) to f.
What we just proved implies that the sequence (A, gn(m))nen is Cauchy in
L .(Ri;A), and Equation (45) implies that A, qu( — Ay f(m) almost
everywhere as N — oo. It follows that A, , f(m) € L{ (R4;.A), and that the

claimed bound holds for A, , f(m) as well. O

We are finally ready for the functional free It6 formula for NC? functions.
THEOREM 4.3.4 (FUNCTIONAL FREE ITO FORMULA). Fiz f € NC%(R).

(i) Suppose that x1,...,x,: Ry — Ag, are freely independent semicircular
Brownian motions, and that m is a free Ité process satisfying Equation
(16). If m* = m, then

d f(m(t)) = Of (m(t))#dm(t) ZAumf (46)

Recall from Corollary 3.5.2 that m* = m is equivalent to m(0)* = m(0),
k* =k a.e., and u} = u; a.e. for all i.

(i1) Suppose that z1,...,zn: Ry — A are x-freely independent circular Brow-
nian motions, and that m is a free Ité process satisfying Equation (17).
If m* =m, then

d f(m(t)) = Of (m(t)#dm(t) + D Auywyuz v f (m(t)) dt. (47)

=1

Recall from Corollary 3.5.2 that m* = m is equivalent to m(0)* = m(0),
k* =k a.e., and u} = v; a.e. for alli.

REMARK 4.3.5. Note that in either case, Ry > t — 9f(m(t)) € AR, AP is
continuous (Lemma 4.3.1) and adapted. In particular, if ¢ € L] (R4;.A) and
u € A% then df(m)#¢ € L (R4;.A) and, by Corollary 3.1.12, 9f(m)u € A?.
Thus all of the integrals in the statement of Theorem 4.3.4 make sense.

Proof. As usual, item (ii) follows from item (i) with twice as many semicircular
Brownian motions, so it suffices to prove item (i). To this end, let m = m* be a
free It process satisfying Equation (16). By Theorem 3.4.4.(i), Equation (46)
holds when f € C[)]. For general f € NC?(R), let (qn)nen be a sequence of
polynomials converging in NC?(R) to f, and fix ¢t > 0. Since gy — f uniformly
on compact sets, we have that gy (m(t)) — f(m(t)) in A as N — oo. Next,
fix i € {1,...,n}. By Lemma 4.3.3, A, qn(m) — Ay, f(m) in LL (Ry;A) as
N — oo. In particular,

t
/OAul(s)qN dS%/ Ay, (s)f(m(s)) ds
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in A as N — oo. Now, write 7y i= supg<<; [[m(s)|| < co. Then

[0gn (m) ui—0f (m )uz'HLZLoe(T@Top)
= || (an (me1,10m) u’LHLzL‘X’(T(@TOp)
H HZOO ([=re,re] )HUZHLZLDO(T‘@TOP) =0
as N — oo by basic properties of functional calculus and the fact that

I oo ((=resragzy < M- N2

Therefore, by the L*°-BDG Inequality,

t t
| @axms)) us()dai(s) — [ (@fms)) ()i (s)
0 0
in A as N — oo. Finally, by Lemma 4.3.1 and Theorem 4.2.2.(ii)-(iii), we have
10gx (m)s#k — Of (m)#kl| i sy = [[(T™ " (av = D) K 11 ooy
< H gy — )Y Hrt Gkl Lipee(ry =0

as N — oo. In particular,

/an ))#k(s ds—)/ Of (m(s))#k(s)ds

in A as N — oo. Therefore, we may deduce Equation (46) by taking N — oo
in the corresponding identity for gy . O

We end this section by deriving an explicit formula for A, ,f(m) (with
u,v € A® A°P) in terms of MOIs. Using this formula, we shall see directly
that Theorem 4.3.4.(i) generalizes Proposition 4.3.4 in [4]. For this develop-
ment, we shall view A as a W*-subalgebra of B(L?(A, 7)) via the standard
representation, i.e., as acting on L2(A,7) by left multiplication.

PROPOSITION 4.3.6 (COMPUTING A, f(m)). Fiz f € CB(R) and m € As,
and let (2, p, 1,2, 3) be a £2°-IPD of P on o(m)®. Ifu,v € A® AP, then

Buf(m) = [ ML) (01(m.0) & pa(m. ) © a(m,)) - (w 1)
+(1®u) - (p1(m,0) @ p2(m,0) @ p3(m, 0)) - (v@ 1)) p(do),
where the right hand side is a pointwise Pettis integral in A C B(L?*(A,T)).
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Proof. As usual, we write 1 := 1®1. If a,b € L?(A, ) (so that ab* € L*(A, 7)),
then we have

((Aun f(m))a,b) ) = 7(b Auy f(m)a) = 7(ab" Ay, ()
= (r®7°P) ((ab* ® 1)(ImeL1EmmEL () [y 4 g™ 1]) (48)
= (&) ((b® 1)* (Im@LEmmEL (1) [yt 4 o™ 1](a ® 1))
= ((rrevtem @t P ™ £ ou™ 1)@ ©1),b© 1) o o o
= /Z<<P1(m @ 1,0)(uv™ + vu™)pa(1 @ m, o)
X p3(m ®1,0)(a®1),b@ 1) 12 (rg70m) p(do) (49)
= /E<(<P1(m, 0) ® 1)(uv™ + vu™")(1 ® p2(m, 0))
x (p3(m,0) ©1)(a®1),b@ 1) 12(r@ror) p(do)
_ /Z (r@7°) ((ab ® 1)(p1(m, 0) © 1) (we™ + vu™)
x (L@ p2(m, 0))(¢s3(m, o) @ 1)) p(do)
= /ET(ab* M- (1 @) - (p1(m,0) @ p2(m,0) @ p3(m,0)) - (u@ 1)
+ (@) - (p1(m,0) @ pa2(m,0) @ p3(m,0)) - (v @ 1))) p(do) (50)
= [ (MA(190) (1m.) © a(m.0) & a(m.0) - (w )
+ (1@ u)- (p1(m,0) © p2(m,0) © a(m,0)) - (0 © 1)a,b) . p(do),

where Equation (48) holds by definition of A, , f(m), Equation (49) holds by
definition of MOIs and pointwise Pettis integrals, and Equation (50) holds by
Lemma 3.2.3 (and an elementary limiting argument). By definition of pointwise
Pettis integrals, this completes the proof. O

COROLLARY 4.3.7. Retain the setting of Proposition 4.5.6. If a,b,c,d € A,
then Auspceaf(m) is equal to

/( >/< >/< >f[Q](Al’AQ’AB)Pm(dM>aT(me(dA2)c)de(dA3)
+/< >/< >/< >fm(Al’AQ’AB)Pm(dkl)CT(de(dxz)a)bpm(dxg). (51)

Note that p(d\) = 7(b P™(d\) ¢) and v(d\) = 7(d P™(d)) a) are Borel complex
measures on o(m).

Proof. This follows immediately from Proposition 4.3.6, the definition of M,
and Equation (43). O
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EXAMPLE 4.3.8 (CONNECTION TO BIANE-SPEICHER FORMULA). Retain the
setting of Proposition 4.3.6, but suppose further that f € Wa(R)oc € NC%(R).
Let g = [ € pu(d€) € Wa(R) be such that g|_,.,j = fl—r., where r = ||m]|.
Since f[2]|[—r,r]3 = g[2]|[_m]3, Equation (26) gives

1 1-t
f[2](A1,)\2, Ag) —_ / / /(i§>26is)\1feit)\Qfei(lfsft)Agf ,U(df) ds dt
0 Jo R

. is i i(1—s— dp
= [ tigremmemeatize e L6l (dg) dsat,
RxZo |l
for all (A1, A2, A3) € [—7,7]3. Therefore, by Proposition 4.3.6, if u,v € A® A°P,
then A, . f(m) is equal to

- M, ((1 ®0) - ((z'g)%isf’” ®etm g ( H1=s—)em dC|lZ| (6))) (u®1)

+ (1@ w)- ([P @ et g (0= LR (©)). (0 1) () ds .

which is equal to

1—-t
/ / / EM((1@0v)- (% @ e™m @ o) (u@ 1)
. ( isEm ® eztf’m ® 61(1 s— t)fm) (’U ® 1)) u(df) ds dt.

When u = wv, this is exactly Biane and Speicher’s definition of A, f(m)
from [4].2 Moreover, since we saw in the proof of Lemma 4.3.1 that
af(m) =1 fo fREe”m ®@ e(1=Om 1 (d¢) dt, this demonstrates directly that The-
orem 4 3.4.(1) does, in fact, generalize Proposition 4.3.4 in [4].

REMARK 4.3.9. If X,Y,Z are topological spaces and F': X xY — Z is a
function, then we call F' ARGUMENTWISE CONTINUOUS if, for every z € X
and y € Y, the maps F(z,-): Y — Z and F(-,y): X — Z are continuous.
Now, fix m € A, p € C[)\], and f € C(R). Write B: (ARA°P)? — A for
any one of the bilinear maps Q,, A..p(m), or A..f(m). Of course, when
B = A..f(m), we implicitly assume m € Ag,. When B € {Q,,A. .p(m)},
it is easy to see from the definition that B is argumentwise continuous with
respect to the weak* topologies (i.e., o-WOTs) on A®A°P and A. This is
also true when B = A..f(m), but it is substantially harder to prove. The
key is that the MOI in Equation (40) is argumentwise o-weakly continuous
in b; this is a special case of Corollary 4.2.11 in [33]. In any case, no matter
the choice of B, B is argumentwise o-weakly continuous. Since A @ A°P is
o-weakly dense in ARAP, B|sg.acr)2 extends uniquely to an argumentwise
o-weakly continuous bilinear map (ARA°P)? — A. To this extent, B is de-
termined by its respective algebraic formula (Equations (18), (28), or (51)).

2Beware: As is noted in [3], the definition of A, f(m) actually written in [4] is missing a
factor of 2.
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However, A® A°P is not necessarily (operator) norm dense in A&.A°P. For ex-
ample, if A = L°°([0,1]), then ARA°® = L>([0,1])®L>([0,1]) = L>([0,1]?),
and it is a standard exercise to show that if AL = {(z,y) : 0 <z <y < 1},
then 1, € L°°([0,1]%) \ L>([0,1]) @min L>°([0,1]). In particular, bounded-
ness of B|(4gaor)2> as a bilinear map does not necessarily imply that there
exists a unique bounded bilinear extension of B|(4g.4er)2 to (AR.AP)?. Biane
and Speicher implicitly claim uniqueness of such an extension in the para-
graphs after Definition 4.3.1 and Lemma 4.3.3 in [4]. However, this luck-
ily does not harm their development because we can guarantee a unique
bounded bilinear extension to (A®min.A°P)?, and, as we noted in Remark 3.1.7,
A? C L} (Ri; A @pmin A°P).

loc

A MATRIX STOCHASTIC CALCULUS FORMULAS

The main purpose of this appendix is to motivate our main results (The-
orems 4.3.4 and 3.5.3) by studying an It6 formula for C? scalar functions
of Hermitian matrix-valued Itd processes (Theorem A.11). To the author’s
knowledge, this formula is not written elsewhere in the literature, though
its existence is mentioned — at least for polynomials — in [1]. For the du-
ration of the appendix, fix a filtered probability space (€, .%,(%¢)i>0, P),
with filtration satisfying the usual conditions, to which all processes to come
are adapted. Also, we shall adhere to Notation 1.1.1 and, for a function
[+ R = C, write fyyc): Mn(C)sa — My (C) for the associated MATRIX FUNC-
TION My (C)sa 2 M — f(M) € My (C) defined via functional calculus.

Fix n, N € N, and — as in the introduction — let

(XM LX) = (X, LX)

be a n-tuple of independent standard (My (C)sa, (-, -) v )-valued Brownian mo-
tions. Concretely, if £ C My (C)s, is any orthonormal basis (ONB) for the real
inner product space (Mpy (C)sa, (-, )N ), then

X;=Y bigk, (52)
Ecg
where {b; g = (bjg(t))i>0 : 1 < j < n, E € £} is a collection of nN? inde-
pendent standard real Brownian motions. This representation of X; will allow
us to use the following “Magic Formula” to identify various “trace terms” in
our stochastic calculus formulas. Please see Section 3.1 of [19], the paper from
which the name “Magic Formula” originates, for a proof.

LEMMA A1 (Macic Formura). If € € Mpy(C)sy is a (-,-)n-ONB for
My (C)sa, then

> EBE =tr(B) Iy,
Ee&

for all B € My (C), where In is the N x N identity matriz.
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Next, we set some algebraic notation.

NoTATION A.2. For k € N, write Ly(My(C)) for the space of k-linear maps
Mpy(C)* — Mpy(C), and let #: My (C)2F+D — L (My(C)) be the linear
map determined by

#k(Al KR Ak+1)[B1, .. .,Bk] = AlBl .. 'AkBkAkJrl,

for all Ay, By, ..., Ak, By, Ary1 € My(C). Whenever U € My (C)®*+D and
B = (By,...,Bx) € My(C)*, we shall write

U B = #x(U)[B].

Also, when k = 1, we shall view the domain of #; as My (C) @ My (C)°P and
write simply #1 = #.

Using basic linear algebra, one can show that if & € N, then
#i: My (C)2*+D) 5 L (My(C)) is a linear isomorphism. Also,
#: My(C) @ My(C)°? — Li(My(C)) = End(Mpy(C)) is an algebra ho-
momorphism. In particular, we may identify End(My(C))-valued processes
U = (U(t))>o with MN((C) ® MN((C)Op valued processes and write, for
instance, f(f s)#dY (s fo (s)] for the stochastic integral of U
against the M N((C) Valued semlmartlngale Y (when this makes sense). In view
of this identification and notation, we introduce N x N matrix Ité processes.

DEFINITION A.3 (MATRIX ITO PROCESS). A N x N MATRIX ITO PROCESS is
an adapted process M taking values in My (C) that satisfies

n

dM(t) =Y Ui(t)#dX,(t) + K (t) dt (53)

i=1

for some predictable My (C) ® My (C)°P-valued processes Uy, . .., U, and some
progressively measurable My (C)-valued process K satisfying

n t t
Z/ 1U(s)]2,, ds +/ 1K (s)|w ds < o0, forallt >0,  (54)
i=170 0

almost surely, where || - ||g, is the norm associated to the tensor inner product

(,Yen on My (C) @ My (C)°P induced by the usual Hilbert-Schmidt (Frobe-
nius) inner product on My (C) (and My (C)°P).

REMARK A.4. The conditions in and preceding Equation (54) guarantee that
all the integrals in Equation (53) make sense and that M is a continuous
Mp (C)-valued semimartingale.

Now, we compute the quadratic covariation of two matrix It6 processes.
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DEFINITION A.5 (MAGIC OPERATOR). Write My, : My (C)®3 — My (C) for
the linear map determined by

M (A® B® C) = Atr(B)C = tr(B)AC,

for all A, B,C € My(C). We call M;, the MAGIC OPERATOR. Another way to
write it is
M = my(c) © (iday () @tr @ idyy (c))s

where myp, (c): My (C) ® My (C) — My (C) is the linear map induced by mul-
tiplication in My (C).

LEMMA A.6. Suppose that € C Mn(C)sa is a (-,-)n-orthonormal basis. If
W € My (C)®3 and U,V € My (C) @ My (C)P, then

Y Wi[U#E,V#E] = Mu((In ©V) - W - (U @ Iy)),
Ecé&

where - is multiplication in My (C) @ My (C)°® @ Mn (C) (for example, one has
(AB®C)- (D®E®F)=(AD)® (EB)® (CF)).

Proof. 1t suffices to prove the formula when U = A® B, V = C ® D, and
W = A; ® Ay ® Ag are pure tensors. In this case, we have

> Wy [U#E, V4E| =Y W#,[AEB,CED| =Y  AAEBA;CEDAs
FEe& FEe& FEe&
= AlA tI‘(BAQC)DA3 = Mtr(AlA 024 BAQC X DA3)

=Mu((In®C®D)- (A ®A® A3) - (A® B® IN))
=Mu((Ixn@V)-W-(UeIN))

by Lemma A.1 and the definitions of M, and the - operation. O

THEOREM A.7 (QUADRATIC COVARIATION OF MATRIX ITO PROCESSES). If,
for each £ € {1,2}, My is a N x N matriz Ité process satisfying

dM,(t) = z": Ui () #dXi(t) + Ko (t) di

i=1

and W = (W (t))i>0 is a continuous My (C)®3-valued process, then

/0 W () ol (), dM(s)] = 3 / Mas((In@Us(5))- W (s)+ (Uni (s)®I)) ds

for allt > 0, almost surely.
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Proof. Recall that bounded variation terms do not contribute to quadratic
covariation, so we may assume K7 = K5 = 0. Now, using the expression (52)
for X; and the fact that db; g(t) dbj r(t) = 0;;05 r dt, we get

/O W () ko [dMa (5), dMa(s)]

=Y T [ W Uy ) ) )

1,j=1 E,Fe&
722/ W (s)#o[Uri(s)#E, Usi(s)#E] ds
i=1 Fe€&
— /t ( Z W (s)#2[Uri(8)#E, ng(s)#E]> ds
0 Eeg&

i M: ™M= 1

/ M ((In @ Uzi(s)) - W(s) - (Uri(s) ® In)) ds

by Lemma A.6. O

From the cases W = A® B® C, My € {X;,In}, and My € {X;,In}, we get
Equations (3)-(4). Let us now see how Theorem A.7 gives rise to a “functional”
It6 formula for C? scalar functions of Hermitian matrix Itd processes.

NOTATION A.8 (NONCOMMUTATIVE DERIVATIVES). For f € CKF(R), write
I € C(RF*1) for the k*® divided difference of f. (Please see Definition 3.3.1
and Proposition 3.3.2.) If M € My (C)sa, then

oMy =k > )P @@ P e My(C)PFHY,

)\EU(M)]H’I

where A = (A1,...,\g41) above. We shall view 9f(M) = 0'f(M) as an
element of My (C) ® My (C)°P

Here is the key fact. Please see Appendix A of [34] for a self-contained proof.

THEOREM A.9 (DALTESKI-KREIN [12], Hiar [23]). If f € CF(R), then
fMN((C) S Ck(MN((C)Sa;MN((C)) and

D* fry(c)(A) By, ..., By] =7 Z " f( Bray, - Brw)
7T€Sk
TESKE A€o (A)k+1

for all A, By, ..., By € MN(C)sa, where D is the k™ Fréchet derivative and
Sy is the symmetric group on k letters.
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We are now ready to state and prove the (matrix) functional It6 formula that
motivates our functional free It6 formula (Theorem 4.3.4).

NotaTioN A.10. If f € C%(R) and U € My(C) ® My (C)°P, then we define
Ay f(M) = Mu((In @ U) - 0* f(M) - (U © Iy)) € Mn(C),
where - is multiplication in My (C) ® My (C)°P @ My (C) as usual.

THEOREM A.11 (FUNCTIONAL ITO FORMULA). Let M be a N x N matriz Ité
process satisfying Equation (53), and suppose M* = M. If f € C*(R), then

df(M(t)) = 0f (M(t))#dM(t) ZAUZ(t)f (t)) dt. (56)

Proof. If f € C*(R), then fu,c) € C*(Mn(C)sa; Mn(C)), so we may apply
Ito’s formula (Equation (1)) with F' = fy, (c). Doing so gives

d f(M(t)) = d fay (o) (M(2))
= D fuay o) (M (1)) [dM (1)] + %DQfMN«m(M () [dM(t), dM (t)]

= OF(M()#dM (1) + 50° F(M (D)2 ldM (1), dM (1)

= Of (M (t))#dM(t) ZMU (In @ Ui(t)) - D*F(M (1)) - (Ui(t) @ In)) dt

=1

=Of(M(t))#dM(t) ZAUl(t)f (t))dt

by Theorem A.9, Theorem A.7, and the definition of Ay f(M). O

Applying tr = +Tr to Equation (56) and using symmetrization arguments
similar to those from the proof of Lemma 3.5.6 yields the following “traced”
formula that motivates Theorem 3.5.3. We leave the details to the interested
reader. In the statement below, if U = Zle A; ® B; € My(C) ® My (C)°p
then U™ = Zle B; ® A; € My(C) @ My (C)°P. Also, we write tr°P for tr
considered as a function My (C)°? — C.

COROLLARY A.12 (TRACED FUNCTIONAL ITO FORMULA). Let M be a N x N
matriz Itd process satisfying Equation (53), and suppose that M* = M. If
f € C3(R), then

dtr(f(M (1)) = tr(f'(M(t)) dM(t))

+ % ;(tr ® trP) (U™ (8) O f (M (t)) Ui(t)) dt,
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where U"POf'(M)U; is a product in the algebra My (C) @ My (C)°P. Under

sufficient additional boundedness/integrability conditions (e.g., U;, K, and M
are all uniformly bounded), we also have

dr(FM @) = (7 (' (M (1) K (1))

+

N~
-

(r @ TR) (U (6) 0 (M (1) Us(1)) )

o
Il

where Ty = E o tr and 7'](\)[ = [E o tr°P.
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