
Documenta Math. 1447
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Abstract. In a recent paper, the author introduced a rich
class NCk(R) of “noncommutative Ck” functions R → C whose op-
erator functional calculus is k-times differentiable and has derivatives
expressible in terms of multiple operator integrals (MOIs). In the
present paper, we explore a connection between free stochastic calcu-
lus and the theory of MOIs by proving an Itô formula for noncommu-
tative C2 functions of self-adjoint free Itô processes. To do this, we
first extend P. Biane and R. Speicher’s theory of free stochastic calcu-
lus – including their free Itô formula for polynomials – to allow free Itô
processes driven by multiple freely independent semicircular Brownian
motions. Then, in the self-adjoint case, we reinterpret the objects ap-
pearing in the free Itô formula for polynomials in terms of MOIs. This
allows us to enlarge the class of functions for which one can formulate
and prove a free Itô formula from the space originally considered by
Biane and Speicher (Fourier transforms of complex measures with two
finite moments) to the strictly larger space NC2(R). Along the way,
we also obtain a useful “traced” Itô formula for arbitrary C2 scalar
functions of self-adjoint free Itô processes. Finally, as motivation, we
study an Itô formula for C2 scalar functions of N × N Hermitian
matrix Itô processes.
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1 Introduction

1.1 Motivation

P. Biane and R. Speicher developed in [4] a theory of free stochastic calculus
with respect to semicircular Brownian motion that has yielded many fruitful
applications – e.g., to the theories of free SDEs [6, 14, 20, 28], entropy [3],
and transport [11]; analysis on Wigner space [4, 29]; and the calculation of
Brown measures [18, 24, 15, 22]. In this paper, we present an extension and
reinterpretation of this free stochastic calculus that naturally connects the Itô-
type formulas thereof to the theory ofmultiple operator integrals (MOIs) via the
class NCk(R) of noncommutative Ck functions (Definition 4.1.5) introduced
by the author in [34].
Our main results (Theorems 3.5.3 and 4.3.4) are “free Itô formulas” for
scalar functions of self-adjoint “free Itô processes” with respect to a n-tuple
(x1, . . . , xn) of freely independent semicircular Brownian motions. As a conse-
quence of the work of D.-V. Voiculescu [40], (x1, . . . , xn) is in a precise sense the

large-N limit of a n-tuple
(
X

(N)
1 , . . . , X

(N)
n

)
of independent Brownian motions

on the space of N × N Hermitian matrices. Therefore, interesting formulas
involving (x1, . . . , xn) are often best motivated by studying formulas involving(
X

(N)
1 , . . . , X

(N)
n

)
and then (formally or rigorously) taking N → ∞. This is

certainly true for our formulas. In Appendix A, we study some independently
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interesting matrix stochastic calculus formulas that motivate the present pa-
per’s main results. In order to explain the appearance of MOIs, we discuss a
special case of one of these formulas.
In this preliminary discussion and in Appendix A, we assume familiarity with
the theory of continuous-time stochastic processes and stochastic integration,
though these subjects are not used elsewhere in the paper. Please see [8, 27] for
some relevant background. Fix a filtered probability space (Ω,F , (Ft)t≥0, P ),
with filtration satisfying the usual conditions, to which all processes we discuss
will be adapted.
We begin by recalling the statement of Itô’s formula from classical stochastic
analysis. Let V and W be finite-dimensional inner product spaces, and let
M = (M(t))t≥0 be a continuous V -valued semimartingale. Itô’s formula says
that if F ∈ C2(V ;W ), then

dF (M(t)) = DF (M(t))[dM(t)] +
1

2
D2F (M(t))[dM(t), dM(t)], (1)

where DkF is the kth Fréchet derivative of F . The DF (M)[dM ] term in
Equation (1) is the differential notation for the stochastic integral against M
of the Hom(V ;W ) = {linear maps V → W}-valued process DF (M). The
notation for the second term (the “Itô correction term”) in Equation (1) is
to be understood as follows. Let e1, . . . , en ∈ V be a basis for V , and write
M =

∑n
i=1 Miei. Then

∫ t

0

D2F (M(s))[dM(s), dM(s)] =

n∑

i,j=1

∫ t

0

D2F (M(s))[ei, ej]︸ ︷︷ ︸
∂ei

∂ej
F (M(s))

dMi(s) dMj(s),

where dMi(s) dMj(s) = d〈〈Mi,Mj〉〉(s) denotes Riemann-Stieltjes integration
against the quadratic covariation 〈〈Mi,Mj〉〉 of Mi and Mj. Our present mo-
tivation is an application of Equation (1) to matrix-valued processes M and
maps F arising from scalar functional calculus.

Notation 1.1.1. Fix N ∈ N.

(a) Write MN (C) for the set of N × N complex matrices and MN (C)sa for
the set of M ∈ MN (C) such that M∗ = M .

(b) Write 〈A,B〉N := N Tr(B∗A) = N2 tr(B∗A) for all A,B ∈ MN (C), where
tr = 1

N
Tr is the normalized trace. Note that 〈·, ·〉N restricts to a real inner

product on the real vector space MN (C)sa.

(c) For M ∈ MN (C)sa and λ ∈ σ(M) = {eigenvalues of M} ⊆ R, write
PM
λ ∈ MN (C) for (the standard representation of) the orthogonal pro-

jection onto the λ-eigenspace of M . For a function f : σ(M) → C, write
f(M) :=

∑
λ∈σ(M) f(λ)P

M
λ ∈ MN (C). Recall that the Spectral Theo-

rem for Hermitian matrices says precisely that if M ∈ MN (C)sa, then
M =

∑
λ∈σ(M) λP

M
λ = idσ(M)(M).
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Now, let
(
X

(N)
1 , . . . , X

(N)
n

)
= (X1, . . . , Xn) be a n-tuple of independent stan-

dard (MN (C)sa, 〈·, ·〉N )-valued Brownian motions, and let M be a MN (C)-
valued stochastic process satisfying

dM(t) =
n∑

i=1

ℓ∑

j=1

Aij(t) dXi(t)Bij(t) +K(t) dt (2)

for continuous adapted MN (C)-valued processes Aij , Bij , K. The term
Aij(t) dXi(t)Bij(t) above is the differential notation for the stochastic inte-
gral against Xi of the End(MN (C)) = Hom(MN (C);MN (C))-valued process
[0,∞) × Ω ∋ (t, ω) 7→ (MN (C) ∋ E 7→ Aij(t, ω)E Bij(t, ω) ∈ MN (C)). Such
processes M are special kinds of N ×N matrix Itô processes (Definition A.3).
Finally, for f ∈ C2(R), define

f [1](λ, µ) :=
f(λ)− f(µ)

λ− µ
and f [2](λ, µ, ν) :=

f [1](λ, µ)− f [1](λ, ν)

µ− ν

to be the first and second divided differences (Definition 3.3.1 and Proposi-
tion 3.3.2) of f , respectively.

Theorem 1.1.2. If M is as in Equation (2), M∗ = M , and f ∈ C2(R), then

d f(M(t)) =
∑

λ,µ∈σ(M(t))

f [1](λ, µ)P
M(t)
λ dM(t)PM(t)

µ +

n∑

i=1

Ci(t) dt,

where the process Ci above is given by

Ci =

ℓ∑

j,k=1

∑

λ,µ,ν∈σ(M)

f [2](λ, µ, ν)
(
PM
λ Aij tr(BijP

M
µ Aik)BikP

M
ν

+ PM
λ Aik tr(BikP

M
µ Aij)BijP

M
ν

)
.

Remark 1.1.3. This is the special case of Thm. A.11 with Ui =
∑ℓ

j=1 Aij⊗Bij .

This result is proven from Itô’s formula using the quadratic covariation rules
(Theorem A.7)

A(t)dXi(t)B(t)dXj(t)C(t) = δij A(t)tr(B(t))C(t) dt and (3)

A(t)dXi(t)B(t) dtC(t) =A(t) dtB(t)dXi(t)C(t) =A(t) dtB(t) dtC(t) = 0 (4)

and a result (Theorem A.9) of Yu.L. Daletskii and S.G. Krein [12] saying that
if f ∈ C2(R) and fMN (C) denotes the map MN (C)sa ∋ M 7→ f(M) ∈ MN (C),
then fMN (C) ∈ C2(MN (C)sa;MN (C)) with

DfMN (C)(M)[B] =
∑

λ,µ∈σ(M)

f [1](λ, µ)PM
λ BPM

µ and (5)

D2fMN(C)(M)[B1, B2] =
∑

λ,µ,ν∈σ(M)

f [2](λ, µ, ν)
(
PM
λ B1P

M
µ B2P

M
ν

+ PM
λ B2P

M
µ B1P

M
ν

)
, (6)
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for all M,B,B1, B2 ∈ MN (C)sa. One of the main results of this paper is the
formal large-N limit of (a generalization of) Theorem 1.1.2 that arises – at
least heuristically – by taking N → ∞ in Equations (3)-(6).
Loosely speaking, Voiculescu’s results from [40] imply that there is an oper-
ator algebra A with a “trace” τ : A → C and “freely independent processes”
x1, . . . , xn : [0,∞) = R+ → Asa = {a ∈ A : a∗ = a} called semicircular Brown-
ian motions such that

tr
(
P
(
X

(N)
i1

(t1), . . . , X
(N)
ir

(tr)
))

→ τ(P (xi1 (t1), . . . , xir (tr)))

almost surely (and in expectation) as n → ∞, for all i1, . . . , ir ∈ {1, . . . , n},
times t1, . . . , tr ≥ 0, and polynomials P in r noncommuting indeterminates.
Now, using Biane and Speicher’s work from [4], one can make sense of stochas-
tic differentials a(t) dxi(t) b(t) when a, b : R+ → A are “continuous adapted
processes.” Imagining then a situation in which

(A,B,C) =
(
A(N), B(N), C(N)

)
“ → ” (a, b, c)

as N → ∞, we might expect to be able to take N → ∞ in Equations (3)-(4)
and thus to get quadratic covariation rules

a(t) dxi(t) b(t) dxj(t) c(t) = δij a(t) τ(b(t)) c(t) dt and (7)

a(t) dxi(t) b(t) dt c(t) = a(t) dt b(t) dxi(t) c(t) = a(t) dt b(t) dt c(t) = 0. (8)

Interpreted appropriately, these rules do in fact hold (Theorem 3.2.5). How
about Equations (5)-(6)? In this operator algebraic setting, we would be
working with the map fA : Asa → A defined via functional calculus by
Asa ∋ m 7→ f(m) =

∫
σ(m)

f dPm ∈ A, where Pm is the projection-valued

spectral measure of m (Section 2.1). Therefore, it would be appropriate to
guess that one could replace the sums

∑
λ∈σ(M) ·P

M
λ in Equations (5)-(6) with

integrals
∫
σ(m) · dP

m. Explicitly, we might expect that if f ∈ C2(R), then

fA ∈ C2(Asa;A) and

DfA(m)[b] =

∫

σ(m)

∫

σ(m)

f [1](λ, µ)Pm(dλ) b Pm(dµ) and (9)

D2fA(m)[b1, b2] =

∫

σ(m)

∫

σ(m)

∫

σ(m)

f [2](λ, µ, ν)
(
Pm(dλ)b1P

m(dµ)b2P
m(dν)

+ Pm(dλ)b2P
m(dµ)b1P

m(dν)
)
, (10)

for all m, b, b1, b2 ∈ Asa. (These integrals do not actually make sense with
standard projection-valued measure theory. We shall ignore this subtlety for
now.) Finally, consider a process m : R+ → A satisfying

dm(t) =

n∑

i=1

ℓ∑

j=1

aij(t) dxi(t) bij(t) + k(t) dt (11)
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for some continuous adapted processes aij , bij , k : R+ → A. Such processes m
are special kinds of free Itô processes (Definition 3.2.1). Formally combining
Equations (7)-(10) and applying the hypothetical Itô formula

d fA(m(t)) = DfA(m(t))[dm(t)] +
1

2
D2fA(m(t))[dm(t), dm(t)]

then gives the following guess.

Pseudotheorem 1.1.4. If m is as in Eq. (11), m∗ = m, and f ∈ C2(R), then

d f(m(t)) =

∫

σ(m(t))

∫

σ(m(t))

f [1](λ, µ)Pm(t)(dλ) dm(t)Pm(t)(dµ) +

n∑

i=1

ci(t) dt,

where

ci =

ℓ∑

j,k=1

∫

σ(m)

∫

σ(m)

∫

σ(m)

f [2](λ, µ, ν)
(
Pm(dλ)aijτ(bijP

m(dµ)aik)bikP
m(dν)

+ Pm(dλ)aikτ(bikP
m(dµ)aij)bijP

m(dν)
)
.

As we hinted above, the integrals in Equations (9)-(10) and the pseudothe-
orem above are purely formal: a priori, it doesn’t make sense to integrate
operator-valued functions against projection-valued measures. In fact, this is
precisely the (nontrivial) problem multiple operator integrals (MOIs) were in-
vented to solve. However, even with the realization that a MOI is the right
object to consider when interpreting Pseudotheorem 1.1.4, the relevant MOIs
do not necessarily make sense for arbitrary f ∈ C2(R). This is where non-
commutative C2 functions come in. The space NC2(R) ⊆ C2(R) is essentially
tailor-made to ensure that MOI expressions such as the ones above make sense
and are well-behaved. (For example, the derivative formulas (9)-(10) are proven
rigorously in [34] for f ∈ NC2(R).) The result is that we are able to turn Pseu-
dotheorem 1.1.4 into a (special case of a) rigorous statement – Theorem 4.3.4
– if we take f ∈ NC2(R). Moreover, we demonstrate in Example 4.3.8 that
Theorem 4.3.4 generalizes and conceptually clarifies Proposition 4.3.4 in [4],
Biane and Speicher’s free Itô formula for a certain class (strictly smaller than
NC2(R)) of scalar functions.

1.2 Summary and Guide to Reading

In this section, we describe the structure of the paper and summarize our
results. All the results in the paper are proven both for n-tuples of freely inde-
pendent semicircular Brownian motions and n-tuples of ∗-freely independent
circular Brownian motions. To ease the present exposition, we summarize only
the statements in the semicircular case.
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Section 2.1 contains a review of some terminology and relevant results from free
probability theory, for example the concepts of filtered W ∗-probability spaces
and (semi)circular Brownian motions. Section 2.2 contains a review of the
various topological tensor products of which we shall make use, for example
the von Neumann algebra tensor product ⊗̄.
In Section 3.1, we review Biane and Speicher’s construction from [4] of the
free stochastic integral of certain “biprocesses” against semicircular Brownian
motion. More specifically, if (A, (At)t≥0, τ) is a filtered W ∗-probability space

and x : R+ → Asa is a semicircular Brownian motion, then
∫ t

0 u(s)#dx(s) ∈ At

is defined for certain maps u : R+ → A⊗̄Aop, where Aop is the opposite of
A. The # stands for the operation determined by (a ⊗ b)#c = acb, and the

free stochastic integral
∫ t

0
u(s)#dx(s) is determined in an appropriate sense by∫ t

0
(1[r1,r2)a⊗b)(s)#dx(s) = (a⊗b)#[x(r1∧t)−x(r2∧t)] = a(x(r1∧t)−x(r2∧t))b

whenever r1 ≤ r2 and a, b ∈ Ar1 . Now, fix n freely independent semicircular
Brownian motions x1, . . . , xn : R+ → Asa. In Section 3.2, we define a free Itô
process (Definition 3.2.1) as a process m : R+ → A that satisfies (the integral
form of) an equation

dm(t) =

n∑

i=1

ui(t)#dxi(t) + k(t) dt (12)

for biprocesses u1, . . . , un : R+ → A⊗̄Aop and a process k : R+ → A. Then
we prove a product rule for free Itô processes (Theorem 3.2.5) that makes
the quadratic covariation rules (7)-(8) rigorous. This product rule is a “well-
known” generalization of Biane and Speicher’s product formula (the n = 1 case,
Theorem 4.1.2 in [4]). It is “well-known” in the sense that it is used regularly in
the literature, and it was proven in the “concrete” setting (the Cuntz algebra)
as Theorem 5 in [30]. However, it seems that – until now – the literature lacks
a full proof of this formula in the present “abstract Wigner space” setting.
In Section 3.3, we define divided differences f [k] and noncommutative deriva-
tives ∂kf of various scalar functions f . When f is a polynomial, ∂1f corre-
sponds to Voiculescu’s free difference quotient from [41]. In Section 3.4, we use
the free Itô product rule to prove a “functional” Itô formula for polynomials
of free Itô processes (Theorem 3.4.4), which says that if m is a free Itô process
satisfying Equation (12), then

d p(m(t)) = ∂p(m(t))#dm(t) +
1

2

n∑

i=1

∆ui(t)p(m(t)) dt,

where ∆up(m) is defined (Notation 3.4.1 and Definition 3.4.2) in terms of the
second noncommutative derivative ∂2p of p. This formula generalizes Proposi-
tion 4.3.2 in [4] (the n = 1 case).
Our first main result comes in Section 3.5, where we use the free Itô for-
mula for polynomials, some beautiful symmetry properties of the objects in
the formula, and an approximation argument to prove a “traced” Itô formula
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(Theorem 3.5.3) for all C2 functions of self-adjoint free Itô processes. (The
aforementioned symmetry properties allow one to avoid the multiple-operator-
integral-related complications mentioned in the previous section.) This formula
says that if 1) m is a free Itô process satisfying Equation (12), 2) m∗ = m,
and 3) f : R → C is a function that is C2 on a neighborhood of the closure of⋃

t≥0 σ(m(t)), then

d

dt
τ(f(m(t))) = τ

(
f ′(m(t)) k(t)

)
+

1

2

n∑

i=1

∫

R2

f ′(λ) − f ′(µ)

λ− µ
ρm(t),ui(t)(dλ, dµ),

where ρm,ui
is the finite Borel measure on R2 determined by

∫

R2

λj1µj2 ρm,ui
(dλ, dµ) = 〈(mj1 ⊗mj2)ui, ui〉L2(τ⊗̄τop)

= (τ⊗̄τop)(u∗
i (m

j1 ⊗mj2)ui)

for j1, j2 ∈ N0. The result is not stated in exactly this way, but this in-
terpretation is derived in Remark 3.5.4. As an application, we demonstrate
in Example 3.5.5 how to use Theorem 3.5.3 to give simple, computationally
transparent (re-)proofs of some key identities from [18, 24, 15, 22] that are
used in the computation of Brown measures of solutions to various free SDEs.
The original proofs of these identities proceeded via rather unintuitive power
series arguments, and understanding what was really happening in these argu-
ments was the original motivation for the present study of functional free Itô
formulas. We note that Theorem 3.5.3 is also motivated in the appendix; the
corresponding matrix stochastic calculus formula is given in Corollary A.12.
In Section 4.1, we define – following [34] – the space NCk(R) of noncom-
mutative Ck functions R → C (Definition 4.1.5) and describe large classes of
examples (Theorem 4.1.8). For the purposes of this discussion, there is just one
important thing to know. Write Wk(R) for the space of functions R → C that
are Fourier transforms of Borel complex measures on R with k finite moments
(Definition 4.1.7). Now, write Wk(R)loc for the space of functions f : R → C

such that for all r > 0, there exists g ∈ Wk(R) satisfying f |[−r,r] = g|[−r,r].
Then we have

Wk(R)loc ( NCk(R), for all k ∈ N. (13)

Please see Theorem 4.1.8 and the sketch of its proof for references to the relevant
parts of [34].
In Section 4.2, we review the portion of the theory of multiple operator integrals
(MOIs) that is relevant to this paper. Most importantly, we lay out what is
needed to make sense of the MOIs in Pseudotheorem 1.1.4 when f ∈ NC2(R).
This brings us to Section 4.3, which contains our second main result: the
functional free Itô formula for noncommutative C2 functions (Theorem 4.3.4),
a generalization of the rigorous version of Pseudotheorem 1.1.4 and an extension
– in the self-adjoint case – of the free Itô formula for polynomials to functions
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Free Itô Formula for NC2 Functions 1455

in NC2(R). It says that if 1) m is a free Itô satisfying Equation (12), 2)
m∗ = m, and 3) f ∈ NC2(R), then

d f(m(t)) = ∂f(m(t))#dm(t) +
1

2

n∑

i=1

∆ui(t)f(m(t)) dt

=

∫

σ(m(t))

∫

σ(m(t))

f [1](λ, µ)Pm(t)(dλ) dm(t)Pm(t)(dµ)

+
1

2

n∑

i=1

∆ui(t)f(m(t)) dt, (14)

where ∆uf(m) (defined officially in Definition 4.3.2) is determined, in a certain
sense (Corollary 4.3.7 and Remark 4.3.9), as a quadratic form by

1

2
∆a⊗bf(m)=

∫

σ(m)

∫

σ(m)

∫

σ(m)

f [2](λ1,λ2,λ3)P
m(dλ1)aτ(bP

m(dλ2)a)bP
m(dλ3)

for a, b ∈ A. Recall from the previous section that f [1](λ, µ) = f(λ)−f(µ)
λ−µ

and

f [2](λ, µ, ν) = f [1](λ,µ)−f [1](λ,ν)
µ−ν

are, respectively, the first and second divided

differences of f . Now, Biane and Speicher also established a formula (Propo-
sition 4.3.4 in [4]) for f(m) when f ∈ W2(R) and m is a self-adjoint free Itô
process driven by a single semicircular Brownian motion. In Example 4.3.8, we
show that when n = 1 and f ∈ W2(R), Equation (14) recovers Biane and Spe-
icher’s formula. Owing to the strict containment in Equation (13), this means
that not only have we extended Biane and Speicher’s formula to the case n > 1,
but we have also – through the use of MOIs – meaningfully enlarged the class
of functions for which it can be formulated.

2 Background

2.1 Free Probability

In this section, we discuss some basic definitions and facts about free probabil-
ity, noncommutative Lp-spaces, noncommutative martingales, and free Brow-
nian motions. We assume the reader is familiar with these, and we recall only
what is necessary for the present application. For a proper treatment of the
basics of free probability, please see [31] or [32].
A pair (A, ϕ) is called a ∗-probability space if A is a unital ∗-algebra and
ϕ : A → C is a state – i.e., ϕ is C-linear, unital (ϕ(1) = 1), and positive
(ϕ(a∗a) ≥ 0 for a ∈ A). We say that a collection (Ai)i∈I of (not necessarily
∗-)subalgebras of A is freely independent if ϕ(a1 · · · an) = 0 whenever
ϕ(a1) = · · · = ϕ(an) = 0 and a1 ∈ Ai1 , . . . , an ∈ Ain with i1 6= i2, i2 6= i3,
. . . , in−2 6= in−1, in−1 6= in. We say that a collection (ai)i∈I of elements of A
is (∗-)freely independent if the collection of (∗-)subalgebras generated by
these elements is freely independent.
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Let H be a complex Hilbert space and B(H) := {bdd. linear maps H → H}.
A von Neumann algebra is a unital ∗-subalgebra of B(H) that is closed
in the weak operator topology (WOT). A pair (A, τ) is a W ∗-probability
space if A is a von Neumann algebra and τ : A → C a trace – i.e., τ is a
state that is tracial (τ(ab) = τ(ba) for a, b ∈ A), faithful (τ(a∗a) = 0 implies
a = 0), and normal (σ-WOT continuous). All ∗-probability spaces considered
in this paper will be W ∗-probability spaces. For more information about von
Neumann algebras, please see [17].
Fix now a W ∗-probability space (A, τ). If a ∈ A is normal, i.e., a∗a = aa∗,
then the ∗-distribution of a is the Borel probability measure

µa(dλ) := τ(P a(dλ))

on the spectrum σ(a) ⊆ C of a, where P a : Bσ(a) → A is the projection-
valued spectral measure of a, i.e., the projection-valued measure charac-
terized by the identity a =

∫
σ(a) λP

a(dλ). Please see Chapter IX of [10] for

the basics of projection-valued measures and the Spectral Theorem. Recall in
particular that f(a) =

∫
σ(a)

f(λ)P a(dλ) =
∫
σ(a)

f dP a ∈ A for all bounded

Borel measurable functions f : σ(a) → C.
Let µsc

0 := δ0 and, for t > 0,

µsc
t (ds) :=

1

2πt

√
(4t− s2)+ ds

be the semicircle distribution of variance t. Notice that if t ≥ 0, then suppµsc
t is

equal to [−2
√
t, 2

√
t] ⊆ R, so that if a ∈ A is normal and has ∗-distribution µsc

t ,
then a ∈ Asa. Such an element a is called a semicircular element of
variance t. We call b ∈ A a circular element of variance t if

b =
1√
2
(a1 + ia2)

for two freely independent semicircular elements a1, a2 ∈ Asa of variance t.
Since −a2 is still semicircular, we have that if b ∈ A is a circular element of
variance t, then b∗ is as well.
It is worth mentioning that there is a more general algebraic/combinatorial
definition of ∗-distribution, and one may define (semi)circular elements in a ∗-
probability space in a more “intrinsic” way using the notion of free cumulants.
Please see [32] for this approach. Since we shall not need this combinatorial
machinery, we content ourselves with the analytic definition above.
Next, we turn to noncommutative Lp-spaces. Please see [13] for a detailed
development of the basic properties of noncommutative Lp-spaces.

Notation 2.1.1 (Noncommutative Lp-spaces). Let (A, τ) be a W ∗-
probability space. If p ∈ [1,∞), then we define

‖a‖Lp(τ) := τ(|a|p) 1
p = τ

(
(a∗a)

p

2

) 1
p ,

for all a ∈ A, and Lp(A, τ) to be the completion of A with respect to the norm
‖ · ‖Lp(τ). We also define L∞(A, τ) := A and ‖ · ‖L∞(τ) := ‖ · ‖A = ‖ · ‖.
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Similar to the classical case, we have noncommutative Hölder’s inequality:
if a1, . . . , an ∈ A, then ‖a1 · · · an‖Lp(τ) ≤ ‖a1‖Lp1(τ) · · · ‖an‖Lpn(τ) whenever

p1, . . . , pn, p ∈ [1,∞] and p−1
1 + · · ·+ p−1

n = p−1. This allows us to extend mul-
tiplication to a bounded n-linear map Lp1(A, τ)× · · · ×Lpn(A, τ) → Lp(A, τ).
In addition, there is a dual characterization of the noncommutative Lp-norm:
if a ∈ A, then we have ‖a‖Lp(τ) = sup{τ(ab) : b ∈ A, ‖b‖Lq(τ) ≤ 1} whenever
p−1 + q−1 = 1. This leads to the duality relationship Lq(A, τ) ∼= Lp(A, τ)∗,
via the map a 7→ (b 7→ τ(ab)), when p−1 + q−1 = 1 and p 6= ∞, as in the
classical case. Moreover, the σ-WOT on A coincides with the weak∗ topology
on L1(A, τ)∗ ∼= L∞(A, τ) = A.

Finally, we briefly discuss noncommutative martingales and free Brownian mo-
tions. For this, we recall that if B ⊆ A is a W ∗-subalgebra – i.e., a WOT-
closed ∗-subalgebra – then there is a unique positive linear map τ [ · | B] : A → B
such that τ [b1ab2 | B] = b1τ [a | B]b2, for all a ∈ A and b1, b2 ∈ B. We call
τ [ · | B] the conditional expectation onto B. It was introduced in [39]. It
extends to a (weak) contraction Lp(A, τ) → Lp(B, τ), for all p ∈ [1,∞]. When
p = 2, we get the orthogonal projection of L2(A, τ) onto L2(B, τ) ⊆ L2(A, τ).
In particular, as it is often useful to remember, if a ∈ A and b ∈ B, then

b = τ [a | B] ⇐⇒ τ(b0a) = τ(b0b), for all b0 ∈ B.

This implies, for instance, that if a is freely independent from B, then we have
τ [a | B] = τ(a)1 = τ(a).

Now, an increasing collection (At)t≥0 of W ∗-subalgebras of A is called a
filtration of A, and the triple (A, (At)t≥0, τ) is called a filtered W ∗-
probability space. Fix a filtration (At)t≥0 of A and p ∈ [1,∞]. A
Lp-process a = (a(t))t≥0 : R+ → Lp(A, τ) is adapted (to (At)t≥0) if
a(t) ∈ Lp(At, τ) ⊆ Lp(A, τ), for every t ≥ 0. An adapted Lp-process
m : R+ → Lp(A, τ) is called a noncommutative Lp-martingale (with re-
spect to ((At)t≥0, τ)) if τ [m(t) | As] = m(s) whenever 0 ≤ s ≤ t < ∞. If
p = ∞, then we shall omit the “Lp” from these terms.

An adapted process m : R+ → A is called a (semi)circular Brownian mo-
tion (in (A, (At)t≥0, τ)) if m(0) = 0 and m(t)−m(s) is a (semi)circular ele-
ment of variance t−s that is ∗-freely independent fromAs when 0 ≤ s < t < ∞.
More concisely, m(0) = 0 and m has “free (semi)circular increments.” It fol-
lows from the comments about conditional expectation and the free incre-
ments property that (semi)circular Brownian motion is a noncommutative
martingale. Also, if m is a circular Brownian motion, then the processes√
2Rem = 1√

2
(m +m∗) and

√
2 Imm = 1

i
√
2
(m −m∗) are freely independent

semicircular Brownian motions.

2.2 Tensor Products

In this section, we set notation for and review some information about several
topological tensor products of which we shall make use.

Documenta Mathematica 27 (2022) 1447–1507



1458 E. A. Nikitopoulos

Notation 2.2.1. Write ⊗ for the algebraic tensor product, ⊗2 for the Hilbert
space tensor product, ⊗min for the minimal (or spatial) C∗-tensor product, ⊗̄
for the (spatial) von Neumann algebra tensor product, and ⊗̂π for the Banach
space projective tensor product.

Though we assume the reader has some familiarity with these tensor products,
we recall their definitions/constructions for convenience. Let (H, 〈·, ·〉H) and
(K, 〈·, ·〉K) be Hilbert spaces. There exists a unique inner product 〈·, ·〉H⊗2K

on H ⊗ K determined by 〈h1 ⊗ k1, h2 ⊗ k2〉H⊗2K = 〈h1, h2〉H〈k1, k2〉K , for
all h1, h2 ∈ H and k1, k2 ∈ K. The Hilbert space tensor product H ⊗2 K

is the defined to be the completion of H ⊗ K with respect to 〈·, ·〉H⊗2K . If
a ∈ B(H) and b ∈ B(K), then there exists unique a ⊗2 b ∈ B(H ⊗2 K)
such that (a ⊗2 b)(h ⊗ k) = ah ⊗ bk, for all h ∈ H and k ∈ K. Moreover,
‖a⊗2 b‖B(H⊗2K) = ‖a‖B(H)‖b‖B(K). It is not difficult to show that the linear
map B(H)⊗B(K) → B(H ⊗2K) determined by a⊗ b 7→ a⊗2 b is an injective
∗-homomorphism when B(H) ⊗ B(K) is given the tensor product ∗-algebra
structure. This allows us to view B(H)⊗B(K) as a ∗-subalgebra of B(H⊗2K)
and justifies writing, as we shall, a ⊗ b instead of a ⊗2 b. In particular, if
A ⊆ B(H) and B ⊆ B(K) are C∗-algebras, then we may naturally view A⊗B
as a ∗-subalgebra of B(H⊗2K). The minimal C∗-tensor product A⊗minB of A
and B is the operator norm closure of A⊗B in B(H⊗2K). If in addition A and
B are von Neumann algebras, then A⊗̄B is the WOT closure – equivalently, by
the Kaplansky Density Theorem, the σ-WOT closure – of A⊗B in B(H⊗2K).
If τ1 and τ2 are traces onA and B, respectively, then we write τ1⊗̄τ2 : A⊗̄B → C

for the unique trace on A⊗̄B determined by (τ1⊗̄τ2)(a ⊗ b) = τ1(a) τ2(b), for
all a ∈ A and b ∈ B. This is the tensor product trace on A⊗̄B. For more
information on ⊗min and ⊗̄, please see Chapter 3 of [5] or Chapter 11 of [26].

Now, let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be Banach spaces. For u ∈ V ⊗W , define

‖u‖V ⊗̂πW
:= inf

{
n∑

j=1

‖vj‖V ‖wj‖W : u =
n∑

j=1

vj ⊗ wj

}
.

Then ‖ ·‖V ⊗̂πW
is a norm on V ⊗W , and the projective tensor product V ⊗̂πW

is defined as the completion of V ⊗W with respect to ‖ · ‖V ⊗̂πW
. This tensor

product satisfies the type of universal property that the algeraic tensor product
satisfies: it bounded-linearizes bounded bilinear maps. If V and W are in addi-
tion Banach algebras, then V ⊗̂πW is also a Banach algebra with multiplication
extending the tensor product multiplication on V ⊗W .

There is also a concrete description of the elements of V ⊗̂πW . Indeed, it can
be shown that every element u ∈ V ⊗̂πW admits a decomposition

u =

∞∑

n=1

vn ⊗ wn with

∞∑

n=1

‖vn‖V ‖wn‖W < ∞ (15)
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and that

‖u‖V ⊗̂πW
= inf

{ ∞∑

n=1

‖vn‖V ‖wn‖W : u =

∞∑

n=1

vn ⊗ wn as in Equation (15)

}
.

Please see Chapter 2 of [37] for a proper development. This has a number of
consequences. The most relevant one for us will be a description of A⊗̂πB for
C∗-algebras A and B.
Proposition 2.2.2. Let A and B be C∗-algebras and ιmin : A⊗̂πB → A⊗minB
be the natural map obtained by applying the universal property of ⊗̂π to the
inclusion A⊗ B →֒ A⊗min B. Then ιmin is injective.

This follows from Proposition 2.2 and the remark following it in [21]. From
Proposition 2.2.2 and the concrete description of V ⊗̂πW above, we see that if
A ⊆ B(H) and B ⊆ B(K) are C∗-algebras, then A⊗̂πB can be represented as
the subalgebra of B(H⊗2K) of elements u ∈ B(H⊗2K) admitting a decompo-
sition u =

∑∞
n=1 an ⊗ bn ∈ B(H ⊗2 K) such that (an)n∈N ∈ AN, (bn)n∈N ∈ BN,

and
∑∞

n=1 ‖an‖B(H)‖bn‖B(K) < ∞. In particular, we have the chain of inclu-

sions A⊗ B ⊆ A⊗̂πB ⊆ A⊗min B ⊆ B(H ⊗2 K).

3 Free Stochastic Calculus I: Polynomials and the Traced For-
mula

3.1 The Free Stochastic Integral against (Semi)circular Brow-
nian Motion

In this section, we review Biane and Speicher’s construction from [4] of the free
stochastic integral against semicircular Brownian motion and use it to define
free stochastic integrals against circular Brownian motion. We begin by setting
notation for a few useful algebraic operations.

Notation 3.1.1. Let H be a complex Hilbert space and A ⊆ B(H) be a von
Neumann algebra.

(a) Aop is the opposite von Neumann algebra of A, i.e., the von Neumann
algebra with the same addition, ∗-operation, and topological structure as
A but the opposite multiplication operation a · b := ba. If τ : A → C is a
trace, then we write τop : Aop → C for the induced trace on Aop.

(b) We write (·)flip : A⊗̄Aop → A⊗̄Aop for the unique σ-WOT continuous
(and isometric) linear map determined by (a⊗ b)flip = b⊗ a. Also, write
u⋆ := (u∗)flip, for all u ∈ A⊗̄Aop, where (·)∗ denotes the standard tensor
product ∗-operation on A⊗̄Aop (e.g., (a⊗ b)∗ = a∗ ⊗ b∗).

(c) We write #: A⊗̂πAop → B(A) = {bounded linear maps A → A} for the
bounded linear map – and, actually, algebra homomorphism – determined
by #(a⊗b)c = acb. Also, we write u#c := #(u)c, for all u ∈ A⊗̂πAop and
c ∈ A. Note that if u ∈ A⊗̂πAop ⊆ A⊗̄Aop, then u∗, uflip, u⋆ ∈ A⊗̂πAop

and (u#c)∗ = (u⋆)#c∗, for all c ∈ A.
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(d) (Not used until Section 3.4) Write B2((A⊗̄Aop)2;A⊗̄Aop) for the space
of bounded bilinear maps (A⊗̄Aop)2 → A⊗̄Aop, and write

#⊗
2 : (A⊗̄Aop)⊗̂π3 → B2((A⊗̄Aop)2;A⊗̄Aop)

for the bounded linear map determined by

#⊗
2 (u1 ⊗ u2 ⊗ u3)[v1, v2] = u1v1u2v2u3

for u1, u2, u3, v1, v2 ∈ A⊗̄Aop. If A ∈ (A⊗̄Aop)⊗̂π3 and u, v ∈ A⊗̄Aop,
then we write A#

⊗

2 [u, v] := #⊗
2 (A)[u, v].

Remark 3.1.2. If H is finite-dimensional and A = B(H), then one can use
elementary linear algebra to show that #: A⊗̂πAop = A ⊗ Aop → B(A) is
a linear isomorphism. Moreover, # is a ∗-homomorphism when A ⊗ Aop is
given the tensor product ∗-operation and B(A) is given the adjoint operation
associated to the Hilbert-Schmidt inner product on A = B(H). This is why
we have chosen to write (·)∗ for the tensor product ∗-operation on A⊗̄Aop; in
[4], the symbol (·)∗ is used for the operation (·)⋆ from (b).

Some justification is in order for what is written in (a) and (b) above. First,
we observe that Aop is, indeed, a von Neumann algebra. Abstractly, Aop is
clearly a C∗-algebra with a predual (the same predual as A). Concretely, Aop

can be represented on the dual H∗ of H via the transpose map

B(H) ∋ a 7→ (H∗ ∋ ℓ 7→ ℓ ◦ a ∈ H∗) ∈ B(H∗).

This map is a ∗-anti-homomorphism that is a homeomorphism with respect to
the WOT and the σ-WOT, so the image of A under the transpose map is a von
Neumann algebra isomorphic to Aop. Next, using this representation of Aop,
we confirm that (·)flip is well-defined. Certainly, the condition in the definition
determines a linear map (·)flip : A ⊗ Aop → A ⊗ Aop. What remains to be
confirmed is that the latter linear map is σ-WOT continuous and isometric.
To see this, write (·)f : H ⊗2 H

∗ → H ⊗2 H
∗ for the conjugate-linear surjective

isometry determined by h⊗ 〈·, k〉 7→ k ⊗ 〈·, h〉. Then it is easy to show that

〈uflipξ, η〉H⊗2H∗ =
〈
uηf, ξf

〉
H⊗2H∗ ,

for all u ∈ A ⊗ Aop ⊆ B(H ⊗2 H
∗) and ξ, η ∈ H ⊗2 H

∗. This implies both
desired conclusions.
Next, we define simple biprocesses and their integrals against arbitrary func-
tions. For the remainder of this paper, fix a filtered W ∗-probability space
(A, (At)t≥0, τ).

Definition 3.1.3 (Biprocesses). A map u : R+ → A⊗Aop is called a bipro-
cess. If u(t) ∈ At ⊗ Aop

t , for every t ≥ 0, then u is called adapted. If there
is a finite partition 0 = t0 < t1 < · · · < tn < ∞ of R+ such that, for all
i ∈ {1, . . . , n}, u is constant on [ti−1, ti), and u(t) = 0 for t ≥ tn, then u is
called simple. We write S for the space of simple biprocesses and Sa ⊆ S for
the subspace of simple adapted biprocesses.
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Notation 3.1.4 (Integrals of Simple Biprocesses). If u ∈ S, then

u =

n∑

i=1

1[ti−1,ti)u(ti−1)

for some partition 0 = t0 < · · · < tn < ∞. If m : R+ → A is any function, then
we define

∫ ∞

0

u(t)#dm(t) =

∫ ∞

0

u#dm :=

n∑

i=1

u(ti−1)#[m(ti)−m(ti−1)] ∈ A.

By standard arguments (from scratch or using the basic theory of finitely ad-
ditive vector measures), the element

∫∞
0 u#dm does not depend on the chosen

decomposition of u, and S ∋ u 7→
∫∞
0 u#dm ∈ A is linear.

Note that if u ∈ S and r, s ≥ 0 are such that r ≤ s, then 1[r,s)u ∈ S and u⋆ ∈ S.
Thus the statement of the lemma below, the proof of which we leave to the
reader, makes sense.

Lemma 3.1.5 (Properties of Integrals of Simple Biprocesses). Let
m : R+ → A be any function and u ∈ S. Fix r, s ≥ 0 with r ≤ s, and define

∫ s

r

u(t)#dm(t) =

∫ s

r

u#dm :=

∫ ∞

0

(1[r,s)u)#dm ∈ A.

Then

(i) S ∋ u 7→
∫ s

r
u(t)#dm(t) ∈ A is linear;

(ii)
( ∫ s

r
u#dm

)∗
=

∫ s

r
u⋆#dm∗;

(iii) if u ∈ Sa and m is adapted, then
∫
·

0 u#dm :=
( ∫ t

0 u#dm
)
t≥0

is adapted;

(iv) if u(t) = 0 for all t ≥ s > 0, then
∫ s1

r
u(t)#dm(t) =

∫ s2

r
u(t)#dm(t)

whenever s1, s2 ≥ s; and

(v)
∫ s

r
u(t)#dm(t) =

∫ s

0
u(t)#dm(t)−

∫ r

0
u(t)#dm(t).

Next, we introduce a larger space of integrands for the case when m is a
(semi)circular Brownian motion. Notice that a simple biprocess

u : R+ → A⊗Aop ⊆ Lp(A⊗̄Aop, τ⊗̄τop)

is a compactly supported simple – in particular, Bochner integrable1 – map
R+ → Lp(A⊗̄Aop, τ⊗̄τop), for all p ∈ [1,∞].

1For information on the Bochner integral, please see Appendix E of [9].
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Notation 3.1.6. Fix p, q ∈ [1,∞], and let (B, η) be a W ∗-probability space.

(a) For u ∈ L
q
loc(R+;L

p(B, η)) = L
q
loc(R+,Lebesgue;L

p(B, η)), define

‖u‖Lq
tL

p(η) :=

(∫ t

0

‖u(s)‖q
Lp(η) ds

) 1
q

and

‖u‖LqLp(η) :=

(∫ ∞

0

‖u(s)‖q
Lp(η) ds

) 1
q

for t ≥ 0 (with the obvious modification for q = ∞). Of course, ‖·‖L2
tL

2(η)

comes from the “inner product” 〈u, v〉L2
tL

2(η) =
∫ t

0 〈u(s), v(s)〉L2(η) ds.

(b) Define

L2,p := Sa ⊆ L2(R+;L
p(A⊗̄Aop, τ⊗̄τop)) and

Λ2,p := Sa ⊆ L2
loc(R+;L

p(A⊗̄Aop, τ⊗̄τop)),

where the first closure above takes place in the Banach space
L2(R+;L

p(A⊗̄Aop, τ⊗̄τop)) and the second takes place in the Fréchet
space L2

loc(R+;L
p(A⊗̄Aop, τ⊗̄τop)). We write

L2 := L2,∞ ⊆ L2(R+;A⊗̄Aop) and

Λ2 := Λ2,∞ ⊆ L2
loc(R+;A⊗̄Aop)

for the case p = ∞.

To be clear, the Lq- and L
q
loc-spaces above are the Bochner L

q- and L
q
loc-spaces.

Remark 3.1.7. The use of L and Λ above is inspired by the notation used in
[8] for the classical case. Biane and Speicher use the notation Ba

p in [4] for the
space L2,p, though their definition is stated as an abstract completion of Sa.
Also, we note that simple biprocesses take values in A⊗Aop ⊆ A⊗minAop, and
A ⊗min Aop ⊆ A⊗̄Aop is a norm-closed subspace. In particular, all elements
of Λ2 actually take values (almost everywhere) in A⊗min Aop. In other words,
Λ2 ⊆ L2

loc(R+;A⊗min Aop).

Only the case p = ∞ will matter to us in later sections. However, we note that
in the case p = 2, there is an Itô Isometry, just as in the classical case. It says
that if x : R+ → A is a semicircular Brownian motion (or, in fact, a circular
Brownian motion), then

〈∫ t

0

u#dx,

∫ t

0

v#dx

〉

L2(τ)

= 〈u, v〉L2
tL

2(τ⊗̄τop),

for all u, v ∈ Sa and t ≥ 0. Please see Proposition 3.1.1 in [4]. We now focus
on the case p = ∞.
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Theorem 3.1.8 (Biane-Speicher [4]). Let x : R+ → Asa be a semicircular
Brownian motion and z : R+ → A be a circular Brownian motion. Fix u ∈ Sa
and m ∈ {x, z, z∗}.

(i)
∫
·

0 u#dm is a noncommutative martingale.

(ii) (L∞-Burkholder-Davis-Gundy (BDG) Inequality) We have

∥∥∥∥∥

∫ ∞

0

u(t)#dx(t)

∥∥∥∥∥ ≤ 2
√
2‖u‖L2L∞(τ⊗̄τop).

It follows that the map {(r1, r2) : 0 ≤ r1 ≤ r2} ∋ (s, t) 7→
∫ t

s
u#dm ∈ A

is continuous.

Proof. If m = x, then item (i) is Proposition 2.2.2 in [4]. The inequality in
item (ii) is Theorem 3.2.1 in [4]. The remainder of the claims in the theorem
(i.e., those for m ∈ {z, z∗}) follow from the corresponding claims for m = x

because z = 1√
2
(x1 + ix2) and z∗ = 1√

2
(x1 − ix2), where x1 =

√
2Re z and

x2 =
√
2 Im z are (freely independent) semicircular Brownian motions.

Corollary 3.1.9. Retain the setup of Theorem 3.1.8, and fix s ≥ 0. The
linear map ∫

·

s

·#dm : Sa → C([s,∞);A)

extends uniquely to a continuous linear map Λ2 → C([s,∞);A), which we
notate the same way. If u ∈ Λ2, then

∫
·

0
u#dm is a continuous noncommutative

martingale that satisfies the identities

∫ t

s

u#dm =

∫ t

0

u#dm−
∫ s

0

u#dm and

(∫ t

s

u#dm

)∗

=

∫ t

s

u⋆
#dm∗,

and the bounds

∥∥∥∥∥

∫ t

s

u#dx

∥∥∥∥∥ ≤ 2
√
2

(∫ t

s

‖u(r)‖2L∞(τ⊗̄τop) dr

) 1
2

and

∥∥∥∥∥

∫ t

s

u#dzε

∥∥∥∥∥ ≤ 4

(∫ t

s

‖u(r)‖2L∞(τ⊗̄τop) dr

) 1
2

for t ≥ s and ε ∈ {1, ∗}. Similar comments apply to
∫∞
0 u#dm for u ∈ L2.

Definition 3.1.10 (Free Stochastic Integral). For every u ∈ Λ2 and
m ∈ {x, z, z∗} as above, the process

∫
·

0
u#dm from Corollary 3.1.9 is called the

free stochastic integral of u against m.
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We end this section by giving a large class of examples of members of Λ2,p.
Note that u ∈ Λ2,p if and only if 1[0,t)u ∈ L2,p, for all t > 0. We shall use this
freely below.

Proposition 3.1.11. Suppose that u : R+ → A ⊗min Aop is (norm) right-
continuous, locally bounded, and adapted, i.e., u(t) ∈ At⊗minAop

t for all t ≥ 0.
If p ∈ [1,∞] and v ∈ Λ2,p, then u v ∈ Λ2,p. The latter juxtaposition is the
(pointwise) usual action of A⊗̄Aop on Lp(A⊗̄Aop, τ⊗̄τop).

Proof. First, note that if 0 ≤ s ≤ t < ∞ and w ∈ As ⊗ Aop
s , then we have

1[s,t)w v ∈ L2,p. (Approximate v by simple adapted biprocesses to see this.) We
claim this holds for w ∈ As⊗minAop

s as well. Indeed, let (wn)n∈N be a sequence
inAs⊗Aop

s converging in the norm topology to w. By noncommutative Hölder’s
Inequality, we have

‖1[s,t)wn v − 1[s,t)w v‖L2Lp(τ⊗̄τop) ≤ ‖wn − w‖L∞(τ⊗̄τop)‖v‖L2
tL

p(τ⊗̄τop) → 0,

i.e., 1[s,t)wn v → 1[s,t)w v in L2(R+;L
p(A⊗̄Aop, τ⊗̄τop)) as n → ∞. Thus

1[s,t)w v ∈ L2,p, as claimed.

Now, let t > 0, and define

un :=

n∑

i=1

1[ i−1
n

t, i
n
t)u

(
i−1
n

t
)

for n ∈ N. Then un v ∈ L2 by the previous paragraph. Since u is right-
continuous, un → 1[0,t)u pointwise in A ⊗min Aop ⊆ A⊗̄Aop as n → ∞. In
particular, un v → 1[0,t)u v pointwise in Lp(A⊗̄Aop, τ⊗̄τop) as n → ∞. Also,
supn∈N ‖un v‖Lp(τ⊗̄τop) ≤ 1[0,t)‖v‖Lp(τ⊗̄τop) sup0≤r<t ‖u(r)‖L∞(τ⊗̄τop), which is
in L2(R+) because u is locally bounded. Therefore, by the Dominated Conver-
gence Theorem,

‖un v − 1[0,t)u v‖L2Lp(τ⊗̄τop) = ‖un v − u v‖L2
tL

p(τ⊗̄τop) → 0

as n → ∞. Thus un v → 1[0,t)u v in L2(R+;L
p(A⊗̄Aop, τ⊗̄τop)) as n → ∞. We

conclude 1[0,t)u v ∈ L2,p, and therefore, since t > 0 was arbitrary, u v ∈ Λ2,p,
as desired.

Corollary 3.1.12. Suppose that u : R+ → A ⊗min Aop is RCLL, i.e., u is
(norm) right-continuous and the left limit u(t−) := limsրt u(s) ∈ A ⊗min Aop

exists for each t ≥ 0. If u is adapted, p ∈ [1,∞], and v ∈ Λ2,p, then u v ∈ Λ2,p.

Proof. If u is RCLL, then u is right-continuous and locally bounded, so Propo-
sition 3.1.11 applies.
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Example 3.1.13. Suppose u : R+ → A⊗̂πAop is continuous with respect to
‖ · ‖A⊗̂πAop and u(t) ∈ At⊗̂πAop

t , for all t ≥ 0. Since A⊗̂πAop ⊆ A ⊗min Aop

and ‖ ·‖A⊗̂πAop ≤ ‖·‖A⊗minAop , u satisfies the hypotheses of Proposition 3.1.11
(even Corollary 3.1.12). A common example of this form is

u =

n∑

i=1

ai ⊗ bi =

(
n∑

i=1

ai(t)⊗ bi(t)

)

t≥0

for continuous adapted processes a1, b1 . . . , an, bn : R+ → A.

3.2 Free Itô Product Rule

In this section, we set up and prove an Itô product rule for free Itô processes
(Theorem 3.2.5). We begin by officially introducing free Itô processes. Recall
that (A, (At)t≥0, τ) is a fixed W ∗-probability space.

Definition 3.2.1 (Free Itô Process). Fix n ∈ N and n freely independent
semicircular Brownian motions x1, . . . , xn : R+ → Asa. A free Itô process
is a process m : R+ → A satisfying

dm(t) =
n∑

i=1

ui(t)#dxi(t) + k(t) dt, i.e., (16)

m = m(0) +

n∑

i=1

∫
·

0

ui(t)#dxi(t) +

∫
·

0

k(t) dt,

where m(0) ∈ A0, ui ∈ Λ2 for all i ∈ {1, . . . , n}, and k : R+ → A is locally
Bochner integrable and adapted. If w : R+ → A⊗̂πAop is continuous and
adapted (as in Example 3.1.13), then we write

w(t)#dm(t) :=

n∑

i=1

(w(t)ui(t))#dxi(t) + w(t)#k(t) dt, i.e.,

∫
·

0

w(t)#dm(t) := w(0)#m(0) +
n∑

i=1

∫
·

0

(w(t)ui(t))#dxi(t) +

∫
·

0

w(t)#k(t) dt,

where the multiplication wui occurs in A⊗̄Aop. If w = a ⊗ b for continuous
adapted a, b : R+ → A, then we write

a(t) dm(t) b(t) := w(t)#dm(t) = (a(t)⊗ b(t))#dm(t).

Note that if k is as above, then
∫ ·
0
k(t) dt : R+ → A is adapted because At ⊆ A

is norm-closed, for all t ≥ 0. In particular, free Itô processes are continuous and
adapted. Also, if m and w are as above, then w ui ∈ Λ2 by Corollary 3.1.12,
and w#k : R+ → A is locally Bochner integrable because k is locally Bochner
integrable and R+ ∋ t 7→ #(w(t)) ∈ B(A) is continuous. In particular, both
the free stochastic integrals and the Bochner integrals in second part of the
definition above make sense.
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Now, suppose that z1, . . . , zn : R+ → A are ∗-freely independent circular Brow-
nian motions. If k : R+ → A is locally Bochner integrable and adapted,
u1, v1, . . . , un, vn ∈ Λ2, and m : R+ → A satisfies

dm(t) =

n∑

i=1

(
ui(t)#dzi(t) + vi(t)#dz

∗
i (t)

)
+ k(t) dt, (17)

then m is a free Itô process driven by 2n freely independent semicircular
Brownian motions. Indeed, if xi :=

√
2Re zi and yi :=

√
2 Im zi, then

x1, y1 . . . , xn, yn : R+ → Asa are freely independent semicircular Brownian mo-
tions, and m satisfies

dm(t) =
1√
2

n∑

j=1

(
(uj(t) + vj(t))#dxj(t) + i(uj(t)− vj(t))#dyj(t)

)
+ k(t) dt.

Next, we introduce the operations that show up in the free Itô product rule.

Notation 3.2.2. Let mA : A⊗A → A be the linear map induced by multipli-
cation and

Mτ := mA ◦ (idA ⊗τ ⊗ idA) : A⊗A⊗A → A,

i.e., Mτ is the linear map determined by Mτ (a ⊗ b ⊗ c) = a τ(b) c = τ(b) ac.
Now, for u, v ∈ A⊗Aop, let

Qτ (u, v) := Mτ ((1 ⊗ v) · (u⊗ 1)), (18)

where · is multiplication in A⊗Aop⊗A, i.e., Qτ : (A⊗Aop)× (A⊗Aop) → A
is the bilinear map determined by Qτ (a⊗ b, c⊗ d) = a τ(bc) d.

In [4], Mτ is written as η, and Qτ is written as 〈〈·, ·〉〉. Note that, us-
ing the universal property of the projective tensor product, we can extend
Mτ to a bounded linear map A⊗̂π3 → A and Qτ to a bounded bilin-
ear map (A⊗̂πAop)2 → A. Unfortunately, however, the multiplication map
mA : A ⊗ A → A is not bounded with respect to ‖ · ‖L∞(τ⊗̄τ) (Proposi-
tion 3.6 in [16]), so there is no hope of extending Mτ to a bounded linear
map A ⊗min A ⊗min A → A, let alone A⊗̄A⊗̄A → A. Nevertheless, using
the following elementary but crucial algebraic observation, we learn that the
“tracing out the middle” in the definition implies that Qτ can be extended to
a bounded bilinear map (A⊗̄Aop)2 → A.

Lemma 3.2.3. If u, v ∈ A⊗Aop and a, b, c, d ∈ A, then

τ(aMτ ((1⊗v)·(b⊗c⊗d)·(u⊗1))) = (τ⊗τop)((a⊗1)(b⊗1)uvflip(1⊗c)(d⊗1)),

where the juxtapositions on the right hand side are multiplications in A⊗Aop.
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Proof. It suffices to assume u = a1 ⊗ b1 and v = c1 ⊗ d1 are pure tensors. In
this case, we have

τ(aMτ ((1⊗ v) · (b⊗ c⊗ d) · (u⊗ 1))) = τ(aba1τ(b1cc1)d1d)

= (τ ⊗ τop)((aba1d1d)⊗ (c1 · c · b1))
= (τ ⊗ τop)((a⊗ 1)(b⊗ 1)(a1 ⊗ 1)(d1 ⊗ c1)(d⊗ c)(1 ⊗ b1))

= (τ ⊗ τop)((1⊗ b1)(a⊗ 1)(b⊗ 1)(a1 ⊗ 1)(d1 ⊗ c1)(1 ⊗ c)(d⊗ 1))

= (τ ⊗ τop)((a⊗ 1)(b⊗ 1)(a1 ⊗ b1)(d1 ⊗ c1)(1 ⊗ c)(d⊗ 1)),

where in the second-to-last equality we used traciality of τ ⊗ τop.

In particular, if u, v ∈ A⊗Aop and a ∈ A, then

τ(aQτ (u, v)) = (τ⊗̄τop)((a⊗ 1)uvflip). (19)

Now, note that the right hand side of Equation (19) makes sense for arbitrary
u, v ∈ A⊗̄Aop and a ∈ L1(A, τ). We may therefore use the duality relationship
L1(A, τ)∗ ∼= L∞(A, τ) = A to extend the definition of Qτ . Specifically, if
u, v ∈ A⊗̄Aop, a ∈ L1(A, τ), and ℓu,v(a) := (τ⊗̄τop)((a⊗ 1)uvflip), then

|ℓu,v(a)| ≤ ‖(a⊗ 1)uvflip‖L1(τ⊗̄τop)

≤ ‖a⊗ 1‖L1(τ⊗̄τop)‖uvflip‖L∞(τ⊗̄τop)

= ‖a‖L1(τ)‖uvflip‖L∞(τ⊗̄τop).

Thus ‖ℓu,v‖L1(A,τ)∗ ≤ ‖uvflip‖L∞(τ⊗̄τop) < ∞. In particular, since A is dense
in L1(A, τ), the following definition makes sense and extends the algebraic
definition of Qτ .

Definition 3.2.4 (Extended Definition of Qτ ). If u, v ∈ A⊗̄Aop, then we
define Qτ (u, v) to be the unique element of A such that

τ(aQτ (u, v)) = (τ⊗̄τop)((a⊗ 1)uvflip),

for all a ∈ A (and thus a ∈ L1(A, τ)).

It is clear from the definition that the map Qτ (u, v) is bilinear in (u, v). Also,
by the paragraph before Definition 3.2.4, if u, v ∈ A⊗̄Aop, then

‖Qτ (u, v)‖ = ‖ℓu,v‖L1(A,τ)∗ ≤ ‖uvflip‖L∞(τ⊗̄τop) ≤ ‖u‖L∞(τ⊗̄τop)‖v‖L∞(τ⊗̄τop).

Therefore, by the Cauchy-Schwarz Inequality, if u, v ∈ L2
loc(R+;A⊗̄Aop), then

Qτ (u, v) ∈ L1
loc(R+;A) and

‖Qτ (u, v)‖L1
tL

∞(τ) ≤ ‖u‖L2
tL

∞(τ⊗̄τop)‖v‖L2
tL

∞(τ⊗̄τop), (20)

for all t ≥ 0. It is then easy to see – by starting with simple adapted biprocesses
and then taking limits – that if u, v ∈ Λ2, then Qτ (u, v) ∈ L1

loc(R+;A) is
adapted (i.e., has an adapted representative). This is all the information we
need about Qτ , so we are now in a position to state the free Itô product rule.
(However, please see Remark 4.3.9 for additional comments about Qτ .)
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Theorem 3.2.5 (Free Itô Product Rule). The following formulas hold.

(i) Suppose that x1, . . . , xn : R+ → Asa are freely independent semicircular
Brownian motions. If, for each ℓ ∈ {1, 2}, mℓ : R+ → A is a free Itô
process satisfying

dmℓ(t) =

n∑

i=1

uℓi(t)#dxi(t) + kℓ(t) dt,

then

d(m1m2)(t) = dm1(t)m2(t) +m1(t) dm2(t) +

n∑

i=1

Qτ (u1i(t), u2i(t)) dt,

i.e., dm1(t) dm2(t) =
∑n

i=1 Qτ (u1i(t), u2i(t)) dt in the classical notation.

(ii) Suppose that z1, . . . , zn : R+ → A are ∗-freely independent circular Brow-
nian motions. If, for each ℓ ∈ {1, 2}, mℓ : R+ → A is a free Itô process
(driven by z1, . . . , zn) satisfying

dmℓ(t) =

n∑

i=1

(
uℓi(t)#dzi(t) + vℓi(t)#dz

∗
i (t)

)
+ kℓ(t) dt,

then

d(m1m2)(t) = dm1(t)m2(t) +m1(t) dm2(t)

+

n∑

i=1

(
Qτ (u1i(t), v2i(t)) +Qτ (v1i(t), u2i(t))

)
dt,

i.e., dm1(t) dm2(t) =
∑n

i=1(Qτ (u1i(t), v2i(t)) + Qτ (v1i(t), u2i(t))) dt in
the classical notation.

By the comments following Definition 3.2.1, item (ii) follows from item (i) with
twice as many semicircular Brownian motions. Before launching into the proof
of item (i), we perform a useful example calculation.

Example 3.2.6. Let z : R+ → A be a circular Brownian motion. Written in
the classical notation for quadratic covariation, Theorem 3.2.5.(ii) says that

a(t)dz(t)b(t)dz∗(t)c(t) = a(t)dz∗(t)b(t)dz(t)c(t) = a(t)τ(b(t))c(t)dt and (21)

a(t)dzε(t)b(t)dzε(t)c(t) = a(t)dzε(t)b(t) dt c(t) = a(t) dt b(t)dzε(t)c(t)

= a(t) dt b(t) dt c(t) = 0 (22)

for ε ∈ {1, ∗} and continuous adapted processes a, b, c : R+ → A. Now,
let n1, n2 ∈ N be natural numbers, and fix continuous adapted processes
a1, b1 . . . , an1 , bn1 , c1, d1 . . . , cn2 , dn2 , k : R+ → A. Suppose that m : R+ → A
is a free Itô process satisfying
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Free Itô Formula for NC2 Functions 1469

dm(t) =

n1∑

i=1

ai(t) dz(t) bi(t) +

n2∑

j=1

cj(t) dz
∗(t) dj(t) + k(t) dt. (23)

Such m show up frequently “in the wild.” It is often necessary – especially
when m is not self-adjoint – to work with |m|2 = m∗m. The free Itô product
rule says that d|m|2(t) = dm∗(t)m(t) + m∗(t) dm(t) + dm∗(t) dm(t). Let us
derive an expression for dm∗(t) dm(t). First, we have

dm∗(t) =
n2∑

j=1

d∗j (t) dz(t) c
∗
j (t) +

n1∑

i=1

b∗i (t) dz
∗(t) a∗i (t) + k∗(t) dt.

Therefore, by the free Itô product rule (in the form of Equations (21)-(22)),

dm∗(t) dm(t) =

(
n2∑

j=1

d∗j (t) dz(t) c
∗
j (t) +

n1∑

i=1

b∗i (t) dz
∗(t) a∗i (t)

)

×
(

n1∑

i=1

ai(t) dz(t) bi(t) +

n2∑

j=1

cj(t) dz
∗(t) dj(t)

)

=

n2∑

j1,j2=1

d∗j1(t) τ
(
c∗j1(t) cj2(t)

)
dj2 (t) dt

+

n1∑

i1,i2=1

b∗i1(t) τ
(
a∗i1(t) ai2 (t)

)
bi2(t) dt.

Now, let h ∈ A0 be arbitrary, and suppose g : R+ → A satisfies

dg(t) = g(t) dz(t) and g(0) = h,

i.e., g is free multiplicative Brownian motion starting at h. Then, letting
λ ∈ C and gλ(t) := g(t) − λ1 = g(t) − λ, we have dgλ(t) = g(t) dz(t) and
dg∗λ(t) = dz∗(t) g∗(t). Therefore, by the formula above, we have

d|gλ|2(t) = dg∗λ(t) gλ(t) + g∗λ(t) dgλ(t) + dg∗λ(t) dgλ(t)

= dg∗λ(t) gλ(t) + g∗λ(t) dgλ(t) + 1τ(g∗(t)g(t))1 dt

= dz∗(t) g∗(t) gλ(t) + g∗λ(t) g(t) dz(t) + τ
(
|g(t)|2

)
dt.

We shall use this equation in Example 3.5.5.

We now turn to the proof of Theorem 3.2.5.(i). Our approach is similar to
that of Biane and Speicher, though we use less free probabilistic machinery by
mimicking a classical approach to calculating the quadratic covariation of Itô
processes: computing a L2-limit of second-order Riemann-Stieltjes-type sums.

Documenta Mathematica 27 (2022) 1447–1507



1470 E. A. Nikitopoulos

Notation 3.2.7 (Partitions). Let T > 0 and Π = {0 = t0 < · · · < tn = T }
be a partition of [0, T ]. If t ∈ Π, then we write t− ∈ Π for the member of Π to
the left of t; more precisely, (t0)− := t0 and (ti)− := ti−1 whenever 1 ≤ i ≤ n.
In addition, if t ∈ Π, then ∆t := t − t−, and |Π| := maxs∈Π ∆s. Finally,
if V is a vector space, F : [0, T ] → V is a function, and t ∈ Π, then we write
∆tF := F (t)− F (t−) and FΠ :=

∑
s∈Π 1[s−,s)F (s−) : [0, T ] → V .

Lemma 3.2.8. If m1 and m2 are as in Theorem 3.2.5.(i) and T > 0, then

L∞- lim
|Π|→0

∑

t∈Π

(
∆tm1

)(
∆tm2

)
= m1(T )m2(T )−m1(0)m2(0)

−
∫ T

0

dm1(t)m2(t)−
∫ T

0

m1(t) dm2(t),

where the limit is over partitions Π of [0, T ].

Proof. If Π is a partition of [0, T ], then

δT := m1(T )m2(T )−m1(0)m2(0) =
∑

t∈Π

(
m1(t)m2(t)−m1(t−)m2(t−)

)

=
∑

t∈Π

(
(m1(t−) + ∆tm1)(m2(t−) + ∆tm2)−m1(t−)m2(t−)

)

=
∑

t∈Π

((
∆tm1

)
m2(t−) +m1(t−)∆tm2 +

(
∆tm1

)(
∆tm2

))

=

∫ T

0

dm1(t)m
Π
2 (t) +

∫ T

0

mΠ
1 (t) dm2(t) +

∑

t∈Π

(
∆tm1

)(
∆tm2

)
.

Now, since mℓ is continuous – and therefore uniformly continuous – on
[0, T ], mΠ

ℓ → mℓ uniformly on [0, T ] as |Π| → 0. Therefore, by the L∞-
BDG Inequality (and the vector-valued Dominated Convergence Theorem),∫ T

0 dm1(t)m
Π
2 (t) →

∫ T

0 dm1(t)m2(t) and
∫ T

0 mΠ
1 (t) dm2(t) →

∫ T

0 m1(t) dm2(t)
in A as |Π| → 0. It then follows from the calculation above that

∑

t∈Π

(
∆tm1

)(
∆tm2

)
→ m1(T )m2(T )−m1(0)m2(0)

−
∫ T

0

dm1(t)m2(t)−
∫ T

0

m1(t) dm2(t)

in A as |Π| → 0, as desired.

Lemma 3.2.9. Let x1, . . . , xn : R+ → Asa be freely independent semicircular
Brownian motions, and fix s, t ≥ 0 such that s < t. For all N ∈ N and
k ∈ {0, . . . , N}, define tk,N := N−k

N
s+ k

N
t. If a ∈ As, then

L2- lim
N→∞

N∑

k=1

(
xi(tk,N )− xi(tk−1,N )

)
a
(
xj(tk,N )− xj(tk−1,N )

)
= (t− s) τ(a) δij ,

for all i, j ∈ {1, . . . , n}.
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Proof. By writing a = (a−τ(a)1)+τ(a)1, it suffices to prove the formula when a

is centered and when a = 1. To this end, write ∆k,Nxi := xi(tk,N )−xi(tk−1,N ),
and fix i, j ∈ {1, . . . , n}. First, note that if k 6= ℓ, then As, ∆k,Nxi, ∆ℓ,Nxi

are freely independent; and if in addition i 6= j, then As, ∆k,Nxi, ∆ℓ,Nxi,
∆k,Nxj , ∆ℓ,Nxj are freely independent. (This is because s = t0,N < tk,N

when k ≥ 1.) Second, recall that ‖xi(r1) − xi(r2)‖ = 2
√
|r1 − r2| whenever

r1, r2 ≥ 0. Therefore, by definition of free independence, if either 1) i = j and
a ∈ {b ∈ As : τ(b) = 0} or 2) i 6= j and a ∈ {b ∈ As : τ(b) = 0} ∪ {1}, then
∥∥∥∥∥

N∑

k=1

∆k,Nxi a∆k,Nxj

∥∥∥∥∥

2

L2(τ)

=

N∑

k,ℓ=1

τ
(
∆k,Nxja

∗∆k,Nxi∆ℓ,Nxi a∆ℓ,Nxj

)

=
N∑

k=1

τ
(
∆k,Nxja

∗∆k,Nxi∆k,Nxi a∆k,Nxj

)

+
∑

k 6=ℓ

τ
(
∆k,Nxja

∗∆k,Nxi∆ℓ,Nxi a∆ℓ,Nxj

)

=
N∑

k=1

τ
(
∆k,Nxja

∗∆k,Nxi∆k,Nxi a∆k,Nxj

)

≤ ‖a‖2 16(t− s)2

N
→ 0,

as N → ∞. The only case that remains is i = j and a = 1. To take care of
this case, note that if k 6= ℓ, then the elements (∆k,Nxi)

2− (tk,N − tk−1,N) and
(∆ℓ,Nxi)

2 − (tℓ,N − tℓ−1,N ) are freely independent and centered. Thus

τ
((

(∆k,Nxi)
2 − (tk,N − tk−1,N )

)(
(∆ℓ,Nxi)

2 − (tℓ,N − tℓ−1,N )
))

= 0,

from which it follows – as above – that
∥∥∥∥∥

N∑

k=1

(∆k,Nxi)
2 − (t− s)

∥∥∥∥∥

2

L2(τ)

=

∥∥∥∥∥

N∑

k=1

(
(∆k,Nxi)

2 − (tk,N − tk−1,N )
)
∥∥∥∥∥

2

L2(τ)

=

N∑

k=1

τ
((

(∆k,Nxi)
2 − (tk,N − tk−1,N )

)2)

=

N∑

k=1

(tk,N − tk−1,N )2 =
(t− s)2

N
→ 0

as N → ∞. The third equality holds because x := ∆k,Nxi is semicircular with
variance r := tk,N − tk−1,N , so

τ(x2p) = Cpr
p

whenever p ∈ N0, where Cp = 1
p+1

(
2p
p

)
is the pth Catalan number.
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Proof of Theorem 3.2.5.(i). By the L∞-BDG Inequality, Equation (20), and
the vector-valued Dominated Convergence Theorem, it suffices to prove the
formula when uℓi ∈ Sa, for all ℓ ∈ {1, 2} and i ∈ {1, . . . , n}. By Lemma 3.2.8,
it therefore suffices to prove that if T > 0 and uℓi ∈ Sa, then

L2- lim
|Π|→0

∑

t∈Π

(
∆tm1

)(
∆tm2

)
=

n∑

i=1

∫ T

0

Qτ (u1i(t), u2i(t)) dt,

where the limit is over partitions Π of [0, T ]. To this end, write aℓ :=
∫
·

0 kℓ(t) dt
for ℓ ∈ {1, 2}. Then

∑

t∈Π

(
∆tm1

)(
∆tm2

)
=

∑

t∈Π

(
∆ta1 +∆t(m1 − a1)

)(
∆ta2 +∆t(m2 − a2)

)

=
∑

t∈Π

∆t(m1 − a1)∆t(m2 − a2) +
∑

t∈Π

(
∆ta1

)(
∆tm2

)

+
∑

t∈Π

∆t(m1 − a1)∆ta2.

Since ∆taℓ =
∫ t

t−
kℓ(s) ds for t ∈ Π, we have

∥∥∥∥∥
∑

t∈Π

(
∆ta1

)(
∆tm2

)
∥∥∥∥∥ ≤ max

s∈Π
‖∆sm2‖

∑

t∈Π

‖∆ta1‖

≤ max
s∈Π

‖∆sm2‖
∫ T

0

‖k1(t)‖ dt → 0 and

∥∥∥∥∥
∑

t∈Π

∆t(m1 − a1)∆ta2

∥∥∥∥∥ ≤ max
s∈Π

‖∆s(m1 − a1)‖
∑

t∈Π

‖∆ta2‖

≤ max
s∈Π

‖∆s(m1 − a1)‖
∫ T

0

‖k2(t)‖ dt → 0

as |Π| → 0 because m2 and m1 − a1 are continuous – and therefore uniformly
continuous – on [0, T ]. In particular, if we write Ii[u] :=

∫
·

0 u#dxi for u ∈ Λ2

and i ∈ {1, . . . , n}, then we have

L2- lim
|Π|→0

∑

t∈Π

(
∆tm1

)(
∆tm2

)
= L2- lim

|Π|→0

∑

t∈Π

n∑

i,j=1

∆t(Ii[u1i])∆t(Ij [u2j ]).

Thus the proof is complete if we can show that

L2- lim
|Π|→0

∑

t∈Π

∆t(Ii[u])∆t(Ij [v]) = δij

∫ T

0

Qτ (u(t), v(t)) dt, (24)

for all u, v ∈ Sa and i, j ∈ {1, . . . , n}. Since Equation (24) is bilinear in (u, v),
it suffices to prove it assuming that u = 1[s1,t1)a⊗ b and v = 1[s2,t2)c⊗d, where
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[s1, t1), [s2, t2) ⊆ [0, T ), a, b ∈ As1 , c, d ∈ As2 , and either [s1, t1) ∩ [s2, t2) = ∅
or [s1, t1) = [s2, t2). We take both cases in turn, but we first observe that if
w ∈ Sa, i ∈ {1, . . . , n}, and t ∈ Π, then

∆t(Ii[w]) =

∫ ∞

0

(
1[t−,t)w

)
#dxi =

∫ t

t−

w#dxi.

In particular, if w ≡ 0 on [t−, t), then ∆t(Ii[w]) = 0.
Case 1: [s1, t1) ∩ [s2, t2) = ∅. In this case, the observation at the end of the
previous paragraph gives immediately that

∑
t∈Π ∆t(Ii[u])∆t(Ij [v]) = 0 when

|Π| is sufficiently small. But also Qτ (u, v) ≡ 0, so Equation (24) holds.
Case 2: [s1, t1) = [s2, t2) =: [s, t). Fix N ∈ N, let {tk,N : 0 ≤ k ≤ N} be
as in Lemma 3.2.9, and suppose that ΠN is a partition on [0, T ] such that
{tk,N : 0 ≤ k ≤ N} ⊆ ΠN . If |ΠN | → 0 as N → ∞, then

L2- lim
|Π|→0

∑

t∈Π

∆t(Ii[u])∆t(Ij [v]) = L2- lim
N→∞

∑

t∈ΠN

∆t(Ii[u])∆t(Ij [v])

= L2- lim
N→∞

N∑

k=1

a
(
xi(tk,N )− xi(tk−1,N )

)
bc
(
xj(tk,N )− xj(tk−1,N )

)
d

= (t− s) a τ(bc) d δij = δij

∫ T

0

Qτ (u(t), v(t)) dt

by the observation made just before the previous paragraph, the definition of Ii,
Lemma 3.2.9, and the definition of Qτ . This completes the proof.

Corollary 3.2.10. If m1 and m2 are as in Theorem 3.2.5.(i) and T > 0, then

L∞- lim
|Π|→0

∑

t∈Π

(
∆tm1

)(
∆tm2

)
=

n∑

i=1

∫ T

0

Qτ (u1i(t), u2i(t)) dt,

where the limit is over partitions of [0, T ].

Proof. Combine Lemma 3.2.8 and Theorem 3.2.5.

3.3 Noncommutative Derivatives

In this section, we define noncommutative derivatives of various scalar func-
tions. We begin by defining divided differences and collecting their relevant
properties.

Definition 3.3.1 (Divided Differences). Let S ⊆ C and f : S → C be
a function. Define f [0] := f and, for k ∈ N and distinct λ1, . . . , λk+1 ∈ S,
recursively define

f [k](λ1, . . . , λk+1) :=
f [k−1](λ1, . . . , λk)− f [k−1](λ1, . . . , λk−1, λk+1)

λk − λk+1
.

We call f [k] the kth divided difference of f .
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Proposition 3.3.2 (Properties of Divided Differences). Fix S ⊆ C,
functions f, g : S → C, and k ∈ N. In addition, write

Σk :=
{
(s1, . . . , sk) ∈ Rk

+ : s1 + · · ·+ sk ≤ 1
}
.

(i) f [k] is a symmetric function.

(ii) If S = R and f ∈ Ck(R) or if S = C and f : C → C is entire, then

f [k](λ1, . . . , λk+1) =

∫

Σk

f (k)

(
k∑

j=1

sjλj +

(
1−

k∑

j=1

sj

)
λk+1

)
ds1 · · · dsk,

for all distinct λ1, . . . , λk+1 belonging to R or C, respectively. In particu-
lar, if f ∈ Ck(R), then f [k] extends uniquely to a (symmetric) continuous
function Rk+1 → C; and if f : C → C is entire, then f [k] extends uniquely
to a (symmetric) continuous function Ck+1 → C. We shall use the same
notation for these extensions.

(iii) If λ1, . . . , λk+1 ∈ S are distinct, then

(fg)[k](λ1, . . . , λk+1) =

k∑

j=0

f [j](λ1, . . . , λj+1) g
[k−j](λj+1, . . . , λk+1).

If S = R and f, g ∈ Ck(R), then the product formula above holds for all
λ1, . . . , λk+1 ∈ R. If S = C and f, g : C → C are entire, then the formula
holds for all λ1, . . . , λk+1 ∈ C.

Sketch of proof. Each item is proven by induction on k. For item (i), one shows
that if λ1, . . . , λk+1 ∈ S are distinct, then

f [k](λ1, . . . , λk+1) =

k+1∑

i=1

f(λi)
∏

j 6=i

(λi − λj)
−1,

which is clearly symmetric in its arguments. For (ii), one proceeds from

the identity f(λ)−f(µ)
λ−µ

=
∫ 1

0
f ′(tλ + (1 − t)µ) dt, which follows in either case

from the Fundamental Theorem of Calculus. (Please see the proof of Proposi-
tion 2.1.3.(ii) in [34] for details.) The induction argument for item (iii) proceeds
straightforwardly from the definitions. We encourage the reader to work out the
details when k ∈ {1, 2}, since these are the cases of interest in this paper.

Next, we work out two important examples of divided differences.

Example 3.3.3 (Divided Differences of Polynomials). Fix a polyno-
mial p(λ) =

∑n
i=0 ciλ

i ∈ C[λ], viewed as an entire function C → C. If
λ := (λ1, . . . , λk+1) ∈ Ck+1 has distinct entries, then

p[k](λ) =

n∑

i=0

ci
∑

|δ|=i−k

λ
δ =

n∑

i=0

ci
∑

δ∈N
k+1
0 :|δ|=i−k

λδ1
1 · · ·λδk+1

k+1 , (25)
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where |δ| := δ1 + · · ·+ δk+1 is the order of δ = (δ1, . . . , δk+1) ∈ Nk+1
0 . (Empty

sums are, by convention, zero.) As is the case with many properties of divided
differences, Equation (25) may be proven by induction on k. Please see Ex-
ample 2.1.5 in [34]. By continuity – i.e., Proposition 3.3.2.(ii) – we have that
Equation (25) holds for all λ ∈ Ck+1. In particular, p[k] ∈ C[λ1, . . . , λk+1].

Example 3.3.4 (Divided Differences of Wk Functions). Suppose that
µ is a Borel complex measure on R and f(λ) :=

∫
R
eiλξ µ(dξ) for λ ∈ R. If∫

R
|ξ|k |µ|(dξ) < ∞, in which case f ∈ Wk(R) (Definition 4.1.7), then f ∈ Ck(R)

and f (k)(λ) =
∫
R
(iξ)keiλξ µ(dξ), for all λ ∈ R. In particular, by Proposi-

tion 3.3.2.(ii), we have

f [k](λ) =

∫

Σk

∫

R

(iξ)keis1λ1ξ · · · eiskλkξei(1−
∑

k
j=1 sj)λk+1ξ µ(dξ) ds1 · · · dsk, (26)

for all λ = (λ1, . . . , λk+1) ∈ Rk+1.

We now move on to noncommutative derivatives. Let A be a unital C-algebra
and ã1, . . . , ãk+1 ∈ A be commuting elements. Then there exists a unique
unital algebra homomorphism

ev(ã1,...,ãk+1) : C[λ1, . . . , λk+1] → A

determined by λj 7→ ãj , 1 ≤ j ≤ k + 1.

Definition 3.3.5 (Noncommutative Derivatives of Polynomials).
Let A be a unital C-algebra, and fix a = (a1, . . . , ak+1) ∈ Ak+1. For j be-
tween 1 and k + 1, write

ãj := 1⊗(j−1) ⊗ aj ⊗ 1⊗(k+1−j) ∈ A⊗(k+1).

Now, for p(λ) =
∑n

i=0 ciλ
i ∈ C[λ], we define

∂kp(a) := k! ev(ã1,...,ãk+1)

(
p[k]

)
= k! p[k](ã1, . . . , ãk+1)

= k!

n∑

i=0

ci
∑

|δ|=i−k

aδ11 ⊗ · · · ⊗ a
δk+1

k+1 ∈ A⊗(k+1) (27)

to be the kth noncommutative derivative of p evaluated at a. We often
write ∂ := ∂1 and consider ∂p(a1, a2) as an element of A⊗Aop. Finally, write

∂kp(a) := ∂kp(a, . . . , a︸ ︷︷ ︸
k+1 times

)

for a single element a ∈ A.

Now, fix a unital C∗-algebra B. We use analysis to define kth noncommutative
derivatives (in B) of Ck functions. First, note that if a1, . . . , ak+1 ∈ Bsa, then

a1 ⊗ 1⊗k, . . . , 1⊗(j−1) ⊗ aj ⊗ 1⊗(k+1−j), . . . , 1⊗k ⊗ ak+1 ∈ B⊗(k+1) ⊆ B⊗min(k+1)
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is a list of commuting self-adjoint elements in B⊗min(k+1) with joint spectrum
σ(a1)×· · ·×σ(ak+1) ⊆ Rk+1. (Please see [7].) The following definition therefore
makes sense using multivariate functional calculus.

Definition 3.3.6 (Noncommutative Derivatives of Ck Functions). For
a = (a1, . . . , ak+1) ∈ Bk+1

sa and f ∈ Ck(R), we define

∂kf(a) := k! f [k]
(
a1 ⊗ 1⊗k, . . . , 1⊗k ⊗ ak+1

)
∈ B⊗min(k+1)

to be the kth noncommutative derivative of f evaluated at a. As before,
we often write ∂ := ∂1 and consider ∂f(a1, a2) as an element of B ⊗min Bop.
Also, write

∂kf(a) := ∂kf(a, . . . , a︸ ︷︷ ︸
k+1 times

)

for a single element a ∈ Bsa.

Of course, if we view B⊗(k+1) as a subalgebra of B⊗min(k+1), Definition 3.3.6
agrees with Definition 3.3.5 when f = p ∈ C[λ]. We end this section with an
important example.

Example 3.3.7 (Noncommutative Derivatives of Wk Functions). Let
µ and f be as in Example 3.3.4, and suppose again that

∫
R
|ξ|k |µ|(dξ) < ∞. If

a = (a1, . . . , ak+1) ∈ Bk+1
sa , it follows from Equation (26) that

∂kf(a) = k!

∫

Σk

∫

R

(iξ)keis1ξ a1⊗· · ·⊗eiskξ ak⊗ei(1−
∑

k
j=1 sj)ξ ak+1µ(dξ) ds1 · · · dsk

where the above is an iterated Bochner integral in B⊗min(k+1). When k = 1, we

note for later use that actually ∂f(a1, a2) = i
∫ 1

0

∫
R
ξ eita1 ⊗ ei(1−t)a2 µ(dξ) dt

is an iterated Bochner integral in B⊗̂πBop ⊆ B ⊗min Bop (with respect to
‖ · ‖B⊗̂πBop) because the map [0, 1]× R ∋ (t, ξ) 7→ ξ eita1 ⊗ ei(1−t)a2 ∈ B⊗̂πBop

is continuous.

3.4 Functional Free Itô Formula for Polynomials

In this section, we prove the “functional” Itô formula for polynomials of free
Itô processes (Theorem 3.4.4). We begin by defining the object that appears
in the correction term.

Notation 3.4.1. For p ∈ C[λ], m ∈ A, and u, v ∈ A⊗Aop, write

∆u,vp(m) :=
1

2
Mτ ((1⊗ v) · ∂2p(m) · (u⊗ 1)+ (1⊗ u) · ∂2p(m) · (v⊗ 1)), (28)

where · is multiplication in A⊗Aop ⊗A.
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As was the case when we defined Qτ , we can make still make sense of the
formula defining ∆u,vp(m) when u, v ∈ A⊗̂πAop. And again, though the
formula does not make sense as written when u, v ∈ A ⊗min Aop (let alone
u, v ∈ A⊗̄Aop), we can use Lemma 3.2.3 to extend ∆·,·p(m) : (A⊗Aop)2 → A
to a bounded bilinear map (A⊗̄Aop)2 → A. At this time, we advise the reader
to review Notation 3.1.1.(d), as we shall henceforth make heavy use of the #⊗

2

operation defined therein.
Fix p ∈ C[λ] and m ∈ A. For a ∈ L1(A, τ) and u, v ∈ A⊗̄Aop, define

ℓp,u,v(a) :=
1

2
(τ⊗̄τop)

(
(a⊗ 1) ∂2p(m⊗ 1, 1⊗m,m⊗ 1)#⊗

2 [uv
flip + vuflip, 1⊗ 1]

)
.

If a ∈ A and u, v ∈ A⊗Aop, then Lemma 3.2.3 and Equation (27) imply

τ
(
a∆u,vp(m)

)
= ℓp,u,v(a). (29)

We use this equation to extend the definition of ∆·,·p(m). Indeed, note that if
u, v ∈ A⊗̄Aop, then

‖ℓp,u,v‖L1(A,τ)∗ ≤ 1

2

∥∥∂2p(m⊗1, 1⊗m,m⊗1)#⊗

2 [uv
flip+vuflip, 1⊗1]

∥∥
L∞(τ⊗̄τop)

.

Thus, by the duality relationship L1(A, τ)∗ ∼= A, the following definition makes
sense and extends the algebraic definition of ∆u,vp(m).

Definition 3.4.2 (Extended Definition of ∆u,vp(m)). For a polynomial
p ∈ C[λ], an element m ∈ A, and tensors u, v ∈ A⊗̄Aop, we define ∆u,vp(m)
to be the unique element of A such that

τ
(
a∆u,vp(m)

)
= ℓp,u,v(a),

for all a ∈ A (and thus a ∈ L1(A, τ)). Also, we write ∆up(m) := ∆u,up(m).

It is clear from the definition that ∆u,vp(m) is trilinear in (u, v, p) and sym-
metric in (u, v). Also, if n ∈ N0 and pn(λ) = λn, then, by Equation (27) and
the paragraph before Definition 3.4.2, we have

‖∆u,vpn(m)‖ = ‖ℓpn,u,v‖L1(A,τ)∗

≤ 1

2

∥∥∥∥∥2
∑

|δ|=n−2

(m⊗ 1)δ1(uvflip + vuflip)(1 ⊗m)δ2(m⊗ 1)δ3

∥∥∥∥∥
L∞(τ⊗̄τop)

≤ 2‖u‖L∞(τ⊗̄τop)‖v‖L∞(τ⊗̄τop)

×
∑

|δ|=n−2

‖m⊗ 1‖δ1
L∞(τ⊗̄τop)‖1⊗m‖δ2

L∞(τ⊗̄τop)‖m⊗ 1‖δ3
L∞(τ⊗̄τop)

= n(n− 1)‖m‖n−2‖u‖L∞(τ⊗̄τop)‖v‖L∞(τ⊗̄τop). (30)

Therefore, if u, v ∈ L2
loc(R+;A⊗̄Aop) and m ∈ C(R+;A), then we have that

∆u,vp(m) ∈ L1
loc(R+;A) and

‖∆u,vpn(m)‖L1
tL

∞(τ) ≤ n(n− 1)‖m‖n−2
L∞

t L∞(τ)‖u‖L2
tL

∞(τ⊗̄τop)‖v‖L2
tL

∞(τ⊗̄τop),
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for all t ≥ 0. It is then easy to see that if u, v ∈ Λ2 and m : R+ → A is
continuous and adapted, then ∆u,vp(m) ∈ L1

loc(R+;A) is adapted as well.
The last fact we shall need about ∆u,vp(m) to prove the functional free Itô
formula for polynomials is the following product rule. (However, please see
Remark 4.3.9 for additional comments about ∆u,vp(m).)

Lemma 3.4.3 (Product Rule for ∆u,vp(m)). If p, q ∈ C[λ], then

∆u,v(pq)(m) = ∆u,vp(m) q(m) + p(m)∆u,vq(m)

+Qτ (∂p(m)u, ∂q(m) v) +Qτ (∂p(m) v, ∂q(m)u),

for all m ∈ A and u, v ∈ A⊗̄Aop.

Proof. By Proposition 3.3.2.(iii) and the definition of ∂2, if A is a unital C-
algebra and p, q ∈ C[λ], then

∂2(pq)(a1, a2, a3) = ∂2p(a1, a2, a3)(1 ⊗ 1⊗ q(a3))

+ (p(a1)⊗ 1⊗ 1)∂2q(a1, a2, a3)

+ 2(∂p(a1, a2)⊗ 1)(1⊗ ∂q(a2, a3)),

for all a1, a2, a3 ∈ A. Applying this to the algebra A = A⊗̄Aop and writing
1 = 1⊗ 1 for the identity in A⊗̄Aop to avoid confusion, we have

∂2(pq)(m⊗ 1, 1⊗m,m⊗ 1) = ∂2p(m⊗ 1, 1⊗m,m⊗ 1)(1⊗ 1⊗ q(m⊗ 1))

+ (p(m⊗ 1)⊗ 1⊗ 1)∂2q(m⊗ 1, 1⊗m,m⊗ 1)

+ 2(∂p(m⊗ 1, 1⊗m)⊗ 1)(1⊗ ∂q(1⊗m,m⊗ 1)),

for all m ∈ A. Now, notice that if u1, u2 ∈ A⊗̄Aop and A ∈ (A⊗̄Aop)⊗3, then

((u1 ⊗ 1⊗ 1)A(1⊗ 1⊗ u2))#
⊗

2 [c, d] = u1(A#
⊗

2 [c, d])u2.

Since p(m⊗ 1) = p(m)⊗ 1 and q(m⊗ 1) = q(m)⊗ 1, it follows from the above
that if a ∈ A, then

τ
(
a∆u,v(pq)(m)

)

=
1

2
(τ⊗̄τop)

(
(a⊗ 1)

(
∂2p(m⊗ 1,1⊗m,m⊗ 1)#⊗

2 [uv
flip + vuflip,1]

)
(q(m)⊗ 1)

)

+
1

2
(τ⊗̄τop)

(
(a⊗ 1)(p(m) ⊗ 1)∂2q(m⊗ 1,1⊗m,m⊗ 1)#⊗

2 [uv
flip + vuflip,1]

)

+ (τ⊗̄τop)
(
(a⊗ 1)((∂p(m⊗ 1, 1⊗m)⊗ 1)

× (1⊗ ∂q(1⊗m,m⊗ 1)))#⊗

2 [uv
flip + vuflip,1]

)

=
1

2
(τ⊗̄τop)

(
((q(m) a) ⊗ 1)∂2p(m⊗ 1, 1⊗m,m⊗ 1)#⊗

2 [uv
flip + vuflip,1]

)

+
1

2
(τ⊗̄τop)

(
((a p(m))⊗ 1)∂2q(m⊗ 1,1⊗m,m⊗ 1)#⊗

2 [uv
flip + vuflip,1]

)
+Ra

= τ
(
q(m) a∆u,vp(m)

)
︸ ︷︷ ︸

τ(a∆u,vp(m) q(m))

+τ
(
a p(m)∆u,vq(m)

)
+Ra,
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where Ra is equal to

(τ⊗̄τop)
(
(a⊗1)((∂p(m⊗1, 1⊗m)⊗1)(1⊗∂q(1⊗m,m⊗1)))#⊗

2 [uv
flip+vuflip,1]

)
.

But now, note that if P1(λ1, λ2) = λ
γ1

1 λ
γ2

2 , P2(λ1, λ2) = λδ1
1 λδ2

2 , u1 = m ⊗ 1,
and u2 = 1⊗m, then

(τ⊗̄τop)
(
(a⊗ 1)((P1(u1 ⊗ 1,1⊗ u2)⊗ 1)(1⊗P2(u2 ⊗ 1,1⊗ u1)))#

⊗

2 [uv
flip,1]

)

= (τ⊗̄τop)
(
(a⊗ 1)uγ1

1 uvflipu
γ2

2 uδ1
2 uδ2

1

)
= (τ⊗̄τop)

(
(a⊗ 1)uγ1

1 u
γ2

2 u(uδ1
1 uδ2

2 v)flip
)

= (τ⊗̄τop)
(
(a⊗ 1)P1(m⊗ 1, 1⊗m)u(P2(m⊗ 1, 1⊗m)v)flip

)

by traciality of τ⊗̄τop, the fact that u2 = 1⊗m commutes with both a⊗ 1 and
u1 = m⊗ 1, and the identity uflip

1 = u2. By linearity, the above formula holds
for all P1, P2 ∈ C[λ1, λ2]. Applying the formula to P1 = p[1] and P2 = q[1] gives

Ra = (τ⊗̄τop)
(
(a⊗ 1)∂p(m)u(∂q(m)v)flip

)

+ (τ⊗̄τop)
(
(a⊗ 1)∂p(m)v(∂q(m)u)flip

)

= τ(aQτ (∂p(m)u, ∂q(m) v)) + τ(aQτ (∂p(m) v, ∂q(m)u)).

This completes the proof.

This, together with the free Itô product rule, gives the functional free Itô
formula for polynomials.

Theorem 3.4.4 (Functional Free Itô Formula for Polynomials). Fix
a polynomial p ∈ C[λ].

(i) Suppose that x1, . . . , xn : R+ → Asa are freely independent semicircular
Brownian motions. If m is a free Itô process satisfying Equation (16),
then d p(m(t)) = ∂p(m(t))#dm(t) + 1

2

∑n
i=1 ∆ui(t)p(m(t)) dt.

(ii) Suppose that z1, . . . , zn : R+ → A are ∗-freely independent circular Brow-
nian motions. If m is a free Itô process satisfying Equation (17), then
d p(m(t)) = ∂p(m(t))#dm(t) +

∑n
i=1 ∆ui(t),vi(t)p(m(t)) dt.

Remark 3.4.5. In either case, the map R+ ∋ t 7→ ∂p(m(t)) ∈ A⊗̂πAop is
clearly continuous and adapted. In particular, if ℓ ∈ L1

loc(R+;A) and u ∈ Λ2,
then ∂p(m)#ℓ ∈ L1

loc(R+;A) and, by Corollary 3.1.12, ∂p(m)u ∈ Λ2. Thus all
of the integrals in the statement of Theorem 3.4.4 make sense.

Proof. Using the comments after Definition 3.2.1, it is easy to see that item (ii)
follows from item (i) with twice as many semicircular Brownian motions. It
therefore suffices to prove item (i). To this end, let p, q ∈ C[λ] be polynomials,
and suppose that the formula in item (i) holds for both p and q. Then the free
Itô product rule (Theorem 3.2.5), Proposition 3.3.2.(iii), the definition of ∂,
and Lemma 3.4.3 give
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d (pq)(m(t)) = d p(m(t)) q(m(t)) + p(m(t)) d q(m(t)) + d p(m(t)) d q(m(t))

=
(
(1 ⊗ q(m(t)))∂p(m(t)) + (p(m(t))⊗ 1)∂q(m(t))

)
#dm(t)

+

n∑

i=1

(1
2

(
∆ui(t)p(m(t)) q(m(t)) + p(m(t))∆ui(t)q(m(t))

)

+Qτ

(
∂p(m(t))ui(t), ∂q(m(t))ui(t)

))
dt

= ∂(pq)(m(t))#dm(t) +
1

2

n∑

i=1

∆ui(t)(pq)(m(t)) dt.

Thus the formula of interest holds for the polynomial pq as well.
Next, note that the formula holds trivially for p(λ) = p0(λ) ≡ 1 and
p(λ) = p1(λ) = λ. Now, let n ≥ 1, and assume the formula holds for
p(λ) = pn(λ) = λn. By what we just proved, this implies the formula holds
for p(λ) = pn(λ)p1(λ) = λn+1 = pn+1(λ). By induction, the formula holds for
p = pn, for all n ∈ N0. Since {pn : n ∈ N0} is a basis for C[λ], we are done.

3.5 The Traced Formula

From Theorem 3.4.4 and a symmetrization argument, we obtain a highly useful
“traced” formula. Before stating it, giving examples, and proving it, we present
a rigorous proof of a “folklore” characterization of when a free Itô process is
self-adjoint.

Proposition 3.5.1. Suppose that x1, . . . , xn : R+ → Asa are freely independent
semicircular Brownian motions. For each ℓ ∈ {1, 2}, let mℓ be a free Itô process
satisfying dmℓ(t) =

∑n
i=1 uℓi(t)#dxi(t) + kℓ(t) dt. Then m1 = m2 if and only

if m1(0) = m2(0), k1 = k2 a.e., and u1i = u2i a.e. for all i.

Proof. Let m be a free Itô process satisfying Equation (16). It suffices to
show that m ≡ 0 if and only if m(0) = 0, k ≡ 0 almost everywhere, and
u1 ≡ · · · ≡ un ≡ 0 almost everywhere. The “if” direction is obvious. For the
converse, notice that if m ≡ 0, then

0 = dm∗(t) =
n∑

i=1

u⋆

i (t)#dxi(t) + k∗(t) dt,

so that

0 = d(mm∗)(t) = dm(t)m∗(t) +m(t) dm∗(t) +
n∑

i=1

Qτ (ui(t), u
⋆

i (t)) dt

=
n∑

i=1

Qτ (ui(t), u
⋆

i (t)) dt

by the free Itô product rule. In other words,
∫ t

0

∑n
i=1 Qτ (ui(s), u

⋆

i (s)) ds = 0,
for all t ≥ 0. By, for instance, the (vector-valued) Lebesgue Differentiation
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Theorem, this implies
∑n

i=1 Qτ (ui(t), u
⋆

i (t)) = 0 for almost every t ≥ 0. We
claim that this implies u1 ≡ · · · ≡ un ≡ 0 almost everywhere. Indeed, if
u ∈ A⊗̄Aop is arbitrary, then, by definition of Qτ ,

τ(Qτ (u, u
⋆)) = (τ⊗̄τop)(u(u⋆)flip) = (τ⊗̄τop)(uu∗)

= (τ⊗̄τop)(u∗u) = ‖u‖2L2(τ⊗̄τop).

Our claim is then proven by an appeal to the faithfulness of τ⊗̄τop. We are
left with

∫ t

0
k(s) ds = 0 for all t ≥ 0. Again from the Lebesgue Differentiation

Theorem, we conclude that k ≡ 0 almost everywhere.

Corollary 3.5.2. A free Itô process m as in Equation (16) satisfies m∗ = m if
and only if m(0)∗ = m(0), k∗ = k a.e., and u⋆

i = ui a.e. for all i. Also, a free
Itô process m as in Equation (17) satisfies m∗ = m if and only if m(0)∗ = m(0),
k∗ = k a.e., and u⋆

i = vi a.e. for all i.

We now state the traced formula.

Theorem 3.5.3 (Traced Functional Free Itô Formula). The following
formulas hold.

(i) Suppose that x1, . . . , xn : R+ → Asa are freely independent semicircular
Brownian motions. If m is a free Itô process satisfying Equation (16)
and f ∈ C[λ], then

τ(f(m)) = τ(f(m(0))) +

∫
·

0

(
τ
(
f ′(m(t)) k(t)

)

+
1

2

n∑

i=1

(τ⊗̄τop)
(
uflip

i (t) ∂f ′(m(t))ui(t)
))

dt. (31)

If m∗ = m (i.e., m(0)∗ = m(0), k∗ = k a.e., and u⋆

i = ui a.e. for all i),
then Equation (31) holds for any f : R → C that is C2 in a neighborhood
of the closure of

⋃
t≥0 σ(m(t)).

(ii) Suppose that z1, . . . , zn : R+ → A are ∗-freely independent circular Brow-
nian motions. If m is a free Itô process satisfying Equation (17) and
f ∈ C[λ], then

τ(f(m)) = τ(f(m(0))) +

∫
·

0

(
τ
(
f ′(m(t)) k(t)

)

+

n∑

i=1

(τ⊗̄τop)
(
vflip

i (t) ∂f ′(m(t))ui(t)
))

dt. (32)

If m∗ = m (i.e., m(0)∗ = m(0), k∗ = k a.e., and u⋆

i = vi a.e. for all i),
then Equation (32) holds for any f : R → C that is C2 in a neighborhood
of the closure of

⋃
t≥0 σ(m(t)).
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Remark 3.5.4. Let m be as in Equation (16). Note that when m∗ = m and
f : R → C is C2 on a neighborhood of the closure of

⋃
t≥0 σ(m(t)), we have

(τ⊗̄τop)(uflip

i ∂f ′(m)ui) = 〈∂f ′(m)ui, ui〉L2(τ⊗̄τop) because uflip

i = u∗
i . By the

functional-calculus-based definition of ∂f ′(m), we may therefore read Equa-
tion (31) (almost everywhere) more pleasantly as

d

dt
τ(f(m(t))) = τ

(
f ′(m(t)) k(t)

)
+

1

2

n∑

i=1

∫

R2

f ′(λ) − f ′(µ)

λ− µ
ρm(t),ui(t)(dλ, dµ),

where ρm,ui
(dλ, dµ) := 〈Pm⊗1,1⊗m(dλ, dµ)ui, ui〉L2(τ⊗̄τop). Here, P

m⊗1,1⊗m is
the projection-valued joint spectral measure of the pair (m⊗ 1, 1⊗m). Similar
comments apply to Equation (32).

Before proving this theorem, we demonstrate its utility.

Example 3.5.5. Fix a circular Brownian motion z : R+ → A. Also, let
a1, b1 . . . , an, bn, k : R+ → A be continuous adapted processes and m : R+ → A
be a free Itô process satisfying

dm(t) =
n∑

i=1

(ai(t) dz(t) bi(t) + ci(t) dz
∗(t) di(t)) + k(t) dt.

Now, suppose in addition that m ≥ 0 (i.e., m∗ = m and σ(m(t)) ⊆ R+ when-
ever t ≥ 0). For example, if m̃ is as in Equation (23) and m := |m̃|2 = m̃∗m̃,
then, as is shown in Example 3.2.6, m is a free Itô process of the form we have
just described.
Now, let ε > 0, and define fε(λ) := log(λ + ε) for λ > −ε and fε ≡ 0 on
(−∞,−ε]. Then fε ∈ C∞((−ε,∞)) and

⋃
t≥0 σ(m(t)) ⊆ R+ ⊆ (−ε,∞). Also,

if λ, µ > −ε, then

f ′
ε(λ) =

1

λ+ ε
and (f ′

ε)
[1](λ, µ) =

(λ + ε)−1 − (µ+ ε)−1

λ− µ
= − 1

(λ+ ε)(µ+ ε)
.

Thus

f ′
ε(m) = (m+ε)−1 and ∂f ′

ε(m) = (f ′
ε)

[1](m⊗1, 1⊗m) = −(m+ε)−1⊗(m+ε)−1.

In particular, if u =
∑n

i=1 ai ⊗ bi and v =
∑n

i=1 ci ⊗ di, then

vflip∂f ′
ε(m)u = −

n∑

i,j=1

(dj ⊗ cj)((m + ε)−1 ⊗ (m+ ε)−1)(ai ⊗ bi).︸ ︷︷ ︸
(dj(m+ε)−1ai)⊗(bi(m+ε)−1cj)

It follows from Theorem 3.5.3 and the Fundamental Theorem of Calculus that

d

dt
τ(fε(m(t))) = τ(f ′

ε(m(t)) k(t)) + (τ⊗̄τop)(vflip(t) ∂f ′
ε(m(t))u(t))

= τ((m(t) + ε)−1k(t))−
n∑

i,j=1

τ
(
dj(t)(m(t) + ε)−1ai(t)

)

× τ
(
bi(t)(m(t) + ε)−1cj(t)

)
, (33)
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for all t > 0. Special cases of Equation (33) have shown up in the calculation
of Brown measures of solutions to various free SDEs. Please see [18, 24, 15,
22]. Thus far, such equations are proven in the literature using power series
arguments. Theorem 3.5.3 provides a more intuitive/natural way to do such
calculations.
For concreteness, we demonstrate how Equation (33) can be used to re-prove
a key identity (Lemma 5.2 in [18]) that B.K. Driver, B.C. Hall, and T.A.
Kemp use in the process of computing the Brown measure of free multiplicative
Brownian motion. Similar calculations can be used to re-prove formulas in
[24, 15, 22].
We return to the setup of the end of Example 3.2.6, i.e., dg(t) = g(t) dz(t) and
g(0) = h ∈ A0. We then take gλ := g − λ for λ ∈ C and m := |gλ|2. As we
showed in Example 3.2.6,

dm(t) = g∗λ(t) g(t) dz(t) + dz∗(t) g∗(t) gλ(t) + τ(g∗(t) g(t)) dt.

By Equation (33),

d

dt
τ(log(m(t) + ε)) = τ((m(t) + ε)−1)τ(g∗(t) g(t))

− τ(g∗(t) gλ(t)(m(t) + ε)−1g∗λ(t) g(t))τ((m(t) + ε)−1). (34)

But now, τ(g∗gλ(m+ ε)−1g∗λg) = τ((m + ε)−1g∗λgg
∗gλ),

τ(g∗g) = τ((m + ε)−1(m+ ε)g∗g),

and
(m+ ε)g∗g − g∗λgg

∗gλ = ε g∗g + g∗λgλg
∗g − g∗λgg

∗gλ = ε g∗g

because gλ = g − λ, and λ = λ1 commutes with all elements. From Equa-
tion (34), we then get

d

dt
τ
(
log(|g(t)− λ|2 + ε)

)
= ε τ

(
(|g(t)− λ|2 + ε)−1|g(t)|2

)
τ
(
(|g(t)− λ|2 + ε)−1

)

for all t > 0. This is equivalent to (a generalization to arbitrary starting point
of) Lemma 5.2 in [18].

We now begin the proof of Theorem 3.5.3, the keys to which are the following
identities.

Lemma 3.5.6. If p ∈ C[λ], m, k ∈ A, and u, v ∈ A⊗̄Aop, then

τ(∂p(m)#k) = τ(p′(m) k) and τ
(
∆u,vp(m)

)
= (τ⊗̄τop)

(
vflip∂p′(m)u

)
.

Proof. Fix n ∈ N0, define and pn(λ) := λn. For the first identity, note that

τ(∂pn(m)#k) =
∑

δ1+δ2=n−1

τ(mδ1kmδ2) =
∑

δ1+δ2=n−1

τ(mδ2mδ1k)

= τ(nmn−1k) = τ(p′n(m) k).
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By linearity, the first desired identity holds for all p ∈ C[λ]. Proving the second
identity is slightly more involved. We begin by making two key observations.
First, fix a polynomial P ∈ C[λ1, λ2, λ3] and two elements u1, u2 ∈ A⊗̄Aop

that commute. If we define q(λ1, λ2) := P (λ1, λ2, λ1) and 1 := 1⊗ 1, then

(τ⊗̄τop)
(
P (u1 ⊗ 1⊗ 1,1⊗ u2 ⊗ 1,1⊗ 1⊗ u1)#

⊗

2 [u,1]
)
= (τ⊗̄τop)(q(u1, u2)u),

as the reader may easily verify. (The computation is similar to that of Ra in the
proof of Lemma 3.4.3.) Second, (τ⊗̄τop)(uflip) = (τ⊗̄τop)(u). This is because
(τ⊗̄τop)(a ⊗ b) = τ(a) τ(b) = τ(b) τ(a) = (τ⊗̄τop)(b ⊗ a) whenever a, b ∈ A,
and A⊗Aop is σ-weakly dense in A⊗̄Aop. Now, note that

(q(u1, u2)u)
flip = uflipq(u1, u2)

flip = uflipq(uflip

1 , uflip

2 ). (35)

Combining these observations and appealing again to traciality of τ⊗̄τop, we
get that if in addition uflip

1 = u2, and if w ∈ A⊗̄Aop satisfies wflip = w, then

(τ⊗̄τop)
(
P (u1⊗1⊗1,1⊗u2⊗1,1⊗1⊗u1)#

⊗

2 [w,1]
)
= (τ⊗̄τop)(r(u1, u2)w),

(36)
where

r(λ1, λ2) =
q(λ1, λ2) + q(λ2, λ1)

2
=

P (λ1, λ2, λ1) + P (λ2, λ1, λ2)

2
.

Now, if P = 2 p[2], then

r(λ1, λ2) =
P (λ1, λ2, λ1) + P (λ2, λ1, λ2)

2

= p[2](λ1, λ2, λ1) + p[2](λ2, λ1, λ2) = (p′)[1](λ1, λ2),

as can be seen by taking λ3 → λ1 in the definition of p[2](λ1, λ2, λ3) and using
the symmetry of p[1]. Therefore, if we apply Equation (36) with P = 2 p[2],
u1 = m⊗ 1, u2 = 1⊗m, and w = 1

2 (uv
flip + vuflip), then we obtain

τ
(
∆u,vp(m)

)
=

1

2
(τ⊗̄τop)

(
∂p′(m) (uvflip + vuflip)

)
(37)

by definition of ∆u,vp(m) and noncommutative derivatives. To complete the
proof, notice that if q ∈ C[λ1, λ2] is symmetric, u1 and u2 satisfy uflip

1 = u2,
and w ∈ A⊗̄Aop is arbitrary, then, by Equation (35),

(τ⊗̄τop)(q(u1, u2)w) = (τ⊗̄τop)
(
(q(u1, u2)w)

flip
)
= (τ⊗̄τop)

(
wflipq(u2, u1)

)

= (τ⊗̄τop)
(
wflipq(u1, u2)

)
= (τ⊗̄τop)

(
q(u1, u2)w

flip
)
.

Therefore, Equation (37) reduces to

τ(∆u,vp(m)) = (τ⊗̄τop)(∂p′(m)uvflip) = (τ⊗̄τop)(vflip∂p′(m)u),

as desired.
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Proof of Theorem 3.5.3. We prove Theorem 3.5.3.(i) using Theorem 3.4.4.(i).
Theorem 3.5.3.(ii) follows in the exact same way from Theorem 3.4.4.(ii). Fix
freely independent semicircular Brownian motions x1, . . . , xn : R+ → Asa, and
suppose that m is a free Itô process satisfying Equation (16).
Since free stochastic integrals against xi are noncommutative martingales that
start at zero, they have trace zero. Thus, applying τ to the result of Theo-
rem 3.4.4.(i), bringing τ (which is bounded-linear) into the Bochner integrals,
and appealing to Lemma 3.5.6, we have

τ(p(m)) = τ(p(m(0))) +

∫
·

0

(
τ(∂p(m(t))#k(t)) +

1

2

n∑

i=1

τ
(
∆ui(t)p(m(t))

))
dt

= τ(p(m(0))) +

∫
·

0

(
τ
(
p′(m(t)) k(t)

)

+
1

2

n∑

i=1

(τ⊗̄τop)
(
uflip

i (t) ∂p′(m(t))ui(t)
))

dt,

for all p ∈ C[λ].
Suppose now that m∗ = m and U ⊆ R is an open set containing

⋃
t≥0 σ(m(t))

such that f ∈ C2(U). Since m is continuous in the operator norm, m is locally
bounded in the operator norm. In particular, Kt :=

⋃
0≤s≤t σ(m(s)) ⊆ U is

compact. Next, fix t ≥ 0, and let Vt ⊆ R and gt ∈ C2(R) be such that Vt is open,
Kt ⊆ Vt ⊆ U , and gt = f on Vt. By the Weierstrass Approximation Theorem,
there is a sequence (qN )N∈N of polynomials such that, for all j ∈ {0, 1, 2},
q
(j)
N → g

(j)
t uniformly on compact subsets of R as N → ∞. In particular,

(q′N )[1] → (g′t)
[1] uniformly on compact subsets of R2 as N → ∞. But now,

τ(qN (m(t))) = τ(qN (m(0))) +

∫ t

0

(
τ
(
q′N (m(s)) k(s)

)

+
1

2

n∑

i=1

(τ⊗̄τop)
(
uflip

i (s) ∂q′N (m(s))ui(s)
))

ds,

for all N ∈ N, by the previous paragraph. By basic operator norm estimates
on functional calculus and the Dominated Convergence Theorem, we can take
N → ∞ in this identity to conclude

τ(gt(m(t))) = τ(gt(m(0))) +

∫ t

0

(
τ
(
g′t(m(s)) k(s)

)

+
1

2

n∑

i=1

(τ⊗̄τop)
(
uflip

i (s) ∂g′t(m(s))ui(s)
))

ds.

But gt = f on Vt ⊇ Kt and thus (g′t)
[1] = (f ′)[1] on Kt×Kt. We therefore have

that gt(m(s)) = f(m(s)) and ∂g′(m(s)) = ∂f ′(m(s)), for all s ∈ [0, t]. Since
t ≥ 0 was arbitrary, this completes the proof.
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4 Free Stochastic Calculus II: Noncommutative C2

Functions

4.1 Noncommutative Ck Functions

We now briefly discuss the class NCk(R) of noncommutative Ck functions
introduced in [34], which contains proofs of all the statements in this section.

Notation 4.1.1. If Ω is a set and ϕ : Ω → C is a function, then we write
‖ϕ‖ℓ∞(Ω) := supω∈Ω |ϕ(ω)|. If F is a σ-algebra of subsets of Ω, then we
write ℓ∞(Ω,F ) := {bounded (F ,BC)-measurable functions Ω → C}. For the
duration of this section, fix k ∈ N and, for each j ∈ {1, . . . , k + 1}, a Polish
space (i.e., a complete separable metric space) Ωj with Borel σ-algebra BΩj

.
Also, write Ω := Ω1 × · · · × Ωk+1.

We now define the integral projective tensor product

ℓ∞(Ω1,BΩ1)⊗̂i · · · ⊗̂iℓ
∞(Ωk+1,BΩk+1

),

the idea for which comes from the work of V.V. Peller [35]. Formally, we
shall replace the

∑∞
n=1 in the decomposition (15) of elements of the classical

projective tensor product (of ℓ∞-spaces) with an integral
∫
Σ
· dρ over a σ-finite

measure space. Here is a precise definition.

Definition 4.1.2 (IPTPs). A ℓ∞-integral projective decomposition
(IPD) of a function ϕ : Ω → C is a choice (Σ, ρ, ϕ1, . . . , ϕk+1) of a σ-finite
measure space (Σ,H , ρ) and, for each j ∈ {1, . . . , k+1}, a product measurable
function ϕj : Ωj × Σ → C such that ϕj(·, σ) ∈ ℓ∞(Ωj ,BΩj

) whenever σ ∈ Σ,

∫

Σ

‖ϕ1(·, σ)‖ℓ∞(Ω1) · · · ‖ϕk+1(·, σ)‖ℓ∞(Ωk+1) ρ(dσ) < ∞, and (38)

ϕ(ω) =

∫

Σ

ϕ1(ω1, σ) · · ·ϕk+1(ωk+1, σ) ρ(dσ), for all ω ∈ Ω,

where we write ω = (ω1, . . . , ωk+1). Also, for any function ϕ : Ω → C, define

‖ϕ‖ℓ∞(Ω1,BΩ1)⊗̂i···⊗̂iℓ
∞(Ωk+1,BΩk+1

) := inf

∫

Σ

k+1∏

j=1

‖ϕj(·, σ)‖ℓ∞(Ωj) ρ(dσ),

where (Σ, ρ, ϕ1, . . . , ϕk+1) is a ℓ∞-IPD of ϕ and inf ∅ := ∞. Finally, we define

ℓ∞(Ω1,BΩ1)⊗̂i · · · ⊗̂iℓ
∞(Ωk+1,BΩk+1

)

:=
{
ϕ ∈ ℓ∞(Ω,BΩ) : ‖ϕ‖ℓ∞(Ω1,BΩ1)⊗̂i···⊗̂iℓ

∞(Ωk+1,BΩk+1
) < ∞

}

to be the integral projective tensor product (IPTP) of the spaces
ℓ∞(Ω1,BΩ1), . . . , ℓ

∞(Ωk+1,BΩk+1
).
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It is not obvious that the integral in Equation (38) makes sense. In fact,
the function being integrated is not necessarily measurable, but it is “almost
measurable,” i.e., measurable with respect to the ρ-completion of H . For a
proof, please see Lemma 2.2.1 in [34].
It is easy to see that if ϕ : Ω → C is a function, then

‖ϕ‖ℓ∞(Ω) ≤ ‖ϕ‖ℓ∞(Ω1,BΩ1)⊗̂i···⊗̂iℓ
∞(Ωk+1,BΩk+1

).

It is also the case that ℓ∞(Ω1,BΩ1)⊗̂i · · · ⊗̂iℓ
∞(Ωk+1,BΩk+1

) ⊆ ℓ∞(Ω,BΩ) is a
∗-subalgebra with respect to pointwise operations and that

(
ℓ∞(Ω1,BΩ1)⊗̂i · · · ⊗̂iℓ

∞(Ωk+1,BΩk+1
), ‖ · ‖ℓ∞(Ω1,BΩ1)⊗̂i···⊗̂iℓ

∞(Ωk+1,BΩk+1
)

)

is a Banach ∗-algebra. For proofs, please see Proposition 2.2.3 in [34].

Notation 4.1.3 (The Space C[k](R)). For ϕ : Rk+1 → C and r > 0, define

‖ϕ‖r,k+1 :=
∥∥ϕ|[−r,r]k+1

∥∥
ℓ∞([−r,r],B[−r,r])

⊗̂i(k+1) ∈ [0,∞].

Now, if f ∈ Ck(R), then we define

‖f‖C[k],r :=

k∑

j=0

∥∥f [j]
∥∥
r,j+1

∈ [0,∞] and

C[k](R) :=
{
g ∈ Ck(R) : ‖g‖C[k],r < ∞, for all r > 0

}
,

where ‖ · ‖r,1 := ‖ · ‖ℓ∞([−r,r]).

Note that C[k](R) ⊆ Ck(R) is a linear subspace, and {‖ · ‖C[k],r : r > 0}
is a collection of seminorms on C[k](R). This collection of seminorms makes
C[k](R) into a Fréchet space – actually, a Fréchet ∗-algebra. This is proven as
Proposition 3.1.3.(iv) in [34].

Example 4.1.4 (Polynomials). Fix n ∈ N. For each j ∈ {1, . . . , k + 1} and
ℓ ∈ {1, . . . , n}, fix a bounded Borel measurable function ψj,ℓ : Ωj → C. If
ψ(ω) :=

∑n
ℓ=1 ψ1,ℓ(ω1) · · ·ψk+1,ℓ(ωk+1), for all ω ∈ Ω, then it is easy to see

that ψ ∈ ℓ∞(Ω1,BΩ1)⊗̂i · · · ⊗̂iℓ
∞(Ωk+1,BΩk+1

) with

‖ψ‖ℓ∞(Ω1,BΩ1)⊗̂i···⊗̂iℓ
∞(Ωk+1,BΩk+1

) ≤
n∑

ℓ=1

‖ψ1,ℓ‖ℓ∞(Ω1) · · · ‖ψk+1,ℓ‖ℓ∞(Ωk+1).

In particular, if P ∈ C[λ1, . . . , λk+1], then

P |[−r,r]k+1 ∈ ℓ∞
(
[−r, r],B[−r,r]

)⊗̂i(k+1)
,

for all r > 0. Therefore, by Example 3.3.3, C[λ] ⊆ C[k](R).
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This brings us to the definition of NCk(R).

Definition 4.1.5 (Noncommutative Ck Functions). We define

NCk(R) := C[λ] ⊆ C[k](R)

to be the space of noncommutative Ck functions. To be clear, the closure
above takes place in the Fréchet space C[k](R).

Remark 4.1.6. The idea for the name of NCk(R) comes from parallel work by
D.A. Jekel, who, in Section 18 of [25], defined an abstract analogue of NCk(R)
via completion and using classical projective tensor powers of C([−r, r]) in place
of the integral projective tensor powers of ℓ∞([−r, r],B[−r,r]). Jekel notates his

space of noncommutative Ck functions as Ck
nc(R). By definition of Ck

nc(R), the
inclusion C[λ] →֒ NCk(R) extends uniquely to a continuous map linear map
Ck

nc(R) → NCk(R).

Since C[λ] ⊆ C[k](R) is a ∗-subalgebra,NCk(R) is a Fréchet ∗-algebra in its own
right. We record many examples of noncommutative Ck functions in Theorem
4.1.8 below.

Definition 4.1.7 (Wiener Space). Write M(R,BR) for the space of Borel
complex measures on R. For µ ∈ M(R,BR), write |µ| for the total variation
measure of µ, µ(0) := |µ|(R) for the total variation norm of µ, and

µ(k) :=

∫

R

|ξ|k |µ|(dξ) ∈ [0,∞]

for the “kth moment” of |µ|. The kth Wiener space Wk(R) is the set of
functions f : R → C such that there exists (necessarily unique) µ ∈ M(R,BR)
with µ(k) < ∞ and

f(λ) =

∫

R

eiλξ µ(dξ),

for all λ ∈ R. Finally, we define Wk(R)loc to be set of functions f : R → C such
that for all r > 0, there exists g ∈ Wk(R) such that f |[−r,r] = g|[−r,r].

Theorem 4.1.8 (Nikitopoulos [34]). Write Ḃ
k,∞
1 (R) for the homogeneous

(k,∞, 1)-Besov space (Definition 3.3.1 in [34]) and C
k,ε
loc (R) for the space of Ck

functions whose kth derivatives are locally ε-Hölder continuous (Definition 3.3.8
in [34]).

(i) Ck+1(R) ⊆ Wk(R)loc ⊆ NCk(R), and Wk(R) is dense in NCk(R).

(ii) Ḃ
k,∞
1 (R) ⊆ NCk(R) and C

k,ε
loc (R) ⊆ NCk(R), for all ε > 0.

(iii) Wk(R)loc ( NCk(R). Specifically, Ck, 14 (R) \Wk(R)loc 6= ∅.
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Sketch of proof. We outline the highlights of the proof and refer the reader
to [34] for details. First, we record a property of NCk(R) that we shall use.
For S ⊆ Ck(R), write Sloc for the set of f ∈ Ck(R) such that for all r > 0,
there exists g ∈ S such that f |[−r,r] = g|[−r,r]. Proposition 3.1.3.(ii) in [34] says

that if S ⊆ C[k](R), then Sloc ⊆ S ⊆ C[k](R), where the closure takes place in
the Fréchet space C[k](R). Since NCk(R) ⊆ C[k](R) is closed, we have that if
S ⊆ NCk(R), then Sloc ⊆ S ⊆ NCk(R).
(i) The containment Ck+1(R) ⊆ Wk(R)loc is proven using elementary Fourier
analysis as Lemma 3.2.3.(iii) in [34]. More specifically, one proves that if
f ∈ Ck+1(R), r > 0, and ηr ∈ C∞

c (R) satisfies ηr ≡ 1 on [−r, r], then
ηrf = 1

2π

∫
R
ei·ξF(ηrf)(ξ) dξ ∈ Wk(R), where F(g)(ξ) =

∫
R
e−iξλg(λ) dλ is

the Fourier transform of g.
Now, one may use Equation (26) to show that Wk(R) ⊆ C[k](R) (Lemma 3.2.4
in [34]). It follows that C[λ] ⊆ Ck+1(R) ⊆ Wk(R)loc ⊆ Wk(R) ⊆ C[k](R), and
thus NCk(R) ⊆ Wk(R). To complete the proof of this item, we must show
that Wk(R) ⊆ NCk(R). To this end, let f =

∫
R
ei·ξ µ(dξ) ∈ Wk(R). For

n ∈ N, define µn(dξ) := 1[−n,n](ξ)µ(dξ) and fn :=
∫
R
ei·ξ µn(dξ) ∈ Wk(R).

Then one has fn → f in C[k](R) as n → ∞, so it suffices to assume that
|µ| has compact support. If |µ| has compact support, then we may define

qn(λ) :=
∫
R

∑n
j=0

(iλξ)j

j! µ(dξ) ∈ C[λ], for all n ∈ N. One then has that qn → f

in C[k](R) as n → ∞. For details, please see Theorem 3.2.6 in [34].
(ii) Using a result of Peller (Theorem 5.5 in [35]), Littlewood-Paley decom-

positions, and the previous item, one can prove Ḃ
k,∞
1 (R) ⊆ NCk(R). Thus

Ḃ
k,∞
1 (R)loc ⊆ NCk(R). But if ε > 0, then one also has Ck,ε

loc (R) ⊆ Ḃ
k,∞
1 (R)loc,

so C
k,ε
loc (R) ⊆ NCk(R). For details, please see Section 3.3 of [34].

(iii) Lemma 3.4.3 in [34] says that if g ∈ C(R) has compact support and
h ∈ Ck(R) satisfies h(k) = g, then h ∈ Wk(R)loc if and only if ĝ = F(g) is
integrable. Lemma 3.4.4 in [34] gives an example of a compactly supported

function κ ∈ C0, 14 (R) such that κ̂ is not integrable. Therefore, if f ∈ Ck(R)

and f (k) = κ, then f ∈ Ck, 14 (R) \Wk(R)loc ⊆ NCk(R) \Wk(R)loc.

This collection of results paints the picture that a function only has to be “a
tiny bit better than Ck” to be noncommutative Ck. However, a function does
not have to belong locally to Wk(R) to belong to NCk(R). Though we shall
not need it, it is also the case that NCk(R) ( Ck(R) (Theorem 4.4.1 in [34]).

4.2 Multiple Operator Integrals (MOIs)

In the next section, we shall define and/or interpret the quantities ∂f(m)#k
and ∆u,vf(m) in terms of multiple operator integrals (MOIs). In this section,
we state the definitions and facts from the vast and rich theory of MOIs that
we need for the present application. Please see A. Skripka and A. Tomskova’s
book [38] for a thorough and well-organized survey of the MOI literature and
its applications.
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For the duration of this section, fix a complex Hilbert space H , a von Neumann
algebra M ⊆ B(H), k ∈ N, and a = (a1, . . . , ak+1) ∈ Mk+1

sa . For the present
application, we shall use the “separation of variables” approach, developed in
[35, 2, 36, 33], to defining the MOI

(
Iaϕ

)
[b] =

∫

σ(ak+1)

· · ·
∫

σ(a1)

ϕ(λ)P a1(dλ1) b1 · · ·P ak(dλk) bk P
ak+1(dλk+1)

for b ∈ Mk and ϕ ∈ ℓ∞(σ(a1),Bσ(a1))⊗̂i · · · ⊗̂iℓ
∞(σ(ak+1),Bσ(ak+1)). To moti-

vate the definition, let (Σ, ρ, ϕ1, . . . , ϕk+1) be a ℓ∞-IPD of ϕ. We would like

(
Iaϕ

)
[b] =

∫

σ(ak+1)

· · ·
∫

σ(a1)

∫

Σ

ϕ1(λ1, σ) · · ·ϕk+1(λk+1, σ) ρ(dσ)

× P a1(dλ1) b1 · · ·P ak(dλk) bk P
ak+1(dλk+1)

=

∫

Σ

∫

σ(ak+1)

· · ·
∫

σ(a1)

ϕ1(λ1, σ) · · ·ϕk+1(λk+1, σ)

× P a1(dλ1) b1 · · ·P ak(dλk) bk P
ak+1(dλk+1) ρ(dσ)

=

∫

Σ

(∫

σ(a1)

ϕ1(·, σ) dP a1 b1 · · ·
∫

σ(ak)

ϕk(·, σ) dP ak bk

×
∫

σ(ak+1)

ϕk+1(·, σ) dP ak+1

)
ρ(dσ)

=

∫

Σ

ϕ1(a1, σ) b1 · · ·ϕk(ak, σ) bk ϕk+1(ak+1, σ) ρ(dσ). (39)

The integral in Equation (39) will become the definition of (Iaϕ)[b]. First,
we must explain what kind of integral this is. If (Σ,H , ρ) is a measure
space and F : Σ → B(H) is a map, then we say that F is pointwise Pet-
tis integrable if, for every h1, h2 ∈ H , 〈F (·)h1, h2〉 : Σ → C is (H ,BC)-
measurable and

∫
Σ
|〈F (σ)h1, h2〉| ρ(dσ) < ∞. In this case, by Lemma 4.2.1 in

[34], there exists unique T ∈ B(H) such that 〈Th1, h2〉 =
∫
Σ〈F (σ)h1, h2〉 ρ(dσ),

for all h1, h2 ∈ H ; moreover, T ∈ W ∗(F (σ) : σ ∈ Σ). We shall write∫
Σ
F dρ =

∫
Σ
F (σ) ρ(dσ) := T for this operator. Note that if F : Σ → B(H) is

Bochner integrable, then it is also pointwise Pettis integrable, and the opera-
tor T coincides with the Bochner ρ-integral of F .

Proposition 4.2.1. If ϕ ∈ ℓ∞(σ(a1),Bσ(a1))⊗̂i · · · ⊗̂iℓ
∞(σ(ak+1),Bσ(ak+1)),

(Σ, ρ, ϕ1, . . . , ϕk+1) is a ℓ∞-IPD of ϕ, and b1, . . . , bk ∈ M, then the map

Σ ∋ σ 7→ ϕ1(a1, σ) b1 · · ·ϕk(ak, σ) bk ϕk+1(ak+1, σ) ∈ M

is pointwise Pettis integrable.

Proof. Please see Corollary 4.2.4 in [33] or Theorem 4.2.4.(i) in [34].
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Crucially, the pointwise Pettis integral in Equation (39) is also independent of
the chosen ℓ∞-IPD.

Theorem 4.2.2 (Well-Definition of MOIs). Fix

ϕ ∈ ℓ∞
(
σ(a1),Bσ(a1)

)
⊗̂i · · · ⊗̂iℓ

∞(
σ(ak+1),Bσ(ak+1)

)
,

b = (b1, . . . , bk) ∈ Mk, and a ℓ∞-IPD (Σ, ρ, ϕ1, . . . , ϕk+1) of ϕ.

(i) The pointwise Pettis integral

(
Iaϕ

)
[b] :=

∫

Σ

ϕ1(a1, σ) b1 · · ·ϕk(ak, σ) bk ϕk+1(ak+1, σ) ρ(dσ) ∈ M

is independent of the chosen ℓ∞-IPD.

(ii) The assignment ϕ 7→ (Iaϕ)[b] is linear.

(iii) ‖(Iaϕ)[b]‖ ≤ ‖ϕ‖ℓ∞(σ(a1),Bσ(a1))⊗̂i···⊗̂iℓ
∞(σ(ak+1),Bσ(ak+1))

‖b1‖ · · · ‖bk‖.

Proof. We prove or give references for each item in turn.
(i) For a proof in the case where H is separable, please see Theorem 2.1.1 in
[36] (or Lemma 4.3 in [2] for a more restrictive class of ℓ∞-IPDs). For H not
necessarily separable (in a very general setting), please see Theorem 4.2.12 in
[33]. For a proof that the separable case implies the general case in the present
setting, please see the sketch of Theorem 4.2.4.(ii) in [34].
(ii) Please see Proposition 4.3.1.(i) in [33] or Theorem 4.2.4.(iii) in [34].
(iii) For σ ∈ Σ, write F (σ) := ϕ1(a1, σ) b1 · · ·ϕk(ak, σ) bk ϕk+1(ak+1, σ). Then

‖F (σ)‖ ≤ ‖ϕ1(a1, σ)‖ ‖b1‖ · · · ‖ϕk(ak, σ)‖ ‖bk‖ ‖ϕk+1(ak+1, σ)‖
≤ ‖ϕ1(·, σ)‖ℓ∞(σ(a1)) · · · ‖ϕk+1(·, σ)‖ℓ∞(σ(ak+1))‖b1‖ · · · ‖bk‖.

Therefore,

∥∥(Iaϕ
)
[b]
∥∥ =

∥∥∥∥∥

∫

Σ

F dρ

∥∥∥∥∥

= sup

{∣∣∣∣∣

〈(∫

Σ

F dρ

)
h1, h2

〉∣∣∣∣∣ : h1, h2 ∈ H, ‖h1‖, ‖h2‖ ≤ 1

}

= sup

{∣∣∣∣∣

∫

Σ

〈F (σ)h1, h2〉 ρ(dσ)
∣∣∣∣∣ : h1, h2 ∈ H, ‖h1‖, ‖h2‖ ≤ 1

}

≤ ‖b1‖ · · · ‖bk‖
∫

Σ

k+1∏

j=1

‖ϕj(·, σ)‖ℓ∞(σ(aj)) ρ(dσ).

Taking the infimum over ℓ∞-IPDs of ϕ gives the desired bound.

This development allows us to make the definition we wanted.
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Definition 4.2.3 (Multiple Operator Integral). If

ϕ ∈ ℓ∞
(
σ(a1),Bσ(a1)

)
⊗̂i · · · ⊗̂iℓ

∞(
σ(ak+1),Bσ(ak+1)

)

and b = (b1, . . . , bk) ∈ Mk, then we define

∫

σ(ak+1)

· · ·
∫

σ(a1)

ϕ(λ)P a1(dλ1) b1 · · ·P ak(dλk) bk P
ak+1(dλk+1) (40)

to be the element (Iaϕ)[b] ∈ M from Theorem 4.2.2.(i). We call the k-linear
map Iaϕ : Mk → M the multiple operator integral (MOI) of ϕ with
respect to (P a1 , . . . , P ak+1).

Example 4.2.4 (Polynomials). Fix P (λ) =
∑

|δ|≤d cδ λ
δ ∈ C[λ1, . . . , λk+1].

By Example 4.1.4 and the definition of MOIs, if b = (b1, . . . , bk) ∈ Mk, then

(
IaP

)
[b] =

∑

|δ|≤d

cδ a
δ1
1 b1 · · · aδkk bk a

δk+1

k+1 .

In particular, by Example 3.3.3 and Equation (27), if p ∈ C[λ], then

(
Ia1,a2p[1]

)
[b] = ∂p(a1, a2)#b and (41)

(
Iu1,u2,u3p[2]

)
[v1, v2] =

1

2
∂2p(u1, u2, u3)#

⊗

2 [v1, v2], (42)

for all a1, a2 ∈ Asa, b ∈ A, u1, u2, u3 ∈ (A⊗̄Aop)sa, and v1, v2 ∈ A⊗̄Aop.
Recall that (A, (At)t≥0, τ) is our fixed filtered W ∗-probability space, and the
operations # and #⊗

2 are defined in Notation 3.1.1.

Because of the correction term 1
2∆u,vf(m) term in the functional free Itô

formula(s) to come, we shall also need to understand MOIs of the form∫
σ(a2)

∫
Λ

∫
σ(a1)

ϕ(λ1, λ2, λ3)P
a1(dλ1) b1 µ(dλ2) b2 P

a2(dλ3), where Λ is a Pol-

ish space and µ is a Borel complex measure on Λ.

Lemma 4.2.5. Let Λ be a Polish space and µ be a Borel complex measure on Λ.
If ϕ ∈ ℓ∞(σ(a1),Bσ(a1))⊗̂iℓ

∞(Λ,BΛ)⊗̂iℓ
∞(σ(a2),Bσ(a2)) and

ϕµ(λ1, λ3) :=

∫

Λ

ϕ(λ1, λ2, λ3)µ(dλ2)

for (λ1, λ3) ∈ σ(a1) × σ(a2), then ϕµ ∈ ℓ∞(σ(a1),Bσ(a1))⊗̂iℓ
∞(σ(a2),Bσ(a2)).

Henceforth, if b1, b2 ∈ M, then we shall write

∫

σ(a2)

∫

Λ

∫

σ(a1)

ϕ(λ1, λ2, λ3)P
a1(dλ1) b1 µ(dλ2) b2 P

a2(dλ3)

for the element (Ia1,a2ϕµ)[b1b2] ∈ M.
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Proof. Let (Σ, ρ, ϕ1, ϕ2, ϕ3) be a ℓ∞-integral projective decomposition of ϕ. If
we define

ϕ
µ
1 (λ1, σ) := ϕ1(λ1, σ)

∫

Λ

ϕ2(λ2, σ)µ(dλ2) and ϕ
µ
3 (λ3, σ) := ϕ3(λ3, σ),

for all λ1 ∈ σ(a1), λ3 ∈ σ(a2), σ ∈ Σ, then it is easy to see that (Σ, ρ, ϕµ
1 , ϕ

µ
3 ) is

a ℓ∞-IPD of ϕµ.

It follows from the proof above and Definition 4.2.3 that
∫

σ(a2)

∫

Λ

∫

σ(a1)

ϕ(λ1, λ2, λ3)P
a1(dλ1) b1 µ(dλ2) b2 P

a2(dλ3)

=

∫

Σ

µ(ϕ2(·, σ))ϕ1(a1, σ) b1b2 ϕ3(a2, σ) ρ(dσ) (43)

whenever (Σ, ρ, ϕ1, ϕ2, ϕ3) is a ℓ
∞-integral projective decomposition of ϕ, where

µ(ϕ2(·, σ)) :=
∫
Λ
ϕ2(λ, σ)µ(dλ).

4.3 Functional Free Itô Formula for NC2(R)

In this section, we finally prove our Itô formula for noncommutative C2

functions of self-adjoint free Itô processes (Theorem 4.3.4). Recall that
(A, (At)t≥0, τ) is a fixed filtered W ∗-probability space.
We begin by identifying ∂f(m)#k as a MOI.

Lemma 4.3.1. If f ∈ W1(R)loc and a1, a2 ∈ Asa, then

∂f(a1, a2) ∈ A⊗̂πAop and ∂f(a1, a2)#b =
(
Ia1,a2f [1]

)
[b],

for all b ∈ A. Moreover, the map

A2
sa ∋ (a1, a2) 7→ ∂f(a1, a2) ∈ A⊗̂πAop

is continuous.

Proof. Fix a1, a2 ∈ Asa, and let r > 0 be such that σ(a1) ∪ σ(a2) ⊆ [−r, r].
By definition of W1(R)loc, there is some g =

∫
R
ei·ξ µ(dξ) ∈ W1(R) such that

g|[−r,r] = f |[−r,r]. In particular, g[1]|[−r,r]2 = f [1]|[−r,r]2 . Thus

∂f(a1, a2) = ∂g(a1, a2) ∈ A⊗̂πAop (44)

by Example 3.3.7. Moreover, since A⊗̂πAop ∋ u 7→ u#b ∈ A is bounded-linear,
the same example gives

∂g(a1, a2)#b =

∫ 1

0

∫

R

(iξ) eita1b ei(1−t)a2 µ(dξ) dt

=

∫

R×[0,1]

(iξ) eita1b ei(1−t)a2
dµ

d|µ| (ξ) |µ|(dξ) dt

=
(
Ia1,a2g[1]

)
[b] =

(
Ia1,a2f [1]

)
[b],

for all b ∈ A, where the third identity holds by Equation (26) and the definition
of MOIs.
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For the continuity claim, note that the map

A2
sa ∋ (a1, a2) 7→

∫ 1

0

∫

R

(iξ) eita1 ⊗ ei(1−t)a2 µ(dξ) dt ∈ A⊗̂πAop

is continuous by the vector-valued Dominated Convergence Theorem. In partic-
ular, (a1, a2) 7→ ∂g(a1, a2) is continuous. Since Equation (44) holds whenever
σ(a1)∪σ(a2) ⊆ [−r, r] (i.e., whenever ‖a1‖ ≤ r and ‖a2‖ ≤ r), we conclude that
(a1, a2) 7→ ∂f(a1, a2) is continuous on {(a1, a2) ∈ A2

sa : ‖a1‖ ≤ r, ‖a2‖ ≤ r}.
Since r > 0 was arbitrary, we are done.

Since C2(R) ⊆ W1(R)loc (Theorem 4.1.8.(i)), the conclusion of Lemma 4.3.1
holds for all f ∈ C2(R). Thus Equation (41) is a special case of Lemma 4.3.1.
Next, we make sense of ∆u,vf(m) in terms of MOIs. If f ∈ C[2](R), m ∈ Asa,
and u, v ∈ A⊗̄Aop, then we define

ℓf,u,v(a) := (τ⊗̄τop)
(
(a⊗ 1)

(
Im⊗1,1⊗m,m⊗1f [2]

)
[uvflip + vuflip, 1⊗ 1]

)
,

for all a ∈ L1(A, τ). By Theorem 4.2.2.(iii),

‖ℓf,u,v‖L1(A,τ)∗ ≤
∥∥(Im⊗1,1⊗m,m⊗1f [2]

)
[uvflip + vuflip, 1⊗ 1]

∥∥
L∞(τ⊗̄τop)

≤
∥∥f [2]

∥∥
ℓ∞(σ(m),Bσ(m))

⊗̂i3
‖uvflip + vuflip‖L∞(τ⊗̄τop)‖1⊗ 1‖L∞(τ⊗̄τop)

≤ 2
∥∥f [2]

∥∥
ℓ∞(σ(m),Bσ(m))

⊗̂i3
‖u‖L∞(τ⊗̄τop)‖v‖L∞(τ⊗̄τop) < ∞.

In particular, the following definition makes sense.

Definition 4.3.2. If f ∈ C[2](R), m ∈ Asa, and u, v ∈ A⊗̄Aop, then we define
∆u,vf(m) to be the unique element of A such that

τ
(
a∆u,vf(m)

)
= (τ⊗̄τop)

(
(a⊗ 1)

(
Im⊗1,1⊗m,m⊗1f [2]

)
[uvflip + vuflip, 1⊗ 1]

)
,

for all a ∈ A (and thus a ∈ L1(A, τ)). Also, write ∆uf(m) := ∆u,uf(m).

By Equation (42), Definition 4.3.2 agrees with Definition 3.4.2 when both defi-
nitions apply (i.e., when f ∈ C[λ] and m ∈ Asa). Also, if f ∈ C[2](R), m ∈ Asa,
and u, v ∈ A⊗̄Aop, then

‖∆u,vf(m)‖ = ‖ℓf,u,v‖L1(A,τ)∗

≤ 2
∥∥f [2]

∥∥
ℓ∞(σ(m),Bσ(m))

⊗̂i3
‖u‖L∞(τ⊗̄τop)‖v‖L∞(τ⊗̄τop) (45)

by the paragraph before Definition 4.3.2.

Lemma 4.3.3. If f ∈ NC2(R), m ∈ C(R+;Asa), and u, v ∈ L2
loc(R+;A⊗̄Aop),

then ∆u,vf(m) ∈ L1
loc(R+;A) and

‖∆u,vf(m)‖L1
tL

∞(τ) ≤ 2
∥∥f [2]

∥∥
rt,3

‖u‖L2
tL

∞(τ⊗̄τop)‖v‖L2
tL

∞(τ⊗̄τop),

for all t ≥ 0, where rt := ‖m‖L∞
t L∞(τ) = sup0≤s≤t ‖m(s)‖.
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Proof. When f ∈ C[λ], we know from Section 3.4 that ∆u,vf(m) ∈ L1
loc(R;A).

The claimed bound follow from applying Equation (45) pointwise and then
using the Cauchy-Schwarz Inequality. If f ∈ NC2(R) is arbitrary, then there is
a sequence (qN )N∈N of polynomials converging in NC2(R) (i.e., in C[2](R)) to f .
What we just proved implies that the sequence (∆u,vqN (m))N∈N is Cauchy in
L1
loc(R+;A), and Equation (45) implies that ∆u,vqN (m) → ∆u,vf(m) almost

everywhere as N → ∞. It follows that ∆u,vf(m) ∈ L1
loc(R+;A), and that the

claimed bound holds for ∆u,vf(m) as well.

We are finally ready for the functional free Itô formula for NC2 functions.

Theorem 4.3.4 (Functional Free Itô Formula). Fix f ∈ NC2(R).

(i) Suppose that x1, . . . , xn : R+ → Asa are freely independent semicircular
Brownian motions, and that m is a free Itô process satisfying Equation
(16). If m∗ = m, then

d f(m(t)) = ∂f(m(t))#dm(t) +
1

2

n∑

i=1

∆ui(t)f(m(t)) dt. (46)

Recall from Corollary 3.5.2 that m∗ = m is equivalent to m(0)∗ = m(0),
k∗ = k a.e., and u⋆

i = ui a.e. for all i.

(ii) Suppose that z1, . . . , zn : R+ → A are ∗-freely independent circular Brow-
nian motions, and that m is a free Itô process satisfying Equation (17).
If m∗ = m, then

d f(m(t)) = ∂f(m(t))#dm(t) +

n∑

i=1

∆ui(t),u
⋆

i
(t)f(m(t)) dt. (47)

Recall from Corollary 3.5.2 that m∗ = m is equivalent to m(0)∗ = m(0),
k∗ = k a.e., and u⋆

i = vi a.e. for all i.

Remark 4.3.5. Note that in either case, R+ ∋ t 7→ ∂f(m(t)) ∈ A⊗̂πAop is
continuous (Lemma 4.3.1) and adapted. In particular, if ℓ ∈ L1

loc(R+;A) and
u ∈ Λ2, then ∂f(m)#ℓ ∈ L1

loc(R+;A) and, by Corollary 3.1.12, ∂f(m)u ∈ Λ2.
Thus all of the integrals in the statement of Theorem 4.3.4 make sense.

Proof. As usual, item (ii) follows from item (i) with twice as many semicircular
Brownian motions, so it suffices to prove item (i). To this end, let m = m∗ be a
free Itô process satisfying Equation (16). By Theorem 3.4.4.(i), Equation (46)
holds when f ∈ C[λ]. For general f ∈ NC2(R), let (qN )N∈N be a sequence of
polynomials converging in NC2(R) to f , and fix t ≥ 0. Since qN → f uniformly
on compact sets, we have that qN (m(t)) → f(m(t)) in A as N → ∞. Next,
fix i ∈ {1, . . . , n}. By Lemma 4.3.3, ∆ui

qN (m) → ∆ui
f(m) in L1

loc(R+;A) as
N → ∞. In particular,

∫ t

0

∆ui(s)qN (m(s)) ds →
∫ t

0

∆ui(s)f(m(s)) ds
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in A as N → ∞. Now, write rt := sup0≤s≤t ‖m(s)‖ < ∞. Then

‖∂qN(m)ui−∂f(m)ui‖L2
tL

∞(τ⊗̄τop)

=
∥∥(qN − f)[1](m⊗ 1, 1⊗m)ui

∥∥
L2

tL
∞(τ⊗̄τop)

≤
∥∥(qN − f)[1]

∥∥
ℓ∞([−rt,rr]2)

‖ui‖L2
tL

∞(τ⊗̄τop) → 0

as N → ∞ by basic properties of functional calculus and the fact that

‖ · ‖ℓ∞([−rt,rt]2) ≤ ‖ · ‖rt,2.

Therefore, by the L∞-BDG Inequality,

∫ t

0

(∂qN (m(s))ui(s))#dxi(s) →
∫ t

0

(∂f(m(s))ui(s))#dxi(s)

in A as N → ∞. Finally, by Lemma 4.3.1 and Theorem 4.2.2.(ii)-(iii), we have

‖∂qN(m)#k − ∂f(m)#k‖L1
tL

∞(τ) =
∥∥(Im,m(qN − f)[1]

)
[k]

∥∥
L1

tL
∞(τ)

≤
∥∥(qN − f)[1]

∥∥
rt,2

‖k‖L1
tL

∞(τ) → 0

as N → ∞. In particular,

∫ t

0

∂qN (m(s))#k(s) ds →
∫ t

0

∂f(m(s))#k(s) ds

in A as N → ∞. Therefore, we may deduce Equation (46) by taking N → ∞
in the corresponding identity for qN .

We end this section by deriving an explicit formula for ∆u,vf(m) (with
u, v ∈ A ⊗ Aop) in terms of MOIs. Using this formula, we shall see directly
that Theorem 4.3.4.(i) generalizes Proposition 4.3.4 in [4]. For this develop-
ment, we shall view A as a W ∗-subalgebra of B(L2(A, τ)) via the standard
representation, i.e., as acting on L2(A, τ) by left multiplication.

Proposition 4.3.6 (Computing ∆u,vf(m)). Fix f ∈ C[2](R) and m ∈ Asa,
and let (Σ, ρ, ϕ1, ϕ2, ϕ3) be a ℓ∞-IPD of f [2] on σ(m)3. If u, v ∈ A⊗Aop, then

∆u,vf(m) =

∫

Σ

Mτ

(
(1⊗ v) · (ϕ1(m,σ)⊗ ϕ2(m,σ)⊗ ϕ3(m,σ)) · (u⊗ 1)

+ (1⊗ u) · (ϕ1(m,σ) ⊗ ϕ2(m,σ)⊗ ϕ3(m,σ)) · (v ⊗ 1)
)
ρ(dσ),

where the right hand side is a pointwise Pettis integral in A ⊆ B(L2(A, τ)).
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Proof. As usual, we write 1 := 1⊗1. If a, b ∈ L2(A, τ) (so that ab∗ ∈ L1(A, τ)),
then we have

〈(
∆u,vf(m)

)
a, b

〉
L2(τ)

= τ
(
b∗ ∆u,vf(m)a

)
= τ

(
ab∗ ∆u,vf(m)

)

= (τ⊗̄τop)
(
(ab∗ ⊗ 1)

(
Im⊗1,1⊗m,m⊗1f [2]

)
[uvflip + vuflip,1]

)
(48)

= (τ⊗̄τop)
(
(b⊗ 1)∗

(
Im⊗1,1⊗m,m⊗1f [2]

)
[uvflip + vuflip,1](a⊗ 1)

)

=
〈(
Im⊗1,1⊗m,m⊗1f [2]

)
[uvflip + vuflip,1](a⊗ 1), b⊗ 1

〉
L2(τ⊗̄τop)

=

∫

Σ

〈ϕ1(m⊗ 1, σ)(uvflip + vuflip)ϕ2(1⊗m,σ)

× ϕ3(m⊗ 1, σ)(a⊗ 1), b⊗ 1〉L2(τ⊗̄τop) ρ(dσ) (49)

=

∫

Σ

〈(ϕ1(m,σ) ⊗ 1)(uvflip + vuflip)(1 ⊗ ϕ2(m,σ))

× (ϕ3(m,σ)⊗ 1)(a⊗ 1), b⊗ 1〉L2(τ⊗̄τop) ρ(dσ)

=

∫

Σ

(τ⊗̄τop)
(
(ab∗ ⊗ 1)(ϕ1(m,σ)⊗ 1)(uvflip + vuflip)

× (1⊗ ϕ2(m,σ))(ϕ3(m,σ) ⊗ 1)
)
ρ(dσ)

=

∫

Σ

τ
(
ab∗Mτ

(
(1⊗ v) · (ϕ1(m,σ)⊗ ϕ2(m,σ) ⊗ ϕ3(m,σ)) · (u⊗ 1)

+ (1⊗ u) · (ϕ1(m,σ) ⊗ ϕ2(m,σ)⊗ ϕ3(m,σ)) · (v ⊗ 1)
))

ρ(dσ) (50)

=

∫

Σ

〈
Mτ

(
(1⊗ v) · (ϕ1(m,σ)⊗ ϕ2(m,σ) ⊗ ϕ3(m,σ)) · (u⊗ 1)

+ (1 ⊗ u) · (ϕ1(m,σ)⊗ ϕ2(m,σ) ⊗ ϕ3(m,σ)) · (v ⊗ 1)
)
a, b

〉
L2(τ)

ρ(dσ),

where Equation (48) holds by definition of ∆u,vf(m), Equation (49) holds by
definition of MOIs and pointwise Pettis integrals, and Equation (50) holds by
Lemma 3.2.3 (and an elementary limiting argument). By definition of pointwise
Pettis integrals, this completes the proof.

Corollary 4.3.7. Retain the setting of Proposition 4.3.6. If a, b, c, d ∈ A,
then ∆a⊗b,c⊗df(m) is equal to

∫

σ(m)

∫

σ(m)

∫

σ(m)

f [2](λ1, λ2, λ3)P
m(dλ1)aτ(bP

m(dλ2)c)dP
m(dλ3)

+

∫

σ(m)

∫

σ(m)

∫

σ(m)

f [2](λ1, λ2, λ3)P
m(dλ1)cτ(dP

m(dλ2)a)bP
m(dλ3). (51)

Note that µ(dλ) = τ(b Pm(dλ) c) and ν(dλ) = τ(dPm(dλ) a) are Borel complex
measures on σ(m).

Proof. This follows immediately from Proposition 4.3.6, the definition of Mτ ,
and Equation (43).
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Example 4.3.8 (Connection to Biane-Speicher Formula). Retain the
setting of Proposition 4.3.6, but suppose further that f ∈ W2(R)loc ⊆ NC2(R).
Let g =

∫
R
ei·ξ µ(dξ) ∈ W2(R) be such that g|[−r,r] = f |[−r,r], where r = ‖m‖.

Since f [2]|[−r,r]3 = g[2]|[−r,r]3, Equation (26) gives

f [2](λ1, λ2, λ3) =

∫ 1

0

∫ 1−t

0

∫

R

(iξ)2eisλ1ξeitλ2ξei(1−s−t)λ3ξ µ(dξ) ds dt

=

∫

R×Σ2

(iξ)2eisλ1ξeitλ2ξei(1−s−t)λ3ξ
dµ

d|µ| (ξ) |µ|(dξ) ds dt,

for all (λ1, λ2, λ3) ∈ [−r, r]3. Therefore, by Proposition 4.3.6, if u, v ∈ A⊗Aop,
then ∆u,vf(m) is equal to
∫

R×Σ2

Mτ

(
(1⊗ v) ·

(
(iξ)2eisξm ⊗ eitξm ⊗

(
ei(1−s−t)ξm dµ

d|µ| (ξ)
))

· (u ⊗ 1)

+ (1⊗ u) ·
(
(iξ)2eisξm ⊗ eitξm ⊗

(
ei(1−s−t)ξm dµ

d|µ| (ξ)
))

· (v ⊗ 1)
)
|µ|(dξ) ds dt,

which is equal to

−
∫ 1

0

∫ 1−t

0

∫

R

ξ2Mτ

(
(1⊗ v) · (eisξm ⊗ eitξm ⊗ ei(1−s−t)ξm) · (u⊗ 1)

+ (1 ⊗ u) · (eisξm ⊗ eitξm ⊗ ei(1−s−t)ξm) · (v ⊗ 1)
)
µ(dξ) ds dt.

When u = v, this is exactly Biane and Speicher’s definition of ∆uf(m)
from [4].2 Moreover, since we saw in the proof of Lemma 4.3.1 that

∂f(m) = i
∫ 1

0

∫
R
ξ eitm⊗ ei(1−t)m µ(dξ) dt, this demonstrates directly that The-

orem 4.3.4.(i) does, in fact, generalize Proposition 4.3.4 in [4].

Remark 4.3.9. If X,Y, Z are topological spaces and F : X × Y → Z is a
function, then we call F argumentwise continuous if, for every x ∈ X

and y ∈ Y , the maps F (x, ·) : Y → Z and F (·, y) : X → Z are continuous.
Now, fix m ∈ A, p ∈ C[λ], and f ∈ C[2](R). Write B : (A⊗̄Aop)2 → A for
any one of the bilinear maps Qτ , ∆·,·p(m), or ∆·,·f(m). Of course, when
B = ∆·,·f(m), we implicitly assume m ∈ Asa. When B ∈ {Qτ ,∆·,·p(m)},
it is easy to see from the definition that B is argumentwise continuous with
respect to the weak∗ topologies (i.e., σ-WOTs) on A⊗̄Aop and A. This is
also true when B = ∆·,·f(m), but it is substantially harder to prove. The
key is that the MOI in Equation (40) is argumentwise σ-weakly continuous
in b; this is a special case of Corollary 4.2.11 in [33]. In any case, no matter
the choice of B, B is argumentwise σ-weakly continuous. Since A ⊗ Aop is
σ-weakly dense in A⊗̄Aop, B|(A⊗Aop)2 extends uniquely to an argumentwise
σ-weakly continuous bilinear map (A⊗̄Aop)2 → A. To this extent, B is de-
termined by its respective algebraic formula (Equations (18), (28), or (51)).

2Beware: As is noted in [3], the definition of ∆uf(m) actually written in [4] is missing a
factor of 2.
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However, A⊗Aop is not necessarily (operator) norm dense in A⊗̄Aop. For ex-
ample, if A = L∞([0, 1]), then A⊗̄Aop = L∞([0, 1])⊗̄L∞([0, 1]) = L∞([0, 1]2),
and it is a standard exercise to show that if ∆+ = {(x, y) : 0 ≤ x ≤ y ≤ 1},
then 1∆+ ∈ L∞([0, 1]2) \ L∞([0, 1]) ⊗min L∞([0, 1]). In particular, bounded-
ness of B|(A⊗Aop)2 as a bilinear map does not necessarily imply that there
exists a unique bounded bilinear extension of B|(A⊗Aop)2 to (A⊗̄Aop)2. Biane
and Speicher implicitly claim uniqueness of such an extension in the para-
graphs after Definition 4.3.1 and Lemma 4.3.3 in [4]. However, this luck-
ily does not harm their development because we can guarantee a unique
bounded bilinear extension to (A⊗minAop)2, and, as we noted in Remark 3.1.7,
Λ2 ⊆ L2

loc(R+;A⊗min Aop).

A Matrix Stochastic Calculus Formulas

The main purpose of this appendix is to motivate our main results (The-
orems 4.3.4 and 3.5.3) by studying an Itô formula for C2 scalar functions
of Hermitian matrix-valued Itô processes (Theorem A.11). To the author’s
knowledge, this formula is not written elsewhere in the literature, though
its existence is mentioned – at least for polynomials – in [1]. For the du-
ration of the appendix, fix a filtered probability space (Ω,F , (Ft)t≥0, P ),
with filtration satisfying the usual conditions, to which all processes to come
are adapted. Also, we shall adhere to Notation 1.1.1 and, for a function
f : R → C, write fMN (C) : MN (C)sa → MN (C) for the associatedmatrix func-
tion MN (C)sa ∋ M 7→ f(M) ∈ MN (C) defined via functional calculus.
Fix n,N ∈ N, and – as in the introduction – let

(
X

(N)
1 , . . . , X(N)

n

)
= (X1, . . . , Xn)

be a n-tuple of independent standard (MN (C)sa, 〈·, ·〉N )-valued Brownian mo-
tions. Concretely, if E ⊆ MN (C)sa is any orthonormal basis (ONB) for the real
inner product space (MN (C)sa, 〈·, ·〉N ), then

Xi =
∑

E∈E
bi,E E, (52)

where {bj,E = (bj,E(t))t≥0 : 1 ≤ j ≤ n, E ∈ E} is a collection of nN2 inde-
pendent standard real Brownian motions. This representation of Xi will allow
us to use the following “Magic Formula” to identify various “trace terms” in
our stochastic calculus formulas. Please see Section 3.1 of [19], the paper from
which the name “Magic Formula” originates, for a proof.

Lemma A.1 (Magic Formula). If E ⊆ MN (C)sa is a 〈·, ·〉N -ONB for
MN (C)sa, then ∑

E∈E
EBE = tr(B) IN ,

for all B ∈ MN (C), where IN is the N ×N identity matrix.
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Next, we set some algebraic notation.

Notation A.2. For k ∈ N, write Lk(MN (C)) for the space of k-linear maps
MN (C)k → MN (C), and let #k : MN (C)⊗(k+1) → Lk(MN (C)) be the linear
map determined by

#k(A1 ⊗ · · · ⊗Ak+1)[B1, . . . , Bk] = A1B1 · · ·AkBkAk+1,

for all A1, B1, . . . , Ak, Bk, Ak+1 ∈ MN (C). Whenever U ∈ MN (C)⊗(k+1) and
B = (B1, . . . , Bk) ∈ MN (C)k, we shall write

U#kB := #k(U)[B].

Also, when k = 1, we shall view the domain of #1 as MN (C) ⊗MN (C)op and
write simply #1 = #.

Using basic linear algebra, one can show that if k ∈ N, then
#k : MN (C)⊗(k+1) → Lk(MN (C)) is a linear isomorphism. Also,
#: MN (C) ⊗ MN (C)op → L1(MN (C)) = End(MN (C)) is an algebra ho-
momorphism. In particular, we may identify End(MN (C))-valued processes
U = (U(t))t≥0 with MN (C) ⊗ MN (C)op-valued processes and write, for

instance,
∫ t

0 U(s)#dY (s) =
∫ t

0 U(s)[dY (s)] for the stochastic integral of U

against the MN (C)-valued semimartingale Y (when this makes sense). In view
of this identification and notation, we introduce N ×N matrix Itô processes.

Definition A.3 (Matrix Itô Process). A N ×N matrix Itô process is
an adapted process M taking values in MN (C) that satisfies

dM(t) =

n∑

i=1

Ui(t)#dXi(t) +K(t) dt (53)

for some predictable MN (C)⊗MN (C)op-valued processes U1, . . . , Un and some
progressively measurable MN (C)-valued process K satisfying

n∑

i=1

∫ t

0

‖Ui(s)‖2⊗N
ds+

∫ t

0

‖K(s)‖N ds < ∞, for all t ≥ 0, (54)

almost surely, where ‖ · ‖⊗N
is the norm associated to the tensor inner product

〈·, ·〉⊗N
on MN (C) ⊗ MN (C)op induced by the usual Hilbert-Schmidt (Frobe-

nius) inner product on MN (C) (and MN (C)op).

Remark A.4. The conditions in and preceding Equation (54) guarantee that
all the integrals in Equation (53) make sense and that M is a continuous
MN (C)-valued semimartingale.

Now, we compute the quadratic covariation of two matrix Itô processes.
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Definition A.5 (Magic Operator). Write Mtr : MN (C)⊗3 → MN (C) for
the linear map determined by

Mtr(A⊗B ⊗ C) = Atr(B)C = tr(B)AC,

for all A,B,C ∈ MN (C). We call Mtr the magic operator. Another way to
write it is

Mtr = mMN(C) ◦ (idMN (C) ⊗tr⊗ idMN (C)),

where mMN(C) : MN (C)⊗MN (C) → MN (C) is the linear map induced by mul-
tiplication in MN (C).

Lemma A.6. Suppose that E ⊆ MN (C)sa is a 〈·, ·〉N -orthonormal basis. If
W ∈ MN (C)⊗3 and U, V ∈ MN (C)⊗MN (C)op, then

∑

E∈E
W#2[U#E, V #E] = Mtr((IN ⊗ V ) ·W · (U ⊗ IN )),

where · is multiplication in MN (C)⊗MN (C)op⊗MN(C) (for example, one has
(A⊗B ⊗ C) · (D ⊗ E ⊗ F ) = (AD)⊗ (EB) ⊗ (CF )).

Proof. It suffices to prove the formula when U = A ⊗ B, V = C ⊗ D, and
W = A1 ⊗A2 ⊗A3 are pure tensors. In this case, we have

∑

E∈E
W#2[U#E, V #E] =

∑

E∈E
W#2[AEB,CED] =

∑

E∈E
A1AEBA2CEDA3

= A1A tr(BA2C)DA3 = Mtr(A1A⊗BA2C ⊗DA3)

= Mtr((IN ⊗ C ⊗D) · (A1 ⊗A2 ⊗A3) · (A⊗B ⊗ IN ))

= Mtr((IN ⊗ V ) ·W · (U ⊗ IN ))

by Lemma A.1 and the definitions of Mtr and the · operation.

Theorem A.7 (Quadratic Covariation of Matrix Itô Processes). If,
for each ℓ ∈ {1, 2}, Mℓ is a N ×N matrix Itô process satisfying

dMℓ(t) =

n∑

i=1

Uℓi(t)#dXi(t) +Kℓ(t) dt

and W = (W (t))t≥0 is a continuous MN (C)⊗3-valued process, then

∫ t

0

W (s)#2[dM1(s), dM2(s)] =

n∑

i=1

∫ t

0

Mtr((IN⊗U2i(s))·W (s)·(U1i(s)⊗IN )) ds

for all t ≥ 0, almost surely.
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Proof. Recall that bounded variation terms do not contribute to quadratic
covariation, so we may assume K1 ≡ K2 ≡ 0. Now, using the expression (52)
for Xi and the fact that dbi,E(t) dbj,F (t) = δijδE,F dt, we get

∫ t

0

W (s)#2[dM1(s), dM2(s)]

=

n∑

i,j=1

∑

E,F∈E

∫ t

0

W (s)#2[U1i(s)#E,U2j(s)#F ] dbi,E(s) dbj,F (s)

=

n∑

i=1

∑

E∈E

∫ t

0

W (s)#2[U1i(s)#E,U2i(s)#E] ds

=
n∑

i=1

∫ t

0

(
∑

E∈E
W (s)#2[U1i(s)#E,U2i(s)#E]

)
ds

=

n∑

i=1

∫ t

0

Mtr((IN ⊗ U2i(s)) ·W (s) · (U1i(s)⊗ IN )) ds

by Lemma A.6.

From the cases W = A ⊗ B ⊗ C, M1 ∈ {Xi, IN}, and M2 ∈ {Xj , IN}, we get
Equations (3)-(4). Let us now see how Theorem A.7 gives rise to a “functional”
Itô formula for C2 scalar functions of Hermitian matrix Itô processes.

Notation A.8 (Noncommutative Derivatives). For f ∈ Ck(R), write
f [k] ∈ C(Rk+1) for the kth divided difference of f . (Please see Definition 3.3.1
and Proposition 3.3.2.) If M ∈ MN (C)sa, then

∂kf(M) := k!
∑

λ∈σ(M)k+1

f [k](λ)PM
λ1

⊗ · · · ⊗ PM
λk+1

∈ MN (C)⊗(k+1),

where λ = (λ1, . . . , λk+1) above. We shall view ∂f(M) := ∂1f(M) as an
element of MN (C)⊗MN (C)op.

Here is the key fact. Please see Appendix A of [34] for a self-contained proof.

Theorem A.9 (Dalteskii-Krein [12], Hiai [23]). If f ∈ Ck(R), then
fMN (C) ∈ Ck(MN (C)sa;MN (C)) and

DkfMN(C)(A)[B1, . . . , Bk] =
1

k!

∑

π∈Sk

∂kf(A)#k[Bπ(1), . . . , Bπ(k)]

=
∑

π∈Sk

∑

λ∈σ(A)k+1

f [k](λ)PA
λ1
Bπ(1) · · ·PA

λk
Bπ(k)P

A
λk+1

, (55)

for all A,B1, . . . , Bk ∈ MN (C)sa, where Dk is the kth Fréchet derivative and
Sk is the symmetric group on k letters.
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We are now ready to state and prove the (matrix) functional Itô formula that
motivates our functional free Itô formula (Theorem 4.3.4).

Notation A.10. If f ∈ C2(R) and U ∈ MN (C)⊗MN (C)op, then we define

∆Uf(M) := Mtr((IN ⊗ U) · ∂2f(M) · (U ⊗ IN )) ∈ MN (C),

where · is multiplication in MN (C)⊗MN (C)op ⊗MN (C) as usual.

Theorem A.11 (Functional Itô Formula). Let M be a N ×N matrix Itô
process satisfying Equation (53), and suppose M∗ = M . If f ∈ C2(R), then

d f(M(t)) = ∂f(M(t))#dM(t) +
1

2

n∑

i=1

∆Ui(t)f(M(t)) dt. (56)

Proof. If f ∈ C2(R), then fMN (C) ∈ C2(MN (C)sa;MN(C)), so we may apply
Itô’s formula (Equation (1)) with F = fMN(C). Doing so gives

d f(M(t)) = d fMN (C)(M(t))

= DfMN (C)(M(t))[dM(t)] +
1

2
D2fMN (C)(M(t))[dM(t), dM(t)]

= ∂f(M(t))#dM(t) +
1

2
∂2f(M(t))#2[dM(t), dM(t)]

= ∂f(M(t))#dM(t) +
1

2

n∑

i=1

Mtr((IN ⊗ Ui(t)) · ∂
2f(M(t)) · (Ui(t)⊗ IN )) dt

= ∂f(M(t))#dM(t) +
1

2

n∑

i=1

∆Ui(t)f(M(t)) dt

by Theorem A.9, Theorem A.7, and the definition of ∆Uf(M).

Applying tr = 1
N
Tr to Equation (56) and using symmetrization arguments

similar to those from the proof of Lemma 3.5.6 yields the following “traced”
formula that motivates Theorem 3.5.3. We leave the details to the interested
reader. In the statement below, if U =

∑k
i=1 Ai ⊗ Bi ∈ MN (C) ⊗ MN (C)op,

then U flip :=
∑k

i=1 Bi ⊗ Ai ∈ MN (C) ⊗ MN (C)op. Also, we write trop for tr
considered as a function MN (C)op → C.

Corollary A.12 (Traced Functional Itô Formula). Let M be a N×N

matrix Itô process satisfying Equation (53), and suppose that M∗ = M . If
f ∈ C2(R), then

d tr(f(M(t))) = tr
(
f ′(M(t)) dM(t)

)

+
1

2

n∑

i=1

(tr ⊗ trop)
(
U flip

i (t) ∂f ′(M(t))Ui(t)
)
dt,
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where U flip

i ∂f ′(M)Ui is a product in the algebra MN (C) ⊗ MN (C)op. Under
sufficient additional boundedness/integrability conditions (e.g., Ui, K, and M

are all uniformly bounded), we also have

d τN (f(M(t))) =
(
τN

(
f ′(M(t))K(t)

)

+
1

2

n∑

i=1

(τN ⊗ τ
op
N )

(
U flip

i (t) ∂f ′(M(t))Ui(t)
))

dt

where τN = E ◦ tr and τ
op
N = E ◦ trop.
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