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ABSTRACT

A generative model based on a continuous-time normalizing flow between any
pair of base and target probability densities is proposed. The velocity field of this
flow is inferred from the probability current of a time-dependent density that in-
terpolates between the base and the target in finite time. Unlike conventional nor-
malizing flow inference methods based the maximum likelihood principle, which
require costly backpropagation through ODE solvers, our interpolant approach
leads to a simple quadratic loss for the velocity itself which is expressed in terms
of expectations that are readily amenable to empirical estimation. The flow can be
used to generate samples from either the base or target, and to estimate the like-
lihood at any time along the interpolant. In addition, the flow can be optimized
to minimize the path length of the interpolant density, thereby paving the way for
building optimal transport maps. In situations where the base is a Gaussian den-
sity, we also show that the velocity of our normalizing flow can also be used to
construct a diffusion model to sample the target as well as estimate its score. How-
ever, our approach shows that we can bypass this diffusion completely and work
at the level of the probability flow with greater simplicity, opening an avenue for
methods based solely on ordinary differential equations as an alternative to those
based on stochastic differential equations. Benchmarking on density estimation
tasks illustrates that the learned flow can match and surpass conventional contin-
uous flows at a fraction of the cost, and compares well with diffusions on image
generation on CIFAR-10 and ImageNet 32×32. The method scales ab-initio ODE
flows to previously unreachable image resolutions, demonstrated up to 128×128.

1 INTRODUCTION

Contemporary generative models have primarily been designed around the construction of a map
between two probability distributions that transform samples from the first into samples from the
second. While progress has been from various angles with tools such as implicit maps (Goodfellow
et al., 2014; Brock et al., 2019), and autoregressive maps (Menick & Kalchbrenner, 2019; Razavi
et al., 2019; Lee et al., 2022), we focus on the case where the map has a clear associated probability
flow. Advances in this domain, namely from flow and diffusion models, have arisen through the
introduction of algorithms or inductive biases that make learning this map, and the Jacobian of the
associated change of variables, more tractable. The challenge is to choose what structure to impose
on the transport to best reach a complex target distribution from a simple one used as base, while
maintaining computational efficiency.

In the continuous time perspective, this problem can be framed as the design of a time-dependent
map, Xt(x) with t ∈ [0, 1], which functions as the push-forward of the base distribution at time
t = 0 onto some time-dependent distribution that reaches the target at time t = 1. Assuming that
these distributions have densities supported on Ω ⊆ R

d, say ρ0 for the base and ρ1 for the target,
this amounts to constructing Xt : Ω → Ω such that

if x ∼ ρ0 then Xt(x) ∼ ρt for some density ρt such that ρt=0 = ρ0 and ρt=1 = ρ1. (1)
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Figure 1: The density ρt(x) produced by the
stochastic interpolant based on (5) between
a standard Gaussian density and a Gaus-
sian mixture density with three modes. Also
shows in white are the flow lines of the map
Xt(x) our method produces.

One convenient way to represent this time-continuous map is to define it as the flow associated with
the ordinary differential equation (ODE)

Ẋt(x) = vt(Xt(x)), Xt=0(x) = x (2)

where the dot denotes derivative with respect to t and vt(x) is the velocity field governing the trans-
port. This is equivalent to saying that the probability density function ρt(x) defined as the push-
forward of the base ρ0(x) by the map Xt satisfies the continuity equation (see e.g. (Villani, 2009;
Santambrogio, 2015) and Appendix A)

∂tρt +∇ · (vtρt) = 0 with ρt=0 = ρ0 and ρt=1 = ρ1, (3)

and the inference problem becomes to estimate a velocity field such that (3) holds.

Here we propose a solution to this problem based on introducing a time-differentiable interpolant

It : Ω× Ω → Ω such that It=0(x0, x1) = x0 and It=1(x0, x1) = x1 (4)

A useful instance of such an interpolant that we will employ is

It(x0, x1) = cos( 12πt)x0 + sin( 12πt)x1, (5)

though we stress the framework we propose applies to any It(x0, x1) satisfying (4) under mild
additional assumptions on ρ0, ρ1, and It specified below. Given this interpolant, we then construct
the stochastic process xt by sampling independently x0 from ρ0 and x1 from ρ1, and passing them
through It:

xt = It(x0, x1), x0 ∼ ρ0, x1 ∼ ρ1 independent. (6)

We refer to the process xt as a stochastic interpolant. Under this paradigm, we make the following
key observations as our main contributions in this work:

• The probability density ρt(x) of xt connecting the two densities, henceforth referred to as the
interpolant density, satisfies (3) with a velocity vt(x) which is the unique minimizer of a simple
quadratic objective. This result is the content of Proposition 1 below, and it can be leveraged to
estimate vt(x) in a parametric class (e.g. using deep neural networks) to construct a generative
model through the solution of the probability flow equation (2), which we call InterFlow.

• By specifying an interpolant density, the method therefore separates the tasks of minimizing the
objective from discovering a path between the base and target densities. This is in contrast with
conventional maximum likelihood (MLE) training of flows where one is forced to couple the
choice of path in the space of measures to maximizing the objective.

• We show that the Wasserstein-2 (W2) distance between the target density ρ1 and the density ρ̂1
obtained by transporting ρ0 using an approximate velocity v̂t in (2) is controlled by our objective
function. We also show that the value of the objective on v̂t during training can be used to check
convergence of this learned velocity field towards the exact vt.

• We show that our approach can be generalized to shorten the path length of the interpolant den-
sity and optimize the transport by additionally maximizing our objective over the interpolant
It(x0, x1) and/or adjustable parameters in the base density ρ0.

• By choosing ρ0 to be a Gaussian density and using (5) as interpolant, we show that the score of
the interpolant density, ∇ log ρt, can be explicitly related to the velocity field vt. This allows us to
draw connection between our approach and score-based diffusion models, providing theoretical
groundwork for future exploration of this duality.

• We demonstrate the feasibility of the method on toy and high dimensional tabular datasets, and
show that the method matches or supersedes conventional ODE flows at lower cost, as it avoids
the need to backpropagate through ODE solves. We demonstrate our approach on image gener-
ation for CIFAR-10 and ImageNet 32x32 and show that it scales well to larger sizes, e.g. on the
128×128 Oxford flower dataset.
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1.1 RELATED WORKS

Methods

Map

Type

Finite Time

Integration

Simulation-

Free Training

Computable

Likelihood

Optimizable

Transport

FFJORD D ✓ x ✓ ✓

ScoreFlows S/D x ✓ ✓ x

Schrödinger Bridge S ✓ x x ✓

InterFlow (Ours) D ✓ ✓ ✓ ✓

Table 1: Description of the qualities of continuous time transport
methods defined by a stochastic or deterministic process.

Early works on exploiting
transport maps for generative
modeling go back at least to
Chen & Gopinath (2000), which focuses on normalizing a dataset to infer its likelihood. This
idea was brought closer to contemporary use cases through the work of Tabak & Vanden-Eijnden
(2010) and Tabak & Turner (2013), which devised to expressly map between densities using simple
transport functions inferred through maximum likelihood estimation (MLE). These transformations
were learned in sequence via a greedy procedure. We detail below how this paradigm has evolved
in the case where the map is represented by a neural network and optimized accordingly.

Discrete and continuous time flows. The first success of normalizing flows with neural network
parametrizations follow the work of Tabak & Turner (2013) with a finite set of steps along the map.
By imposing structure on the transformation so that it remains an efficiently invertible diffeomor-
phism, the models of Rezende & Mohamed (2015); Dinh et al. (2017); Huang et al. (2018); Durkan
et al. (2019) can be optimized through maximum likelihood estimation at the cost of limiting the
expressive power of the representation, as the Jacobian of the map must be kept simple to calcu-
late the likelihood. Extending this to the continuous case allowed the Jacobian to be unstructured
yet still estimable through trace estimation techniques (Chen et al., 2018; Grathwohl et al., 2019;
Hutchinson, 1989). Yet, learning this map through MLE requires costly backpropagation through
numerical integration. Regulating the path can reduce the number of solver calls (Finlay et al., 2020;
Onken et al., 2021), though this does not alleviate the main structural challenge of the optimization.
Our work uses a continuous map Xt as well but allows for direct estimation of the underlying
velocity. While recent work has also considered simulation-free training by fitting a velocity field,
these works present scalability issues (Rozen et al., 2021) and biased optimization (Ben-Hamu et al.,
2022), and are limited to manifolds. Moreover, (Rozen et al., 2021) relies on interpolating directly
the probability measures, which can lead to unstable velocities.

Score-based flows. Adjacent research has made use of diffusion processes, commonly the Ornstein-
Uhlenbeck (OU) process, to connect the target ρ1 to the base ρ0. In this case the transport is governed
by a stochastic differential equation (SDE) that is evolved for infinite time, and the challenge of
learning a generative model can be framed as fitting the reverse time evolution of the SDE from
Gaussian noise back to ρ1 (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b). Doing
so indirectly learns the velocity field by means of learning the score function ∇ log ρt(x), using the
Fischer divergence instead of the MLE objective. While this approach has shown great promise to
model high dimensional distributions (Rombach et al., 2022; Hoogeboom et al., 2022), particularly
in the case of text-to-image generation (Ramesh et al., 2022; Saharia et al., 2022), there is an absence
of theoretical motivation for the SDE-flow framework and the complexity it induces. Namely, the
SDE must evolve for infinite time to connect the distributions, the parameterization of the time steps
remains heuristic (Xiao et al., 2022), and the criticality of noise, as well as the score, is not absolutely
apparent (Bansal et al., 2022; Lu et al., 2022). In particular, while the objective used in score-based
diffusion models was shown to bound the Kullback-Leibler divergence (Song et al., 2021a), actual
calculation of the likelihood requires one to work with the ODE probability flow associated with
the SDE. This motivates further research into effective, ODE-driven, approaches to learning the
map. Our approach can be viewed as an alternative to score-based diffusion models in which the
ODE velocity is learned through the interpolant xt rather than an OU process, leading to greater
simplicity and flexibility (as we can connect any two densities exactly over a finite time interval).

Bridge-based methods. Heng et al. (2021) propose to learn Schroedinger bridges, which are a
entropic regularized version of the optimal transportation plan connecting two densities in finite
time, using the framework of score-based diffusion. Similarly, Peluchetti (2022) investigates the use
of bridge processes, i.e. SDE whose position is constrained both at the initial and final times, to
perform exact density interpolation in finite time. A key difference between these approaches and
ours is that they give diffusion-based models, whereas our method builds a probability flow ODE
directly using a quadratic loss for its velocity, which is simpler and shown here to be scalable.

Interpolants. Co-incident works by Liu et al. (2022); Lipman et al. (2022) derive an analogous op-
timization to us, with a focus on straight interpolants, also contrasting it with score-based methods.
Liu et al. (2022) describe an iterative way of rectifying the interpolant path, which can be shown to
arrive at an optimal transport map when the procedure is repeated ad infinitum (Liu, 2022). We also
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propose a solution to the problem of optimal transport that involves optimizing our objective over
the stochastic interpolant.

1.2 NOTATIONS AND ASSUMPTIONS

We assume that the base and the target distribution are both absolutely continuous with respect to the
Lebesgue measure on R

d, with densities ρ0 and ρ1, respectively. We do not require these densities to
be positive everywhere on R

d, but we assume that ρ0(x) and ρ1(x) are continuously differentiable
in x. Regarding the interpolant It : R

d × R
d → R

d, we assume that it is surjective for all t ∈ [0, 1]
and satisfies (4). We also assume that It(x0, x1) is continuously differentiable in (t, x0, x1), and
that it is such that

E
[

|∂tIt(x0, x1)|2
]

< ∞ (7)

A few additional technical assumptions on ρ0, ρ1 and It are listed in Appendix B. Given any function
ft(x0, x1) we denote

E[ft(x0, x1)] =

∫ 1

0

∫

Rd×Rd

ft(x0, x1)ρ0(x0)ρ1(x1)dx0dx1dt (8)

its expectation over t, x0, and x1 drawn independently from the uniform density on [0, 1], ρ0, and ρ1,
respectively. We use ∇ to denote the gradient operator.

2 STOCHASTIC INTERPOLANTS AND ASSOCIATED FLOWS

Our first main theoretical result can be phrased as follows:

Proposition 1. The stochastic interpolant xt defined in (6) with It(x0, x1) satisfying (4) has a
probability density ρt(x) that satisfies the continuity equation (3) with a velocity vt(x) which is the
unique minimizer over v̂t(x) of the objective

G(v̂) = E
[

|v̂t(It(x0, x1))|2 − 2∂tIt(x0, x1) · v̂t(It(x0, x1))
]

(9)

In addition the minimum value of this objective is given by

G(v) = −E
[

|vt(It(x0, x1))|2
]

= −
∫ 1

0

∫

Rd

|vt(x)|2ρt(x)dxdt > −∞ (10)

Proposition 1 is proven in Appendix B under Assumption B.1. As this proof shows, the first state-
ment of the proposition remains true if the expectation over t is performed using any probability
density ω(t) > 0, which may prove useful in practice. We now describe some primary facts result-
ing from this proposition, itemized for clarity:

• The objective G(v̂) is given in terms of an expectation that is amenable to empirical estimation
given samples t, x0, and x1 drawn from ρ0, ρ1 and U([0, 1]). Below, we will exploit this property
to propose a numerical scheme to perform the minimization of G(v̂).

• While the minimizer of the objective G(v̂) is not available analytically in general, a notable excep-
tion is when ρ0 and ρ1 are Gaussian mixture densities and we use the trigonometric interpolant (5)
or generalization thereof, as discussed in Appendix C.

• The minimal value in (10) achieved by the objective implies that a necessary (albeit not sufficient)
condition for v̂ = v is

G̃(v̂) = G(v̂) + E
[

|v̂t(It(x0, x1))|2
]

= 0. (11)

In our numerical experiments we will monitor this quantity. This minimal value also suggests to
maximize G(v) = minv̂ G(v̂) with respect to additional control parameters (e.g. the interpolant)
to shorten the W2 length of the path {ρt(x) : t ∈ [0, 1]}. In Appendix D, we show that this
procedure achieves optimal transport under minimal assumptions.

• The last bound in (10), which is proven in in Lemma B.2, implies that the path length is always
finite, even if it is not the shortest possible.
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Let us now provide some intuitive derivation of the statements of Proposition 1:

Continuity equation. By definition of the stochastic interpolant xt we can express its density ρt(x)
using the Dirac delta distribution as

ρt(x) =

∫

Rd×Rd

δ (x− It(x0, x1)) ρ0(x0)ρ1(x1)dx0dx1. (12)

Since It=0(x0, x1) = x0 and It=1(x0, x1) = x1 by definition, we have ρt=0 = ρ0 and ρt=1 = ρ1,
which means that ρt(x) satisfies the boundary conditions at t = 0, 1 in (3). Differentiating (12) in
time using the chain rule gives

∂tρt(x) = −
∫

Rd×Rd

∂tIt(x0, x1) · ∇δ (x− It(x0, x1)) ρ0(x0)ρ1(x1)dx0dx1 ≡ −∇ · jt(x) (13)

where we defined the probability current

jt(x) =

∫

Rd×Rd

∂tIt(x0, x1)δ (x− It(x0, x1)) ρ0(x0)ρ1(x1)dx0dx1. (14)

Therefore if we introduce the velocity vt(x) via

vt(x) =

{

jt(x)/ρt(x) if ρt(x) > 0,

0 else
(15)

we see that we can write (13) as the continuity equation in (3).

Variational formulation. Using the expressions in (12) and (14) for ρt(x) and jt(x) shows that we
can write the objective (9) as

G(v̂) =

∫ 1

0

∫

Rd

(

|v̂t(x)|2ρt(x)− 2v̂t(x) · jt(x)
)

dxdt (16)

Since ρt(x) and jt(x) have the same support, the minimizer of this quadratic objective is unique for
all (t, x) where ρt(x) > 0 and given by (15).

Minimum value of the objective. Let vt(x) be given by (15) and consider the alternative objective

H(v̂) =

∫ 1

0

∫

Rd

|v̂t(x)− vt(x)|2 ρt(x)dxdt

=

∫ 1

0

∫

Rd

(

|v̂t(x)|2ρt(x)− 2v̂t(x) · jt(x) + |vt(x)|2ρt(x)
)

dxdt

(17)

where we expanded the square and used the identity vt(x)ρt(x) = jt(x) to get the second equality.
The objective G(v̂) given in (16) can be written in term of H(v̂) as

G(v̂) = H(v̂)−
∫ 1

0

∫

Rd

|vt(x)|2ρt(x)dxdt = H(v̂)− E
[

|vt(It(x0, x1))|2
]

(18)

The equality in (10) follows by evaluating (18) at v̂t(x) = vt(x) using H(v) = 0.

Optimality gap. The argument above shows that we can use E
[

|v̂t(It(x0, x1))− ∂tIt(x0, x1)|2
]

as

alternative objective to G(v̂) since their first variations coincide. However, it should be stressed that
this quadratic objective remains strictly positive at v̂ = v in general so it offers no baseline measure
of convergence. To see why, complete the square in G(v̂) to write (18) as

H(v̂) = E
[

|v̂t(It)− ∂tIt|2
]

− E
[

|∂tIt|2
]

+ E
[

|vt(It)|2
]

≥ −E
[

|∂tIt|2
]

+ E
[

|vt(It)|2
]

(19)

where we used the shorthand notation It = It(x0, x1) and ∂tIt = ∂tIt(x0, x1). Evaluating this
inequality at v̂ = v using H(v) = 0 we deduce

E
[

|∂tIt|2
]

≥ E
[

|vt(It)|2
]

(20)

However we stress that this inequality is not saturated, i.e. E
[

|vt(It)|2
]

̸= E
[

|∂tIt|2
]

, in general
(see Remark B.3). Hence

E
[

|vt(It)− ∂tIt|2
]

= min
v̂

E
[

|v̂t(It)− ∂tIt|2
]

= min
v̂

G(v̂) + E
[

|∂tIt|2
]

= −E
[

|vt(It)|2
]

+ E
[

|∂tIt|2
]

≥ 0.
(21)

5



Published as a conference paper at ICLR 2023

Optimizing the transport. It is natural to ask whether our stochastic interpolant construction can
be amended or generalized to derive optimal maps. Here, we state a positive answer to this question
by showing that the maximizing the objective G(v̂) in (9) with respect to the interpolant yields a
solution to the optimal transport problem in the framework of Benamou & Brenier (2000). This
is proven in Appendix D, where we also discuss how to shorten the path length in density space
by optimizing adjustable parameters in the base density ρ0. Experiments are given in Appendix H.
Since our primary aim here is to construct a map T = Xt=1 that pushes forward ρ0 onto ρ1, but not
necessarily to identify the optimal one, we leave the full investigation of the consequences of these
results for future work, but state the proposition explicitly here. In their seminal paper, Benamou &
Brenier (2000) showed that finding the optimal map requires solving the minimization problem

min
(v̂,ρ̂)

∫ 1

0

∫

Rd

|v̂t(x)|2ρ̂t(x)dxdt

subject to: ∂tρ̂t +∇ ·
(

v̂tρ̂t
)

= 0, ρ̂t=0 = ρ0, ρ̂t=1 = ρ1.

(22)

The minimizing coupling (ρ∗t , ϕ
∗
t ) for gradient field v∗t (x) = ∇ϕ∗

t (x) is unique and satisfies:

∂tρ
∗
t +∇ ·

(

∇ϕ∗
t ρ

∗
t

)

= 0, ρ∗t=0 = ρ0, ρ∗t=1 = ρ1, ∂tϕ
∗
t +

1
2 |∇ϕ∗

t |2 = 0. (23)

In the interpolant flow picture, ρt(x) is fixed by the choice of interpolant It(x0, x1), and in general
ρt(x) ̸= ρ∗t (x). Because the value of the objective in (22) is equal to the minimum of G(v̂)
given in (10), a natural suggestion to optimize the transport is to maximize this minimum over the
interpolant. Under some assumption on the Benamou-Brenier density ρ∗t (x) solution of (23), this
procedure works. We show this through the use of interpolable densities as discussed in Mikulincer
& Shenfeld (2022) and defined in D.1.

Proposition 2. Assume that (i) the optimal density function ρ∗t (x) minimizing (22) is interpolable
and (ii) (23) has a classical solution. Consider the max-min problem

max
Î

min
v̂

G(v̂) (24)

where G(v̂) is the objective in (9) and the maximum is taken over interpolants satisfying (4). Then a
maximizer of (24) exists, and any maximizer I∗t (x0, x1) is such that the probability density function
of x∗

t = I∗t (x0, x1), with x0 ∼ ρ0 and x1 ∼ ρ1 independent, is the optimal ρ∗t (x), the mimimizing
velocity is v∗t (x) = ∇ϕ∗

t (x), and the pair (ρ∗t (x), ϕ
∗
t (x)) satisfies (23).

The proof of Proposition 2 is given in Appendix D, along with further discussion. Proposition 2
relies on Lemma D.3 that reformulates (22) in a way which shows this problem is equivalent to the
max-min problem in (24) for interpolable densities.

2.1 WASSERSTEIN BOUNDS

The following result shows that the objective in (17) controls the Wasserstein distance between the
target density ρ1 and the the density ρ̂1 obtained as the pushforward of the base density ρ0 by the

map X̂t=1 associated with the velocity v̂t:

Proposition 3. Let ρt(x) be the exact interpolant density defined in (12) and, given a velocity field
v̂t(x), let us define ρ̂t(x) as the solution of the initial value problem

∂tρ̂t +∇ · (v̂tρ̂t) = 0, ρ̂t=0 = ρ0 (25)

Assume that v̂t(x) is continuously differentiable in (t, x) and Lipschitz in x uniformily on (t, x) ∈
[0, 1] × R

d with Lipschitz constant K̂. Then the square of the W2 distance between ρ1 and ρ̂1 is
bounded by

W 2
2 (ρ1, ρ̂1) ≤ e1+2K̂H(v̂) (26)

where H(v̂) is the objective function defined in (17).

The proof of Proposition 3 is given in Appendix E: it leverages the following bound on the square
of W-2 distance

W 2
2 (ρ1, ρ̂1) ≤

∫ 1

0

∫

Rd

|Xt=1(x)− X̂t=1(x)|2ρ0(x)dxdt (27)

where Xt is the flow map solution of (2) with the exact vt(x) defined in (15) and X̂t is the flow map
obtained by solving (2) with vt(x) replaced by v̂t(x).
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2.2 LINK WITH SCORE-BASED GENERATIVE MODELS

The following result shows that if ρ0 is a Gaussian density, the velocity vt(x) can be related to the
score of the density ρt(x):

Proposition 4. Assume that the base density ρ0(x) is a standard Gaussian density N(0, Id) and
suppose that the interpolant It(x0, x1) is given by (5). Then the score ∇ log ρt(x) is related to
velocity vt(x) as

∇ log ρt(x) =











− x− 2

π
tan( 12πt)vt(x) if t ∈ [0, 1)

− x− 4

π2
∂tvt(x)|t=1 if t = 1.

(28)

The proof of this proposition is given in Appendix F. The first formula for t ∈ [0, 1) is based on a
direct calculation using Gaussian integration by parts; the second formula at t = 1 is obtained by
taking the limit of the first using vt=1(x) = 0 from (B.20) and l’Hôpital’s rule. It shows that we can
in principle resample ρt at any t ∈ [0, 1] using the stochastic differential equation in artificial time τ
whose drift is the score ŝt(x) obtained by evaluating (28) on the estimated v̂t(x):

dxτ = −ŝt(xτ )dτ +
√
2dWτ . (29)

Similarly, the score ŝt(x) could in principle be used in score-based diffusion models, as explained
in Appendix F. We stress however that while our velocity is well-behaved for all times in [0, 1], as
shown in (B.20), the drift and diffusion coefficient in the associated SDE are singular at t = 0, 1.

3 PRACTICAL IMPLEMENTATION AND NUMERICAL EXPERIMENTS

The objective detailed in Section 2 is amenable to efficient empirical estimation, see (I.1), which
we utilize to experimentally validate the method. Moreover, it is appealing to consider a neural
network parameterization of the velocity field. In this case, the parameters of the model v̂ can be op-
timized through stochastic gradient descent (SGD) or its variants, like Adam (Kingma & Ba, 2015).
Following the recent literature regarding density estimation, we benchmark the method on visualiz-
able yet complicated densities that display multimodality, as well as higher dimensional tabular data
initially provided in Papamakarios et al. (2017) and tested in other works such as Grathwohl et al.
(2019). The 2D test cases demonstrate the ability to flow between empirical densities with no known
analytic form. In all cases, numerical integration for sampling is done with the Dormand–Prince,
explicit Runge-Kutta of order (4)5 (Dormand & Prince, 1980). In Sections 3.1-3.4 the choice of in-
terpolant for experimentation was selected to be that of (5), as it is the one used to draw connections
to the technique of score based diffusions in Proposition 4. In Section H we use the interpolant (B.2)
and optimize at and bt to investigate the possibility and impact of shortening the path length.

3.1 2D DENSITY ESTIMATION

An intuitive first test to benchmark the validity of the method is sampling a target density whose
analytic form is known or whose density can be visualized for comparison. To this end, we follow the
practice of choosing a few complicated 2-dimensional toy datasets, namely those from (Grathwohl
et al., 2019), which were selected to differentiate the flexibility of continuous flows from discrete
time flows, which cannot fully separate the modes. We consider anisotropic curved densities, a
mixture of 8 separated Gaussians, and a checkerboard density. The velocity field of the interpolant

Flow True
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Figure 2: Left: 2-D
density estimation.
Right: Learning a
flow map between
densities when nei-
ther are analytically
known.
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POWER GAS HEPMASS
MINI-

BOONE
BSDS300

MADE 3.08 -3.56 20.98 15.59 -148.85

Real NVP -0.17 -8.33 18.71 13.55 -153.28

Glow -0.17 -8.15 18.92 11.35 -155.07

CPF -0.52 -10.36 16.93 10.58 -154.99

NSP -0.64 -13.09 14.75 9.67 -157.54

FFJORD -0.46 -8.59 14.92 10.43 -157.40

OT-Flow -0.30 -9.20 17.32 10.55 -154.20

Ours -0.57 -12.35 14.85 10.42 -156.22

Method
CIFAR-10 ImageNet-32x32

NLL FID NLL FID

FFJORD 3.40

Glow 3.35 4.09

DDPM ≤ 3.75 3.17

DDPM++ ≤ 3.37 2.90

ScoreSDE 2.99 2.92

VDM ≤ 2.65 7.41 ≤3.72

Soft Truncation 2.88 3.45 3.85 8.42

ScoreFlow 2.81 5.40 3.76 10.18

Ours 2.99 10.27 3.48 8.49

Table 2: Left: Negative log likelihoods (NLL) computed on test data unseen during training (lower
is better). Values of MADE, Real NVP, and Glow quoted from the FFJORD paper. Values of OT-
Flow, CPF, and NSP quoted from their respective publications. Right: NLL and FID scores on
unconditional image generation tasks for recent advanced models that emit a likelihood.

flow is parameterized by a simple feed forward neural network with ReLU Nair & Hinton (2010)
activation functions. The network for each model has 3 layers, each of width equal to 256 hidden
units. Optimizer is performed on G(v̂) for 10k epochs. We plot a kernel density estimate over 80k
samples from both the flow and true distribution in Figure 2. The interpolant flow captures all the
modes of the target density without artificial stretching or smearing, evincing a smooth map.

3.2 DATASET INTERPOLATION

As described in Section 2, the velocity field associated to the flow can be inferred from arbitrary
densities ρ0, ρ1 – this deviates from the score-based diffusion perspective, in which one distribution
must be taken to be Gaussian for the training paradigm to be tractable.

In Figure 2, we illustrate this capacity by learning the velocity field connecting the anisotropic swirls
distribution to that of the checkerboard. The interpolant formulation allows us to draw samples from
ρt at any time t ∈ [0, 1], which we exploit to check that the velocity field is empirically correct at all
times on the interval, rather than just at the end points. This aspect of interpolants is also noted in
(Choi et al., 2022), but for the purpose of density ratio estimation. The above observation highlights
an intrinsic difference of the proposed method compared to MLE training of flows, where the map
that is the minimizer of G(v̂) is not empirically known. We stress that query access to ρ0 or ρ1 is
not needed to use our interpolation procedure since it only uses samples from these densities.

3.3 TABULAR DATA FOR HIGHER DIMENSIONAL TESTING

A set of tabular datasets introduced by (Papamakarios et al., 2017) has served as a consistent test
bed for demonstrating flow-based sampling and its associated density estimation capabilities. We
continue that practice here to provide a benchmark of the method on models which provide an
exact likelihood, separating and comparing to exemplary discrete and continuous flows: MADE
(Germain et al., 2015), Real NVP (Dinh et al., 2017), Convex Potential Flows (CPF) (Huang et al.,
2021), Neural Spline Flows (NSP) Durkan et al. (2019), Free-form continuous flows (FFJORD)
(Grathwohl et al., 2019), and OT-Flow (Finlay et al., 2020). Our primary point of comparison is to
other continuous time models, so we sequester them in benchmarking.

We train the interpolant flow model on each target dataset listed in Table 2, choosing the reference
distribution of the interpolant ρ0 to be a Gaussian density with mean zero and variance Id, where d
is the data dimension. The architectures and hyperparameters are given in Appendix I. We highlight
some of the main characteristics of the models here. In each case, sampling of the time t was
reweighted according to a beta distribution, with parameters α, β provided in the same appendix.

Results from the tabular experiments are displayed in Table 2, in which the negative log-likelihood
averaged over a test set of held out data is computed. We note that the interpolant flow achieves
better or equivalent held out likelihoods on all ODE based models, except BSDS300, in which the
FFJORD outperforms the interpolant by ∼ 0.6%. We note upwards of 30% improvements compared
to baselines. Note that these likelihoods are achieved without direct optimization of it.
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3.4 UNCONDITIONAL IMAGE GENERATION

To compare with recent advances in continuous time generative models such as DDPM (Ho
et al., 2020), Score SDE(Song et al., 2021b), and ScoreFlow (Song et al., 2021a), we provide
a demonstration of the interpolant flow method on learning to unconditionally generate images
trained from the CIFAR-10 (Krizhevsky et al., 2009) and ImageNet 32×32 datasets (Deng et al.,
2009; Van Den Oord et al., 2016), which follows suit with ScoreFlow and Variational Diffu-
sion Models (VDM) (Kingma et al., 2021). We train an interpolant flow built from the U-
Net architecture from DDPM (Ho et al., 2020) on a single NVIDIA A100 GPU, which was
previously impossible under maximum likelihood training of continuous time flows. Experi-
mental details can be found in Appendix I. Note that we used a beta distribution reweight-
ing of the time sampling as in the tabular experiments. Table 2 provides a comparison of the
negative log likelihoods (NLL), measured in bits per dim (BPD) and Frechet Inception Dis-
tance (FID), of our method compared to past flows and state of the art diffusions. We focus
our comparison against models which emit a likelihood, as this is necessary to compare NLL.

Figure 3: Left: InterFlow samples training on 128×128
flowers dataset. Right: Samples from flow trained on
ImageNet-32×32 (top) and CIFAR-10 (bottom).

We compare to other flows FFJORD
and Glow (Grathwohl et al., 2019;
Kingma & Dhariwal, 2018), as
well as to recent advances in score
based diffusion in DDPM, DDPM++,
VDM, Score SDE, ScoreFlow, and
Soft Truncation (Ho et al., 2020;
Nichol & Dhariwal, 2021; Kingma
et al., 2021; Song et al., 2021b;a; Kim
et al., 2022). We present results with-
out data augmentation. Our models
emit likelihoods, measured in bits per
dim, that are competitive with diffu-
sions on both datasets with a NLL of
2.99 and 3.45. Measures of FID are
proximal to those from diffusions, though slightly behind the best results. We note however that
this is a first example of this type of model, and has not been optimized with the training tricks that
appear in many of the recent works on diffusions, like exponential moving averages, truncations,
learning rate warm-ups, and the like. To demonstrate efficiency on larger domains, we train on the
Oxford flowers dataset (Nilsback & Zisserman, 2006), which are images of resolution 128×128.
We show example generated images in Figure 3.

4 DISCUSSION, CHALLENGES, AND FUTURE WORK

We introduced a continuous time flow method that can be efficiently trained. The approach has a
number of intriguing and appealing characteristics. The training circumvents any backpropagation
through ODE solves, and emits a stable and interpretable quadratic objective function. This objective
has an easily accessible diagnostic which can verify whether a proposed minimizer of the loss is a
valid minimizer, and controls the Wasserstein-2 distance between the model and the target.

One salient feature of the proposed method is that choosing an interpolant It(x0, x1) decouples the
optimization problem from that of also choosing a transport path. This separation is also exploited
by score-based diffusion models, but our approach offers better explicit control on both. In particular
we can interpolate between any two densities in finite time and directly obtain the probability flow
needed to calculate the likelihood. Moreover, we showed in Section 2 and Appendices D and G
that the interpolant can be optimized to achieve optimal transport, a feature which can reduce the
cost of solving the ODE to draw samples. In future work, we will investigate more thoroughly
realizations of this procedure by learning the interpolant It in a wider class of functions, in addition
to minimizing G(v̂).

The intrinsic connection to score-based diffusion presented in Proposition 4 may be fruitful ground
for understanding the benefits and tradeoffs of SDE vs ODE approaches to generative modeling.
Exploring this relation is already underway (Lu et al., 2022; Boffi & Vanden-Eijnden, 2022), and
can hopefully provide theoretical insight into designing more effective models.
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(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 3154–3164. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/finlay20a.html.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder
for distribution estimation. In Francis Bach and David Blei (eds.), Proceedings of the 32nd Inter-
national Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Re-
search, pp. 881–889, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.

mlr.press/v37/germain15.html.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible
generative models with free-form continuous dynamics. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=rJxgknCcK7.

Jeremy Heng, Valentin De Bortoli, Arnaud Doucet, and James Thornton. Simulating diffusion
bridges with score matching, 2021. URL https://arxiv.org/abs/2111.07243.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/

4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Emiel Hoogeboom, Vı́ctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3D. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
8867–8887. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/

hoogeboom22a.html.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive
flows. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
2078–2087. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/

huang18d.html.

Chin-Wei Huang, Ricky T. Q. Chen, Christos Tsirigotis, and Aaron Courville. Convex potential
flows: Universal probability distributions with optimal transport and convex optimization. In
International Conference on Learning Representations, 2021. URL https://openreview.

net/forum?id=te7PVH1sPxJ.

M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics - Simulation and Computation, 18(3):1059–
1076, 1989. doi: 10.1080/03610918908812806. URL https://doi.org/10.1080/

03610918908812806.

11



Published as a conference paper at ICLR 2023

Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang, and Il-Chul Moon. Soft truncation:
A universal training technique of score-based diffusion model for high precision score estima-
tion. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp. 11201–11228. PMLR, 17–23 Jul 2022.
URL https://proceedings.mlr.press/v162/kim22i.html.

Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. On density estimation with dif-
fusion models. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, 2021. URL https://openreview.net/

forum?id=2LdBqxc1Yv.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolu-
tions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/

d139db6a236200b21cc7f752979132d0-Paper.pdf.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). 2009. URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. CoRR, abs/2203.01941, 2022. doi: 10.48550/arXiv.2203.
01941. URL https://doi.org/10.48550/arXiv.2203.01941.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2022. URL https://arxiv.org/abs/2210.02747.

Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport, 2022. URL
https://arxiv.org/abs/2209.14577.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow, 2022. URL https://arxiv.org/abs/2209.03003.

Cheng Lu, Kaiwen Zheng, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Maximum likeli-
hood training for score-based diffusion ODEs by high order denoising score matching. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 14429–14460. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/lu22f.html.

Jacob Menick and Nal Kalchbrenner. GENERATING HIGH FIDELITY IMAGES WITH SUB-
SCALE PIXEL NETWORKS AND MULTIDIMENSIONAL UPSCALING. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=HylzTiC5Km.

Dan Mikulincer and Yair Shenfeld. On the lipschitz properties of transportation along heat flows,
2022. URL https://arxiv.org/abs/2201.01382.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on International Conference on Machine
Learning, ICML’10, pp. 807–814, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

Kirill Neklyudov, Daniel Severo, and Alireza Makhzani. Action matching: A variational method for
learning stochastic dynamics from samples, 2022. URL https://arxiv.org/abs/2210.

06662.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic mod-
els. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
8162–8171. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/

nichol21a.html.

12



Published as a conference paper at ICLR 2023

Maria-Elena Nilsback and Andrew Zisserman. A visual vocabulary for flower classification. In
IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pp. 1447–1454, 2006.

Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast and accurate con-
tinuous normalizing flows via optimal transport. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 35(10):9223–9232, May 2021. doi: 10.1609/aaai.v35i10.17113. URL
https://ojs.aaai.org/index.php/AAAI/article/view/17113.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In Proceedings of the 31st International Conference on Neural Information Process-
ing Systems, NIPS’17, pp. 2335–2344, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Stefano Peluchetti. Non-denoising forward-time diffusions, 2022. URL https://

openreview.net/forum?id=oVfIKuhqfC.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022. URL https://arxiv.org/abs/

2204.06125.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images
with vq-vae-2. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
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A BACKGROUND ON TRANSPORT MAPS AND THE CONTINUITY EQUATION

The following result is standard and can be found e.g. in (Villani, 2009; Santambrogio, 2015)

Proposition A.1. Let ρt(x) satisfy the continuity equation

∂tρt +∇ · (vtρt) = 0. (A.1)

Assume that vt(x) is C1 in both t and x for t ≥ 0 and globally Lipschitz in x. Then, given any
t, t′ ≥ 0, the solution of (A.1) satisfies

ρt(x) = ρt′(Xt,t′(x)) exp

(

−
∫ t

t′
∇ · vs(Xt,s(x))ds

)

(A.2)

where Xs,t is the probability flow solution to

d

dt
Xs,t(x) = vt(Xs,t(x)), Xs,s(x) = x. (A.3)

In addition, given any test function ϕ : Ω → R, we have
∫

Ω

ϕ(x)ρt(x)dx =

∫

Ω

ϕ(Xt′,t(x))ρt′(x)dx. (A.4)

In words, Lemma A.1 states that an evaluation of the PDF ρt at a given point x may be obtained by
evolving the probability flow equation (2) backwards to some earlier time t′ to find the point x′ that
evolves to x at time t, assuming that ρt′(x

′) is available. In particular, for t′ = 0, we obtain

ρt(x) = ρ0(Xt,0(x)) exp

(

−
∫ t

0

∇ · vs(Xt,s(x))ds

)

, (A.5)

and
∫

Ω

ϕ(x)ρt(x)dx =

∫

Ω

ϕ(X0,t(x))ρ0(x)dx. (A.6)

Proof. The assumed C1 and globally Lipschitz conditions on vt guarantee global existence (on
t ≥ 0) and uniqueness of the solution to (2). Differentiating ρt(Xt′,t(x)) with respect to t and using
(2) and (A.1) we deduce

d

dt
ρt(Xt′,t(x)) = ∂tρt(Xt′,t(x)) +

d

dt
Xt′,t(x) · ∇ρt(Xt′,t(x))

= ∂tρt(Xt′,t(x)) + vt(Xt′,t(x)) · ∇ρt(Xt′,t(x))

= −∇ · vt(Xt′,t(x)) ρt(Xt′,t(x))

(A.7)
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Integrating this equation in t from t = t′ to t = t gives

ρt(Xt′,t(x)) = ρt′(x) exp

(

−
∫ t

t′
∇ · vs(Xt′,s(x))ds

)

(A.8)

Evaluating this expression at x = Xt,t′(x) and using the group properties (i) Xt′,t(Xt,t′(x)) = x
and (ii) Xt′,s(Xt,t′(x)) = Xt,s(x) gives (A.2). Equation (A.4) can be derived by using (A.2)
to express ρt(x) in the integral at the left hand-side, changing integration variable x → Xt′,t(x)

and noting that the factor exp
(

−
∫ t

t′
∇ · vs(Xt,s(x))ds

)

is precisely the Jacobian of this change of

variable. The result is the integral at the right hand-side of (A.4).

B PROOF OF PROPOSITION 1

We will work under the following assumption:

Assumption B.1. The densities ρ0(x) and ρ1(x) are continuously differentiable in x; It(x0, x1) is
continuously differentiable in (t, x0, x1) and satisfies (4) and (7); and for all t ∈ [0, 1] we have

∫

Rd

∣

∣

∣

∣

∫

Rd×Rd

eik·It(x0,x1)ρ0(x0)ρ1(x1)dx0dx1

∣

∣

∣

∣

dk < ∞
∫

Rd

∣

∣

∣

∣

∫

Rd×Rd

∂tIt(x0, x1)e
ik·It(x0,x1)ρ0(x0)ρ1(x1)dx0dx1

∣

∣

∣

∣

dk < ∞
(B.1)

This structural assumption guarantees that the stochastic interpolant xt has a probability density and
a probability current. As shown in Appendix C it is satisfied e.g. if ρ0 and ρ1 are Gaussian mixture
densities and

It(x0, x1) = atx0 + btx1, (B.2)

where at and bt are C1 function of t ∈ [0, 1] satisfying

ȧt ≤ 0, ḃt ≥ 0, a0 = 1, a1 = 0, b0 = 0, b1 = 1,

at > 0 on t ∈ [0, 1), bt > 0 on t ∈ (0, 1].
(B.3)

The interpolant (4) is in this class for the choice

at = cos( 12πt), bt = sin( 12πt) (B.4)

Our proof of Proposition 1 will rely on the following result that quantifies the probability density
and the probability current of the stochastic interpolant xt defined in (6):

Lemma B.1. If Assumption B.1 holds, then the stochastic interpolant xt defined in (6) has a prob-
ability density function ρt(x) given by

ρt(x) = (2π)−d

∫

Rd×Rd×Rd

e−ik·(x−It(x0,x1))ρ0(x0)ρ1(x1)dx0dx1dk (B.5)

and it satisfies the continuity equation

∂tρt(x) +∇ · jt(x) = 0, ρt=0(x) = ρ0(x), ρt=1(x) = ρ1(x) (B.6)

withe the probability current jt(x) given by

jt(x) = (2π)−d

∫

Rd×Rd×Rd

∂tIt(x0, x1)e
−ik·(x−It(x0,x1))ρ0(x0)ρ1(x1)dx0dx1dk (B.7)

In addition the action of ρt(x) and jt(x) against any test function ϕ : Rd → R can be expressed as
∫

Rd

ϕ(x)ρt(x)dx =

∫

Rd×Rd

ϕ(It(x0, x1))ρ0(x0)ρ1(x1)dx0dx1 (B.8)

∫

Rd

ϕ(x)jt(x)dx =

∫

Rd×Rd×Rd

∂tIt(x0, x1)ϕ(It(x0, x1))ρ0(x0)ρ1(x1)dx0dx1 (B.9)
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Note that (B.8) and (B.9) can be formally rewritten as (12) and (14) using the Dirac delta distribution.

Proof. By definition of xt in (6), the characteristic function of this random variable is

E
[

exp(ik · xt)
]

=

∫

Rd×Rd

eik·It(x0,x1)ρ0(x0)ρ1(x1)dx0dx1 (B.10)

Under Assumption B.1, the Fourier inversion theorem implies that xt has a density ρt(x) given
by (B.5). Taking the time derivative of this density gives

∂tρt(x) = (2π)−d

∫

Rd×Rd×Rd

ik · ∂tIt(x0, x1)e
−ik·(x−It(x0,x1))ρ0(x0)ρ1(x1)dx0dx1dk

= −∇ · jt(x)
(B.11)

with jt(x) given by (B.7).

Lemma B.1 shows that ρt(x) satisfies the continuity equation (3) with the velocity field vt(x) defined
in (15). It also show that the objective function G(v̂) in (9) is well-defined, which implies the first
part Proposition 1.

For the second part, we will need

Lemma B.2. If Assumption B.1 holds, then

∫ 1

0

∫

Rd

|vt(x)|2ρt(x)dxdt = E
[

|vt(It(x0, x1))|2
]

≤ E
[

|∂tIt(x0, x1)|2
]

< ∞ (B.12)

Proof. For K < ∞, define

ϕK
t (x) =

{

1 if |vt(x)| ≤ K

0 else
(B.13)

Then, using the pointwise identity vt(x)ρt(x) = jt(x) as well as (B.8) and (B.9), we can write

0 =

∫ 1

0

∫

Rd

ϕK
t (x)

(

2|vt(x)|2ρt(x)− 2vt(x) · jt(x)
)

dxdt

= 2E
[

ϕK
t (It)|vt(It)|2

]

− 2E
[

ϕK
t (It)∂tIt · vt(It)

]

= E
[

ϕK
t (It)|vt(It)|2

]

+ E
[

ϕK
t (It)|vt(It)− ∂tIt|2

]

− E
[

ϕK
t (It)|∂tIt|2

]

≥ E
[

ϕK
t (It)|vt(It)|2

]

− E
[

ϕK
t (It)|∂tIt|2

]

.

(B.14)

where we use the shorthand It = It(x0, x1) and ∂tIt = ∂tIt(x0, x1). Therefore

0 ≤ E
[

ϕK
t (It)|vt(It)|2

]

≤ E
[

ϕK
t (It)|∂tIt|2

]

. (B.15)

Since limK→∞ E
[

ϕK
t (It)|∂tIt|2

]

= E
[

|∂tIt|2
]

and this quantity is finite by assumption we deduce

that limK→∞ E
[

ϕK
t (It)|vt(It)|2

]

exists and is bounded by E
[

|∂tIt|2
]

.

Lemma B.2 implies that the objective H(v̂) in (17) is well-defined, and the second part of statement
of Proposition 1 follows from the argument given after (17). For the third part of the proposition we
can then proceed as explained in main text, starting from the Poisson equation (B.21).

Remark B.3. Let us show on a simple example that the inequality E
[

|vt(It(x0, x1))|2
]

≤
E
[

|∂tIt(x0, x1)|2
]

is not saturated in general. Assume that ρ0(x) is a Gaussian density of mean

zero and variance one, and ρ1(x) a Gaussian density of mean m ∈ R and variance one. In this
case, if we use the trigonometric interpolant (5), (C.4) indicates that ρt(x) is a Gaussian density
with mean sin( 12πt)m and variance one, and (C.6) simplifies to vt(x) =

1
4π

2m2 cos2( 12πt) , so that

∫

R

|vt(x)|2ρt(x)dx = 1
4π

2m2 cos2( 12πt) (B.16)
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At the same time
∫

R×R

|∂tIt(x0, x1)|2ρ0(x0)ρ1(x1)dx0dx1

= 1
4π

2

∫

R×R

∣

∣− sin( 12πt)x0 + cos( 12πt)x1

∣

∣

2
ρ0(x0)ρ1(x1)dx0dx1

= 1
4π

2
(

sin2( 12πt) + cos2( 12πt)(1 +m2)
)

=
1

4
π2
(

1 +m2 cos2( 12πt)
)

(B.17)

and so E
[

|vt(It(x0, x1))|2
]

= E
[

|∂tIt(x0, x1))|2
]

− 1
4π

2 < E
[

|∂tIt((x0, x1))|2
]

.

The interpolant density ρt(x) and the current jt(x) are given explicitly in Appendix C in the case
where ρ0 and ρ1 are both Gaussian mixture densities and we use the linear interpolant (B.2).

Notice that we can evaluate vt=0(x) and vt=1(x) more explicitly. For example, with the linear
interpolant (B.2) we have

jt=0(x) = ȧ0xρ0(x) + ḃ0ρ0(x)

∫

Rd

x1ρ1(x1)dx1,

jt=1(x) = ḃ1xρ1(x) + ȧ1ρ1(x)

∫

Rd

x0ρ0(x0)dx0.

(B.18)

From (12), this implies

v0(x) = ȧ0x+ ḃ0

∫

Rd

x1ρ1(x1)dx1, v1(x) = ḃ1x+ ȧ1

∫

Rd

x0ρ0(x0)dx0 (B.19)

For the trigonometric interpolant that uses (B.4) these reduce to

vt=0(x) =
1
2π

∫

Rd

x1ρ1(x1)dx1, vt=1(x) = − 1
2π

∫

Rd

x0ρ0(x0)dx0. (B.20)

Finally, we note that the result of Proposition 1 remains valid if we work with velocities that are
gradient fields. We state this result as:

Proposition B.4. The statements of Proposition 1 hold if G(v̂) is minimized over velocities that
are gradient fields, in which case the minimizer is of the form vt(x) = ∇ϕt(x) for some potential
ϕt : R

d → R uniquely defined up to a constant.

Minimizing G(v̂) over gradient fields v̂t(x) = ∇ϕ̂t(x) guarantees that the minimizer does not
contain any component ṽt(x) such that ∇ · (ṽt(x)ρt(x)) = 0. Such a component of the velocity has
no effect on the evolution of ρt(x) but affects the map Xt, the solution of (2). We stress however
that: even if we minimize G(v̂) over velocities that are not gradient fields, the minimizer vt(x)
produces a map Xt via (2) that satisfies the pushforward condition in (1).

Proof. Define the potential ϕt : R
d → R as the solution to

∇ · (ρt∇ϕt) = ∇ · jt (B.21)

with ρt(x) and jt(x) given by (12) and (14), respectively. This is a Poisson equation for ϕt(x) which
has a unique (up to a constant) solution by the Fredholm alternative since ρt(x) and jt(x) have the
same support and

∫

Rd ∇ · jt(x)dx = 0. In terms of ϕt(x), (13) can therefore be written as

∂tρt +∇ · (ρt∇ϕt) = 0 (B.22)

The velocity ∇ϕt(x) is also the unique minimizer of the objective (9) over gradient fields since if

we set v̂t(x) = ∇ϕ̂t(x) and optimize G(∇ϕ̂) over ϕ̂, the Euler-Lagrange equation for the minimizer
is precisely the Poisson equation (B.21). The lower bound on the objective evaluated at ∇ϕt(x) still
holds since in the argument above involving (17) and (18) can be made by replacing the identity

vt(x)ρt(x) = jt(x) with
∫

Rd ∇ϕ̂t(x) · ∇ϕt(x)ρt(x)dx =
∫

Rd ∇ϕ̂t(x) · jt(x)dx, which is (B.21)
written in weak form.
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Interestingly, with vt(x) defined in (15) and ϕt(x) defined as the solution to (B.21), we have
∫

Rd

|vt(x)|2ρt(x)dx ≥
∫

Rd

|∇ϕt(x)|2ρt(x)dx (B.23)

consistent with the fact that the gradient field ∇ϕt(x) is the velocity that minimizes
∫

Rd |v̂t(x)|2ρt(x)dx over all v̂t(x) such that ∂tρt + ∇ · (v̂tρt) = 0 with ρt(x) given by (12). We
stress however that, even if we work we gradient fields, the inequality (21) is not saturated in general.

Remark B.5. If we assume that v̂t(x) = ∇ϕ̂t(x), we can write the objective in (16) as

G(∇ϕ̂) =

∫ 1

0

∫

Rd

(

|∇ϕ̂t(x)|2ρt(x)− 2∇ϕ̂t(x) · jt(x)
)

dxdt

=

∫ 1

0

∫

Rd

(

|∇ϕ̂t(x)|2ρt(x) + 2ϕ̂t(x)∇ · jt(x)
)

dxdt

=

∫ 1

0

∫

Rd

(

|∇ϕ̂t(x)|2ρt(x)− 2ϕ̂t(x)∂tρt(x)
)

dxdt

=

∫ 1

0

∫

Rd

(

|∇ϕ̂t(x)|2ρt(x) + 2∂tϕ̂t(x)ρt(x)
)

dxdt

+ 2

∫

Rd

(

ϕ̂t=0(x)ρ0(x)− ϕ̂t=1(x)ρ1(x)
)

dx,

(B.24)

where we integrated by parts in x to get the second equality, we used the continuity equation (13) to
get the second, and integrated by parts in t to get the third using ρt=0 = ρ0 and ρt=1 = ρ1. Since
the objective in the last expression is an expectation with respect to ρt, we can evaluate it as

G(∇ϕ̂) = E

(

|∇ϕ̂t(It)|2 + 2∂tϕ̂t(It)
)

+ 2E0ϕ̂t=0 − 2E1ϕ̂t=1, (B.25)

where E1 and E0 denote expectations with respect to ρ1 and ρ0, respectively. Therefore, we could
use (B.25) as alternative objective to obtain vt(x) = ∇ϕt(x) by minimization. This objective is,
up to a sign and a factor 2, the KILBO objective introduced in Neklyudov et al. (2022). Notice that
using the original objective in (9) avoids the computation of derivatives in x and t, and allows one
to work with v̂t(x) directly.

C THE CASE OF GAUSSIAN MIXTURE DENSITIES

Here we consider the case where ρ0 and ρ1 are both Gaussian mixture densities. We denote

N(x|m,C) = (2π)−d/2[detC]−1/2 exp
(

− 1
2 (x−m)TC−1(x−m)

)

= (2π)−d

∫

Rd

eik·(x−m)− 1

2
kTCkdk

(C.1)

the Gaussian probability density with mean vector m ∈ R
d and positive-definite symmetric covari-

ance matrix C = CT ∈ R
d × R

d. We assume that

ρ0(x) =

N0
∑

i=1

p0iN(x|m0
i , C

0
i ), ρ1(x) =

N1
∑

i=1

p1iN(x|m1
i , C

1
i ) (C.2)

where N0, N1 ∈ N, p0i > 0 with
∑N0

i=1 p
0
i = 1, m0

i ∈ R
d, C0

i = (C0
i )

T ∈ R
d × R

d, positive-

definite, and similarly for p1i , m1
i , and C1

i . We assume that the interpolant is of the form (B.2) and
we denote

mij
t = atm

0
i + btm

1
j , Cij

t = a2tC
0
i + b2tC

1
j , i = 1, . . . , N0, j = 1, . . . , N1 (C.3)

Note that if all the covariance matrices are the same, C0
i = C1

j = C, with the trigonometric inter-

polant in (5) we have Cij
t = C, which justifies this choice of interpolant.

We have:
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Proposition C.1. The interpolant density ρt(x) obtained by connecting the probability densities
in (C.2) using the linear interpolant (B.2) is given by

ρt(x) =

N0
∑

i=1

N1
∑

j=1

p0i p
1
jN(x|mij

t , C
ij
t ) (C.4)

and it satisfies the continuity equation ∂tρt(x) +∇ · jt(x) = 0 with the current

jt(x) =

N0
∑

i=1

N1
∑

j=1

p0i p
1
j

(

ṁij
t + 1

2 Ċ
ij
t (Cij

t )−1(x−mij
t )
)

N(x|mij
t , C

ij
t ) (C.5)

This proposition implies that

vt(x) =

∑N0

i=1

∑N1

j=1 p
0
i p

1
j

(

ṁij
t + 1

2 Ċ
ij
t (Cij

t )−1(x−mij
t )
)

N(x|mij
t , C

ij
t )

∑N0

i=1

∑N1

j=1 p
0
i p

1
jN(x|mij

t , C
ij
t )

(C.6)

This velocity field is growing at most linearly in x, and when the mode of the Gaussian are well
separated, in each mode it approximately reduces to

ṁij
t + 1

2 Ċ
ij
t (Cij

t )−1(x−mij
t ) (C.7)

Proof. Using the Fourier representation in (C.1) and proceeding as in the proof of Lemma B.1, we
deduce that ρt(x) is given by

ρt(x) = (2π)−d
N0
∑

i=1

N1
∑

j=1

p0i p
1
j

∫

Rd

eik·(x−mij
t )−

1
2k

TCij
t kdk. (C.8)

Performing the integral over k gives (C.4). Taking the time derivative of this density gives

∂tρt(x) = −(2π)−d
N0
∑

i=1

N1
∑

j=1

p0i p
1
j

∫

Rd

(

ik · ṁij
t + 1

2k
T Ċij

t k
)

eik·(x−mij
t )−

1
2k

TCij
t kdk

= −(2π)−d
N0
∑

i=1

N1
∑

j=1

p0i p
1
j

∫

Rd

ik ·
(

ṁij
t − 1

2 iĊ
ij
t k
)

eik·(x−mij
t )−

1
2k

TCij
t kdk

= −∇ · jt(x)

(C.9)

with

jt(x) = (2π)−d
N0
∑

i=1

N1
∑

j=1

p0i p
1
j

∫

Rd

(ṁij
t − 1

2 iĊ
ij
t k)eik·(x−mij

t )−
1
2k

TCij
t kdk

= (2π)−d
N0
∑

i=1

N1
∑

j=1

p0i p
1
jṁ

ij
t

∫

Rd

eik·(x−mij
t )−

1
2k

TCij
t kdk

− 1
2 (2π)

−d
N0
∑

i=1

N1
∑

j=1

p0i p
1
j Ċ

ij
t ∇

∫

Rd

eik·(x−mij
t )−

1
2k

TCij
t kdk

=

N0
∑

i=1

N1
∑

j=1

p0i p
1
j

(

ṁij
t − 1

2 Ċ
ij
t ∇

)

N(x|mij
t , C

ij
t )

=

N0
∑

i=1

N1
∑

j=1

p0i p
1
j

(

ṁij
t + 1

2 Ċ
ij
t (Cij

t )−1(x−mij
t )
)

N(x|mij
t , C

ij
t )

(C.10)
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D OPTIMIZING TRANSPORT THROUGH STOCHASTIC INTERPOLANTS

Using the velocity vt(x) in (15) that minimizes the objective (9) in the ODE (2) gives an exact
transport map T = Xt=1 from ρ0 to ρ1. However, this map is not optimal in general, in the sense
that it does not minimize

∫

Rd

|T̂ (x)− x|2ρ0(x)dx (D.1)

over all T̂ such that T̂ ♯ρ0 = ρ1. It is easy to understand why: In their seminal paper Benamou &
Brenier (2000) showed that finding the optimal map requires solving the minimization problem

min
(v̂,ρ̂)

∫ 1

0

∫

Rd

|v̂t(x)|2ρ̂t(x)dxdt

subject to: ∂tρ̂t +∇ ·
(

v̂tρ̂t
)

= 0, ρ̂t=0 = ρ0, ρ̂t=1 = ρ1.

(D.2)

As also shown in (Benamou & Brenier, 2000), the velocity minimizing (D.2) is a gradient field,
v∗t (x) = ∇ϕ∗

t (x), and the minimizing couple (ρ∗t , ϕ
∗
t ) is unique and satisfies

∂tρ
∗
t +∇ ·

(

∇ϕ∗
t ρ

∗
t

)

= 0, ρ∗t=0 = ρ0, ρ∗t=1 = ρ1

∂tϕ
∗
t +

1
2 |∇ϕ∗

t |2 = 0.
(D.3)

In contrast, in our construction the interpolant density ρt(x) is fixed by the choice of interpolant

It(x0, x1), and ρt(x) ̸= ρ∗t (x) in general. As a result, the value of
∫ 1

0

∫

Rd |vt(x)|2ρt(x)dxdt =

E[|vt(It)|2] for the velocity vt(x) minimizing (9) is not the minimum in (D.2).

Minimizing (9) over gradient fields reduces the value of the objective in (D.2), but it does not yield an
optimal map either—indeed the gradient velocity ∇ϕt(x) with the potential ϕt(x) solution to (B.21)
only minimizes the objective in (D.2) over all v̂t(x) with ρ̂t(x) = ρt(x) fixed, as explained af-
ter (B.23).

It is natural to ask whether our stochastic interpolant construction can be amended or generalized
to derive optimal maps. This question is discussed next, from two complementary perspectives: via
optimization of the interpolant It(x0, x1), and/or via optimization of the base density ρ0, assuming
that we have some leeway to choose this density.

D.1 OPTIMAL TRANSPORT WITH OPTIMAL INTERPOLANTS

Since (10) indicates that the minimum of G(v̂) is lower bounded by minus the value of the objective
in (D.2), one way to optimize the transport is to maximize this minimum over the interpolant. Under
some assumption on the Benamou-Brenier density ρ∗t (x) solution of (D.3), this procedure works, as
we show now. Let us begin with a definition:

Definition D.1 (Interpolable density). We say that one-parameter family of probability densities
ρt(x) with t ∈ [0, 1] is interpolable (in short: ρt(x) is interpolable) if there exists a one-parameter
family of invertible maps Tt : Rd → R

d with t ∈ [0, 1], continuously-differentiable in time and
space, such that ρt is the pushforward by Tt of the Gaussian density with mean zero and covariance
identity, i.e. Tt♯N(0, Id) = ρt for all t ∈ [0, 1].

Interpolable densities form a wide class, as discussed e.g. in Mikulincer & Shenfeld (2022). These
densities also are the ones that can be learned by score-based diffusion modeling discussed in Sec-
tion 2.2. They are useful for our purpose because of the following result showing that any interpo-
lable density can be represented as an interpolant density:

Proposition D.1. Let ρt(x) be an interpolable density in the sense of Definition D.1. Then

It(x0, x1) = Tt

(

T−1
0 (x0) cos(

1
2πt) + T−1

1 (x1) sin(
1
2πt)

)

(D.4)

satisfies (4) and is such that the stochastic interpolant defined in (6) satisfies xt ∼ ρt.

We stress that the interpolant in (D.4) is in general not the only one giving the interpolable density
ρt(x), and the actual value of the map Tt plays no role in the results below.
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Proof. First notice that

It=0(x0, x1) = T0(T
−1
0 (x0)) = x0, It=1(x0, x1) = T1(T

−1
1 (x0)) = x1 (D.5)

so that the boundary condition in (4) are satisfied. Then observe that, by definition of Tt,

x0 ∼ ρ0 ⇒ T−1
0 (x0) ∼ N(0, Id),

x1 ∼ ρ1 ⇒ T−1
1 (x1) ∼ N(0, Id),

(D.6)

This implies that, if x0 ∼ ρ0, x1 ∼ ρ1, and they are independent,

T−1
0 (x0) cos(

1
2πt) + T−1

1 (x1) sin(
1
2πt) (D.7)

is a Gaussian random variable with mean zero and covariance

Id cos2( 12πt) + Id sin2( 12πt) = Id, (D.8)

i.e. it is a sample from N(0, Id). By definition of Tt, this implies that

xt = It(x0, x1) = Tt

(

T−1
0 (x0) cos(

1
2πt) + T−1

1 (x1) sin(
1
2πt)

)

(D.9)

is a sample from ρt if x0 ∼ ρ0, x1 ∼ ρ1, and they are independent.

Proposition D.1 implies that:

Proposition D.2. Assume that (i) the optimal density function ρ∗t (x) minimizing (D.2) is interpolable
and (ii) (D.3) has classical solution. Consider the max-min problem

max
Î

min
v̂

G(v̂) (D.10)

where G(v̂) is the objective in (9) and the maximum is taken over interpolants satisfying (4). Then
a maximizer of (D.10) exists, and any maximizer I∗t (x0, x1) is such that the probability density
function of x∗

t = I∗t (x0, x1), with x0 ∼ ρ0 and x1 ∼ ρ1 independent, is the optimal ρ∗t (x), the
mimimizing velocity is v∗t (x) = ∇ϕ∗

t (x), and the pair (ρ∗t (x), ϕ
∗
t (x)) satisfies (D.3).

The proof of Proposition D.2 relies on the following simple reformulation of (D.2):

Lemma D.3. The Benamou-Brenier minimization problem in (D.2) is equivalent to the min-max
problem

max
ρ̂,ȷ̂

min
v̂

∫ 1

0

∫

Rd

(

1
2 |v̂t(x)|2ρ̂t(x)− v̂t(x) · ȷ̂t(x)

)

dxdt

=min
v̂

max
ρ̂,ȷ̂

∫ 1

0

∫

Rd

(

1
2 |v̂t(x)|2ρ̂t(x)− v̂t(x) · ȷ̂t(x)

)

dxdt

subject to: ∂tρ̂t +∇ · ȷ̂t = 0, ρ̂t=0 = ρ0, ρ̂t=1 = ρ1

(D.11)

In particular, under the conditions on ρ0 and ρ1 such that (D.2) has a minimizer, the optimizer
(ρ∗t , v

∗
t , j

∗
t ) is unique and satisfies v∗t (x) = ∇ϕ∗

t (x), j
∗
t (x) = ∇ϕ∗

t (x)ρ
∗
t (x) with (ρ∗t , ϕ

∗
t ) solution

to (D.3).

Proof. Since (D.11) is convex in v̂ and concave in (ρ̂, ȷ̂), the min-max and the max-min are equiva-
lent by von Neumann’s minimax theorem. Considering the problem where we minimize over v̂t(x)
first, the minimizer must satisfy:

v̂t(x)ρ̂t(x) = ȷ̂t(x) (D.12)

Since ρ̂t(x) ≥ 0 and ȷ̂t(x) have the same support by the constraint in (D.11), the solution to this
equation is unique on this support. Using (D.12) in (D.11), we can therefore rewrite the max-min
problem as

max
ρ̂

− 1
2

∫ 1

0

∫

Rd

|v̂t(x)|2ρ̂t(x)dxdt

subject to: ∂tρ̂t +∇ ·
(

v̂tρt
)

= 0, ρ̂t=0 = ρ0, ρ̂t=1 = ρ1

(D.13)

This problem is equivalent to the Benamou-Brenier minimization problem in (D.2).
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To write the Euler-Lagrange equations for the optimizers of the min-max problem (D.11), let us
introduce the extended objective
∫ 1

0

∫

Rd

(

1
2 |v̂t(x)|2ρ̂t(x)− v̂t(x) · ȷ̂t(x)

)

dxdt−
∫ 1

0

∫

Rd

ϕ̂t(x)
(

∂tρ̂t +∇ · ȷ̂t(x)
)

dxdt

+

∫

Rd

(ϕ̂1(x)ρ1 − ϕ̂0(x)ρ0)dx

(D.14)

where ϕ̂t : Rd → R is a Lagrangian multiplier to be determined. The Euler-Lagrange equations

can be obtained by taking the first variation of the objective (D.14) over ϕ̂, ρ̂, ȷ̂, and v̂, respectively.
They read

0 = ∂tρ
∗
t +∇ · j∗t , ρ∗t=0 = ρ0, ρ∗t=1 = ρ1

0 = ∂tϕ
∗
t +

1
2 |v∗t |2,

0 = −v∗t +∇ϕ∗
t ,

0 = v∗t ρ
∗
t − j∗t .

(D.15)

These equations imply that v∗t (x) = ∇ϕ∗
t (x), j

∗
t (x) = v∗t (x)ρ

∗
t (x) = ∇ϕ∗

t (x)ρ
∗
t (x), with (ρ∗t , ϕ

∗
t )

solution to (D.3), as stated in the lemma. Since the optimization problem in (D.11) is convex in v̂
and concave in (ρ̂, ȷ̂), its optimizer is unique and solves these equations.

Proof of Proposition D.2. We can reformulate the max-min problem (D.10) as

max
ρ̂,ȷ̂

min
v̂

∫ 1

0

∫

Rd

(

1
2 |v̂t(x)|2ρ̂t(x)− v̂t(x) · ȷ̂t(x)

)

dxdt (D.16)

where the maximization is taken over probability density functions ρ̂t(x) and probability currents

ȷ̂t(x) as in (B.5) and (B.7) with It replaced by Ît, i.e. formally given in terms of the Dirac delta
distribution as

ρ̂t(x) =

∫

Rd×Rd

δ
(

x− Ît(x0, x1)
)

ρ0(x0)ρ1(x1)dx0dx1

ȷ̂t(x) =

∫

Rd×Rd

∂tÎt(x0, x1)δ
(

x− Ît(x0, x1)
)

ρ0(x0)ρ1(x1)dx0dx1

(D.17)

Since this pair automatically satisfies

∂tρ̂t +∇ · ȷ̂t = 0, ρ̂t=0 = ρ0, ρ̂t=1 = ρ1, (D.18)

the max-min problem (D.16) is similar to the one considered in Lemma (D.3), except that the max-
imization is taken over probability density functions and associated currents that can be written as
in (D.17). By Proposition D.1, this class is large enough to represent ρ∗t (x) since we have assumed
that ρ∗t (x) is an interpolable density, and the statement of the proposition follows.

Since our primary aim here is to construct a map T = Xt=1 that pushes forward ρ0 onto ρ1, but

not necessarily to identify the optimal one, we can perform the maximization over Ît(x0, x1) in a
restricted class (though of course the corresponding map is no longer optimal in that case). We
investigate this option in numerical examples in Appendix H, using interpolants of the type (B.2)
and maximizing over the functions at and bt, subject to a0 = b1 = 1, a1 = b0 = 0. In Section G we
also discussion generalizations of the interpolant that can render the optimization of the transport
easier to perform. We leave the full investigation of the consequences of Proposition D.2 for future
work.

Remark D.4 (Optimal interpolant for Gaussian densities). Note that if ρ0 and ρ1 are both Gaussian
densities with respective mean m0 ∈ R

d and m1 ∈ R
d and the same covariance C ∈ R

d × R
d, an

interpolant of the type D.4 is

It(x0, x1) = cos( 12πt)(x0 −m0) + sin( 12πt)(x1 −m11) + (1− t)m0 + tm1, (D.19)

and a calculation similar to the one presented in Appendix C shows that the associated velocity field
vt(x) is

vt(x) = (m1 −m0) (D.20)

This is the velocity giving the optimal transport map Xt(x) = x+ (m1 −m0)t.
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Remark D.5 (Rectifying the map). In (Liu et al., 2022; Liu, 2022), where an approach similar to
ours using the linear interpolant xt = x0(1 − t) + x1t is introduced, an alternative procedure is
proposed to optimize the transport. Specifically, it is suggested to rectify the map T = Xt=1 learned
by repeating the procedure using the new interpolant x′

t = x0(1 − t) + T (x0)t with x0 ∼ ρ0. As
shown in (Liu, 2022) iterating on this rectification step yields successive maps that are getting closer
to optimality. The main drawback of this approach is that it requires each of these maps (including
the first one) to be learned exactly, i.e. we must have T♯ρ0 = ρ1 to use the interpolant x′

t above.
If the maps are not exact, which is unavoidable in practice, the procedure introduces a bias whose
amplitude will grow with the iterations, leading to instability (as noted in Liu et al. (2022); Liu
(2022)).

D.2 OPTIMIZING THE BASE DENSITY

While our construction allows one to connect any pair of densities ρ0 and ρ1, the typical situation
of interest is when ρ1 is a complex target density and we wish to construct a generative model
for this density by transporting samples from a simple base density ρ0. In this case it is natural
to adjust parameters in ρ0 to optimize the transport via maximization of G(v) = minv̂ G(v̂) over
these parameters—indeed changing ρ0 also affects the stochastic interpolant xt defined in (6), and
hence both the interpolant density ρt(x) and the velocity vt(x). For example we can take ρ0 to be
a Gaussian with mean m ∈ R

d and covariance C ∈ R
d × R

d, and maximize G(v) = minv̂ G(v̂)
over m and C. This construction is tested in the numerical examples treated in Appendix H. We also
discuss how to generalize it in Section G.

Optimizing ρ0 only makes practical sense if we do so in a restricted class, like that of Gaussian
densities that we just discussed. Still, we may wonder whether optimizing ρ0 over all densities
would automatically give ρ0 = ρ1 and vt = 0. If the interpolant is fixed, the answer is no, in
general. Indeed, even if we set ρ0 = ρ1, the interpolant density will still evolve, i.e. ρt ̸= ρ0 except
at t = 0, 1, in general. This indicates that optimizing the interpolant in concert with ρ0 is necessary
if we want to optimize the transport.

E PROOF OF PROPOSITION 3

To use the bound in (27), let us consider the evolution of

Qt =

∫

Rd

|Xt(x)− X̂t(x)|2ρ0(x)dx (E.1)

Using Ẋt(x) = vt(Xt(x)) and
˙̂
Xt(x) = v̂t(X̂t(x)), we deduce

Q̇t = 2

∫

Rd

(Xt(x)− X̂t(x)) · (vt(Xt(x))− v̂t(X̂t(x)))ρ0(x)dx

= 2

∫

Rd

(Xt(x)− X̂t(x)) · (vt(Xt(x))− v̂t(Xt(x)))ρ0(x)dx

+ 2

∫

Rd

(Xt(x)− X̂t(x)) · (v̂t(Xt(x))− v̂t(X̂t(x)))ρ0(x)dx

(E.2)

Now use

2(Xt − X̂t) · (vt(Xt)− v̂t(Xt)) ≤ |Xt − X̂t|2 + |vt(Xt)− v̂t(Xt)|2 (E.3)

and

2(Xt − X̂t) · (v̂t(Xt)− v̂t(X̂t)) ≤ 2K̂|Xt − X̂t|2 (E.4)

to obtain

Q̇t ≤ (1 + 2K̂)Qt +

∫

Rd

|vt(Xt(x))− v̂t(Xt(x))|2ρ0(x)dx (E.5)

Therefore, by Gronwall’s inequality and since Q0 = 0 we deduce

Q1 ≤ e1+2K̂

∫ 1

0

∫

Rd

|vt(Xt(x))− v̂t(Xt(x))|2ρ0(x)dxdt = e1+2K̂H(v̂). (E.6)

Since W 2
2 (ρ1, ρ̂1) ≤ Q1 by (27), we are done. □

23



Published as a conference paper at ICLR 2023

Note that the proposition suggests to regularize G(v̂) using e.g.

Gλ(v̂) = G(v̂) + λ

∫ 1

0

∫

Rd

∥∇v̂t(x)∥2ρt(x)dxdt = G(v̂) + λE
[

∥∇v̂t(It(x0, x1)∥2
]

(E.7)

with some small λ > 0. In the numerical results presented in the paper no such regularization was
included.

F PROOF OF PROPOSITION 4 AND LINK WITH SCORE-BASED DIFFUSION

MODELS

Assume that the interpolant is of the type (B.2) so that ∂tIt(x0, x1) = ȧtx0 + ḃtx1. For t ∈ (0, 1)
let us write expression (14) for the probability current as

jt(x) =

∫

Rd×Rd

(ȧtx0 + ḃtx1)δ(x− atx0 + btx1)ρ0(x0)ρ1(x1)dx0dx1

=

∫

Rd×Rd

(

ḃt
bt
(atx0 + btx1) +

(

ȧt −
ḃt
bt
at

)

x0

)

δ(x− atx0 + btx1)ρ0(x0)ρ1(x1)dx0dx1

=
ḃt
bt
xρt(x) +

(

ȧt −
ḃt
bt
at

)

∫

Rd×Rd

x0δ(x− atx0 + btx1)ρ0(x0)ρ1(x1)dx0dx1

(F.1)

If ρ0(x0) = (2π)−d/2e−
1

2
|x0|

2

, we have the identity x0ρ0(x0) = −∇x0
ρ0(x0). Inserting this

equality in the last integral in (F.1) and integrating by part using

∇x0
δ(x− atx0 + btx1) = −at∇xδ(x− atx0 + btx1) (F.2)

gives

jt(x) =
ḃt
bt
xρt(x)− at

(

ȧt −
ḃt
bt
at

)

∇ρt(x) (F.3)

This means that

vt(x) =
ḃt
bt
x− at

(

ȧt −
ḃt
bt
at

)

∇ log ρt(x) (F.4)

Solving this expression in ∇ log ρt(x) and specializing it to the trigonometric interpolant with at, bt
given in (B.4) gives the first equation in (28). The second one can be obtained by taking the limit of
this first equation using vt=1(x) = 0 from (B.20) and l’Hôpital’s rule. □

Note that (F.3) shows that, when the interpolant is of the type (B.2) and ρ0(x0) = (2π)−d/2e−
1

2
|x0|

2

,
the continuity equation (3) can also be written as the diffusion equation

∂tρt(x) +
ḃt
bt
∇ · (xρt(x)) = at

(

ȧt −
ḃt
bt
at

)

∆ρt(x) (F.5)

Since we assume that ȧt ≤ 0 and ḃt ≥ 0 (see (B.3), the diffusion coefficient in this equation is
negative

at

(

ȧt −
ḃt
bt
at

)

≤ 0 (F.6)

This means that (F.5) is well-posed backward in time, i.e. it corresponds to backward diffusion

from ρt=1 = ρ1 to ρt=0 = ρ0 = (2π)−d/2e−
1

2
|x0|

2

. Therefore, reversing this backward diffusion,
similar to what is done in score-based diffusion models, gives an SDE that transforms samples from
ρ0 to ρ1. Interestingly, these forward and backward diffusion processes arise on the finite time
interval t ∈ [0, 1]; notice however that both the drift and the diffusion coefficient are singular at
t = 1. This is unlike the velocity vt(x) which is finite at t = 0, 1 and is given by (B.19).

G GENERALIZED INTERPOLANTS

Our construction can be easily generalized in various ways, e.g. by making the interpolant depend
on additional latent variables to be averaged upon. This enlarges the class of interpolant density
we can construct, which may prove useful to get simpler (or more optimal) velocity fields in the
continuity equation (3). Let us consider one specific generalization of this type:
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Factorized interpolants. Suppose that we decompose both ρ0 and ρ1 as

ρ0(x) =
K
∑

k=1

pkρ
k
0(x), ρ1(x) =

K
∑

k=1

pkρ
k
1(x), (G.1)

where K ∈ N, ρk0 and ρk1 are normalized PDF for each k = 1, . . . ,K, and pk > 0 with
∑K

k=1 pk =
1. We can then introduce K interpolants Ikt (x0, x1) with k = 1, . . . ,K, each satisfying (4), and
define the stochastic interpolant

xt = Ikt (x0, x1), k ∼ pk, x0 ∼ ρk0 , x1 ∼ ρk1 (G.2)

This corresponds to splitting the samples from ρ0 and ρ1 into K (soft) clusters, and only interpo-
lating between samples in cluster k in ρ0 and samples in cluster k in ρ1. This clustering can either
be done beforehand, based on some prior information we may have about ρ0 and ρ1, or be learned
(more on this point below).

It is easy to see that the PDF ρt of xt is formally given by

ρt(x) =

K
∑

k=1

pk

∫

Rd×Rd

δ(x− Ikt (x0, x1))ρ
k
0(x0)ρ

k
1(x1)dx0dx1, (G.3)

and that this density satisfies the continuity equation (B.11) for the current

jt(x) =

K
∑

k=1

pk

∫

Rd×Rd

∂tI
k
t (x0, x1)δ(x− Ikt (x0, x1))ρ

k
0(x0)ρ

k
1(x1)dx0dx1, (G.4)

Therefore this equation can be written as (3) with the velocity vt(x) which is the unique minimizer
of a generalization of the objective (9). We state this as:

Proposition G.1. The stochastic interpolant xt defined in (G.2) with Ikt (x0, x1) satisfying (4) for
each k = 1, . . . ,K has a probability density ρt(x) that satisfies the continuity equation (3) with a
velocity vt(x) which is the unique minimizer over v̂t(x) of the objective

GK(v̂) =
K
∑

k=1

pk

∫ 1

0

∫

Rd×Rd

(

|v̂t(Ikt )|2 − 2∂tI
k
t · v̂t(Ikt ))

)

ρk0(x0)ρ
k
1(x1)dx0dx1dt (G.5)

where we used the shorthand notations Ikt = Ikt (x0, x1) and ∂tI
k
t = ∂tI

k
t (x0, x1). In addition the

minimum value of this objective is given by

GK(v) = −
∫ 1

0

∫

Rd

|vt(x)|2ρt(x)dxdt > −∞ (G.6)

and both these statements remain true if G(v̂) is minimized over velocities that are gradient fields, in
which case the minimizer is of the form vt(x) = ∇ϕt(x) for some potential ϕt : R

d → R uniquely
defined up to a constant.

We omit the proof of this proposition since it is similar to the one of Proposition 1. The advantage
of this construction is that it gives us the option to make the transport more optimal by maximizing
GK(v) over Ikt and/or the partitioning used to define ρk0 , ρk1 , and pk. For example, if we know that
the target density ρ1 has K clusters with relative mass pk, we can define ρ0 as a Gaussian mixture
with K modes, set the weight of mode k to pk, and maximize GK(v) = minv̂ GK(v̂) over the
mean mk ∈ R

d and and the covariance Ck ∈ R
d × R

d of each mode k = 1, . . . ,K in the mixture
density ρ0.

H EXPERIMENTS FOR OPTIMAL TRANSPORT, PARAMETERIZING It,

PARAMETERIZING ρ0

As discussed in Section 2, the minimizer of the objective in equation (10) can be maximized with
respect to the interpolant It as a route toward optimal transport. We motivate this by choosing a
parametric class for the interpolant It and demonstrating that the max-min optimization in equation
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(D.10) can give rise to velocity fields which are easier to learn, resulting in better likelihood estima-
tion. The 2D checkerboard example is an appealing test case because the transport is nontrivial. In
this case, we train the same flow as in Section 3.1, with and without optimizing the interpolant. We
choose a simple parametric class for the interpolant given by a Fourier series expansion

Ît(x0, x1) = âtx0 + b̂tx1 (H.1)

where parameters {α, β}Mm=1 define learnable ât, b̂t via

ât = cos
(

1
2πt
)

+
1

M

M
∑

m=1

αm sin(mπt), b̂t = sin
(

1
2πt
)

+
1

M

M
∑

m=1

βm sin(mπt). (H.2)

This is but one set of possible parameterizations. Another, for example, could be a rational quadratic

spline, so that the endpoints for ât, b̂t can be properly constrained as they are above in the Fourier

expansion. In Figure H.1, we plot the log likelihood, the learned interpolants ât, b̂t compared to
their initializations, as well as the path length as it evolves over training epochs. With the learned
interpolants, the path length is reduced, and the resultant velocity field under the same number of
training epochs endows a model with better likelihood estimation, as shown in the left plot of the
figure. For the path optimality experiments, M = 7 Fourier coefficients were used to parameter-
ize the interpolant. This suggests that minimizing the transport cost can create models which are,
practically, easier to learn.
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Figure H.1: Comparison of characteristics and performance of the learned vs nonparametric in-
terpolant on the checkerboard density estimation. Left: Comparison of the evolution of the log-

likelihood. Middle: The initial versus learned interpolant terms ât, b̂t. Right: The path length of the
learned vs nonparametric interpolant.

In addition to parameterizing the interpolant, one can also parameterize the base density ρ0 in some
simple parametric class. We show that including this in the min-max optimization given in equation
(D.10) can further reduce the transport cost and improve the final log likelihood. The results are
given in Figure H.2. We train an interpolant just as described above, but also allow the base density

ρ0 to be parameterized as a Gaussian with mean µ̂ and covariance Σ̂. The inclusion of the learnable
base density results in a significantly reduced path length, thereby bringing the model closer to
optimal transport.

I IMPLEMENTATION DETAILS FOR NUMERICAL EXPERIMENTS

Let {xi
0}Ni=1 be N samples from the base density ρ0, {xj

1}ni=1 n samples from the target density

ρ1, and {tk}Kk=1 K samples from the uniform density on [0, 1]. Then an empirical estimate of the
objective function in (9) is given by

GN,n,K(v̂) =
1

KnN

K
∑

k=1

n
∑

j=1

N
∑

i=1

∣

∣v̂tk
(

Itk(x
i
0, x

j
1))
∣

∣

2 − 2∂tItk(x
i
0, x

j
1) · v̂tk(Itk(xi

0, x
j
1)). (I.1)

This calculation is parallelizable.
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Figure H.2: Comparison of characteristics and performance of the learned vs nonparametric in-
terpolant on the checkerboard density estimation, while also optimizing the base density ρ̂0. The

parametric ρ̂0 is given as bivariate Gaussian N (µ̂, Σ̂). Left: Comparison of the evolution of the log-

likelihood. Center left: The initial versus learned interpolant terms ât, b̂t. Center right: The learned

covariance Σ̂ in red compared to the original identity covariance matrix. Right: The path length of
the learned vs nonparametric interpolant.

.

POWER GAS HEPMASS MINIBOONE BSDS300

Dimension 6 8 21 43 63
# Training point 1, 615, 917 852,174 315,123 29,556 1, 000, 000
Target batch size 800 800 800 800 300
Base batch size 150 150 150 150 200
Time batch size 10 10 20 10 20

Training Steps 105 105 105 105 105

Learning Rate (LR) 0.003 0.003 0.003 0.003 0.002
LR decay (4k epochs) 0.8 0.8 0.8 0.8 0.8
Hidden layer width 512 512 512 512 1024
# Hidden layers 4 5 4 4 5
Inner activation functions ReLU ReLU ReLU ReLU ELU
Beta α, β, time samples (1.0,0.5) (1.0,0.5) (1.0,0.5) (1.0,1.0) (1.0,0.7)

Table 3: Hyperparameters and architecture for tabular datasets.

The architectural information and hyperparameters of the models for the resulting likelihoods in
Table 2 is presented in Table 3. ReLU (Nair & Hinton, 2010) activations were used throughout,
barring the BSDS300 dataset, where ELU (Clevert et al., 2016) was used. Table formatting based
on (Durkan et al., 2019).

In addition, reweighting of the uniform sampling of time values in the empirical calculation of (I.1)
was done using a Beta distribution under the heuristic that the flow should be well trained near the
target. This is in line with the statements under Proposition 1 that any weight w(t) maintains the
same minimizer.

The details for the image datasets are provided in Table 4. We built our models based off of the
U-Net implementation provided by lucidrains public diffusion code, which we are grateful for
https://github.com/lucidrains/denoising-diffusion-pytorch. We use the sinusoidal time embedding,
but otherwise use the default implementation other than changing the U-Net dimension multipliers,
which are provided in the table. Like in the tabular case, we reweight the time sampling to be from
a beta distribution. All models were implemented on a single A100 GPU.

I.1 DETAILS ON COMPUTATIONAL EFFICIENCY AND DEMONSTRATION OF CONVERGENCE

GUARANTEE

Below, we show that the results achieved in 3 are driven by a model that can train significantly
more efficiently than the maximum likelihood approach to ODEs. Following that, we provide an
illustration of the convergence requirements on the objective defined in (11).
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CIFAR-10 ImageNet 32×32 Flowers

Dimension 32×32 32×32 128×128

# Training point 5× 104 1,281,167 315,123

Batch Size 400 512 50

Training Steps 5×105 6×105 1.5 × 105

Hidden dim 256 256 256
Learning Rate (LR) 0.0001 0.0002 0.0002
LR decay (1k epochs) 0.985 0.985 0.985
U-Net dim mult [1,2,2,2,2] [1,2,2,2] [1,1,2,3,4]
Beta α, β, time samples (1.0,0.75) (1.0,0.75) (1.0,0.75)
Learned t sinusoidal embedding Yes Yes Yes
# GPUs 1 1 1

Table 4: Hyperparameters and architecture for image datasets.
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Figure I.1: Left: Training speed for ours vs.
MLE ODE flows, with 400x speedup on the
MiniBooNE. Right: InterFlow shows more
efficient likelihood ascent.

We briefly describe the experimental setup for test-
ing the computational efficiency of our model as
compared to the FFJORD maximum likelihood
learning method. We use the same network archi-
tectures for the interpolant flow and the FFJORD
implementation, taking the architectures used in that
paper. For the Gaussian case, this is a 3 layer neu-
ral network with hidden widths of 64 units; for the
43-dimensional MiniBooNE target, this is a 3 layer
neural network with hidden widths of 860 units.

Figure I.1 shows a comparison of both the cost per
training epoch and the convergence of the log likeli-
hood across epochs. We take the architecture of the

vector field as defined in the FFJORD paper for the 2-dimensional Gaussian and MiniBooNE, and
use it to define the vector field for the interpolant flow. The left side of Figure I.1 shows that the cost
per iteration is constant for the interpolant flow, while it grows for MLE based approaches as the
ODE gets more complicated to solve. The speedup grows with dimension, 400x on MiniBooNE.
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Figure I.2: Demonstration of the
convergence diagnostic on POWER
dataset. This is necessary but not suf-
ficient for convergence. See Section 2

for definition of G̃.

The right side of Figure I.1 shows that, under equiva-
lent conditions, the interpolant flow can converge faster
in number of training steps, in addition to being cheaper
per step. The extent of this benefit is dependent on
both hyperparameters and the dataset, so a general state-
ment about convergence speeds is difficult to make. For
the sake of this comparison, we averaged over 5 trials
for each model and dataset, with variance shown shaded
around the curves.

As described in Section 1, the minimum of G(v̂) is
bounded by the square of the path taken by the map

Xt(x). The shifted value of the objective G̃(v̂) in (11) can
be tracked to ensure that the model velocity v̂t(x) meets
the requirement of the objective. It must be the case that

G̃(v̂) = 0 if v̂t(x) is taken to be the minimizer of G(v̂),
so we can look for this signature during the training of the
interpolant flow. Figure I.2 displays this phenomenon for an interpolant flow trained on the POWER

dataset. Here, the shifted loss converges to the target G̃(v) = 0 and remains there throughout train-
ing. This suggests that the dynamics of the stochastic optimization of G(v̂) are dual to the squared
path length of the map.
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Figure I.3: Uncurated samples from Oxford Flowers 128x128 model.

Figure I.4: Uncurated samples from ImageNet 32×32 model.

Figure I.5: Uncurated samples from CIFAR-10 model.
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