
Published as a conference paper at ICLR 2023

SAFE EXPLORATION INCURS NEARLY NO ADDITIONAL
SAMPLE COMPLEXITY FOR REWARD-FREE RL

Ruiquan Huang
The Pennsylvania State University
rzh5514@psu.edu

Jing Yang
The Pennsylvania State University
yangjing@psu.edu

Yingbin Liang
The Ohio State University
liang.899@osu.edu

ABSTRACT

Reward-free reinforcement learning (RF-RL), a recently introduced RL paradigm,
relies on random action-taking to explore the unknown environment without any
reward feedback information. While the primary goal of the exploration phase
in RF-RL is to reduce the uncertainty in the estimated model with minimum
number of trajectories, in practice, the agent often needs to abide by certain
safety constraint at the same time. It remains unclear how such safe exploration
requirement would affect the corresponding sample complexity in order to achieve
the desired optimality of the obtained policy in planning. In this work, we make a
first attempt to answer this question. In particular, we consider the scenario where a
safe baseline policy is known beforehand, and propose a unified Safe reWard-frEe
ExploraTion (SWEET) framework. We then particularize the SWEET framework
to the tabular and the low-rank MDP settings, and develop algorithms coined
Tabular-SWEET and Low-rank-SWEET, respectively. Both algorithms leverage
the concavity and continuity of the newly introduced truncated value functions,
and are guaranteed to achieve zero constraint violation during exploration with
high probability. Furthermore, both algorithms can provably find a near-optimal
policy subject to any constraint in the planning phase. Remarkably, the sample
complexities under both algorithms match or even outperform the state of the art in
their constraint-free counterparts up to some constant factors, proving that safety
constraint hardly increases the sample complexity for RF-RL.

1 INTRODUCTION

Reward-free reinforcement learning (RF-RL) is an RL paradigm under which a learning agent first
explores an unknown environment without any reward signal in the exploration phase, and then
utilizes the gathered information to obtain a near-optimal policy for any reward function during
the planning phase. Since formally introduced in Jin et al. (2020b), RF-RL has attracted increased
attention in the research community (Kaufmann et al., 2021; Zhang et al., 2020; 2021; Wang et al.,
2020; Modi et al., 2021). It is particularly attractive for applications where many reward functions
may be of interest, such as multi-objective RL (Miryoosefi & Jin, 2021), or the reward function is not
specified by the environment but handcrafted in order to incentivize some desired behavior of the RL
agent (Jin et al., 2020b).

The ability of RF-RL to identify a near-optimal policy in response to an arbitrary reward function relies
on the fact that the agent is allowed to explore any action during exploration. However, in practice,
unrestricted exploration is often unrealistic or even harmful. In order to build safe, responsible and
reliable artificial intelligence (AI), the RL agent often has to abide by certain application-dependent
constraints, even during the exploration phase. Two motivating applications are provided as follows.

• Autonomous driving. In order to learn a near-optimal driving strategy, an RL agent needs to try
various actions at different states through exploration. While RF-RL is an appealing approach as
the reward function is difficult to specify, it is of critical importance for the RL agent to take safe
actions (even during exploration) in order to avoid catastrophic consequences.

1

Published as a conference paper at ICLR 2023

• Cellular network optimization. The operation of cellular network needs to take a diverse corpus
of key performance indicators into consideration, which makes RF-RL a plausible solution. Mean-
while, the exploration also needs to meet certain system requirements, such as power consumption.

While meeting these constraints throughout the learning process is a pressing need for the broad
adoption of RL in real-world applications, it is a mission impossible to accomplish if no other
information is provided, as the learner has little knowledge of the underlying MDP at the beginning
of the learning process and will inevitably take undesirable actions (in hindsight) and violate the
constraints. On the other hand, in various engineering applications, there often exist either rule-based
(e.g., autonomous driving) or human expert-guided (e.g., cellular network optimization) solutions to
ensure safe operation of the system. One natural question is, is it possible to leverage such existing

safe solutions to ensure safety throughout the learning process? If so, how would the safe exploration

requirement affect the corresponding RF-RL performances in terms of the sample complexity of

exploration and the optimality and safety guarantees of the obtained policy in planning?

To answer these questions, in this work, we introduce a new safe RF-RL framework. In the proposed
safe RF-RL framework, the agent does not receive any reward information in the exploration phase,
but is aware of a cost function associated with actions at a given state. We require that the cumulative
cost in each episode is below a given threshold during exploration, with the aid of a pre-existing safe
baseline policy ⇡0. The ultimate learning goal of safe RF-RL is to find a safe and near-optimal policy
for any given reward and cost functions after exploration.

Main contributions. We summarize our main contributions as follows.

• First, we introduce a novel safe RF-RL framework that imposes safety constraints during both
exploration and planning of RF-RL, which may have implications in various applications.

• Second, we propose a unified safe exploration strategy coined SWEET to leverage the prior
knowledge of a safe baseline policy ⇡0. SWEET admits general model estimation and safe
exploration policy construction modules, thus can accommodate various MDP structures and
different algorithmic designs. Under the assumption that the approximation error function is
concave and continuous in the policy space, SWEET is guaranteed to achieve zero constraint
violation during exploration, and output a near-optimal safe policy for any given reward function
and safety constraint under some assumptions in planning, both with high probability.

• Third, in order to facilitate the specific design of the approximation error function to ensure its
concavity, we introduce a novel definition of truncated value functions. It relies on a new clipping
method to avoid underestimation of the approximation error captured by the corresponding value
function, and ensures the concavity of the resulted value function.

• Finally, we particularize the SWEET algorithm for both tabular and low-rank MDPs, and propose
Tabular-SWEET and Low-rank-SWEET, respectively. Both algorithms inherit the optimality
guarantee during planning, and the safety guarantees in both exploration and planning. Remarkably,
the sample complexities under both algorithms match or even outperform the state of the art of
their constraint-free counterparts up to some constant factors, proving that safety constraint incurs
nearly no additional sample complexity for RF-RL.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 EPISODIC MARKOV DECISION PROCESSES

We consider episodic Markov decision processes (MDPs) in the form of M = (S,A, P,H, s1),
where S is the state space and A is the finite action space, H is the number of time steps in
each episode, P = {Ph}

H

h=1 is a collection of transition kernels, and Ph(sh+1|sh, ah) denotes the
transition probability from the state-action pair (sh, ah) at step h to state sh+1 in the next step.
Without loss of generality, we assume that in each episode of the MDP, the initial state is fixed at s1.
In addition, an MDP may be equipped with certain specified utility functions u = {uh}

H

h=1, where
we assume uh : S ⇥A! [0, 1] is a deterministic function for ease of exposition.

A Markov policy ⇡ is a set of mappings {⇡h : S ! �(A)}H
h=1, where�(A) is the set of all possible

distributions over the action space A. In particular, ⇡h(a|s) denotes the probability of selecting action
a in state s at time step h. We denote the set of all Markov policies by X . For an agent adopting
policy ⇡ in an MDP M, at each step h 2 [H] where [H] := {1, . . . , H}, she observes state sh 2 S ,
and takes an action ah 2 A according to ⇡, after which the environment transits to the next state sh+1

2

Published as a conference paper at ICLR 2023

with probability Ph(sh+1|sh, ah). The episode ends after H steps, and we use a virtual state sH+1 to
denote the terminal state at step H + 1. We use EP,⇡ to denote the expectation of the distribution
induced by the transition kernel P and policy ⇡.

Let Q⇡

h,P,u
(sh, ah) and V ⇡

h,P,u
(sh) be the corresponding action-value function and value func-

tion at step h, respectively, for a given collection of utility functions u. Then, V ⇡

h,P,u
(sh) :=

EP,⇡

⇥P
H

h0=h
uh0(sh0 , ah0)

��sh
⇤
, and Q⇡

h,P,u
(sh, ah) := EP,⇡

⇥P
H

h0=h
uh0(sh0 , ah0)

��sh, ah
⇤
. We

also use the shorthand V ⇡

P,u
to denote V ⇡

1,P,u
(s1) due to the fixed initial state, and Phf(sh, ah) =

Esh+1⇠Ph(·|sh,ah)

⇥
f(sh+1)

⇤
for any function f : S ! R. We further assume that the utility functions

are normalized such that for any trajectory generated under a policy, the cumulative value over one
episode is bounded by 1, i.e.,

P
H

h=1 uh(sh, ah) 1.

2.2 SAFE REWARD-FREE REINFORCEMENT LEARNING

The safe policy considered in this work is formally defined as follows.
Definition 1. Given an MDP M

⇤ = (S,A, P ⇤, H, s1), a set of cost functions c = {ch}Hh=1 and
⌧ 2 (0, 1], a policy ⇡ is (c, ⌧)-safe if V ⇡

P⇤,c ⌧ .

Based on this definition of (c, ⌧)-safe policies, we now elaborate the proposed safe RF-RL framework,
which contains two phases. In the first phase of “exploration”, the agent is required to efficiently
explore the unknown environment without reward signals, and simultaneously not to violate a
predefined safety constraint (c, ⌧) in each episode during this exploration phase. Let ⇡(n) be the
policy implemented in the n-th episode of the exploration. Then the agent’s exploration should satisfy
the safety constraint in every episode with high probability, namely,

P
h
V ⇡

(n)

P⇤,c ⌧, 8n 2 [N]
i
� 1� �, (1)

where � 2 (0, 1) and N is the total number of episodes in the exploration phase. Note that the agent
is only given a set of cost functions c but not the reward r in this phase. This is reasonable for many
RL applications, where the purpose of exploration is not to maximize certain reward but to learn the
environment, while the safety constraint need to be satisfied throughout the learning process.

In the second phase of “planning”, the agent is given an arbitrary set of reward functions r⇤ and a
new set of safety constraint (c⇤, ⌧⇤). Without further exploration, she is required to learn an ✏-optimal
policy ⇡̄ with respect to the given reward r⇤, and subject to the safety constraint (c⇤, ⌧⇤).
Definition 2. Given an MDP M

⇤ = (S,A, P ⇤, H, s1), reward functions r⇤, cost functions c⇤ and
⌧⇤ 2 (0, 1], ⇡̄ is an ✏-optimal (c⇤, ⌧⇤)-safe policy if

V ⇡
⇤

P⇤,r⇤ � V ⇡̄

P⇤,r⇤ ✏, and V ⇡̄

P⇤,c⇤ ⌧⇤, (2)
where ✏ 2 (0, 1), and ⇡⇤ is the policy satisfying ⇡⇤ = argmax⇡ V ⇡

P⇤,r⇤ s.t. V ⇡

P⇤,c⇤ ⌧⇤.

The design goal of safe RF-RL algorithms is three-fold: 1) to collect as few sample trajectories
as possible, 2) to satisfy the safety constraint (c, ⌧) in the exploration phase, and 3) to obtain an
✏-optimal (c⇤, ⌧⇤)-safe policy for any given reward r⇤ and constraint (c⇤, ⌧⇤) in the planning phase.

We note that it is impossible to ensure zero constraint violation with high probability during explo-
ration if an agent starts with no information about the system. Therefore, we make the assumption
that a safe baseline policy is available to the learning agent during exploration. Besides, we also
assume the constrained MDP always has enough feasible solutions, either during exploration or
planning.
Assumption 1 (Feasibility). The agent has knowledge of a baseline policy ⇡0 and 2 (0, ⌧) such that
V ⇡

0

P⇤,c ⌧ � . Besides, for any given constraint (c, ⌧) in exploration or planning phases, the safety
margin, defined as�(c, ⌧) := ⌧ �min⇡ V ⇡

P⇤,c, is bounded away from zero, i.e. �(c, ⌧) � �min > 0.

We remark that assuming the existence of a safe baseline policy is reasonable in practice. Many
engineering applications already have existing solutions deployed and verified to be safe, although
their reward performances may not necessarily be near-optimal. Such solutions can naturally serve as
the baseline for safe RF-RL. Additionally, there are practical ways to construct safe baseline policies,
e.g., via imitation learning using expert demonstrations, or via policy gradient algorithms to reduce
the cost value function to be below the required safety threshold. This assumption is also widely
adopted in the safe RL literature (see Section 6 for more discussions).

3

Published as a conference paper at ICLR 2023

3 THE SWEET FRAMEWORK

Compared with constraint-free RF-RL, the additional safety requirements during both exploration and
planning bring two main challenges in the design of safe RF-RL algorithms. First, in order to obtain
an ✏-optimal policy for any given reward during planning, it requires all actions to be sufficiently
covered in the exploration phase. In particular, uniform action selection is one of the enablers for
reward-free exploration when the state space is undesirably large (Agarwal et al., 2020; Uehara et al.,
2021; Modi et al., 2021). On the other hand, the predefined safety constraint (c, ⌧) may preclude the
agent from taking certain actions in exploration, which may affect the estimation accuracy of the
environment and degrade the optimality of the output policy in planning. This dilemma requires a
novel design to balance safety and state-action space coverage during exploration. Second, there
may exist safety constraint mismatch between exploration and planning. Intuitively, the information
obtained under a given set of constraint (c, ⌧) during exploration may not provide enough coverage
for the optimal policy under another set of constraint (c⇤, ⌧⇤) during planning. How to design the
safe exploration algorithm to handle such constraint mismatch is non-trivial.

In this section, we introduce a unified framework for safe reward-free exploration, termed as SWEET.
We will show that the general framework achieves the second and third design objectives, i.e., safe
exploration, and ✏-optimality and (c⇤, ⌧⇤)-safety for the output policy in planning. The first design
objective, i.e., low sample complexity for exploration, is dependent on the underlying MDP structure
and will be investigated in Section 4 and Section 5 for tabular MDPs and low-rank MDPs, respectively.

3.1 ALGORITHM DESIGN

The SWEET framework relies on several key design components, namely, the (✏0, t)-greedy policy,
the approximation error function, and the empirical safe policy set, as elaborated below.
Definition 3 ((✏0, t)-greedy policy). Given ✏0 2 (0, 1) and t 2 {0, 1, · · · , H}, ⇡0 is an (✏0, t)-greedy
version of ⇡ if there exists H ⇢ [H] with |H| = t such that ⇡0

h
= ⇡h for all h /2 H, and

⇡0

h
(a|s) = (1� ✏0)⇡h(a|s) + ✏0/|A|, 8h 2 H, s 2 S, a 2 A.

Essentially, under an (✏0, t)-greedy version of a given policy ⇡, the agent follows policy ⇡ except for
t out of H steps, at which with probability ✏0, she takes actions uniformly at random from the state
space A. One critical property of the (✏0, t)-greedy policy is that, the difference between the value
functions under the (✏0, t)-greedy policy and its original policy is bounded by ✏0t for any normalized
utility function (See Lemma 1 in Appendix A).

The approximation error function U(P̂ ,⇡) measures the uncertainty in the model estimate P̂ under
a policy ⇡. Specifically, for a given MDP M

⇤, U(P̂ ,⇡) upper bounds the value function difference
under P̂ and P ⇤, i.e. U(P̂ ,⇡) � maxu |V ⇡

P̂ ,u
� V ⇡

P⇤,u|, where u is a normalized utility function.

The empirical safe policy set, which is critical for constructing safe exploration policies, is defined as

C
P̂ ,U(̃, ✏0, t) =

8
><

>:

{⇡0
}, if V ⇡

0

P̂ ,c
+ U(P̂ ,⇡0) � ⌧ � ✏0t� ̃,

n
⇡ : V ⇡

P̂ ,c
+ U(P̂ ,⇡) ⌧ � ✏0t

o
, otherwise ,

(3)

where ̃, ✏0 and t are constants satisfying the condition that ⌧ � ✏0t� ̃ > ⌧ � .

The intuition behind the construction of the empirical safe policy can be explained as follows (Liu
et al., 2021): if V ⇡

0

P̂ ,c
+ U(P̂ ,⇡0) � ⌧ � ✏0t � ̃, it indicates that P̂ is not sufficiently accurate.

Thus, the empirical safe policy set only contains the safe baseline policy ⇡0. On the other hand, if
V ⇡

0

P̂ ,c
+ U(P̂ ,⇡0) < ⌧ � ✏0t� ̃, which happens when U(P̂ ,⇡0) is sufficiently small, it indicates that

P̂ is sufficiently accurate on ⇡0. Then, we relax the constraint on V ⇡

P̂ ,c
+ U(P̂ ,⇡) from ⌧ � ✏0t� ̃

to ⌧ � ✏0t to include ⇡0 and other policies in the empirical safe policy set. Since V ⇡

P̂ ,c
+ U(P̂ ,⇡) is

an upper bound of the true value V ⇡

P⇤,c for any ⇡, it ensures that V ⇡

P⇤,c < ⌧ � ✏0t for all ⇡ included
in C

P̂ ,U. Moreover, all (✏0, t)-greedy versions of such policies satisfy the safety constraint (c, ⌧).

With those salient components, SWEET proceeds as follows. At the beginning of each episode, the
agent executes a set of behavior policies, which are (✏0, t)-greedy versions of a reference policy

4

Published as a conference paper at ICLR 2023

⇡r obtained in the previous episode. For the first episode, the reference policy would be ⇡0. The
general construction of ⇡r will be elaborated below. By collecting trajectories generated under the
behavior policies, the agent updates the estimated model P̂ and the corresponding approximation
error function U(P̂ , ·).

The agent then seeks a reference policy ⇡r that maximizes the approximation error U(P̂ ,⇡) within
the constructed empirical safe policy set. Intuitively, U(P̂ ,⇡) is an upper bound of certain distance of
distributions over trajectories induced by ⇡ under P̂ and P ⇤. Therefore, ⇡r induces a distribution
that captures the most uncertainty in P̂ . Choosing ⇡r thus reduces the uncertainty in P̂ in a greedy
fashion. If U(P̂ ,⇡r) is less than a termination threshold T defined in SWEET, it indicates that
the estimated model P̂ is sufficiently accurate for the planning task. The exploration phase then
terminates. Otherwise, the agent continues to the next episode with the new ⇡r.

After termination, SWEET enters the planning phase and receives arbitrary reward functions r⇤ and
a safety constraint (c⇤, ⌧⇤). The agent utilizes P̂ to compute a policy ⇡̄, which maximizes V ⇡

P̂ ,r⇤

subject to an empirical safety constraint V ⇡

P̂ ,c
+ U(P̂ ,⇡) ⌧⇤. Algorithm 1 has the detail of SWEET.

Algorithm 1 SWEET (Safe ReWard FrEe ExploraTion)
1: Input: Reference policy ⇡r = ⇡0, uncertainty function U, ✏0, t, ̃ and T.
2: // Exploration:
3: while TRUE do
4: Construct a set of (✏0, t)-greedy policies of ⇡r (see Definition 3) and use them to collect data;
5: Model estimation: Update P̂ using collected data;
6: Obtain ⇡r = argmax⇡2C

P̂ ,U(̃,✏0,t)
U(P̂ ,⇡) where C

P̂ ,U(̃, ✏0, t) is defined in Equation (3);

7: if V ⇡
0

P̂ ,c
+ U(P̂ ,⇡0) ⌧ � ✏0t� ̃ and U(P̂ ,⇡r) T then

8: Output P̂ ; break;
9: end if

10: end while
11: // Planning:
12: Receive reward function r⇤ and a safety constraint (c⇤, ⌧⇤).
13: Output: ⇡̄ = argmax⇡ V ⇡

P̂ ,r⇤
s.t. V ⇡

P̂ ,c⇤
+ U(P̂ ,⇡) ⌧⇤.

3.2 THEORETICAL ANALYSIS

Before we present the theoretical guarantee for SWEET, we first introduce the notion of mixture
policies and equivalent policies and characterize the concavity over Markov policy space.
Definition 4. Given two Markov policies ⇡,⇡0

2 X , we use �⇡ � (1� �)⇡0 to denote the mixture
policy that uses ⇡ with probability � and uses ⇡0 with probability 1� � during an episode.
Definition 5. Given an MDP M, two policies, including mixture policies, are equivalent if they
induce the same marginal distribution over any state-action pair (a, s) in any step h 2 [H].

By Theorem 6.1 in Altman (1999), for any mixture policy �⇡ � (1� �)⇡0, there exists an equivalent
Markov policy ⇡�(⇡,⇡0) 2 X . For ease of presentation, in the following, we simply use ⇡� to denote
it when the definition is clear from the context. Therefore, the Markov policy space X is equipped
with an abstract convexity by mapping all mixture policies to their equivalent Markov policies in X .
With this convexity, we can define concave functions on X as follows.
Definition 6. A function f : X ! [0, 1] is concave and continuous on the Markov policy space X if
for any ⇡,⇡0

2 X and � 2 [0, 1], f(⇡�) � �f(⇡) + (1� �)f(⇡0), and is continuous in � 2 [0, 1].

With Definition 6, we have the following result of SWEET.
Theorem 1 (✏-optimality and safety guarantee of SWEET). Given an MDP M

⇤
and model estimate

P̂ , assume U(P̂ ,⇡) is concave and continuous over the Markov policy space X and

��V ⇡

P⇤,u�V ⇡

P̂ ,u

��
U(P̂ ,⇡) for any normalized utility u and policy ⇡, and Assumption 1 holds. Let ✏0, t and ̃ be

constants that satisfy ✏0t + ̃ < . Let U = min
n

✏

2 ,
�min

2 , ✏�min
5 , ⌧�✏0t

4 , ̃(�(c,⌧)�✏0t�̃)
4(�(c,⌧)�✏0t)

o
, and

5

Published as a conference paper at ICLR 2023

T (�(c, ⌧) � ✏0t)U/2 be the termination condition of SWEET. If SWEET terminates in finite

episodes, then, the following statements hold:

(i) The exploration phase is safe.

(ii) The output ⇡̄ of SWEET in the planning phase is an ✏-optimal (c⇤, ⌧⇤)-safe policy.

Figure 1: Illustration of the
proof.

The detailed proof of Theorem 1 is deferred to Appendix A. We
highlight the main idea behind the analysis as follows. While the
construction of C

P̂ ,U(̃, ✏0, t) ensures safe exploration, the ability for
SWEET to find an ✏-optimal (c⇤, ⌧⇤)-safe policy in planning relies
on the concavity and continuity of U(P̂ , ·). Note that when SWEET
terminates, it is only guaranteed that the approximation error U(P̂ ,⇡)
is upper bounded by T for the policies within C

P̂ ,U(̃, ✏0, t). Due
to a possibly different constraint in planning, it is desirable to have
U(P̂ ,⇡) sufficiently small under any ⇡, so that the agent is able to
achieve the learning goal in planning with the estimated model P̂ .
Let ⇡̃ = argmax⇡ U(P̂ ,⇡), ⇡� be the equivalent Markov policy of
�⇡̃ � (1 � �)⇡0, f(�) = U(P̂ ,⇡�) and g(�) = V ⇡

�

P̂ ,c
. Then, f is

concave and g is linear in � by Theorem 6.1 in Altman (1999). Let F (�) = f(�) + g(�). The
definition of C

P̂ ,U(̃, ✏0, t) ensures that F (0) ⌧ � ✏0t� ̃, and F (�) ⌧ � ✏0t if ⇡� lies in C
P̂ ,U.

It suffices to consider the case when F (1) > ⌧ � ✏0t, under which we can show that both g and f

increase with �. Then, the concavity of f and linearity of g ensure that f(�)�f(0)
f(1)�f(0)�

F (�)�F (0)
F (1)�F (0) , as

illustrated in Figure 1. Let ⇡�0 be the policy under which F (�0) = ⌧ � ✏0t. Then, F (�0)�F (0) � ̃.
Combining with the fact that F (1)� F (0) 2, we have f(1) f(0) + (f(�0)� f(0)) 2

̃
 2T/̃,

which provides an upper bound on U(P̂ ,⇡) for any ⇡.

3.3 TRUNCATED VALUE FUNCTION

Theorem 1 highlights the importance of the concave and continuous approximation error function
on the Markov policy space. In the following, we introduce a prototype function, coined truncated

value function, which is concave and continuous on the Markov policy space and can be used for the
construction of the approximation error functions for both tabular and low-rank MDPs.
Definition 7 (Truncated value function). Given an MDP M, ↵ > 0, and a set of (un-normalized)
utility functions u, the truncated value function V̄ ↵,·

P,u
= V̄ ↵,·

1,P,u
(s1) : X ! R is defined as follows:

8
><

>:

Q̄↵,⇡

h,P,u
(sh, ah) = u(sh, ah) + ↵PhV̄

↵,⇡

h+1,P,u
(sh, ah),

V̄ ↵,⇡

h,P,u
(sh) = min

⇢
1,E

⇡

h
Q̄↵,⇡

h,P,u
(sh, ah)

i�
,

(4)

where V ↵,⇡

H+1,P,u
(sH+1) = 0 and we omit the upper index ↵ for simplicity when ↵ = 1.

It is worth noting that the clipping technique is applied to the value function as opposed to the
action-value function, where the latter is more conventional in the existing literature. This new
method is critical for achieving the superior sample complexity in safe RF-RL, as will be elaborated
later. Meanwhile, it preserves the desired concavity and continuity (see Lemma 3 in Appendix A),
which ensures the safety guarantee for both exploration and planning.

4 THE TABULAR-SWEET ALGORITHM

4.1 ALGORITHM DESIGN

Under tabular MDPs, state space S and action space A are both finite (with sizes S and A, respec-
tively). We instantiate the modules of model estimation and exploration policy construction of the
SWEET framework, and specify the approximation error function and parameter selection as follows.
The details of the Tabular-SWEET algorithm is shown in Algorithm 2 in Appendix B.

Model estimation. At each episode n, the agent uses ⇡(n�1), which is the reference policy derived
from the last episode n� 1, to collect a trajectory {s(n)1 , a(n)1 , . . . , s(n)

H
, a(n)

H
}. For that, we set ✏0 and

6

Published as a conference paper at ICLR 2023

t as 0, i.e., it is essentially a (0, 0)-greedy version of policy ⇡(n�1). We note that although ⇡(n�1) is
a greedy policy, the uncertainty captured by the approximation error function U(P̂ ,⇡) will guide the
agent to explore the uncertain state-action pairs and obtain sufficient coverage for the entire space.

The agent then adds new data triples {s(n)
h

, a(n)
h

, s(n)
h+1}

H

h=1 to a maintained dataset
D. Let N (n)

h
(sh, ah) =

P
n

m=1 1{s
(n)
h

= sh, a
(n)
h

= ah} and N (n)
h

(sh, ah, sh+1) =
P

n

m=1 1{s
(n)
h

= sh, a
(n)
h

= ah, s
(n)
h+1 = sh+1} be the visitation counters. The agent estimates

P̂ (n)
h

(sh+1|sh, ah) as N
(n)
h

(sh,ah,sh+1)

N
(n)
h

(sh,ah)
if N (n)

h
(sh, ah) > 1 and as 1

S
otherwise.

Approximation error function. Inspired by Ménard et al. (2021), we adopt an uncertainty-driven
virtual reward function b̂(n)

h
(sh, ah) = �0H

N
(n)
h

(sh,ah)
to guide the exploration, where �0 is a fixed

parameter. Let ↵H = 1 + 1/H . Then, the approximation error function is specified as U(n)(⇡) :=
4
q
V̄ ↵H ,⇡

P̂ (n),b̂(n)
. According to Lemma 3, U(n)(⇡) is concave and continuous in ⇡. Besides, as shown

in Lemma 8 in Appendix B, we have |V ⇡

P⇤,u � V ⇡

P̂ ,u
| U(n)(⇡) for any normalized utility u, i.e.,

U(n)(⇡) is a valid upper bound on the estimate error for the corresponding value function. The
required properties of U in Theorem 1 are thus satisfied.

Exploration policy. To guarantee that the exploration is safe, we set ̃ = /2, and construct an
empirical safety set C(n) := C

P̂ (n),U(n)(/2, 0, 0) (Equation (3)). Hence, the algorithm finds a policy
⇡(n) used for the next episode, which is in the safe set C(n) and maximizes the truncated value
function V̄ ↵H ,⇡

P̂ (n),b̂(n)
. The exploration phase stops at episode n✏ when U(n✏)(⇡(n✏)) T. The algorithm

will utilize the model learned in episode n✏ to design an ✏-optimal policy with respect to arbitrary
given reward r⇤ and safety constraint (c⇤, ⌧⇤).

4.2 THEORETICAL ANALYSIS

The theoretical guarantee of Tabular-SWEET is characterized in the theorem below, whose proof can
be found in Appendix B.
Theorem 2 (Sample complexity of Tabular-SWEET). Given ✏, � 2 (0, 1), and safety constraint (c, ⌧),

under Assumption 1, let U = min
n

✏

2 ,
�min

2 , ✏�min
5 , ⌧

4 ,

16

o
, and T = �(c, ⌧)U/2 be the termination

condition of Tabular-SWEET. Then, with probability at least 1 � �, Tabular-SWEET achieves the

learning objective of safe reward-free exploration (Equations (1) and (2)), and the number of

trajectories collected in the exploration phase is at most Õ
⇣

HSA(S+log(1/�))
�(c,⌧)2U2 + HSA(S+log(1/�))

2

⌘
.

We discuss several possible scenarios and the corresponding selections of U as follows.
• Constraint-free RF-RL. For this case �(c, ⌧) = �min = = 1, and c = 0. Thus, U = ⇥(✏) and

the sample complexity is Õ
�
HS2A/✏2

�
, which matches the state of the art (Ménard et al., 2021).

• Constraint-free planning. If only safe exploration is required, we set U = ⇥(min{✏,}), and the
sample complexity scales in Õ

⇣
HS

2
A

�(c,⌧)2 (
1
✏2

+ 1
2)
⌘
. The blow-up factor 1

�(c,⌧)2 depends on the
safety margin, and the impact of baseline policy only appears in the ✏-independent term.

• Constraint mismatch between exploration and planning. For this case, we set U = ⇥(✏�min), and
the sample complexity is at most Õ

⇣
HS

2
A

�(c,⌧)2 (
1

✏2�min2
+ 1

2)
⌘

.

5 THE LOW-RANK-SWEET ALGORITHM

5.1 LOW-RANK MDP

In this section, we present another SWEET variant for low-rank MDPs.
Definition 8 (Low-rank MDP (Jiang et al., 2017; Agarwal et al., 2020; Uehara et al., 2021)). An MDP
M is a low-rank MDP with dimension d 2 N if for each h 2 [H], the transition kernel Ph admits
a d-dimensional decomposition, i.e., there exist two features �h : S ⇥A! Rd and µh : S ! Rd

such that Ph(sh+1|sh, ah) = h�h(sh, ah), µh(sh+1)i, 8sh, sh+1 2 S, ah 2 A. Let � = {�h}h2[H]

and µ = {µ⇤

h
}h2[H] be the features for P . Then, k�⇤

h
(s, a)k2 1, k

R
µ⇤

h
(s)g(s)dsk2

p
d,

8(s, a) 2 S ⇥A, 8g : S ! [0, 1].

7

Published as a conference paper at ICLR 2023

Differently from linear MDPs (Wang et al., 2020; Jin et al., 2020b), low-rank MDP does not assume
that the features � are known a priori. The lack of knowledge on features in fact invokes a nonlinear
structure, which makes it impossible to learn a model in polynomial time if there is no assumption on
features � and µ. We hence adopt the following conventional assumption (Jiang et al., 2017; Agarwal
et al., 2020; Uehara et al., 2021) from the recent studies on low-rank MDPs.
Assumption 2 (Realizability). A learning agent can access a finite model class {(�,)} that contains
the true model, i.e., (�⇤, µ⇤) 2 �⇥ , where h�⇤

h
(sh, ah), µ⇤(sh+1)i = P ⇤

h
(sh+1|sh, ah).

We note that finite model class assumption can be relaxed to the infinite case with bounded statistical
complexity (Sun et al., 2019; Agarwal et al., 2020). Then, we present the following standard oracle
as a computational abstraction, which is commonly adopted in the literature (Agarwal et al., 2020;
Uehara et al., 2021).
Definition 9 (MLE oracle). Given the model class (�,) and a dataset D of (sh, ah, sh+1), the
MLE oracle MLE(D) takes D as the input and returns the following estimators as the output:

(�̂h, µ̂h) = MLE(D) = arg max
�h2�,µh2

X

(sh,ah,sh+1)2D

logh�h(sh, ah), µh(sh+1)i.

5.2 ALGORITHM DESIGN

The instantiated SWEET algorithm, termed as Low-rank-SWEET, can be found in Algorithm 3
in Appendix C. It proceeds as follows. In each iteration n during the exploration phase, the agent
samples H trajectories, indexed by {(n, h)}H

h=1. During the (n, h)-th episode, the agent executes
an (✏0, 2)-greedy version of the reference policy ⇡(n�1), where ✏0 = /6 and the ✏0-greedy action
selection only takes place at time steps h and h� 1. Denote the trajectory collected in episode (n, h)

as {s(n,h)1 , a(n,h)1 , . . . , s(n,h)
H

, a(n,h)
H

}. The agent maintains a dataset Dh for each time step h, which
is updated through D

(n)
h
 D

(n�1)
h

[{s(n,h)
h

, a(n,h)
h

, s(n,h)
h+1 }. Note that both s(n,h)

h
and a(n,h)

h
are

affected by the ✏0-greedy action selection.

Model estimation. Then, the agent obtains the model estimate P̂ (n) through the MLE oracle:

(�̂(n)
h

, µ̂(n)
h

) = MLE(Dh), and P̂ (n)
h

(sh+1|sh, ah) = h�̂
(n)
h

(sh, ah), µ̂
(n)
h

(sh+1)i. (5)

Approximation error function. The algorithm will also use the estimated representation �̂(n)
h

to
update the empirical covariance matrix Û (n) as

Û (n)
h

=
P

n

m=1 �̂
(n)
h

(s(m,h+1)
h

, a(m,h+1)
h

)(�̂(n)
h

(s(m,h+1)
h

, a(m,h+1)
h

))> + �nI. (6)

It is worth noting that only a(m,h+1)
h

is affected by the ✏0-greedy action selection, which is different
from the dataset augmentation step. Next, the agent uses both �̂(n)

h
and Û (n) to derive an exploration-

driven virtual reward function as b̂(n)
h

(s, a) = ↵̂k�̂(n)
h

(s, a)k
(Û(n)

h
)�1 where kxkA :=

p

x>Ax and
↵̂ is a pre-determined parameter. As shown in Lemma 14 in Appendix C, the approximation error
can be bounded by the truncated value function with factor ↵ = 1 up to a constant additive term, i.e.

|V ⇡

P⇤,u � V ⇡

P̂ ,u
| V̄ ⇡

P̂ (n),b̂(n)
+
q
Ã⇣/n := U

(n)
L

(⇡), where “L” stands for “Low-rank”.

Exploration policy. Based on SWEET, we choose ̃ = /3 such that ̃ + ✏0t < . Then, the
algorithm defines the empirical safe policy set as C

(n)
L

:= C
P̂ (n),U

(n)
L

(/3,/6, 2). It then finds a

reference policy ⇡(n) in C
(n)
L

that maximizes U⇡
L
(⇡), which is used for exploration at the next iteration.

5.3 THEORETICAL ANALYSIS

We summarize the results of Low-rank-SWEET in Theorem 3, and defer the proof to Appendix C.
Theorem 3 (Sample complexity of Low-rank-SWEET). Given ✏, � 2 (0, 1), and safety constraint

(c, ⌧), let U = min
n

✏

2 ,
�min

2 , ✏�min
5 , ⌧

6 ,

24

o
, and T = �(c, ⌧)U/3 be the termination condition of

Low-rank-SWEET. Then, under Assumption 1,2, with probability at least 1� �, Low-rank-SWEET

achieves the learning objective of safe reward-free exploration (Equations (1) and (2)) and the number

of trajectories collected in the exploration phase is at most Õ
⇣

H
3
d
4
A

2 log(1/�)
2�(c,⌧)2U2 + H

3
d
4
A

2 log(1/�)
4

⌘
.

8

Published as a conference paper at ICLR 2023

Remark 1. For the constraint-free scenario, we set �(c, ⌧) = �min = = 1, U = ⇥(✏), and c to be
zero. Then, the sample complexity scales as Õ

�
H3d4A2/✏2

�
, which outperforms the best known

sample complexity of RF-RL (Agarwal et al., 2020; Modi et al., 2021) and even reward-known RL
with computational feasibility (Uehara et al., 2021), all for low-rank MDPs.

6 RELATED WORKS

Reward-free reinforcement learning. Reward-free exploration is formally introduced by Jin
et al. (2020a) for tabular MDP, where an algorithm called RF-RL-Explore is proposed, which
achieves Õ

�
H3S2A/✏2

�
sample complexity1. The result is then improved to Õ

�
H2S2A/✏2

�
by

Kaufmann et al. (2021). By leveraging an empirical Bernstein inequality, RF-Express (Ménard
et al., 2021) achieves Õ

�
HS2A/✏2

�
sample complexity, which matches the minimax lower bound

in H (Domingues et al., 2020). Zhang et al. (2020) considers the stationary case, and achieves
Õ
�
S2A/✏2

�
sample complexity, which is nearly minimax optimal. When structured MDPs are

considered, Wang et al. (2020) studies linear MDPs and obtains Õ
�
d3H4/✏2

�
sample complexity,

where d is the dimension of feature vectors. Zhang et al. (2021) investigates linear mixture MDPs
and achieves Õ

�
H3d2/✏2

�
sample complexity. Zanette et al. (2020b) considers a class of MDPs

with low inherent Bellman error introduced by Zanette et al. (2020a). Agarwal et al. (2020) studies
low-rank MDPs and proposes FLAMBE, whose learning objective can be translated to a reward-free
learning goal with sample complexity Õ

�
H22d7A9/✏10

�
. Subsequently, Modi et al. (2021) proposes

a model-free algorithm MOFFLE for low-nonnegative-rank MDPs, for which the sample complexity
scales as Õ(H

5
A

5
d
3
LV

✏2⌘
), where dLV denotes the non-negative rank of the transition kernel. Recently,

Chen et al. (2022) studies RF-RL with more general function approximation, but their result scales in
Õ(H6d3A/✏2) when specializes to low-rank MDPs, and cannot recover our upper bound.

Safe reinforcement learning. Safe RL is often cast in the Constrained MDP (CMDP) framework (Alt-
man, 1999) under which the learning agent must satisfy a set of constraints (Efroni et al., 2020;
Turchetta et al., 2020; Zheng & Ratliff, 2020; Qiu et al., 2020; Ding et al., 2020; Kalagarla et al., 2020;
Liu et al., 2021; Wei et al., 2022; Ghosh et al., 2022). However, most of the constraints considered
in the existing works require the cumulative expected cost over a horizon falling below a certain
threshold, which is less stringent than the episodic-wise constraint imposed in this work. Other forms
of constraints such as minimizing the variance (Tamar et al., 2012) or more generally maximizing
some utility function (Ding et al., 2021), have also been investigated. Amani et al. (2021) studies safe
RL with linear function approximation, where the constraint is defined using an (unknown) linear cost
function of each state and action pair. In particular, Miryoosefi & Jin (2021) utilizes a reward-free
oracle to solve CMDP which, however, does not have any safety guarantee for the exploration phase.

By assuming availability of a safe baseline policy, Zheng & Ratliff (2020) considers a known MDP
with unknown rewards and cost functions and presents C-UCRL that achieves regret Õ(N3/4) and
zero constraint violation, where N is the number of episodes. Liu et al. (2021) improves the result
by proposing OptPess-LP, and achieves a regret of Õ

⇣
H2
p

S3AN/
⌘

, where is the cost value
gap between the baseline policy and the constraint boundary. Safe baseline policy has been widely
utilized in conservative RL as well, which is a special case of safe RL, as the constraint is defined in
terms of the total expected reward being above a threshold (Garcelon et al., 2020; Yang et al., 2021).

7 CONCLUSION

We proposed a novel safe RF-RL framework where safety constraints are imposed during the
exploration and planning phases of RF-RL. A unified algorithmic framework called SWEET was
developed, which leverages an existing baseline policy to guide safe exploration. Leveraging a
concave approximation error function, SWEET can achieve zero constraint violation in exploration
and provably produce a near-optimal safe policy for any given reward function and safety constraint
he feasible assumption in planning. We also instantiated SWEET to both tabular and low-rank MDPs,
resulting in Tabular-SWEET and Low-rank-SWEET. The sample complexities of both algorithms
match or outperform the state of the art in their constraint-free counterparts, proving that the safety
constraint does not fundamentally impact the sample complexity of RF-RL.

1The bound is adapted from the original result by normalizing the reward function.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

The work of R.Huang and J. Yang was supported by the U.S. National Science Foundation under
the grant CNS-2003131. The work of Y. Liang was supported in part by the U.S. National Science
Foundation under the grant RINGS-2148253.

REFERENCES

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. FLAMBE: Structural com-
plexity and representation learning of low rank MDPs. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 20095–20107. Curran Associates, Inc., 2020.

E. Altman. Constrained Markov Decision Processes. Chapman and Hall, 1999.

Sanae Amani, Christos Thrampoulidis, and Lin Yang. Safe reinforcement learning with linear
function approximation. In International Conference on Machine Learning, pp. 243–253. PMLR,
2021.

Jinglin Chen, Aditya Modi, Akshay Krishnamurthy, Nan Jiang, and Alekh Agarwal. On the statistical
efficiency of reward-free exploration in non-linear rl. arXiv preprint arXiv:2206.10770, 2022.

Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo Jovanovic. Natural policy gradient
primal-dual method for constrained Markov decision processes. Advances in Neural Information

Processing Systems, 33, 2020.

Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic. Provably
efficient safe exploration via primal-dual policy optimization. In International Conference on

Artificial Intelligence and Statistics, pp. 3304–3312. PMLR, 2021.

Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic rein-
forcement learning in finite mdps: Minimax lower bounds revisited, 2020.

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained MDPs.
arXiv preprint arXiv:2003.02189, 2020.

Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, and Matteo Pirotta. Conservative
exploration in reinforcement learning. In Proceedings of the Twenty Third International Conference

on Artificial Intelligence and Statistics, pp. 1431–1441, 26–28 Aug 2020.

Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Provably efficient model-free constrained rl with linear
function approximation. arXiv preprint arXiv:2206.11889, 2022.

Jiafan He, Dongruo Zhou, and Quanquan Gu. Logarithmic regret for reinforcement learning with
linear function approximation. In International Conference on Machine Learning, pp. 4171–4180.
PMLR, 2021.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contex-
tual decision processes with low bellman rank are pac-learnable. In International Conference on

Machine Learning, pp. 1704–1713. PMLR, 2017.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration
for reinforcement learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th

International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning

Research, pp. 4870–4879. PMLR, 13–18 Jul 2020a. URL https://proceedings.mlr.
press/v119/jin20d.html.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pp. 2137–2143.
PMLR, 2020b.

Krishna C Kalagarla, Rahul Jain, and Pierluigi Nuzzo. A sample-efficient algorithm for episodic
finite-horizon MDP with constraints. arXiv preprint arXiv:2009.11348, 2020.

10

https://proceedings.mlr.press/v119/jin20d.html
https://proceedings.mlr.press/v119/jin20d.html

Published as a conference paper at ICLR 2023

Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent,
and Michal Valko. Adaptive reward-free exploration. In Algorithmic Learning Theory, pp. 865–891.
PMLR, 2021.

Tao Liu, Ruida Zhou, Dileep Kalathil, Panganamala Kumar, and Chao Tian. Learning policies
with zero or bounded constraint violation for constrained mdps. Advances in Neural Information

Processing Systems, 34, 2021.

Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard Leurent,
and Michal Valko. Fast active learning for pure exploration in reinforcement learning. In Interna-

tional Conference on Machine Learning, pp. 7599–7608. PMLR, 2021.

Sobhan Miryoosefi and Chi Jin. A simple reward-free approach to constrained reinforcement learning,
2021.

Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan Jiang, and Alekh Agarwal. Model-free
representation learning and exploration in low-rank mdps. arXiv preprint arXiv:2102.07035, 2021.

Shuang Qiu, Xiaohan Wei, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. Upper confidence primal-
dual optimization: Stochastically constrained Markov decision processes with adversarial losses
and unknown transitions. arXiv preprint arXiv:2003.00660, 2020.

Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based
rl in contextual decision processes: Pac bounds and exponential improvements over model-free
approaches. In Conference on learning theory, pp. 2898–2933. PMLR, 2019.

Aviv Tamar, Dotan Di Castro, and Shie Mannor. Policy gradients with variance related risk criteria. In
Proceedings of the 29th International Conference on Machine Learning, ICML’12, pp. 1651–1658,
Madison, WI, USA, 2012. Omnipress. ISBN 9781450312851.

Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agarwal. Safe rein-
forcement learning via curriculum induction. arXiv preprint arXiv:2006.12136, 2020.

Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and offline RL
in low-rank MDPs. arXiv preprint arXiv:2110.04652, 2021.

Ruosong Wang, Simon S Du, Lin F Yang, and Ruslan Salakhutdinov. On reward-free reinforcement
learning with linear function approximation. arXiv preprint arXiv:2006.11274, 2020.

Honghao Wei, Xin Liu, and Lei Ying. Triple-q: A model-free algorithm for constrained reinforcement
learning with sublinear regret and zero constraint violation. In International Conference on

Artificial Intelligence and Statistics, pp. 3274–3307. PMLR, 2022.

Yunchang Yang, Tianhao Wu, Han Zhong, Evrard Garcelon, Matteo Pirotta, Alessandro Lazaric,
Liwei Wang, and Simon S Du. A unified framework for conservative exploration. arXiv preprint

arXiv:2106.11692, 2021.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near
optimal policies with low inherent bellman error. In International Conference on Machine Learning,
pp. 10978–10989. PMLR, 2020a.

Andrea Zanette, Alessandro Lazaric, Mykel J Kochenderfer, and Emma Brunskill. Provably efficient
reward-agnostic navigation with linear value iteration. arXiv preprint arXiv:2008.07737, 2020b.

Weitong Zhang, Dongruo Zhou, and Quanquan Gu. Reward-free model-based reinforcement learning
with linear function approximation. Advances in Neural Information Processing Systems, 34, 2021.

Zihan Zhang, Simon S Du, and Xiangyang Ji. Nearly minimax optimal reward-free reinforcement
learning. arXiv preprint arXiv:2010.05901, 2020.

Liyuan Zheng and Lillian J Ratliff. Constrained upper confidence reinforcement learning. arXiv

preprint arXiv:2001.09377, 2020.

11

Published as a conference paper at ICLR 2023

Supplementary Material

A ANALYSIS OF THE SWEET FRAMEWORK AND THE TRUNCATED VALUE
FUNCTION

In this section, we first prove two supporting lemmas in Appendix A.1, which are useful for the proof
of Theorem 1. Then, we provide the proof for Theorem 1 in Appendix A.2 and the proof for an
important concavity property of the truncated value function in Appendix A.3, which are essential for
instantiating Theorem 1 for Tabular-SWEET and Low-rank-SWEET.

A.1 SUPPORTING LEMMAS

We first show that the value function under an (✏0, t)-greedy policy deviates from that under the
original policy by at most ✏0t.
Lemma 1. Let ⇡0

be an (✏0, t)-greedy version of policy ⇡. Then, for an MDP with transition kernel

P and normalized utility function u, we must have
���V ⇡

0

P,u
� V ⇡

P,u

��� ✏0t.

Proof. First, we prove the statement for the case when t = 1.

Assume policy ⇡0 deviates from policy ⇡ at step h, and denote ⇢⇡
h
(sh) as the marginal distribution

induced by ⇡ under the transition kernel P . Let ⇡U = (⇡1, · · · ,⇡h�1,U ,⇡h+1, · · · ,⇡H), where U

is the uniform policy over the action space, i.e., U(ah|sh) = 1/|A|.

Consider the equivalent Markov policy of ✏0⇡U
� (1� ✏0)⇡, denoted by ⇡✏0 . By Lemma 16, we have

⇡0

h
(ah|sh) =

✏0
|A|

+ (1� ✏0)⇡(ah|sh)

=
✏0⇢⇡

U

h
(sh)⇡U

h
(ah|sh) + (1� ✏0)⇢⇡h(sh)⇡(ah|sh)

✏0⇢⇡
U

h
(sh) + (1� ✏0)⇢⇡h(sh)

= ⇡✏0
h
(ah|sh),

where the second equality follows from the fact that ⇢⇡
U

h
(sh) = ⇢⇡

h
(sh), since the first h� 1 policies

of ⇡ and ⇡U are the same.

For any h0
� h+ 1, we have

⇡✏0
h0 (ah0 |sh0) =

✏0⇢⇡
U

h0 (sh0)⇡h0(ah0 |sh0) + (1� ✏0)⇢⇡h0(sh0)⇡h0(ah0 |sh0)

✏0⇢⇡
U

h0 (sh0) + (1� ✏0)⇢⇡h0(sh0)

= ⇡h0(ah0 |sh0)

= ⇡0

h0(ah0 |sh0),

where the last equality is due to the definition of ⇡0. Therefore, ⇡0 = ⇡✏0 , which further yields that

V ⇡
0

P,u
= V ✏0⇡

U
�(1�✏0)⇡

P,u
= ✏0V

⇡
U

P,u
+ (1� ✏0)V

⇡

P,u
.

Since the value function is upper bounded by 1 with normalized utility function u, we immediately
obtain that ���V ⇡

0

P,u
� V ⇡

P,u

��� ✏0.

For the general case where ⇡0 differs from ⇡ at steps in H ⇢ [H] with |H| = t H , consider a
sequence of subsets {Hi}

t

i=1 such that Hi ⇢ Hi+1, |Hi+1| � |Hi| = 1, and Ht = H. Then, we
can define a sequence of policies {⇡i

}
t

i=1, such that ⇡t is the (✏0, i)-greedy policy of ⇡ that deviates
from ⇡ at steps in Hi. Then, by the definition of (✏0, t)-greedy policy in Definition 3, ⇡i+1 is an
(✏0, 1)-greedy version of policy ⇡i. Thus, by induction, we conclude that

���V ⇡
0

P,u
� V ⇡

P,u

���
tX

i=1

���V ⇡
i

P,u
� V ⇡

i�1

P,u

��� ✏0t,

12

Published as a conference paper at ICLR 2023

where we denote ⇡0 as ⇡t and ⇡ as ⇡0.

The following lemma is critical for handling constraint mismatch not only between the exploration
phase and the planning phase, but also between the constraint adopted for the construction of the
empirical safe policy set used in exploration and the true constraint V ⇡

P⇤,c ⌧ .

Lemma 2. Consider a set X in which the convex combination is defined through �x� (1��)y 2 X ,

where x, y 2 X and � 2 [0, 1]. Let f, g : X ! [0, 1] be two functions on X such that f is

concave and g is convex, i.e. f(�x� (1� �)y) � �f(x) + (1� �)f(y) and g(�x� (1� �)y)
�g(x) + (1� �)g(y). We further assume that both f, g are continuous w.r.t. � 2 [0, 1]. Define an

optimization problem (P) as follows:

(P) max
x

f(x) s.t. g(x) + f(x) ⌧̃ , ⌧̃ 2 (0, 1].

Assume there exists a strictly feasible solution x0 2 X such that g(x0) + f(x0) ⌧̃ � ̃ where

̃ 2 (0, ⌧̃), and denote x⇤
as an optimal solution to (P).

If the optimal value of (P) is strictly less than ̃, i.e. f(x⇤) < ̃, then

max
x2X

f(x) 2f(x⇤)/̃.

Proof. Let x1 = argmaxx2X f(x), and x� = �x1 � (1� �)x0 2 X , which is the convex combina-
tion of x0 and x1.

If x1 satisfies the constraint in (P), the result is trivial. Therefore, it suffices to consider the case when
g(x1) + f(x1) > ⌧̃ .

We first show that g(x1) � g(x0) through contradiction.

Assume g(x1) < g(x0). Then, we have

f(x1) > ⌧̃ � g(x1)

= ⌧̃ � ̃� g(x1) + ̃

(i)
� g(x0) + f(x0)� g(x1) + ̃

(ii)
> ̃,

where (i) follows because x0 is a strictly feasible solution, and (ii) follows from the assumption that
f(x0) 2 [0, 1] and g(x0) > g(x1). Note that f(x0) < ̃, and f(x�) is a continuous function with
respect to � 2 [0, 1]. Thus, we can choose �1 2 (0, 1) such that

f(x�1) = ̃ 2 [f(x0), f(x1)]. (7)

In addition, by the convexity of g and the assumption that g(x1) < g(x0), we have

g(x�1) �1g(x1) + (1� �1)g(x0) < g(x0). (8)

Combining Equations (7) and (8), we have

f(x�1) + g(x�1) g(x0) + ̃

 g(x0) + f(x0) + ̃

 ⌧̃ ,

which implies that x�1 is a feasible solution of the optimization problem (P).

Thus, by the optimality of x⇤, we have ̃ > f(x⇤) � f(x�1) = ̃, which is a contradiction. Therefore,
g(x0) g(x1).

Then, let �0 be the solution to the following equation.

�0
�
g(x1) + f(x1)

�
+ (1� �0)

�
g(x0) + f(x0)

�
= ⌧̃ . (9)

Since g(x0) + f(x0) ⌧̃ � ̃ and f, g 2 [0, 1], we have:

⌧̃ 2�0 + ⌧̃ � ̃,

13

Published as a conference paper at ICLR 2023

which implies �0 � ̃/2.

Since f is concave and continuous w.r.t �, there exists �⇤
 �0 such that

f(x�⇤) = �0f(x1) + (1� �0)f(x0). (10)

On the other hand, due to the convexity of g, we have
g(x�⇤) �⇤g(x1) + (1� �⇤)g(x0)

(i)
 �0g(x1) + (1� �0)g(x0), (11)

where (i) follows from the fact that �⇤
 �0 and g(x1) > g(x0).

Combining Equations (10) and (11), we have
g(x�⇤) + f(x�⇤) �0g(x1) + (1� �0)g(x0) + �0f(x1) + (1� �0)f(x0) = ⌧̃ ,

which indicates that x�⇤ is a feasible solution of the optimization problem (P). Thus, by the optimality
of x⇤, Equation (10), and �0 � ̃/2, we conclude that

max
x2X

f(x) =
�0f(x1)

�0

�0f(x1) + (1� �0)f(x0)

�0

=
f(x�⇤)

�0
 2f(x⇤)/̃.

A.2 PROOF OF THEOREM 1

We first formally restate Theorem 1 below and then provide the proof for this theorem.
Theorem 4 (Restatement of Theorem 1). Given an MDP M

⇤
and model estimate P̂ , assume U(P̂ ,⇡)

is concave and continuous over the Markov policy space X and

��V ⇡

P⇤,u � V ⇡

P̂ ,u

�� U(P̂ ,⇡) for

any normalized utility u and policy ⇡. Let ✏0, t and ̃ be constants that satisfy ✏0t + ̃ < . Let

U = min
n

✏

2 ,
�min

2 , ✏�min
5 , ⌧�✏0t

4 , ̃(�(c,⌧)�✏0t�̃)
4(�(c,⌧)�✏0t)

o
, and T (�(c, ⌧)�✏0t)U/2 be the termination

condition of SWEET. If SWEET terminates in finite episodes, then, the following statements hold:

(i) The exploration phase is safe (See Equation (1)).

(ii) The output ⇡̄ of SWEET in the planning phase is an ✏-optimal (c⇤, ⌧⇤)-safe policy (See Equa-

tion (2)).

Proof. The proof consists of three steps: Step 1 shows that the exploration phase of SWEET is safe;
Step 2 shows that SWEET can find an ✏-optimal policy in the planning phase for any given reward
and without the constraint requirement; and Step 3 shows that SWEET can find an ✏-optimal policy
in the planning phase for any given reward and under any constraint (c⇤, ⌧⇤) requirement. We next
provide details for each step.

Step 1. This step shows that the exploration phase of SWEET is safe.

Note that the exploration policy, denoted by ⇡b, is an (✏0, t)-greedy version of the reference policy
⇡r, where ⇡r is a solution to the following optimization problem:

max
⇡2C

P̂ ,U(̃,✏0,t)
U(P̂ ,⇡),

where

C
P̂ ,U(̃, ✏0, t) =

8
><

>:

{⇡0
}, if V ⇡

0

P̂ ,c
+ U(P̂ ,⇡0) � ⌧ � ✏0t� ̃,

n
⇡ : V ⇡

P̂ ,c
+ U(P̂ ,⇡) ⌧ � ✏0t

o
, otherwise.

14

Published as a conference paper at ICLR 2023

If ⇡r = ⇡0, then by Lemma 1, we have

V ⇡b

P⇤,c V ⇡
0

P⇤,c + ✏0t ⌧ � + ✏0t < ⌧,

where the last inequality is due the condition ✏0t+ ̃ < .

If ⇡r 6= ⇡0, then V ⇡r

P̂ ,c
+ U(P̂ ,⇡r) ⌧ � ✏0t. By Lemma 1, we have

V ⇡b

P⇤,c V ⇡r

P⇤,c + ✏0t

(i)
 V ⇡r

P̂ ,c
+ U(P̂ ,⇡r) + ✏0t

 ⌧ � ✏0t+ ✏0t = ⌧,

where (i) follows from the definition of U(P̂ ,⇡). Therefore, the exploration phase is safe.

Step 2: This step shows that SWEET can find an ✏-optimal policy in the planning phase for any given
reward r⇤ in the constraint-free setting (⌧⇤ =1), i.e., the planning phase does not have a constraint
requirement.

Consider the Markov policy space X with the convex combination defined by the mixture policy
�⇡ � (1� �)⇡0, and g(⇡) = V ⇡

P̂ ,c
.

Let ⇡r be the reference policy when the termination condition is satisfied. Then, by the property of
U(P̂ ,⇡) and the termination condition in SWEET, the following statements hold:

• g(⇡) is convex (linear) and U(⇡) is concave on X . Moreover, they are both continuous.

• The baseline policy ⇡0
2 X and g(⇡0) + U(P̂ ,⇡0) ⌧ � ✏0t� ̃.

• ⇡r = argmax⇡ U(P̂ ,⇡) s.t. g(⇡) + U(P̂ ,⇡) ⌧ � ✏0t. Moreover, U(P̂ ,⇡r) T < ̃.

Applying Lemma 2 with the baseline policy ⇡0, we have

max
⇡

U(⇡)
2

̃
U(⇡r)

2T

̃
:= x1. (12)

Let ⇡min = argmin⇡ V ⇡

P⇤,c. By the definition of U and Assumption 1, we have

g(⇡min) + U(⇡min) V ⇡
min

P⇤,c + 2U(⇡min)

 V ⇡
min

P⇤,c +
4T

̃

= ⌧ � ✏0t�

✓
⌧ � ✏0t� V ⇡

min

P⇤,c �
4T

̃

◆
. (13)

We again apply Lemma 2 with the feasible solution fixed as policy ⇡min to conclude that

max
⇡

U(⇡)
(i)

2T

⌧ � ✏0t� V ⇡min

P⇤,c � 4T/̃

(ii)
=

2T

�(c, ⌧)� ✏0t� 4T/̃
:= x2,

where (i) follows from Equation (13), and (ii) follows from the definition of �(c, ⌧).

Continuing this process, we get a sequence {xn} with recursive formula

xn+1 = 2T/(�(c, ⌧)� ✏0t� 2xn),

and
max
⇡

U(⇡) inf{xn}
1

n=1.

Denote �(c, ⌧)� ✏0t by �̃c. Then, T �̃cU/2 < ̃(�̃c�̃)
4 , which implies that

�����
�̃c

2
� x1

�����

s
�̃2

c

4
� 4T2.

15

Published as a conference paper at ICLR 2023

Then, based on Lemma 20, {xn} converges to

�̃c �

q
�̃2

c
� 16T

4
.

Therefore, we conclude that

max
⇡

U(⇡)
�̃c �

q
�̃2

c
� 16T

4
=

U�̃c

�̃c +
q
�̃2

c
� 16T

 U. (14)

Let ⇡̃ = argmax⇡ V ⇡

P⇤,r⇤ . By the definition of U(⇡), we can compute the suboptimality gap of ⇡̄ as
follows.

V ⇡̃

P⇤,r⇤ � V ⇡̄

P⇤,r⇤ = V ⇡̃

P⇤,r⇤ � V ⇡̃

P̂ ✏,r⇤
+ V ⇡̃

P̂ ✏,r⇤
� V ⇡̄

P̂ ✏,r⇤
+ V ⇡̄

P̂ ✏,r⇤
� V ⇡̄

P⇤,r

(i)
 U(⇡̃) + U(⇡̄)

 2max
⇡

U(⇡)

 2U ✏,

where (i) follows from the optimality of ⇡̄, i.e. V ⇡̃

P̂ ✏,r
 V ⇡̄

P̂ ✏,r
.

Step 3: This step shows that SWEET can find an ✏-optimal policy in the planning phase for any given
reward r⇤ and under any constraint (c⇤, ⌧⇤).

Let g0(⇡) = V ⇡

P̂ ,c⇤
. Recall that

⇡⇤ = argmax
⇡

V ⇡

P⇤,r⇤ s.t. V ⇡

P⇤,c⇤ ⌧⇤,

⇡̄ = argmax
⇡

V ⇡

P̂ ✏,r⇤
s.t. g0(⇡) + U(⇡) ⌧⇤.

If g0(⇡⇤) + U(⇡⇤) ⌧⇤, by the optimality of ⇡̄, we immediately have

V ⇡̄

P̂ ✏,r⇤
� V ⇡

⇤

P̂ ✏,r⇤
.

If g0(⇡⇤) + U(⇡⇤) > ⌧⇤, then by the definition of U and Equation (14), we have

⌧⇤ < g0(⇡
⇤) + U(⇡⇤) V ⇡

P⇤,c⇤ + 2U(⇡⇤) ⌧⇤ + 2U. (15)

Let ⇡ = argmin⇡ V ⇡

P⇤,c⇤ . By Equation (14), we have

g0(⇡) + U(⇡) V ⇡

P⇤,c⇤ + 2U(⇡) V ⇡

P⇤,c⇤ + 2U < ⌧⇤. (16)

Let ⇡� be the Markov policy equivalent to the mixture policy �⇡⇤
� (1� �)⇡ under the estimated

model P̂ . Let �c⇤ = �(c⇤, ⌧⇤) = ⌧⇤ � V ⇡

P⇤,c⇤ and � = (�c⇤ � 3U)/�c⇤ . By the linearity of g0
and Equation (14), we have

g0(⇡
�) + U(⇡�)

 �g0(⇡
⇤) + (1� �)g0(⇡) + U

(i)
 �(⌧⇤ + 2U) + (1� �)(V ⇡

P⇤,c⇤ + 2U) + U

= ��c⇤ + 3U+ V ⇡

P⇤,c⇤

= �c⇤ + V ⇡

P⇤,c⇤ = ⌧⇤,

where (i) follows from Equations (15) and (16). This implies that ⇡� is a feasible solution of the
optimization problem solved in the planning phase. By the optimality of ⇡̄ and the linearity of V ⇡

P̂ ,r⇤
,

we have

V ⇡̄

P̂ ,r⇤
� V ⇡

�

P̂ ,r⇤

16

Published as a conference paper at ICLR 2023

� �V ⇡
⇤

P̂ ,r⇤

(i)
= V ⇡

⇤

P̂ ,r⇤
�

3U

�c⇤
V ⇡

⇤

P̂ ,r⇤

� V ⇡
⇤

P̂ ,r⇤
�

3U

�min
, (17)

where (i) follows because � = (�c⇤ � 3U)/�c⇤ , and the last inequality follows from the normaliza-
tion condition and Assumption 1.

Recall U �min✏

5 . Therefore, the suboptimality gap under ⇡̄ can be computed as follows.

V ⇡
⇤

P⇤,r⇤ � V ⇡̄

P⇤,r⇤ V ⇡
⇤

P̂ ✏,r⇤
+ U(⇡⇤)� V ⇡̄

P̂ ✏,r⇤
+ U(⇡̄)

(i)

3U

�min
+ 2U

 ✏,

where (i) follows from Equation (17).

A.3 PROOF OF CONCAVITY OF THE TRUNCATED VALUE FUNCTION

In this subsection, we show that the truncated value function defined in Equation (4) is concave and
continuous on the Markov policy space X . These are crucial properties to be used for instantiating
our theorem to Tabular-SWEET and Low-rank-SWEET.
Lemma 3 (Concavity of the truncated value function). Let ⇡�

be the equivalent markov policy of

�⇡ � (1� �)⇡0
under a transition model P . Then,

V̄ ⇡
�

P,u
� �V̄ ⇡

P,u
+ (1� �)V̄ ⇡

0

P,u
.

In addition, V̄ ⇡
�

P,u
is continuous w.r.t. � 2 [0, 1]. Moreover, if the utility function u satisfies the

normalization condition, then the equality holds, i.e.,

V̄ ⇡
�

P,u
= �V̄ ⇡

P,u
+ (1� �)V̄ ⇡

0

P,u
.

Proof. Recall that the truncated value function is defined recursively as follows:
8
>><

>>:

Q̄⇡

h,P̂ (n),u
(sh, ah) = u(s, a) + ↵P̂ (n)

h
V̄ ⇡

h+1,P̂ (n),u
(sh, ah)

V̄ ⇡

h,P̂ (n),u
= min

⇢
1,E

⇡

h
Q̄⇡

h,P̂ (n),u
(s, a)

i�
,

with V ↵,⇡

H+1,P,u
(sH+1) = 0.

The continuity of the truncated value function is straightforward, since it is a composition of H
continuous functions. Therefore, we focus on the concavity part in the following analysis.

By Lemma 16, the following equality holds for any utility function u and time step h.

EP,⇡�

⇥
uh(sh, ah)

⇤
= �EP,⇡

⇥
uh(sh, ah)

⇤
+ (1� �)EP,⇡0

⇥
uh(sh, ah)

⇤
. (18)

We then prove the claim by induction.

First, we note that when h = H + 1,

� E
P,⇡

h
V̄ ⇡

H+1,P,u
(sH+1)

i
+ (1� �) E

P,⇡0

h
V̄ ⇡

0

H+1,P,u
(sH+1)

i

= 0 min

(
1, E

P,⇡�

h
Q̄⇡

�

H+1,P,u
(sH+1, aH+1)

i)
.

17

Published as a conference paper at ICLR 2023

Assume it holds for step h+ 1, i.e.,

� E
P,⇡

h
V̄ ⇡

h+1,P,u
(sh+1)

i
+ (1� �) E

P,⇡0

h
V̄ ⇡

0

h+1,P,u
(sh+1)

i

 min

(
1, E

P,⇡�

h
Q̄⇡

�

h+1,P,u
(sh+1, ah+1)

i)
.

Then, for step h, by Jensen’s inequality, we have

� E
P,⇡

h
V̄ ⇡

h,P,u
(sh)

i
+ (1� �) E

P,⇡0

h
V̄ ⇡

0

h,P,u
(sh)

i

 min

(
1, � E

P,⇡

h
Q̄⇡

h,P,u
(sh, ah)

i
+ (1� �) E

P,⇡0

h
Q̄⇡

0

h,P,u
(sh, ah)

i)

= min

(
1, � E

P,⇡

⇥
u(sh, ah)

⇤
+ (1� �) E

P,⇡0

⇥
u(sh, ah)

⇤

+↵� E
P,⇡

h
V̄ ⇡

h+1,P,u
(sh+1)

i
+ (1� �)↵ E

P,⇡0

h
V̄ ⇡

0

h+1,P,u
(sh+1)

i)

(i)
 min

(
1, E

P,⇡�

⇥
u(sh, ah)

⇤
+ ↵ E

P,⇡�

h
Q̄⇡

�

h+1,P,u
(sh+1, ah+1)

i)

= min

(
1, E

P,⇡�

h
Q̄⇡

�

h,P,u
(sh, ah)

i)
,

where (i) follows from Equation (18) and the induction hypothesis.

Therefore, at step h = 1, we have

�V̄ ⇡

P,u
+ (1� �)V̄ ⇡

0

P,u
 min

⇢
1, E

⇡�

h
Q̄⇡

�

P,u
(s1, a1)

i�
= V̄ ⇡

�

P,u
.

If u satisfies the normalization condition, then Q⇡

h,P,u
(sh, ah) 1 holds for any ⇡ and h. By

the definition of the truncated value function, we have Q̄⇡

h,P,u
(sh, ah) = Q⇡

h,P,u
(sh, ah) and

V̄ ⇡

h,P,u
(sh) = V ⇡

h,P,u
(sh), which implies that the truncated value function and the true value function

are identical.

By Lemma 16, ⇡� introduces the same marginal probability over any state-action pair as the mixture
policy �⇡ � (1� �)⇡0. Therefore, when u is normalized,

�V̄ ⇡

P,u
+ (1� �)V̄ ⇡

0

P,u
= �V ⇡

P,u
+ (1� �)V ⇡

0

P,u
= V ⇡

�

P,u
= V̄ ⇡

�

P,u
,

which completes the proof.

B ANALYSIS OF TABULAR-SWEET

In this section, we first elaborate the Tabular-SWEET algorithm in Appendix B.1. To provide the
analysis for this algorithm, we first provide several supporting lemmas in Appendix B.2, and then
prove Theorem 2 in Appendix B.3.

B.1 THE TABULAR-SWEET ALGORITHM

We first specify the parameters in Tabular-SWEET. The detail of Tabular-SWEET is shown in
Algorithm 2.

18

Published as a conference paper at ICLR 2023

Let U = min
n

✏

2 ,
�min

2 , ✏�min
5 , ⌧

4 ,

16

o
, and T = �(c, ⌧)U/2 be the termination condition of Tabular-

SWEET. Let the maximum iteration number N be the solution of the following equation:

N =
210e3302�HSA log(N + 1)

�(c, ⌧)2U2
+

215e3�HSA log(N + 1)

2
, (19)

where � = log(2SAH/�) + S log(e(1 +N)).

Recall that the estimated model is computed by

P̂ (n)
h

(sh+1|sh, ah) =

8
<

:

N
(n)
h

(sh,ah,sh+1)

N
(n)
h

(sh,ah)
, if N (n)

h
(sh, ah) > 1,

P̂ (n)
h

(sh+1|sh, ah) =
1
S
, otherwise,

(20)

where N (n)
h

(sh, ah) and N (n)
h

(sh, ah, sh+1) denote the numbers of visits of (sh, ah) and
(sh, ah, sh+1) up to n-th episode, respectively.

Then, the exploration-driven virtual reward is defined as

b̂(n)
h

(sh, ah) =
�0H

N
(n)
h

(sh,ah)
, (21)

where �0 = 8�.

The approximation error bound is a concave function of the truncated value function, defined as
U(n)(⇡) = 4

q
V̄ ⇡

P̂ (n),b̂(n)
.

Since ✏0 = t = 0 and ̃ = /2, the safety set C(n) is given by

C
P̂ ,U(̃, ✏0, t) =

8
><

>:

{⇡0
}, if V ⇡

0

P̂ ,c
+ U(n)(⇡0) � ⌧ � /2,

n
⇡ : V ⇡

P̂ ,c
+ U(n)(⇡) ⌧

o
, otherwise.

(22)

Algorithm 2 Tabular-SWEET
1: Input: Baseline policy ⇡0, dataset D = ;, constants ⌧,, ↵H = H+1

H
, T = �(c, ⌧)U/2.

2: // Exploration:
3: for n = 1, . . . , N do
4: Use ⇡(n�1) to collect {s(n)

1 , . . . , a(n)
H

}; D D [{s(n)
h

, a(n)
h

, s(n)
h+1}

H

h=1;
5: Estimate P̂ (n) ; update b̂(n)

h
, U(n)(⇡) and the empirical safe policy set C(n) (Equations (20)

to (22));
6: Solve ⇡(n) = argmax⇡2C(n) U(n)(⇡);
7: if

���C(n)
��� > 1 and U(n)(⇡(n)) T then

8:
⇣
n✏, P̂ ✏, b̂✏

⌘

⇣
n, P̂ (n), b̂(n)

⌘
, break;

9: end if
10: end for
11: // Planning:
12: Receive reward function r⇤ and safety constraint (c⇤, ⌧⇤);
13: Output: ⇡̄ = argmax⇡ V ⇡

P̂ ✏,r⇤
s.t. V ⇡

P̂ ✏,c⇤
+ 4
q
V̄ ↵H ,⇡

P̂ ✏,b̂✏
 ⌧⇤.

B.2 SUPPORTING LEMMAS

First, denote VarPh
V ⇡

h+1,P 0,u(sh, ah) as the variance of value function V ⇡

h+1,P 0,u(sh+1), where sh+1

follows the distribution Ph(·|sh, ah), i.e.,

VarPh
V ⇡

h+1,P 0,u(sh, ah) = EPh

⇣
V ⇡

h+1,P 0,u(sh+1)� PhV
⇡

h+1,P 0,u(sh, ah)
⌘2

|sh, ah

�
. (23)

Then, we have the following lemma.

19

Published as a conference paper at ICLR 2023

Lemma 4 (Lemma 3 in Ménard et al. (2021)). Let ⇢⇡
⇤,h

(sh, ah) be the marginal probability over

state-action pair (sh, ah) induced by policy ⇡ under the true environment P ⇤
. Suppose the utility

function u satisfies the normalization condition. Denote

E0 =

(
8n, h, sh, ah, DKL(P̂

(n)
h

(·|sh, ah)||P
⇤

h
(·|sh, ah))

�

N (n)
h

(sh, ah)

)
,

E1 =

8
<

:8n, h, sh, ah, N
(n)
h

(sh, ah) �
1

2

n�1X

m=0

⇢⇡
(m)

⇤,h
(sh, ah)� �1

9
=

; ,

E2 =

⇢
8n, h, sh, ah,

����
⇣
P̂ (n)
h
� P ⇤

h

⌘
V ⇡

h+1,P⇤,u(sh, ah)

����

vuut2�2VarP⇤
h

�
Vh+1,P⇤,u

�
(sh, ah)

N (n)
h

(sh, ah)
+

3�2

N (n)
h

(sh, ah)

�
,

where � = log(3SAH/�) + S log(8e(1 + N)), �1 = log(3SAH/�), and �2 = log(3SAH/�) +
log(8e(1 +N)). Note that � � �2 � �1. Let E = E0 \ E1 \ E2. Then, we have

P [E] � 1� �.

The following lemma shows the relationship between the visitation counters N (n)
h

(sh, ah) and the
pseudo-counter

P
n�1
m=0 ⇢

⇡
(m)

⇤,h
(sh, ah), where ⇢⇡

⇤,h
(sh, ah) is the marginal distribution on (sh, ah)

induced by policy ⇡ under true model P ⇤.
Lemma 5 (Lemma 7 in Kaufmann et al. (2021), Lemma 8 in Ménard et al. (2021)). On the event E ,

we have

min

�

N (n)
h

(sh, ah)
, 1

!

4�

max
nP

n�1
m=0 ⇢

⇡(m)

⇤,h
(sh, ah), 1

o .

In addition, we generalize Lemma 7 in Ménard et al. (2021) from deterministic policies to randomized
policies. This is important for safe RL, as the optimal policy in constrained RL is possibly randomized.
Lemma 6 (Law of total variance with randomized policy). Given model P , policy ⇡, and normalized

utility function u, define another utility function �h(sh, ah) as

�h(sh, ah) = VarPh
V ⇡

h+1,P,u
(sh, ah).

Then, for any Markov policy ⇡ and h 2 [H], the following bound holds:

E⇡

2

64

0

@Q⇡

h,P,u
(sh, ah)�

X

h0�h

u(sh0 , ah0)

1

A
2 ����sh, ah

3

75 � Q⇡

h,P,�
(sh, ah). (24)

In particular, when h = 1, we have

1 � E⇡

2

64

0

@Q⇡

P,u
(s1, a1)�

X

h�1

u(sh, ah)

1

A
2 ����s1

3

75 � E⇡

h
Q⇡

P,�
(s1, a1)|s1

i

=
X

h�1

X

sh,ah

⇢⇡
h
(sh, ah)�h(sh, ah) =

X

h�1

X

sh,ah

⇢⇡
h
(sh, ah)VarPh

V ⇡

h+1,P,u
(sh, ah),

where ⇢⇡
h
(sh, ah) is the marginal distribution over state-action pair (sh, ah) induced by policy ⇡

under model P .

Proof. First, we note that the statement is trivial for h = H + 1 since all Q-value functions are 0.

20

Published as a conference paper at ICLR 2023

Then, we prove the result through induction. Assume that at time step h+ 1,

E⇡

2

64

0

@Q⇡

h+1,P,u
(sh+1, ah+1)�

X

h0�h+1

u(sh0 , ah0)

1

A
2 ����sh+1, ah+1

3

75 � Q⇡

h+1,P,�
(sh+1, ah+1).

Then, at time step h, the LHS of Equation (24) can be computed as follows.

E⇡

2

64

0

@Q⇡

h,P,u
(sh, ah)�

X

h0�h

u(sh0 , ah0)

1

A
2 ����sh, ah

3

75

= E⇡

2

64

0

@PhV
⇡

h+1(sh, ah)�
X

h0�h+1

u(sh0 , ah0) +Q⇡

h+1,P,u
(sh+1, ah+1)�Q⇡

h+1,P,u
(sh+1, ah+1)

1

A
2 ����sh, ah

3

75

= E⇡

2

64

0

@Q⇡

h+1,P,u
(sh+1, ah+1)�

X

h0�h+1

u(sh0 , ah0)

1

A
2 ����sh, ah

3

75

+ E⇡

"⇣
Q⇡

h+1,P,u
(sh+1, ah+1)� PhV

⇡

h+1(sh, ah)
⌘2 ����sh, ah

#

+ 2E⇡

2

64

0

@Q⇡

h+1,P,u
(sh+1, ah+1)�

X

h0�h+1

u(sh0 , ah0)

1

A
⇣
Q⇡

h+1,P,u
(sh+1, ah+1)� PhV

⇡

h+1(sh, ah)
⌘ ����sh, ah

3

75 .

The term within the expectation in the third term equals 0 if we further condition it on sh+1, ah+1,
indicating that the third term is 0. Therefore, from the assumption, we have

E⇡

2

64

0

@Q⇡

h,P,u
(sh, ah)�

X

h0�h

u(sh0 , ah0)

1

A
2 ����sh, ah

3

75

� E⇡

"
Qh+1,P,�(sh+1, ah+1)

����sh, ah

#

+ E
⇡

2

4 E
ah+1⇠⇡

"⇣
Q⇡

h+1,P,u
(sh+1, ah+1)� PhV

⇡

h+1(sh, ah)
⌘2 ����sh+1

����sh, ah

3

5

(i)
� PhVh+1,P,�(sh, ah) + E⇡

"⇣
V ⇡

h+1,P,u
(sh+1)� PhV

⇡

h+1(sh, ah)
⌘2 ����sh, ah

#

= �h(sh, ah) + PhVh+1,P,�(sh, ah)

= Q⇡

h,P,�
(sh, ah),

where (i) follows from Jensen’s inequality.

Thus, Equation (24) holds for all step h, and the proof is completed.

The following lemma is the key to ensure that Tabular-SWEET satisfies the termination condition.

Lemma 7. On the event E , the summation of V̄ ↵H ,⇡
(n)

P̂n,b̂(n)
over any subset N ⇢ [N] scales in the order

of log |N | , i.e. X

n2N

V̄ ↵H ,⇡
(n)

P̂ (n),b̂(n)
 64e3�HSA log(1 + |N |).

21

Published as a conference paper at ICLR 2023

Proof. First, similar to the truncated value function, we extend the definitions of value function to
incorporate the additional factor ↵H . Specifically, 8h 2 [H],

Q↵H ,⇡

h,P,u
= u(sh, ah) + ↵HPhV

↵H ,⇡

h+1,P,u
,

V ↵H ,⇡

h,P,u
= E⇡

h
Q↵H ,⇡

h,P,u

i
,

and V ↵H ,⇡

H+1,P,u
= 0.

We then examine the difference between the truncated Q-value function defined with respect to model
P̂ (n) and the Q-value function defined with respect to model P ⇤.

Q̄↵H ,⇡

h,P̂ (n),b̂(n)
(sh, ah)�Q↵H ,⇡

h,P⇤,b̂(n)
(sh, ah)

= ↵H P̂ (n)V̄ ↵H ,⇡

h+1,P̂ (n),b̂(n)
(sh, ah)� ↵HP ⇤

h
V ↵H ,⇡

h+1,P⇤,b̂(n)
(sh, ah)

= ↵H

⇣
P̂ (n)
h
� P ⇤

h

⌘
V̄ ↵H ,⇡

h+1,P̂ (n),b̂(n)
(sh, ah) + ↵HP ⇤

h

⇣
V̄ ↵H ,⇡

h+1,P̂ (n),b̂(n)
� V ↵H ,⇡

h+1,P⇤,b̂(n)

⌘
(sh, ah).

By Lemma 10 in Ménard et al. (2021), we bound the first term as follows.
⇣
P̂ (n)
h
� P ⇤

h

⌘
V̄ ↵H ,⇡

h,P̂ (n),b̂(n)
(sh, ah)

 min

8
<

:1,

s
2VarP⇤

h
V̄ ↵H ,⇡

h+1,P̂ (n),b̂(n)
(sh, ah)

�

N (n)
h

(sh, ah)
+

2�

3N (n)
h

(sh, ah)

9
=

;

(i)

VarP⇤
h
V̄ ↵H ,⇡

h+1,P̂ (n),b̂(n)
(sh, ah)

H
+min

(
1,

(2 +H/2)�

3N (n)
h

(sh, ah)

)

(ii)

P ⇤

h
V̄ ↵H ,⇡

h+1,P̂ (n),b̂(n)
(sh, ah)

H
+min

n
b̂(n)
h

(sh, ah)/8, 1
o
,

where (i) follows from
p
2AB A/H +BH/2, and (ii) is due to the truncated value function is at

most 1 and Var(X) E[X] if X 2 [0, 1].

Therefore, by combining the above two inequalities and taking expectation, we have,

V̄ ↵H ,⇡

h,P̂ (n),b̂(n)
(sh) E

⇡

h
Q̄↵H ,⇡

h,P̂ (n),b̂(n)
(sh, ah)|sh

i

 E⇡

"
min

n
b̂(n)
h

(sh, ah), 1
o ����sh

#
+ ↵HE⇡

"
min

n
b̂(n)
h

(sh, ah)/8, 1
o ����sh

#

+ E⇡

"
(↵H +

↵H

H
)P ⇤

h
V̄ ↵H ,⇡

h+1,P̂ (n),b̂(n)
(sh, ah)

����sh

#

 E⇡

"
2min

n
b̂(n)
h

(sh, ah), 1
o
+

✓
1 +

3

H

◆
P ⇤

h
V̄ ↵H ,⇡

h+1,P̂ (n),b̂(n)
(sh, ah)

����sh

#
.

Telescoping the above inequality from h = 1 to H and defining b(n)
h

(sh, ah) =

min
n
b̂(n)
h

(sh, ah), 1
o

, we get

V̄ ↵H ,⇡

P̂ (n),b̂(n)
 V 1+3/H,⇡

P⇤,2b(n) 2e3V ⇡

P⇤,b̂(n) .

Therefore, if ⇢⇡
(n)

⇤,h
(sh, ah) is the marginal distribution over state-action pairs induced by exploration

policy ⇡(n) under the true model P ⇤, we have

X

n2N

V̄ ↵H ,⇡
(n)

P̂ (n),b̂(n)

X

n2N

2e3V ⇡
(n)

P⇤,bn

22

Published as a conference paper at ICLR 2023

 2e3
X

n2N

HX

h=1

E
P⇤,⇡(n)

2

4min

(
8H�

N (n)(sh, ah)
, 1

)3

5

= 2e3
X

n2N

HX

h=1

X

sh,ah

⇢⇡
(n)

⇤,h
(sh, ah)min

(
8H�

N (n)(sh, ah)
, 1

)

(i)
 2e3

HX

h=1

X

sh,ah

X

n2N

⇢⇡
(n)

⇤,h
(sh, ah)

8H�

max
n
1,
P

n�1
m=0 ⇢

⇡m

⇤,h
(sh, ah)

o

 16e3H�
HX

h=1

X

sh,ah

X

n2N

⇢⇡
(n)

⇤,h
(sh, ah)

max
n
1,
P

m2N ,m<n
⇢⇡m

⇤,h
(sh, ah)

o

(ii)
 64e3H�

HX

h=1

X

sh,ah

log

0

@1 +
X

n2N

⇢⇡
(n)

⇤,h
(sh, ah)

1

A

(iii)
 64e3�HSA log(1 + |N |),

where (i) is due to Lemma 5, (ii) follows from Lemma 18, and (iii) follows the fact that
⇢⇡(m)
⇤,h

(sh, ah) 1. Therefore,
X

n2N

V̄ ↵H ,⇡
(n)

P̂ (n),b̂(n)
 64e3�HSA log(1 + |N |).

B.3 PROOF OF THEOREM 2

Theorem 5 (Complete version of Theorem 2). Given ✏, � 2 (0, 1), and safety constraint (c, ⌧), let

U = min
n

✏

2 ,
�min

2 , ✏�min
5 , ⌧

4 ,

16

o
, and T = �(c, ⌧)U/2 be the termination condition of Tabular-

SWEET. Then, with probability at least 1 � �, Tabular-SWEET achieves the learning objective of

safe reward-free exploration (Equations (1) and (2)), and the number of trajectories collected in the

exploration phase is at most

O

✓
�HSA◆

�(c, ⌧)2U2
+

�HSA◆

2

◆
,

where ◆ = log
⇣

�HSA

�(c,⌧)2U2 + �HSA

2

⌘
, and � = log(2SAH/�) + S log(e(1 +N)).

Proof. The proof of Theorem 2 mainly instantiates Theorem 1 by verifying that (a) U(n)(⇡) =

4
q
V̄ ↵H ,⇡

P̂ (n),b̂(n)
is a valid approximation error bound for V ⇡

P̂ (n),u
, and (b) Tabular-SWEET satisfies the

termination condition within N episodes. The proof consists of three steps with the first two steps
verifying the above two conditions and the last step characterizes the sample complexity.

Step 1: This step establishes the following lemma, which shows that U(n)(⇡) = 4
q

V̄ ↵H ,⇡

P̂ (n),b̂(n)
is a

valid approximation error bound.

Lemma 8. With ↵H = 1 + 1/H defined in Tabular-SWEET (Algorithm 2), on the event E , for any

policy ⇡ and any utility normalized function u,

���V ⇡

P̂ (n),u
� V ⇡

P⇤,u

��� 4
q
V̄ ↵H ,⇡

P̂ (n),b̂(n)
.

Proof. Recall that

b̂(n)
h

=
�0H

N (n)
h

(sh, ah)
,

23

Published as a conference paper at ICLR 2023

where �0 = 8�.

Define utility function uv as

uv

h
(sh, ah) =

vuutVar
P̂

(n)
h

V ⇡

h+1,P̂ (n),u
(sh, ah)min

(
8�

N (n)
h

(sh, ah)
,
1

H

)
.

Following Step 1 of Lemma 1 in Ménard et al. (2021), we get
���V ⇡

P̂ (n),u
� V ⇡

P⇤,u

��� V̄ ↵H ,⇡

P̂ (n),uv
+ V̄ ↵H ,⇡

P̂ (n),b̂(n)
. (25)

Next, we aim to show that
V̄ ↵H ,⇡

P̂ (n),uv
 e
q
V̄ ↵H ,⇡

P̂ (n),b̂(n)
. (26)

For that, let ⇢̂⇡(sh, ah) be the marginal distribution over state-action pair (sh, ah) induced by model
P̂ (n) and policy ⇡. Note that the truncated value function is a lower bound of the corresponding value
function. Thus, we can expand V̄ ↵H ,⇡

P̂ (n),uv
as follows:

V̄ ↵H ,⇡

P̂ (n),uv
=

HX

h=1

X

sh,ah

↵h�1
H

⇢̂⇡(sh, ah)u
v

h
(sh, ah)

(i)
 e

HX

h=1

X

sh,ah

⇢̂⇡(sh, ah)

vuutVar
P̂

(n)
h

V ⇡

h+1,P̂ (n),u
(sh, ah)min

(
8�

N (n)
h

(sh, ah)
,
1

H

)

(ii)
 e

vuut
HX

h=1

X

sh,ah

⇢̂⇡(sh, ah)Var
P̂

(n)
h

V ⇡

h+1,P̂ (n),u
(sh, ah)

vuut
HX

h=1

X

sh,ah

⇢̂⇡(sh, ah)min

(
8�

N (n)
h

(sh, ah)
,
1

H

)
,

where (i) follows from the fact that (1 + 1/H)H e and (ii) follows from Cauchy-Schwarz
inequality.

Note that in contrast to the optimistic policy, ⇡ could be a randomized policy in general. By Lemma 6,
we have

HX

h=1

X

sh,ah

⇢̂⇡(sh, ah)Var
P̂

(n)
h

V ⇡

h+1,P̂ (n),u
(sh, ah) 1.

Meanwhile, if we define ub

h
(sh, ah) = min

⇢
8�

N
(n)
h

(sh,ah)
, 1
H

�
, which is obviously a normalized

utility function, then, we have

HX

h=1

X

sh,ah

⇢̂⇡(sh, ah)min

(
8�

N (n)
h

(sh, ah)
,
1

H

)
= V̄ ⇡

P̂ (n),ub
 V̄ ↵H ,⇡

P̂ (n),b̂(n)
,

where the last inequality follows from the facts that ub

h
(sh, ah) b̂(n)

h
(sh, ah) and ↵H > 1. Thus,

we have Equation (26) established.

Combining Equations (25) and (26), we conclude that
���V ⇡

P̂ (n),u
� V ⇡

P⇤,u

��� e
q
V̄ ↵H ,⇡

P̂ (n),b̂(n)
+ V̄ ↵H ,⇡

P̂ (n),b̂(n)

(i)
 (1 + e)

q
V̄ ↵H ,⇡

P̂ (n),b̂(n)
 4
q
V̄ ↵H ,⇡

P̂ (n),b̂(n)
,

where (i) is due to the fact that the truncated value function is at most 1.

Step 2: This step establishes the following lemma, which shows that Tabular-SWEET will terminate
within N episodes.

24

Published as a conference paper at ICLR 2023

Lemma 9. On the event E , there exists n✏ 2 [N] such that

���C(n✏)
��� > 1 and V̄ ↵H ,⇡

(n✏)

P̂ (n✏),b̂(n✏)
 T2/16,

where N is defined in Equation (19), and T is defined in Tabular-SWEET (Algorithm 2).

Proof. Denote N0 = {n 2 [N] : ⇡(n) = ⇡0
}. We first prove N0 is finite. Note that for all n 2 N0,

V ⇡
0

P̂ (n),c
+ 4
q
V̄ ↵H ,⇡0

P̂ (n),b̂(n)
� ⌧ � /2.

By Lemmas 7 and 8, we have

|N0|/2
X

n2N0

V ⇡

0

P̂ (n),c
+ 4

r
V̄ ↵H ,⇡0

P̂ (n),b̂(n)
� V ⇡

0

P⇤,c

!

X

n2N0

8

r
V̄ ↵H ,⇡0

P̂ (n),b̂(n)

 64
p
e3|N0|�HSA log(1 +N),

where the last inequality is due to Cauchy-Schwarz inequality. Therefore, |N0|

214e3�HSA log(N+1)
2 .

Then, we prove Lemma 9 by contradiction. Assume V̄ ⇡
(n)

P̂ (n),b̂(n)
> T2/16, 8n 2 [N]\N0. According

to Lemma 7, we have

(N � |N0|)T
2/16 <

X

n2[N]/N0

V̄ ↵H ,⇡
(n)

P̂ (n),b̂(n)

 64e3�HSA log(N � |N0|+ 1),

which implies that

N <
210e3�HSA log(N + 1)

T2
+

214e3�HSA log(N + 1)

2
.

This contradicts with the condition that N = 210e3�HSA log(N+1)
T2 + 214e3�HSA log(N+1)

2 . Therefore,

by noting that U(n)(⇡) = 4
q
V̄ ↵H ,⇡(n)

P̂ (n),b̂(n)
, there exists n✏ 2 [N] such that the exploration phase under

Tabular-SWEET terminates.

Step 3: This step analyzes the sample complexity as follows.

On the event E , since T = �(c, ⌧)U/2, by Lemma 9, the sample complexity is at most

N =
28e3302�HSA log(N + 1)

�(c, ⌧)2U2
+

215e3�HSA log(N + 1)

2
.

Note that n = c0 log(c1n) implies n 2c0 log(c0c1). Thus,

N = O

✓
�HSA◆

�(c, ⌧)2U2
+

�HSA◆

2

◆
,

where
◆ = log

✓
�HSA

�(c, ⌧)2U2
+

�HSA

2

◆
.

Therefore, Tabular-SWEET terminates in finite episodes.

Besides, U(⇡) = 4
q
V̄ ↵H ,⇡

P̂ ✏,b̂✏
. On the event E , by Lemma 3, Lemma 8 and the concavity of

p
x , U(⇡)

is an approximation error function under P̂ ✏, and is concave and continuous on X .

We further note that /2(�(c,⌧)�/2)
4�(c,⌧) �

16 due to the condition �(c, ⌧) � , which indicates that
T = �(c, ⌧)U/2 satisfies the requirement in Theorem 4.

Therefore, by Theorem 4, we conclude that with probability at least 1� �, the exploration phase of
Tabular-SWEET is safe and ⇡̄ is an ✏-optimal policy subject to the safety constraint (c⇤, ⌧⇤).

25

Published as a conference paper at ICLR 2023

C ANALYSIS OF LOW-RANK-SWEET

In this section, we first elaborate the Low-rank-SWEET algorithm in Appendix C.1. To provide the
analysis for this algorithm, we first provide several supporting lemmas in Appendix C.2, and then
prove Theorem 3 in Appendix C.3.

C.1 THE LOW-RANK-SWEET ALGORITHM

We first specify the parameters adopted in Low-rank-SWEET, which is presented in Algorithm 3.

Let U = min
n

✏

2 ,
�min

2 , ✏�min
5 , ⌧

6 ,

24

o
, and T = �(c, ⌧)U/3 be the termination condition of Low-

rank-SWEET. Recall that we set ✏0 = /6, t = 2, and ̃ = /3.

We define the maximum number of iterations N as

N =
210�3H2d4A2⇣2

2T2
+

212 · 32�3H2d4A2⇣2

4
, (27)

where ⇣ = log
�
2|�|| |NH/�

�
, and �3 is defined in Lemma 10.

Besides, we set Ã = A/✏0 and ↵̂ = 5
q

�3⇣(Ã+ d2).

For ease of exposition, we introduce the following notation for an (✏0, t)-greedy version of policy ⇡,
denoted as G✏0

H
⇡, as follows:

G✏0
H
⇡(ah|sh) =

⇢
✏0
|A|

+ (1� ✏0)⇡(ah|sh), if h 2 H,
⇡(ah, ah), if h /2 H.

(28)

where |H| = t. Intuitively, G✏0
H
⇡ follows ⇡ at time step h 2 H with probability 1 � ✏0 and takes

uniformly action selection with the probability ✏0.

We also define

⇧n = Unif{⇡(m)
}
n�1
m=0, (29)

where Unif (X0) is a mixture policy that uniformly chooses one policy from the policy set X0 ⇢ X .
We use G✏0

H
⇧n to denote the (✏0, |H|)-greedy version of ⇧n.

C.2 SUPPORTING LEMMAS

We first characterize the following high probability event.
Lemma 10. Denote

f (n)
h

(sh, ah) =
���P ⇤

h
(·|sh, ah)� P̂ (n)

h
(·|sh, ah)

���
1
, (31)

U (n)
h,�

= n E
s
h
⇠(P⇤,⇧n)

a
h
⇠G

✏0
h

⇧n

h
�(sh, ah)(�(sh, ah))

>

i
+ �I, (32)

where � = �3d log(2NH|�|/�)) and �3 = O(1).

Define events E0 and E1 as

E0 =

⇢
8n 2 [N], h 2 [H], sh 2 S, ah 2 A, E

s
h
⇠(P⇤,G

✏0
h�1

⇧n)

a
h
⇠G

✏0
h

⇧n

h
f (n)
h

(sh, ah)
2
i
 ⇣/n

�
,

E1 =

⇢
8n 2 [N], h 2 [H], sh 2 S, ah 2 A,

1

5

����̂(n)
h�1(s, a)

���
(U(n)

h�1,�̂
)�1

����̂(n)
h�1(s, a)

���
(Û(n)

h�1)
�1
 3

����̂(n)
h�1(s, a)

���
(U(n)

h�1,�̂
)�1

�
,

where ⇣ = log
�
2|�|| |NH/�

�
.

Denote E := E0 \ E1. Then, P[E] � 1� �.

26

Published as a conference paper at ICLR 2023

Algorithm 3 Low-rank-SWEET
1: Input: Constants ✏0 = /6, Ã = A/✏0, and termination condition T.
2: // Exploration:
3: for n = 1, . . . , N do
4: for h = 1, ..., H do
5: Execute policy G✏0

h�1,h⇡
(n�1) and collect data s(n,h)

1 , a(n,h)
1 , . . . , s(n,h)

H
, a(n,h)

H

6: D
n

h
 Dn

h
[{s(n,h)

h
, a(n,h)

h
, s(n,h)

h+1 }

7: end for
8: Learn (�̂(n)

h
, µ̂(n)

h
) = MLE(Dn

h
), and update P̂ (n) according to Equation (5)

9: Update empirical covariance matrix Û (n)
h

according to Equation (6)
10: Define exploration-driven reward function b̂(n)

h
(·, ·) = min

n
↵̂k�̂(n)

h
(·, ·)k

(Û(n)
h

)�1 , 1
o

.

11: Define U(n)(⇡) = V̄ ⇡
(n)

P̂ (n),b̂(n)
+
q
Ã⇣/n

C
(n)
L

=

8
><

>:

{⇡0
}, if V ⇡

0

P̂ ,c
+ U(n)(⇡0) � ⌧ � 2/3,

n
⇡ : V ⇡

P̂ ,c
+ U(n)(⇡) ⌧ � /3

o
, otherwise.

(30)

12: Solve ⇡(n) = argmax
⇡2C

(n)
L

U(n)(⇡), where C
(n)
L

is defined in Equation (30).

13: if
���C(n)

L

��� > 1 and U(n)(⇡(n)) T then

14:
⇣
n✏, P̂ ✏, b̂✏

⌘

⇣
n, P̂ (n), b̂(n)

⌘
, break

15: end if
16: end for
17: // Planning:
18: Receive reward function r⇤ and constraint (c⇤, ⌧⇤),

19: Output: ⇡̄ = argmax⇡ V ⇡

P̂ ✏,r⇤
s.t. V ⇡

P̂ ✏,c⇤
+ V̄ ⇡

P̂ ✏,b̂✏
+
q
Ã⇣n✏

 ⌧⇤.

Proof. By Corollary 2 in Appendix D, we have P[E0] � 1 � �/2. Further, by Lemma 39 in
Zanette et al. (2020a) for the version of fixed � and Lemma 11 in Uehara et al. (2021), we have
P[E1] � 1� �/2. Therefore, P[E] � 1� �.

Based on Lemma 10, we can bound the exploration-driven virtual reward in Low-rank-SWEET as
follows.
Corollary 1. Given that the event E occurs, the following inequality holds for any n 2 [N], h 2
[H], sh 2 S, ah 2 A:

min

(
↵̂

5

����̂(n)
h

(sh, ah)
���
(U(n)

h,�̂
)�1

, 1

)
 b̂(n)

h
(sh, ah) 3↵̂

����̂(n)
h

(sh, ah)
���
(U(n)

h,�̂
)�1

,

where ↵̂ = 5
q
�3⇣(Ã+ d2).

Proof. Recall b̂(n)
h

(sh, ah) = min

⇢
↵̂
����̂(n)

h
(s, a)

���
(Û(n)

h
)�1

, 1

�
. Applying Lemma 10, we can

immediately obtain the result.

The following lemma summarizes Lemmas 12 and 13 in Uehara et al. (2021) and generalizes them to
✏0-greedy policies. We provide the proof for completeness.
Lemma 11. Let Ph�1 = h�h�1, µh�1i be a low-rank MDP model, and ⇧ be an arbitrary and

possibly a mixture policy. Define an expected Gram matrix as follows:

Mh�1,� = �I + n E
s
h�1⇠(P⇤,⇧)

a
h�1⇠⇧

h
�h�1(sh�1, ah�1)

�
�h�1(sh�1, ah�1)

�>i
.

27

Published as a conference paper at ICLR 2023

Further, let fh�1(sh�1, ah�1) be the total variation distance between P ⇤

h�1 and Ph�1 at time step

h� 1. Suppose g 2 S ⇥A! R is bounded by B 2 (0,1), i.e., kgk1 B. Then, for h � 2, any

policy ⇡h,

E
s
h
⇠P

h�1
a
h
⇠⇡

h

[g(sh, ah)|sh�1, ah�1]

���h�1(sh�1, ah�1)

��
(Mh�1,�)�1 ⇥

s
nÃ E

s
h
⇠(P⇤,⇧)

a
h
⇠G

✏0
h

⇧

[g2(sh, ah)] + �dB2 + nB2 E
s
h�1⇠(P⇤,⇧)

a
h�1⇠⇧

⇥
fh�1(sh�1, ah�1)2

⇤
.

Proof. We first derive the following bound:

E
s
h
⇠P

h�1
a
h
⇠⇡

h

⇥
g(sh, ah)|sh�1, ah�1

⇤

=

Z

sh

X

ah

g(sh, ah)⇡(ah|sh)h�h�1(sh�1, ah�1), µh�1(sh)idsh

���h�1(sh�1, ah�1)

��
(Mh�1,�)�1

������

Z X

ah

g(sh, ah)⇡(ah|sh)µh�1(sh)dsh

������
Mh�1,�

,

where the inequality follows from Cauchy-Schwarz inequality. We further expand the second term in
the RHS of the above inequality as follows.
������

Z X

ah

g(sh, ah)⇡(ah|sh)µh�1(sh)dsh

������

2

Mh�1,�

(i)
 n E

s
h�1⇠(P⇤,⇧)

a
h�1⇠⇧

2

64

0

@
Z

sh

X

ah

g(sh, ah)⇡h(ah|sh)µ(sh)
>�(sh�1, ah�1)dsh

1

A
2
3

75+ �dB2

= n E
s
h�1⇠(P⇤,⇧)

a
h�1⇠⇧

2

64

0

@ E
s
h
⇠P

h�1
a
h
⇠⇡

h

"
g(sh, ah)

����sh�1, ah�1

#1

A
2
3

75+ �dB2

(ii)
 2n E

s
h�1⇠(P⇤,⇧)

a
h�1⇠⇧

2

64 E
s
h
⇠P

⇤
h�1

a
h
⇠⇡

h

"
g(sh, ah)

2

����sh�1, ah�1

#3

75+ �dB2

+ 2nB2 E
s
h�1⇠(P⇤,⇧)

a
h�1⇠⇧

h
fh�1(sh�1, ah�1)

2
i

(iii)
 nÃ E

s
h
⇠(P⇤,⇧)

a
h
⇠G

✏0
h

⇧

h
g(sh, ah)

2
i
+ �dB2 + nB2 E

s
h�1⇠(P⇤,⇧)

a
h�1⇠⇧

h
fh�1(sh�1, ah�1)

2
i
,

where (i) follows from the assumption that kgk1 B, (ii) follows from Jensen’s inequality, and
that fh�1(sh�1, ah�1) is the total variation distance between P ⇤

h�1 and Ph�1 at time step h� 1. For
(iii), note that G✏0

h
⇧(·|sh) � ✏0/A = 1/Ã, which implies that ⇡h(·|sh) 1 ÃG✏0

h
⇧(·|sh). This

finishes the proof.

Based on Lemma 11, we summarize three useful inequalities in the following lemma, which bridges
the total variation f (n)

h
and the exploration-driven reward b̂(n)

h
.

Lemma 12. Define

W (n)
h,�

= n E
s
h
⇠(P⇤,⇧n)
a
h
⇠⇧n

h
�(sh, ah)(�(sh, ah))

>

i
+ �I, (33)

28

Published as a conference paper at ICLR 2023

where � = �3d log(2NH|�|/�). Given that the event E occurs, the following inequalities hold for

any iteration n: When h � 2,

E
s
h
⇠P̂

(n)
h�1

a
h
⇠⇡

"
f (n)
h

(sh, ah)

����sh�1, ah�1

#
 ↵

����̂(n)
h�1(sh�1, ah�1)

���
(U(n)

h�1,�̂
)�1

, (34)

E
s
h
⇠P

⇤
h�1

a
h⇠⇡

"
f (n)
h

(sh, ah)

����sh�1, ah�1

#
 ↵

���⇤

h�1(sh�1, ah�1)
��
(U(n)

h�1,�⇤)�1 , (35)

E
s
h
⇠P

⇤
h�1

a
h
⇠⇡

"
b̂(n)
h

(sh, ah)

����sh�1, ah�1

#
 �

���⇤

h�1(sh�1, ah�1)
��
(W (n)

h�1,�⇤)�1 , (36)

where

↵ =
q

�3⇣(Ã+ d2), � =
q
45�3⇣Ãd(Ã+ d2).

When h = 1,

E
a1⇠⇡

h
f (n)
1 (s1, a1)

i

q
Ã⇣/n, E

a1⇠⇡

h
b̂(s1, a1)

i
 15↵

s
dÃ

n
. (37)

Proof. We start by showing Equation (34) as follows. Given that the event E occurs, we have

E
s
h
⇠P̂

(n)
h�1

a
h
⇠⇡

"
f (n)
h

(sh, ah)

����sh�1, ah�1

#

(i)

����̂(n)
h�1(sh�1, ah�1)

���
(U(n)

h�1,�̂
)�1
⇥

vuutnÃ E
s
h
⇠(P⇤,G

✏0
h�1

⇧n)

a
h
⇠G

✏0
h

⇧n

[f (n)
h

(sh, ah)2] + �d+ n E
s
h�1⇠(P⇤,G

✏0
h�1

⇧n)

(a
h�1)⇠G

✏0
h�1

⇧n

h
f (n)
h�1(sh�1, ah�1)2

i

(ii)

����̂(n)
h�1(sh�1, ah�1)

���
(U(n)

h�1,�̂
)�1
⇥

vuutnÃ E
s
h
⇠(P⇤,G

✏0
h�1

⇧n)

a
h
⇠G

✏0
h

⇧n

[f (n)
h

(sh, ah)2] + �d+ nÃ E
s
h�1⇠(P⇤,G

✏0
h�2

⇧n)

(a
h�1)⇠G

✏0
h�1

⇧n

h
f (n)
h�1(sh�1, ah�1)2

i

(iii)

����̂(n)
h�1(sh�1, ah�1)

���
(U(n)

h�1,�̂
)�1

q
2⇣Ã+ �3⇣d2

 ↵
����̂(n)

h�1(sh�1, ah�1)
���
(U(n)

h�1,�̂
)�1

,

where (i) follows from Lemma 11 and the fact that f (n)
h

(sh, ah) 1, (ii) follows from importance
sampling at time step h� 2, and (iii) follows from Lemma 10.

Equation (35) follows from the arguments similar to the above.

To obtain Equation (36), we first apply Lemma 11 and obtain

E
s
h
⇠P

⇤
h�1

a
h
⇠⇡

(n)

"
b̂(n)
h

(sh, ah)

����sh�1, ah�1

#

���⇤

h�1(sh�1, ah�1)
��
(W (n)

h�1,�⇤)�1

vuutnÃ E
s
h
⇠(P⇤,⇧n)

a
h
⇠G

✏0
h

⇧n

[{b̂(n)
h

(sh, ah)}2] + �d,

29

Published as a conference paper at ICLR 2023

where we use the fact that b̂(n)
h

(sh, ah) 1. We further bound the term
nE s

h
⇠(P⇤,⇧n)

a
h
⇠G

✏0
h

⇧n

[(b̂(n)
h

(sh, ah))2] as follows:

n E
s
h
⇠(P⇤,⇧n)

a
h
⇠G

✏0
h

⇧n

⇣
b̂(n)
h

(sh, ah)
⌘2�

 n E
s
h
⇠(P⇤,⇧n)

a
h
⇠G

✏0
h

⇧n

"
↵̂2
����̂(n)

h
(sh, ah)

���
2

(Û(n)

h,�̂
)�1

#

(i)
 n E

s
h
⇠(P⇤,⇧n)

a
h
⇠G

✏0
h

⇧n

"
9↵̂2

����̂(n)
h

(sh, ah)
���
2

(U(n)

h,�̂
)�1

#

= 9↵̂2tr

8
>><

>>:
n E

s
h
⇠(P⇤,⇧n)

a
h
⇠G

✏0
h

⇧n

2

664�̂
(n)
h

(sh, ah)�̂
(n)
h

(sh, ah)
>

0

B@n E
s
h
⇠(P⇤,⇧n)

a
h
⇠G

✏0
h

⇧n

h
�̂h(sh, ah)�̂

(n)
h

(sh, ah)
>

i
+ �I

1

CA

�1
3

775

9
>>=

>>;

 9↵̂2tr(I) = 9↵̂2d,

where (i) follows from Lemma 10, and we use tr(A) to denote the trace of any matrix A.

Thus,

E
s
h
⇠P

⇤
h�1

a
h
⇠⇡

"
b̂(n)
h

(sh, ah)

����sh�1, ah�1

#

���⇤

h�1(sh�1, ah�1)
��
(W (n)

h�1,�⇤)�1

p
9Ã↵̂2d+ �d

 �
���⇤

h�1(sh�1, ah�1)
��
W

(n)
h�1,�⇤)�1 .

In addition, for h = 1, we have

E
a1⇠⇡(n)

h
f (n)
1 (s1, a1)

i (i)

s
Ã E

a1⇠G
✏0
1 ⇧n

h
f (n)
1 (s1, a1)2

i

q
Ã⇣/n,

and

E
a1⇠⇡(n)

h
b̂(s1, a1)

i (ii)
 ↵̂

vuutÃ E
a1⇠G

✏0
1 ⇧n

"
k�̂1(s1, a1)k2

(Û(n)

1,�̂
)�1

#

 3↵̂

vuutÃ E
a1⇠G

✏0
1 ⇧n

"
k�̂1(s1, a1)k2

(U(n)

1,�̂
)�1

#

 3

s
25Ã↵2d

n
= 15↵

q
Ã⇣/n,

where both (i) and (ii) follow from Jensen’s inequality and importance sampling.

The following lemma is key to ensure that Low-Rank-SWEET terminates in finite episodes.

Lemma 13. Given that the event E occurs, the summation of the truncated value functions V̄ ⇡
(n)

P̂ (n),b̂(n)

under exploration policies {⇡(n)
}n2N is sublinear with respect to |N | for any N ⇢ [N], i.e., the

following bound holds:

X

n2N

V̄ ⇡
(n)

P̂ (n),b̂(n) +
q

Ã⇣/n 32⇣Hd2Ã
p
�3|N |.

30

Published as a conference paper at ICLR 2023

Proof. Note that V̄ ⇡

h,P̂ (n),b̂(n)
 1 holds for any policy ⇡ and h 2 [H]. We first have

V̄ ⇡
(n)

P̂ (n),b̂(n) � V ⇡
(n)

P⇤,b̂(n) E
⇡(n)

h
P̂ (n)
1 V̄ ⇡

(n)

2,P̂ (n),b̂(n)(s1, a1)� P ⇤

1 V
⇡
(n)

2,P⇤,b̂(n)(s1, a1)
i

= E
⇡(n)

⇣
P̂ (n)
1 � P ⇤

1

⌘
V̄ ⇡

(n)

2,P̂ (n),b̂(n)(s1, a1) + P ⇤

1

⇣
V̄ ⇡

(n)

2,P̂ (n),b̂(n) � V ⇡
(n)

2,P⇤,b̂(n)

⌘
(s1, a1)

�

 E
⇡(n)

f (n)
1 (s1, a1) + P ⇤

1

⇣
V̄ ⇡

(n)

2,P̂ (n),b̂(n) � V ⇡
(n)

2,P⇤,b̂(n)

⌘�

 . . .

 E
P⇤,⇡(n)

2

4
HX

h=1

f (n)(sh, ah)

3

5 = V ⇡
(n)

P⇤,f(n) ,

which implies V̄ ⇡
(n)

P̂ (n),b̂(n)
 V ⇡

(n)

P⇤,b̂(n)
+ V ⇡

(n)

P⇤,f(n) .

Applying the Equation (36) and Equation (37), we obtain the following bound on the value function
V ⇡n

P⇤,b̂(n)
:

V ⇡n

P⇤,b̂(n)
=

HX

h=1

E
s
h
⇠(P⇤,⇡

(n))

a
h
⇠⇡

(n)

h
b̂n(sh, ah)

i

HX

h=2

E
s
h�1⇠(P⇤,⇡

(n))

a
h�1⇠⇡

(n)

�
���⇤

h�1(sh�1, ah�1)
��
(W (n)

h�1,�⇤)�1

�
+ 15↵

s
dÃ

n

HX

h=1

E
s
h
⇠(P⇤,⇡

(n))

a
h
⇠⇡

(n)

�
���⇤

h
(sh, ah)

��
(W (n)

h,�⇤)�1

�
+ 15↵

s
dÃ

n
.

Similarly, we obtain

V ⇡n

P⇤,f(n) =
HX

h=1

E
s
h
⇠(P⇤,⇡

(n))

a
h
⇠⇡

(n)

h
b̂n(sh, ah)

i

HX

h=2

E
s
h�1⇠(P⇤,⇡

(n))

a
h�1⇠⇡

(n)

↵
���⇤

h�1(sh�1, ah�1)
��
(U(n)

h�1,�⇤)�1

�
+

s
⇣Ã

n

HX

h=1

E
s
h
⇠(P⇤,⇡

(n))

a
h
⇠⇡

(n)

↵
���⇤

h
(sh, ah)

��
(U(n)

h,�⇤)�1

�
+

s
⇣Ã

n
.

Then, taking the summation of V ⇡n

P⇤,b̂(n)+f(n)
over n 2 N , we have

X

n2N

V ⇡n

P⇤,f(n)+b̂(n)
+
q
Ã⇣/n

X

n2N

15↵

s
dÃ

n
+ 2

X

n2N

s
Ã⇣

n
+
X

n2N

HX

h=1

E
s
h
⇠(P⇤,⇡

(n))

a
h
⇠⇡

(n)

�n
���⇤

h
(sh, ah)

��
(W (n)

h,�⇤)�1

�

+
X

n2N

HX

h=1

E
s
h
⇠(P⇤,⇡

(n))

a
h
⇠⇡

(n)

↵
���⇤

h
(sh, ah)

��
(U(n)

h,�⇤)�1

�

31

Published as a conference paper at ICLR 2023

(i)
 17↵

q
⇣dÃ|N |+ �

HX

h=1

vuut|N |

X

n2N

E
s
h
⇠(P⇤,⇡

(n))

a
h
⇠⇡

(n)

���⇤

h
(sh, ah)

��2
(W (n)

h,�⇤)�1

�

+ ↵
HX

h=1

vuuutÃ|N |

X

n2N

E
s
h
⇠(P⇤,⇡

(n))

a
h
⇠G

✏0
h

⇡
(n)

���⇤

h
(sh, ah)

��2
(U(n)

h,�⇤)�1

�

(ii)
 17⇣

q
2�3dÃ(Ã+ d2)|N |+H

q
45�3⇣dÃ(Ã+ d2)

p
d|N |⇣

+H
q
�3⇣(Ã+ d2)

q
dÃ|N |⇣

 32⇣Hd
q
�3Ã(d2 + Ã)|N |

 32⇣Hd2Ã
p
�3|N |,

where (i) follows from Cauchy-Schwarz inequality and importance sampling, and (ii) follows from
Lemma 19. Hence, the statement of Lemma 13 is verified.

C.3 PROOF OF THEOREM 3

Theorem 6 (Restatement of Theorem 3). Given ✏, � 2 (0, 1), and safety constraint (c, ⌧), let

U = min
n

✏

2 ,
�min

2 , ✏�min
5 , ⌧

6 ,

24

o
, and T = �(c, ⌧)U/3 be the termination condition of Low-rank-

SWEET. Then, with probability at least 1� �, Low-rank-SWEET achieves the learning objective of

safe reward-free exploration (Equations (1) and (2)) and the number of trajectories collected in the

exploration phase is at most

O

H3d4A2◆

2�(c, ⌧)2U2
+

H3d4A2◆

4

!
,

where ◆ = log2
⇣

H
2
d
4
A

2

2�(c,⌧)2U2 + H
2
d
4
A

2

4

⌘
|�|| |H/�

�
.

Proof. The proof of Theorem 3 mainly instantiates Theorem 1 by verifying that (a) U(n)(⇡) =

V̄ ⇡

P̂ (n),b̂(n)
+
q
Ã⇣/n is a valid approximation error bound for V ⇡

P̂ (n),u
, and (b) Low-rank-SWEET

satisfies the termination condition within N iterations. The proof consists of three steps with the first
two steps verifying the above two conditions and the last step characterizes the sample complexity.

Step 1: This step establishes that U(n)(⇡) = V̄ ⇡

P̂ (n),b̂(n)
+
q
Ã⇣/n is a valid approximation error

bound in Low-rank-SWEET.

Lemma 14. For all n 2 [N], policy ⇡ and the normalized utility function u, given that the event E

occurs, we have ���V ⇡

P⇤,u � V ⇡

P̂ (n),u

��� V̄ ⇡

P̂ (n),b̂(n) +
q
Ã⇣/n.

Proof. We first show that
���V ⇡

P⇤,u � V ⇡

P̂ (n),u

��� V̄ ⇡

P̂ (n),f(n) .

Recall the definition of the truncated value functions V̄
h,P̂ (n),u

(sh) and Q̄
h,P̂ (n),u

(sh, ah):

Q̄⇡

h,P̂ (n),u
(sh, ah) = u(s, a) + P̂ (n)

h
V̄ ⇡

h+1,P̂ (n),u
(sh, ah),

V̄ ⇡

h,P̂ (n),u
(sh) = min

⇢
1,E

⇡

h
Q̂⇡

h,P̂ (n),u
(sh, ah)

i�
.

We develop the proof by induction. For the base case h = H + 1, we have���V ⇡

H+1,P̂ (n),u
(sH+1)� V ⇡

H+1,P⇤,u(sH+1)
��� = 0 = V̄ ⇡

H+1,P̂ (n),b̂(n)
(sH+1).

32

Published as a conference paper at ICLR 2023

Assume that
���V ⇡

h+1,P̂ (n),u
(sh+1)� V ⇡

h+1,P⇤,u(sh+1)
��� V̄ ⇡

h+1,P̂ (n),b̂(n)
(sh+1) holds for any sh+1.

Then, from Bellman equation, we have,
����Q

⇡

h,P̂ (n),u
(sh, ah)�Q⇡

P⇤,u(sh, ah)

����

=

����P̂
(n)
h

V ⇡

h,P̂ (n),u
(sh, ah)� P ⇤

h
V ⇡

h+1,P⇤,u(sh, ah)

����

=

����P̂
(n)
h

⇣
V ⇡

h+1,P̂ (n),u
� V ⇡

h+1,P⇤,u

⌘
(sh, ah) +

⇣
P̂ (n)
h
� P ⇤

h

⌘
V ⇡

h,P⇤,u(sh, ah)

����
(i)
 f (n)

h
(sh, ah) + P̂ (n)

h

����V
⇡

h+1,P̂ (n),u
� V ⇡

h+1,P⇤,u

����(sh, ah)

(ii)
 f (n)

h
(sh, ah) + P̂ (n)

h
V̄ ⇡

h+1,P̂ (n),f(n)(sh, ah)

= Q̄⇡

h,P̂ (n),f(n)(sh, ah), (38)

where (i) follows from kP̂ (n)
h

(·|sh, ah)� P ⇤

h
(·|sh, ah)k1 = f (n)

h
(sh, ah) and the assumption that u

is normalized, and (ii) follows from the induction hypothesis.

Then, by the definition of V̄ ⇡

h,P̂ (n),u
(sh), we have

����V
⇡

h,P̂ (n),u
(sh)� V ⇡

h,P⇤,u(sh)

����

=

����min

⇢
1� V ⇡

h,P⇤,u(sh),E
⇡

h
Q⇡

h,P̂ (n),u
(sh, ah)

i
� E

⇡

h
Q⇡

h,P⇤,u(sh, ah)
i�����

(i)
 min

⇢
1,

����E
⇡

h
Q⇡

h,P̂ (n),u
(sh, ah)�Q⇡

h,P⇤,u(sh, ah)
i ����

�

(ii)
 min

⇢
1,E

⇡

h
Q̂⇡

h,P̂ (n),f(n)(sh, ah)
i�

= V̄ ⇡

h,P̂ (n),f(n)(sh),

where (i) follows because Q̂⇡

h,P̂ (n),u
(sh, ah)�Q⇡

h,P⇤,u(sh, ah) > �1, and (ii) follows from Equa-
tion (38).

Therefore, by induction, we have
���V ⇡

P⇤,u � V̄ ⇡

P̂ (n),u

��� V̄ ⇡

P̂ (n),f(n) .

Then, we show that V̄ ⇡

P̂ (n),f(n) V̄ ⇡

P̂ (n),b̂(n)
+
q
Ã⇣n.

By Equation (34) and the fact that the total variation distance is upper bounded by 1, with probability
at least 1� �/2, we have

E
P̂ (n),⇡

"
f (n)
h

(sh, ah)

����sh�1

#
 E

⇡

2

4min

↵
����̂(n)

h�1

���
(U(n)

h�1,�̂
)�1

, 1

!3

5 , 8h � 2. (39)

Similarly, when h = 1,

E
a1⇠⇡

h
f (n)
1 (s1, a1)

i

s
Ã E

a⇠G
✏0
1 ⇧n

⇣
f (n)
1 (s1, a1)

⌘2�

q
Ã⇣n. (40)

Based on Corollary 1, Equation (39) and ↵ = 5↵̂, we have

E
⇡

"
b̂(n)
h

(sh, ah)

����sh

#
� E

⇡

2

4min

↵
����̂(n)

h

���
(U(n)

h,�̂
)�1

, 1

!3

5 � E
P̂ (n),⇡

"
f (n)
h+1(sh+1, ah+1)

����sh

#
.

(41)

33

Published as a conference paper at ICLR 2023

For the base case h = H , we have

E
P̂ (n),⇡

"
V̄ ⇡

H,P̂ (n),f(n)(sH)

����sH�1

#
= E

P̂ (n),⇡

"
f (n)
H

(sH , aH)

����sH�1

#

 E
⇡

h
b(n)
H�1(sH�1, aH�1)|sH�1

i

 min

8
<

:1,E
⇡

"
Q̄⇡

H�1,P̂ (n),b̂(n)(sH�1, aH�1)

����sH�1

#9=

;

= V̄ ⇡

H�1,P̂ (n),b̂(n)(sH�1).

Assume that EP̂ (n),⇡

"
V̄ ⇡

h+1,P̂ (n),f(n)(sh+1)

����sh

#
 V̄ ⇡

h,P̂ (n),b̂(n)
(sh) holds for step h+ 1. Then, by

Jensen’s inequality, we obtain

E
P̂ (n),⇡

V̄ ⇡

h,P̂ (n),f(n)(sh)

����sh�1

�

 min

8
<

:1, E
P̂ (n),⇡

"
f (n)
h

(sh, ah) + P̂ (n)
h

V̄ ⇡

h+1,P̂ (n),f(n)(sh, ah)

����sh�1

#9=

;

(i)
 min

8
<

:1,E
⇡

h
b̂(n)
h�1(sh�1, ah�1)

i
+ E

P̂ (n),⇡

2

4 E
P̂ (n),⇡

"
V̄ ⇡

h+1,P̂ (n),f(n)(sh+1)

����sh

����sh�1

3

5

9
=

;

(ii)
 min

8
<

:1,E
⇡

h
b(n)
h�1(sh�1, ah�1)

i
+ E

P̂ (n),⇡

"
V̄ ⇡

h,P̂ (n),b̂(n)(sh)

����sh�1

#9=

;

= min

⇢
1,E

⇡

h
Q̄⇡

h�1,P̂ (n),b̂(n)(sh�1, ah�1)
i�

= V̄ ⇡

h�1,P̂ (n),b̂(n)(sh�1),

where (i) follows from Equation (41), and (ii) is due to the induction hypothesis.

By induction, we conclude that

V̄ ⇡

P̂ (n),f(n) = E
⇡

h
f (s)
1 (s1, a1)

i
+ E

P̂ (n),⇡

"
V̄ ⇡

2,P̂ (n),f(n)(s2)

����s1

#

q
Ã⇣/n+ V̄ ⇡

P̂ (n),b̂(n) .

Combining Step 1 and Step 2, we conclude that
���V ⇡

P⇤,u � V ⇡

P̂ (n),u

���
q
Ã⇣/n+ V̄ ⇡

P̂ (n),b̂(n) .

Step 2: This step shows that Low-rank-SWEET terminates in finite episodes.

Lemma 15. On the event E , there exists n✏ 2 [N] such that V̄ ⇡
n✏

P̂ (n✏),b̂(n✏)
+
q
Ã⇣/n✏ T, where N

is defined in Equation (27).

34

Published as a conference paper at ICLR 2023

Let N0 =

⇢
n :
���C(n)

L

��� = 1

�
. We first show that N0 is a finite set.

Note that, n 2 N0 implies that V̄ ⇡
0

P̂ (n),c
+ V̄ ⇡

0

P̂ (n),b̂(n)
+
q

Ã⇣/n > ⌧ � 2/3, and ⇡(n) = ⇡0. Then,
we have,

|N0|/3 <
X

n2N0

✓
V̄ ⇡

0

P̂ (n),c
+ V̄ ⇡

0

P̂ (n),b̂(n) +
q
Ã⇣n � V ⇡

0

P⇤,c

◆

(i)

X

n2N0

2V̄ ⇡
0

P̂ (n),b̂(n) + 2
q
Ã⇣n

(ii)
 64⇣Hd2Ã

p
�3|N |,

where (i) is due to Lemma 14 and the (ii) follows from Lemma 13. Therefore, we have

|N0|
212 · 32�3H2d4Ã2⇣2

2
.

Next, we prove the existence of n✏ via contradiction. Assume V̄ ⇡
(n)

P̂ (n),b̂(n)
+
q
Ã⇣n > T, 8n 2 [N]/N0.

By Lemma 13, we have

(N � |N0|)T <
X

n2N

V ⇡
(n)

P̂ (n),b̂(n) +
q
Ã⇣n

 32⇣Hd2Ã
p

�3|N |,

which implies

N < |N0|+
210�3H2d4Ã2⇣2

T2

210�3H2d4Ã2⇣2

T2
+

212 · 32�3H2d4Ã2⇣2

2
.

This contradicts with the fact that N = 210�3H
2
d
4
Ã

2
⇣
2

T2 + 212·32�3H
2
d
4
Ã

2
⇣
2

2 .

Step 3: This step analyzes the sample complexity of Low-rank-SWEET as follows.

Given that the event E occurs, since T = �(c, ⌧)U/3 and Ã = A/✏0 = 6A/, by Lemma 15, the
number of iterations is at most

N =
21234�3H2d4A2⇣2

2�(c, ⌧)2U2
+

21434�3H2d4A2⇣2

4
.

Note that n = c0 log
2(c1n) implies n 4c0 log

2(c0c1). Thus,

N = O

H2d4A2◆

2�(c, ⌧)2U2
+

H2d4A2◆

4

!
,

where

◆ = log2

2

4

H2d4A2

2�(c, ⌧)2U2
+

H2d4A2

4

!
|�|| |H/�

3

5 .

Since there are H episodes in each iteration, the sample complexity is at most

O

H3d4A2◆

2�(c, ⌧)2U2
+

H3d4A2◆

4

!
.

Thus, Low-rank-SWEET terminates in finite episodes.

Note that U(⇡) = V̄ ⇡

P̂ ✏,b̂✏
+
q
Ã⇣/n✏. Given that the event E occurs, by Lemma 3 and Lemma 14,

U(⇡) is an approximation error function under P̂ ✏, and is concave and continuous on X .

35

Published as a conference paper at ICLR 2023

We further note that /3(�(c,⌧)�2/3)
4(�(c,⌧)�/3) �

24 , and �(c, ⌧)� /3 � 2�(c, ⌧)/3 due to the condition
�(c, ⌧) � , which implies that T = �(c, ⌧)U/3 satisfies the requirement in Theorem 4.

Therefore, using Theorem 4, we conclude that with probability at least 1� �, the exploration phase
of Low-rank-SWEET is safe and ⇡̄ is an ✏-optimal policy subject to the constraint (c⇤, ⌧⇤).

D AUXILIARY LEMMAS

We first provide the following property of a mixture policy and its equivalent Markov policy for
completeness.
Lemma 16 (Theorem 6.1 in Altman (1999)). Given a model P , any Markov policies ⇡,⇡0

2 X , and

� 2 [0, 1], there exists ⇡�
2 X that is Markov and equivalent to the mixture policy �⇡ � (1� �)⇡0

.

Let ⇢⇡
h
(sh) and ⇢⇡

h
(sh, ah) be the marginal distributions over the state and the state-action pairs

induced by ⇡ under P , respectively. Then, the following statements hold:

• ⇢⇡
�

h
(sh) = �⇢⇡

h
(sh) + (1� �)⇢⇡

0

h
(sh),

• ⇢⇡
�

h
(sh, ah) = �⇢⇡

h
(sh, ah) + (1� �)⇢⇡

0

h
(sh, ah),

• ⇡�(ah|sh) = ⇢⇡
�

h
(sh, ah)/⇢⇡

�

h
(sh),

• V ⇡
�

P,u
= �V ⇡

P,u
+ (1� �)V ⇡

0

P,u
holds for any utility function u.

Next, we present the estimation error of MLE in the n-th iteration at step h, given state s and action a,
in terms of the total variation distance, i.e. f (n)

h
(s, a) =

���P̂ (n)
h

(·|s, a)� P ⇤

h
(·|s, a)

���
1
. By Theorem

21 in Agarwal et al. (2020), we are able to guarantee that under all exploration policies, the estimation
error can be bounded with high probability.
Lemma 17. (MLE guarantee). Given � 2 (0, 1), we have the following inequality holds for any

n 2 [N], h 2 [H] with probability at least 1� �/2:

n�1X

m=0

E
s
h
⇠(P⇤,G

✏0
h�1

⇡
(m))

a
h
⇠G

✏0
h

⇡
(m)

h
fn

h
(sh, ah)

2
i
 ⇣, where ⇣ := log

�
2|�|| |NH/�

�
.

Dividing both sides of the inequality in Lemma 17 by n, we have the following corollary hold, which
is intensively used in the analysis.
Corollary 2. Given � 2 (0, 1), the following inequality holds for any n, h � 1 with probability at

least 1� �/2:

E
s
h
⇠(P⇤,G

✏0
h�1

⇧n)
a
h
⇠G

✏0
h

⇧n

h
fn

h
(sh, ah)

2
i
 ⇣/n,

where ⇧n and G✏0
h
⇧n are defined in Equation (29) and Equation (28), respectively.

Then, we present two critical lemmas which ensure the summation of the approximation errors grows
sublinearly in Tabular-SWEET and Low-rank-SWEET.
Lemma 18 (Lemma 9 in Ménard et al. (2021)). Suppose {an}1n=0 is a sequence with an 2 [0, 1],
8n. Let Sn = max{1,

P
n

m=0 am}. Then, the following inequality holds:

NX

n=1

an
Sn�1

 4 log(SN + 1).

Lemma 19 (Elliptical potential lemma: Lemma B.3 in He et al. (2021)). Consider a sequence of

d⇥d positive semidefinite matrices X1, . . . , XN with tr(Xn) 1 for all n 2 [N]. Define M0 = �0I
and Mn = Mn�1 +Xn. Then, 8N ⇢ [N],

X

n2N

tr(XnM
�1
n�1) 2d log

✓
1 +

|N |

d�0

◆
.

36

Published as a conference paper at ICLR 2023

Finally, the following lemma is used in Theorem 4.
Lemma 20. Given a, b > 0, define a positive sequence {xn}n�1 recursively by

xn+1 =
b

a� xn

.

If a2 > 4b and x1 2 [a�
p
a2�4b
2 , a+

p
a2�4b
2), then, {xn} converges to

a�
p
a2�4b
2 .

Proof. Step 1. We first show that xn 2 [a�
p
a2�4b
2 , a+

p
a2�4b
2).

This is true for n = 1, as x1 2 [a�
p
a2�4b
2 , a+

p
a2�4b
2).

Assume that xn�1 2 [a�
p
a2�4b
2 , a+

p
a2�4b
2). Then, with simple algebra, we can show that

xn =
b

a� xn�1
2

"
a�
p
a2 � 4b

2
,
a+
p
a2 � 4b

2

!
.

Step 2. We show that {xn} is a non-increasing sequence.

Indeed, from Step 1, we have

|a� 2xn|

p
a2 � 4b

) a2 � 4axn + 4x2
n
 a2 � 4b

) axn � x2
n
� b

) xn �
b

a� xn

= xn+1.

Therefore, xn+1 xn holds for all n � 1. Combining Steps 1 and 2, we conclude that there exists a
limit of the sequence {xn}, denoted by x⇤.

By the recursive formula, x⇤ must be a solution to the following equation

x⇤ =
b

a� x⇤
.

Since x⇤
 x1 < a+

p
a2�4b
2 , by solving the above equation, we conclude that

lim
n!1

xn = x⇤ =
a�
p
a2 � 4b

2
.

37

	Introduction
	Preliminaries and problem formulation
	Episodic Markov Decision Processes
	Safe Reward-Free Reinforcement Learning

	The SWEET framework
	Algorithm design
	Theoretical analysis
	Truncated value function

	The Tabular-SWEET algorithm
	Algorithm design
	Theoretical analysis

	The Low-rank-SWEET algorithm
	Low-rank MDP
	Algorithm design
	Theoretical analysis

	Related works
	Conclusion
	Analysis of the SWEET framework and the truncated value function
	Supporting lemmas
	Proof of main:thm:metasafe
	Proof of concavity of the truncated value function

	Analysis of Tabular-SWEET
	The Tabular-SWEET algorithm
	Supporting Lemmas
	Proof of main:thm:tab

	Analysis of Low-rank-SWEET
	The Low-rank-SWEET algorithm
	Supporting Lemmas
	Proof of thm:lowrank

	Auxiliary lemmas

