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Abstract—Machine learning has shown incredibly potential in
many fields of application ranging from ChatGPT and Bard
to Tesla’s autonomous vehicles. These ML models require vast
amounts of data and communications overhead in order to be
effective. In this paper we propose a communication-efficient time
series forecasting model combining the most recent advancements
in MetaFormer architecture implemented across a federated
series of learning nodes. The time series prediction performance
and communication overhead cost of the distributed model is
compared against a similar centralized model and shown to have
parity in performance while consuming much lower data rates
during training.

I. INTRODUCTION

The Alternative Fuels Data Centre lists more than 54,000
EV charging stations (CSs) currently in operation in the United
States. It is projected that the number of EVs on the road will
rise by more than 4000% by 2030 [1]. As a result, there is
a strong need to effectively and intelligently predict energy
demands for EV CSs to mitigate their impact on the power
grids without upgrading/expansion capability. Generally, the
power grid supplies the energy for CSs once requests from EVs
are received. Predicting the amount of energy needed at each
CS over different periods of time will allow the power suppliers
of CSs to purchase the desired amount of electricity at lower
rates in order to save money and make charging at public
stations more efficient — a key step towards smart charging [2].
In addition, the power grid can coordinate energy consumption
via schedule management to reduce energy costs.

Energy prediction algorithms have been thoroughly studied
in the past. Majidpour et al. [3] compared fast machine
learning-based time-series prediction algorithms and found that
the nearest neighbor algorithm showed improved accuracy.
Ryu et al. [4] proposed deep learning (DL) load forecasting
models and showed that DL methods exhibited better per-
formance compared to other forecasting models. Paterakis et
al. [5] compared a DL method with eight most commonly
used machine learning methods such as nearest neighbors,
support vector machines, Gaussian processes, regression trees,
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in energy demand prediction and showed that the DL method
outperformed all eight other methods. However, conventional
DL algorithms trained on individual CSs may not achieve
high prediction accuracy due to insufficient data samples and
failure to consider the influence from other CSs, particularly
the nearby ones in the neighborhood [6].

We introduce machine learning based approaches which can
not only significantly improve the accuracy of energy demand
prediction, but also reduce the communication overhead for
EV networks. In particular, we first introduce a communication
model using the power provider as a centralized node to gather
all information from the individual CS nodes in a considered
metropolitan area (e.g., Houston, or London, or Amsterdam,
etc.). We then develop a DL method to help the power provider
accurately predict energy demands for the CSs in this area.
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Fig. 1. Centralized vs FL architectures: In centralized learning (left), data is
sent to the cloud, where the ML model is built. The model is accessed by a user
through an API by sending a request to access one of the available services.
In FL [7,8] (right), each device trains a model and sends its parameters to
the server for aggregation. Data is kept on-devices and knowledge is shared
through an aggregated model with peers.

Specifically, we adopt a federated learning (FL) approach
[71, [8] to energy demand prediction. As seen in Fig. 1, FL is
a form of distributed learning wherein updates to model param-
eters are calculated locally on individual devices rather than
transmitting massive volumes of data to centralized servers
for global model development. These local model updates are



then transmitted to a centralized server for aggregation into
a global model. Once the global model has been updated
according to various algorithms, the updated global model is
transmitted out to the CSs for the next round of training. In this
fashion the individual data never leaves the local CSs, some
of the computation is offloaded to local CSs, and a globally
useful DL model is created. This reduces the increasing strain
placed on communication networks while accomplishing the
goal of training a useful global model. Thus, the advantage
with FL is that the CSs only need to share their trained
models obtained from their datasets instead of sharing their
real datasets themselves, which generally are of large volume
and often are prohibited by data privacy laws and security
regulations.

Using real data obtained from charging stations in Fig. 2
of Dundee city, the United Kingdom between 2017 and 2018,
which has 65,601 transactions that include IDs from 58 CSs,
transaction ID for each CS, EV charging date, EV charging
time, and consumed energy (in kWh) for each transaction [9],
Saputra et al. [10] showed that simple location-based node
clustering improves the accuracy of energy demand predic-
tion up to 24.63% and decreases communication overhead
by 83.4% compared with other baseline machine learning
algorithms.
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Fig. 2. Centralized vs FL architectures: In centralized learning (left), data

is sent to the cloud, where ML model is built. The model is used by a user
through an API by sending a request to access one of the available services.
In FL [7], [8] (right), each device trains a model and sends its parameters to
the server for aggregation. Data is kept on-devices and knowledge is shared
through an aggregated model with peers.

The EV charging prediction task for an individual client is
a uni-variate time-series forecasting problem, which has been
previously investigated. Different from previous works that
treat the hourly energy consumption as the prediction output,
we aggregate 24 hours’ energy consumption as one data point
to do daily prediction. The reason is that the hourly data-sets
often have no pattern or contain large number of zeros, which

presents itself as much randomness, whereas the daily data
exhibit clear trends of energy consumption variation.

Inspired by the great success of transformer for language and
vision tasks, many advanced transformer architectures have
been proposed for time series forecasting in recent two years.
These models give better prediction performance compared
with traditional RNNs and the most recent work PatchTST
[11] out performs its MLP counterpart and shows state-of-the-
art performance on many time-series forecasting benchmarks.
In this paper, we borrow the the ideas from recent advances
on efficient 2-D vision transformers and propose a lighter and
better model called Local and Global Time Series Transformer
(LoGTST).

For generic FL, sharing model parameters among all clients
and the server will involve heavy communication overhead. To
reduce the communication cost, Online-Fed randomly picks a
specific number of clients for model updating. Partial sharing
based online FL (PSO-Fed) [12] further alleviates this problem
by only randomly sharing partial model parameters to those
selected clients. However, in each global iteration, the clients
in both of these two models can only access their own
information or stay idled, which will hinder the convergence
speed and limit its generalization ability. Thus, we propose
Partial Sharing Global Forwarding FL (PSGF-Fed) that is built
upon PSO-Fed but enables the server to randomly share small
amount of partial parameters to all the clients. In this way,
PSGF-Fed is able to reduce the total communication overhead
by accelerating the convergence speed of each local model.

We strongly believe that our proposed novel LoGTST in
conjunction with PSGF-Fed will greatly improve results re-
ported by Saputra et al. [10] and Perry et al. in [6], in which
algorithm validation was done by using the root mean squared
error (RMSE) for energy demand prediction (with smaller
RMSE indicating better prediction accuracy).

II. METHOD

The learning system in this application consists of two major
parts: the DL model and the FL policy. For better prediction
accuracy, the model should be able to capture the local and
global trend of the input time series and the FL policy should
aggregate the information from all the clients and lead the
model to a good convergence. With the constraints of commu-
nication overhead, the space complexity of the learning model
should be as small as possible and the time of information
sharing between server and clients should be short as well.

A. MetaFormer

Current research on the model architecture design for time
series forecasting can be divided into two camps: Transformer
and Multi-Layer Perceptron (MLP). Different from previous
transformer architectures, PatchTST [11] splits a time-series
into patches and tokenizes these patches into vectors by patch
embedding following Vision Transformer (ViT) [13]. This
new transformer out-performs MLPs and other transformers
such as DLinear [14] and FEDFormer [15] on many popular
benchmarks.
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Fig. 3. Architectures of MetaFormer and its variants. Time-MLP refers to the
MLP operation along the series of tokens; Identity means there is no operation.

The self-attention operation [16] in traditional transformers
possesses the advantages of global dependency parsing and dy-
namic weight generation. However, self-attention brings a large
amount of space and time complexity to the overall model.
The authors of MetaFormer [17] summarize recent advances
on vision transformer and argues that it is the transformer
architecture itself which contributes to performance of ViT on
vision tasks. They also replace the self-attention operation by
a simple pooling operation and demonstrate that PoolFormer
shows better efficiency than most recent variants of ViT.

Similar to PatchTST, we introduce the MetaFormer archi-
tecture into the task of 1-D time series forecast. As shown in
Figure 3, we replace self-attention by Time-MLP and Identity
operations as the token-mixer and propose two variants of
MetaFormer: MLPFormer and IDFormer. In our experiments
we observed the surprising finding that the simplest identity
operation performs as well as PatchTST. Since our goal is
to reduce the model complexity while minimizing loss of
accuracy, we favor most of the transformer blocks to be the
simplest IDFormer in our final model.

B. LoGTST

Figure 4 shows the basic architecture of our proposed
LoGTST model.

RevIN. The Reversible Instance Normalization (RevIN) [20]
module normalizes the input signal for each sample, which
consists of one look-back window and one prediction horizon,
and records the normalization factors for future denormal-
ization of the output signal. In this way, RevIN is able to
symmetrically remove and restore the statistical information
of a time-series instance and improve the model’s stability.

Tokenization and DeTokenization. The tokenization pro-
cess is the same as Patch Embedding in PatchTST [11].
Here we call it Tokenization to follow the convention in
computer vision and natural language processing. Given the
input uni-variate time series as X and its length as L, the
tokenization process can be simply accomplished by applying
1-D convolution on x with a predefined kernel of size P and
stride S. The kernel size can also be seen as the patch length
and the number of tokens is N = [L/S]. Different from previ-
ous works that directly flatten feature vectors xhzi ddens Where
1 =1,2,..., N and apply MLP for prediction, which introduces
a large amount of trainable parameters, the DeTokenization
process in LoGTST firstly changes the number of tokens to
satisfy the prediction horizon and then compresses the number

of channel of each xsi)dden to S by 3 x 1 convolution before
flattening the vector to recover the output.

IDFormer and Transformer: In the transformer branch, we
replace the early two transformer blocks by IDFormer blocks
to reduce total model complexity and prevent early attention
on naive features and keep the last transformer block to parse
dependencies between hidden vectors. The patch embeddings
x, € RP*N should be merged with additive learnable po-
sitional encoding Wy,s by xq4 = x, + W, in case of the
attention mechanism treating all the feature vectors equally.
For each head h = 1,2,...,H, we define three learnable
matrices: W,? WK € RP*dk and WY € RP*P. Then, the
calculation of multi-head self-attention can be written as:

QrKT
di,

OF = Attention(Qp, Ky, V) = softmax{ W (D)

Loss: Following previous work for time series forecasting
[11], [15], we also use MSE to measure the discrepancy
between the prediction and the reality. Defining the number of
input variables as M and the prediction horizon as T, then the
total loss can be calculated by £ = 1/M Zi\il |)2(LZle:L+T .
X(Ll)ﬂ; 47 lI?- Note that there is only one channel (M = 1) for
the task EV charging forecasting.

C. PSGF-Fed

The difference between our proposed PSGF-Fed and previ-
ous works is illustrated in Figure 5.

Online-Fed. Instead of exchanging the model parameters
with all the clients, the server of Online FL (Online-Fed)
will randomly select a subset of clients in ever iteration for
communication efficiency. Denote the selected subset of client
indices as S,,, where C' = |S,,| refers to the number of selected
clients and n represents current iteration. There is no need to
perform local updates for unselected clients because the local
model will be directly replaced by the server model when these
clients are selected in future iterations. Define the local model
parameters for client 7 in iteration n after local update as W’ ;,
then the global model can be updated by:

1 .
Wni1 = tel Z W:z,+1 2
1ES,

PSO-Fed. Partial sharing based online FL (PSO-Fed) [12]
reduces the granularity of communication to the parameter
level for better efficiency and randomness. PSO-Fed randomly
selects a subset of clients ), and also randomly selects a subset
of parameters S; for client ¢ for parameter exchange between
server and clients. Different from Online-Fed, the unselected
clients can still update their local models because when they
are selected, not all of the local parameters will be replaced.
The S/, can be a D x D diagonal matrix with M ones for
selected diagonal elements and D — M zeros. Then the selected
local model can be updated by:

WfL_H = LocalUpdate(SfLwn + ({p — Si/)wfl) 3)
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Fig. 4.

Overview of the architecture of our proposed LoGTST. The input and output signals are processed by Reversible Instance Normalization (RevIN)

module before and after the learning model, respectively. Res-Block refers to simple residual block consists of linear, ReLU, dropout, residual connection [18],
and layernorm [19] operations. The signal is forwarded into two branches for processing and then merge together to construct the final output.
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Tllustration of the model parameters’ sharing from server to clients for Online-Fed, PSO-Fed [12], PSGF-Fed (ours). The green rectangles refer to

shared parameters. The purple rectangles will remain idle during following local update while the orange and green rectangles will be updated.

The server generates the global model by aggregating the local
parameters and this can be accomplished by:

Wil = % Z SpiWny1 + o =S, )wn (4
i€Sy
The communication overhead is then significantly reduced
compared with Online-Fed while maintaining convergence
speed.

PSGF-Fed. PSO-Fed enables the self-learning for each
unselected client, which guarantees its fast convergence speed
even though only partial parameters are shared. However,
training a local model only on limited local data for many
local iterations (or even several global iterations) without any
global information has the risk of over-fitting or weakening
the generalization ability. To alleviate this issue, we propose a
new online FL policy, namely PSGF-Fed, where the server
will randomly selects a small subset of model parameters
and share them with each client. In this way, all the clients
will receive some global information from the server, which
will regularize the local training process. The number of
selected parameters for each client can be adjusted to reach the
best trade-off between convergence speed and communication
overhead. Then all the local models will be updated by (3),
but the M are different for selected and unselected clients.

III. EXPERIMENTS
A. Results from centralized learning using LoGTST
B. Results from FL using PSGF-Fed

As seen in the above table, when trained and tested against
the NN5 time series dataset, the initial online federated learn-
ing, data intensive training performs well with an MSE of 6.02

but at the cost of transferring approximately 1.5 billion param-
eters during training. The previous generation PSO federated
learning architecture achieves slightly worse performance of
6.10 while only transferring (.75 billion parameters. Our
PSGEF federated learning model achieves 6.08 MSE while only
transferring 0.38 billion parameters under the 30/30 hyper-
parameter implementation. This is a significant improvement
in communication cost overhead with a marginal performance
improvement in addition when compared to the PSO federated
learning model.

Similar to the NNS5 results, the PSO federate learning is
able to reduce the number of parameters passed during training
by approximately 50 percent while maintaining performance
within 2 percent of the original online federate learning model.
Our PSGF architecture is demonstrated to reduce passed pa-
rameter numbers by 77 percent while maintaining performance
similar to that of the PSO model. Additionally, when given a
matched communication budget as the PSO model, our PSGF
architecture is able to outperfom the PSO by 0.25 MSE. This
shows the flexibility and robustness of our improved PSGF
model in data overhead as well as performance.

IV. CONCLUSIONS

We will include simulation results in our final submission.
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