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Abstract—We propose a novel private-preserving uplink over-
the-air computation (AirComp) method, termed FLORAS, for
wireless federated learning (FL) systems. From the communi-
cation design perspective, FLORAS eliminates the requirement of
channel state information at the transmitters (CSIT) by lever-
aging the properties of orthogonal sequences. From the privacy
perspective, we prove that FLORAS can offer pure differential
privacy (DP) guarantee, and explicitly characterize the achievable
ϵ-DP level as a function of the FLORAS parameter configuration.
A novel FL convergence bound is derived which, combined with
the pure DP guarantee, allows for a smooth tradeoff between
convergence rate and DP guarantee levels. Experiments based on
real-world datasets not only corroborate the theoretical findings
but also empirically demonstrate the communication and privacy
advantages of FLORAS over state-of-the-art AirComp methods.

Index Terms—Federated learning; Differential privacy (DP);
Orthogonal sequence; Code-division multiple access (CDMA).

I. INTRODUCTION

Uplink communication is known as one of the main bot-
tlenecks of wireless federated learning (FL) [1]. To tackle
the scalability problem, over-the-air computation (also known
as AirComp) mechanisms have been proposed (see [2] and
the references therein). Instead of decoding individual local
models of clients and then aggregating, AirComp allows
multiple clients to transmit uplink signals in a superpositioned
fashion, and decodes the average global model directly. The
most popular and heuristic AirComp method is based on
channel inversion power control [3], which “inverts” the fading
channel at each transmitter, so that the aggregated model can
be directly obtained at the server. Further enhancements have
been proposed along this direction; yet a fundamental limita-
tion of the existing methods is that they mostly require channel
state information at the transmitters (CSIT). Enabling CSIT
in communication systems is complicated and the precision
of CSIT is often worse than the channel state information
at the receiver (CSIR). Moreover, channel inversion is well
known to “blow up” when one of the users’ channels is in deep
fade. Hence, exploring CSIT-free AirComp methods becomes
attractive [4].
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Meanwhile, with the ever-growing importance on data se-
curity, privacy preservation of personal information has been
increasingly valued by companies and governments. Although
FL can intuitively preserve client privacy by keeping training
data locally, private information can still be leaked to some
extent by analyzing the differences of models trained and
uploaded by the clients [5], [6]. To address the privacy
concern, a natural approach is to add (artificial) noise to the
model parameters in the upload phase of FL, which can be
mathematically characterized through the lenses of differential
privacy (DP) [7]. AirComp has the potential to achieve DP
at no extra cost, due to the natural noise in the wireless
channel. Different DP levels can be guaranteed “for free” by
controlling the effective channel noise. However, AirComp
literature rarely characterizes the achievable privacy protection
in a mathematically rigorous fashion. Wei et al. [8] proposes
an AirComp design to achieve DP by adjusting the effective
noise. Seif et al. [9] maximizes the convergence rate while
satisfying a desired privacy level by optimizing the power
allocation between local gradients and the artificial noise. We
note that most research on the DP of AirComp requires power
adjustment to achieve the desired DP level, which is often
complex and power inefficient. Moreover, as wireless channel
noise is usually modeled as a Gaussian distribution, most
existing research (e.g. [8], [9]) can only guarantee (ϵ, δ)-DP,
which is weaker than ϵ-DP (“pure DP”).

To simultaneously remove the CSIT requirement of Air-
Comp and address the privacy challenge, we propose FLORAS
– Federated Learning using ORthogonAl Sequences, a novel
uplink wireless physical layer design for FL by leveraging the
properties of orthogonal sequences. On the communication de-
sign, FLORAS preserves all the advantages of AirComp while
removing the CSIT requirement. In particular, orthogonal
sequences enable the BS to obtain the CSIR via a single pilot,
by which global parameters can be estimated through simple
linear projections. Therefore, FLORAS significantly reduces
the channel estimation overhead while allowing the transmit
power to be independent of the channel realizations, which
avoids increasing the dynamic range of the transmit signal
and improves the power efficiency. From the perspective of
DP, FLORAS achieves a desired ϵ-DP guarantee by adjusting
the number of used orthogonal sequences, making it much
simpler and independent of the transmit power. Moreover,
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FLORAS produces an effective noise that follows the Cauchy
distribution, as opposed to the commonly studied Gaussian
distribution, on the global model, which enables pure DP.
A new FL convergence bound based on the Cauchy noise is
derived. Putting the two results together allows us to charac-
terize the trade-off between the model convergence rate and
the achievable DP levels. Experiments on real-word datasets
validate our theoretical analysis.

II. SYSTEM MODEL

A. FL Model

Consider an FL task with a central server and M total
clients. Each client k ∈ [M ] stores a (disjoint) local dataset
Dk, with its size denoted by Dk. The size of the total
data is D ≜

∑
k∈[M ] Dk. We use fk(w) to denote the

local loss function at client k, which measures how well a
machine learning (ML) model with parameter w ∈ Rd fits
its local dataset. Therefore, the global objective function over
all M clients can be denoted as f(w) =

∑
k∈[M ] pkfk(w),

where pk = Dk

D is the weight of each local loss function,
and the purpose of FL is to distributively find the optimal
model parameter w∗ that minimizes the global loss function:
w∗ ≜ argminw∈Rd f(w). We define Γ ≜ f∗ −

∑
k∈[M ] pkf

∗
k

to capture the non-independent and identically distributed
(non-i.i.d.) degree of local datasets, where f∗ and f∗

k are the
minima of global and local loss functions, respectively.

The FEDAVG framework [1] keeps clients’ data locally, and
the global model is averaged at the server by the composition
of multiple learning rounds. One of the key characteristics of
FL is partial clients participation, i.e., only a portion of clients
are selected in a single learning round for model upload.
Here, we assume that K of total M clients are uniformly
randomly selected during each learning round for the FL task.
To simplify the notation, we use the subscript k = 1, · · · ,K to
indicate the K clients during a learning round, acknowledging
that they could correspond to different clients in different
rounds. A typical wireless FL pipeline executes the following
steps iteratively, ∀t = 1, · · · , T :

1) Downlink communication. The BS broadcasts the cur-
rent global model wt to all K selected devices over the
downlink wireless channel.

2) Local computation. Each client uses its local data to
train a local model improved upon the received global
model wt. We assume that mini-batch stochastic gradient
descent (SGD) is adopted to minimize the local loss
function. The parameter is updated iteratively (for E
steps) at client k as: wk

t,0 = wt;w
k
t,τ = wk

t,τ−1 −
ηt∇f̃k(w

k
t,τ−1, ξ

k
t,τ−1), ∀τ = 1, · · · , E;wk

t+1 = wk
t,E ,

where ∇f̃k(w, ξ) denotes the stochastic gradient at client
k on model w, using mini-batch ξ.

3) Uplink communication. Each involved client uploads its
latest local model to the server synchronously over the
uplink wireless channel.

4) Server aggregation. The BS aggregates the received
noisy local models w̃k

t+1 to generate a new global model.

For simplicity, we assume that each local dataset has
equal size. Therefore, we have wt+1 = ΣK

k=1
1
K w̃k

t+1.
This work focuses on steps 3 and 4 in the FL pipeline. In

particular, we leverage the unique properties of orthogonal se-
quences, which leads to an efficient FL uplink communication
design with DP guarantees.

B. Communication Model

Consider a cell with a single-antenna BS and K single-
antenna users involving in the FL task. The communication
system leverages orthogonal sequences for uplink transmis-
sions. Note that one of the most popular implementations of an
orthogonal sequence-based wireless communication system is
code-division multiple access (CDMA). We assume a spread-
ing sequence set A = {ak, k = 1, · · · , N} containing N
unique spreading sequences (N ≥ K), where each spreading
sequence is denoted as ak = [a1,k, · · · , aL,k]

T and L is the
length of each spreading sequence. Each user is (randomly)
assigned with a unique spreading sequence ak from A as its
signature. We assume that the BS only has the knowledge
of the entire spreading sequence set A, without knowing
the specific signature of each user. We emphasize that this
restriction is consistent with our goal of guaranteeing user
privacy – BS cannot identify users based on their spreading
sequences. More details on this spreading sequence assignment
mechanism can be found in the journal version of this paper.

At the uplink step of the t-th round, each client transmits
the differential between the received global model and the
computed new local model: xkt = wt − wk

t+1 ∈ Rd, ∀k =
1, · · · ,K, to the BS, where xkt ≜ [xk

1,t, · · · , xk
d,t]

T . Using a
standard normalization technique (see e.g. Appendix of [3]),
we can ensure E[|xk

i,t|2] = 1. Moreover, we can guarantee
|xk

i,t| ≤ C (C ≫ 1) by adopting a proper clipping tech-
nique [10]. To simplify the notation, we omit index t and
use xi

k instead of xk
i,t barring any confusion. We assume

that each client transmits every element of the differential
model {xi

k}di=1 via d shared time slots. In addition, block
fading is assumed, i.e., the fading channel between each client
and the BS hk remains unchanged within d time slots. We
emphasize that we do not make any specific assumption on the
fading distribution throughout this paper. In the i-th slot, each
client transmits symbol xi

k spread by its uniquely assigned
orthogonal sequence. The received signal at the BS can be
written as

yi =

K∑
k=1

akhkx
i
k + ni ∀i = 1, · · · , d,

where ni is the additive white Gaussian noise (AWGN) with
mean zero and variance σ2/L per dimension. Note that since
the model differential parameters are real signals, we only
need to consider the real part of channel coefficients and noise
here. Although one-dimensional (real) modulation cannot fully
leverage the channel degrees of freedom, it is consistent with
the fact that binary phase-shift keying (BPSK) is the most
common modulation scheme in CDMA systems [11].
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We note that each pair of different spreading sequences are
orthogonal, i.e.,

aTi ai = 1, ∀i ∈ [N ]; and aTi aj = 0, ∀i ̸= j. (1)

At the BS, the receiver will decode the estimated aggregation
parameter x̃i ≜

∑
k∈[K] x̂

i
k where x̂i

k represents a noisy
version of xi

k, and recover x̃t ≜ [x̃1, · · · , x̃d]
T in d slots.

After that, the BS can compute the new global model as

wt+1 = wt +
1

K
x̃t. (2)

Throughout the paper, we assume that all users are synchro-
nized in frames, which can be achieved by the BS sending a
beacon signal to initialize uplink transmissions.

III. FLORAS

FLORAS is a novel design for the uplink communication
phase in FL. By incorporating the unique characteristics of
orthogonal sequences, FLORAS enables the BS to directly
obtain the estimates of aggregated parameters, which not only
reduces receiver complexity but also achieves better privacy
protection.

A. Algorithm design

FLORAS is a four-step framework and each step is detailed
as follows.

Step 1: Uplink channel estimation. Before the model
differential transmission, the BS schedules all users to transmit
a common pilot s simultaneously. The received signal is:

ys =

K∑
k=1

akhks+ ns.

The BS can utilize ys to estimate the channel gain coefficients.
For the K spreading sequences adopted by the users1, we have

ĥk =
aTk ys

s
=

aTk

[∑K
k=1 akhks+ ns

]
s

= hk +
aTk ns

s
, ∀k = 1, · · · ,K.

For the last N −K spreading sequences, the BS obtains

ĥk =
aTk ys

s
=

aTk

[∑K
k=1 akhks+ ns

]
s

=
aTk ns

s
, ∀k = K + 1, · · · , N.

Step 2: Projection vector construction. For simplicity, we
assume s = 1 in the following. After the channel estimation,
the BS constructs the following vector based on all of the
estimated channel coefficients:

v =

N∑
k=1

1

ĥk

ak =

K∑
k=1

ak
hk + aTk ns

+

N∑
k=K+1

ak
aTk ns

.

1Without loss of generality (w.l.o.g.), we assume the first K spreading
sequences from the total set are selected.

We note that since the BS does not have the knowledge on
which K of the total N spreading sequences are adopted by
the users, it has to use all {ĥk, k = 1, · · · , N} to construct the
projection vector hs. This seemingly redundant design actually
enables better privacy protection, which will be discussed in
Section IV.

Step 3: UL model transmission. All users upload each
element of the model differentials via d shared time slots:

yi =

K∑
k=1

akhkx
i
k + ni ∀i = 1, · · · , d.

The BS can then use yi to estimate the aggregated parameters
with the following step.

Step 4: Model decoding. The BS applies the following lin-
ear projection to estimate the aggregated model differentials:

x̃i = vTyi =

N∑
k=1

1

ĥk

ak

[
K∑

k=1

akhkx
i
k + ni

]

=

[
K∑

k=1

aTk
hk + aTk ns

+

N∑
k=K+1

aTk
aTk ns

][
K∑

k=1

akhkx
i
k + ni

]

=

K∑
k=1

hk

hk + aTk ns
xi
k +

K∑
k=1

aTk ni

hk + aTk ns
+

N∑
k=K+1

aTk ni

aTk ns
,

∀i = 1, · · · , d.

After decoding {x̃i, i = 1, · · · , d}, the BS can compute the
new global model following (2) and start the next learning
round.

B. Preliminary analysis

In the high signal-to-noise ratio (SNR) regime, where
the channel fading effect dominates the noise, we have
E[
∥∥aTk ns

∥∥2] ≪ E[∥hk∥2]. Therefore, we can establish the
following approximation for the estimated model in Step 4:

x̃i ≈
K∑

k=1

xi
k +

N∑
k=K+1

aTk ni

aTk ns
, ∀i = 1, · · · , d, (3)

where
∑N

k=K+1
aT
k ni

aT
k ns

denotes the dominant noise of the
received global model parameters2. The distribution of this
post-signal-processing noise is not straightforward, and we
next present Lemma 1 to establish that the noise term is a
Cauchy random variable.

Lemma 1. For i.i.d. Gaussian random vectors ni,ns ∼
N (0, σ2

L I), the derived random variable

X ≜
N∑

k=K+1

aTk ni

aTk ns
∼ Cauchy(0, N −K), ∀ak ∈ A,

2Note that this approximation drops the minor noise term, which results in
that the DP guarantee in the later discussion is the lower bound of the actual
DP level of FLORAS.
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with the Cauchy probability density function (p.d.f.)

fX(x) =
1

π

N −K

x2 + (N −K)2
, x ∈ R.

Due to the space limitation, the proof is omitted and is
available in the journal version. Cauchy distribution is known
as a “fat-tail” distribution, as the tail of its p.d.f. decreases
proportionally with 1/x2. Lemma 1 suggests that for a fixed
K, a larger spreading sequence set will result in a heavier tail
in the Cauchy noise. Therefore, we can adjust the size of the
spreading sequence set to induce different additive Cauchy
noise in (3). We will discuss the effect of different Cauchy
noise on DP and convergence in Section IV.

Remark 1. Compared with the widely investigated channel
inversion-based AirComp design, the proposed method does
not require CSIT for the uplink communication, which greatly
reduces the communication overhead. This is especially at-
tractive for Internet-of-Things (IoT) applications with massive
communication links. Moreover, thanks to the orthogonality of
spreading sequences, FLORAS allows the average transmit
power to be independent of channel realizations, and thus
avoids increasing the dynamic range of the transmit signal.
This property can significantly improve the efficiency of power
amplifiers (PAs). Note that to further improve the spectrum
efficiency of the proposed framework, the system can adopt
random orthogonal spreading sequences. More details on the
extension to non-orthogonal multiple access (NOMA) systems
can be found in the journal version.

IV. DIFFERENTIAL PRIVACY AND CONVERGENCE
ANALYSIS

A. Preliminaries

We investigate the DP level achieved by FLORAS. We
briefly introduce the basic concepts of DP in FL and subse-
quently demonstrate that FLORAS achieves different levels of
DP via the adjustment of the size of spreading sequence set N
and the number of involved clients K. For ease of exposition,
we define the noise-free global model as xi ≜

∑K
k=1 x

i
k.

We first introduce the concept of “neighboring datasets”.
We say that two datasets D and D′ are neighboring, denoted
as D ∼ D′, if they differ in at most one data sample. Based
on this concept, we state the definition of ϵ-DP as follows.

Definition 1 (ϵ-DP [7]). A randomized algorithm M : Xn →
R provides ϵ-DP with ϵ > 0 if, for all pairs of neighboring
datasets D ∼ D′ and all (measurable) sets of outcomes S ⊆
R, we have

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S].

We note that ϵ-DP is also known as pure DP, and it provides
a more strict privacy guarantee than (ϵ, δ)-DP. In the AirComp
FL design, decoding the aggregated global model from the
received signal can be regarded as a randomized algorithm
for all local datasets D =

⋃M
k=1 Dk:

M(D) := x̃i = g(D) + n, (4)

where g(D) = xi includes all operations to obtain the noise-
free xi in learning round i (including local SGDs, model
differential and global aggregation), and n is a random noise
following a certain distribution. We note that M(D) is a
randomized algorithm, whose randomness comes from SGD
(stohastic mini-batch), random client participation, and addi-
tive random noise n. Impact of the “built-in” SGD and random
client participation of FL on DP has been investigated [12],
and in this conference paper we focus on the randomness
of the single-round post-signal-processing noise for FLORAS.
More comprehensive analyses that consider all sources of
randomness and composition of multiple learning rounds will
be provided in the journal version.

To determine the DP level provided by the added noise, we
need to define the global sensitivity for operation g(·):

GSg = max
D,D′

|g(D)− g(D′)|, (5)

where D′ is a neighboring dataset of D. Note that the
difference between g(D) and g(D′) is only contributed from
one single client’s model differential. As mentioned in Section
II-B, for uplink communications, we can adopt the clipping
technique to ensure that |xi

k| ≤ C, and it is straightforward to
show that GSg ≤ 2C.

B. Differential Privacy

We now formally establish the DP level of FLORAS.

Theorem 1. Given a spreading sequence set A containing
N unique sequences and K clients (K < N ) involved in
an FL task, FLORAS provides ϵ-DP within one single uplink
communication with respective to dataset D, where

ϵ ≜
4C

N −K
.

Proof. As indicated by Lemma 1, the distribution of M(D) in
(4) follows Cauchy(g(D), N −K). Let neighboring datasets
D ∼ D′. Then for any r ∈ R, we have

Pr[M(D) = r]

Pr[M(D′) = r]
=

(N −K)2 + (r − g(D′))2

(N −K)2 + (r − g(D))2
≜ h(r).

To prove Theorem 1, we need to show that h(r) ≤ eϵ.
If g(D) = g(D′), it is easy to find that h(r) = 1 ≤ eϵ(ϵ >

0). If g(D) ̸= g(D′), w.l.o.g., we assume g(D) > g(D′). To
simplify notation, we introduce the auxiliary variables P ≜
g(D) + g(D′) and Q ≜ g(D)− g(D′). By taking the first-
order derivative of h(r) and setting h′(r) = 0, we can show

that h(r) reaches its maximum at rmax =
P+

√
Q2+(2N−2K)2

2 ,

with h(rmax) = 1 +
2Q(

√
Q2+4(N−K)2+Q)

4(N−K)2 . Since Q > 0 and
N −K > 0, we have

√
Q2 + 4(N −K)2 ≤ Q+ 2(N −K).

Based on the definition of global sensitivity function in (5),
we further have Q ≤ |Q| ≤ GSg ≤ 2C. Therefore, we can
establish that

h(r) ≤ h(rmax) = 1 +
2Q(

√
Q2 + 4(N −K)2 +Q)

4(N −K)2
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≤ 1 +
2Q(2Q+ 2(N −K))

4(N −K)2
≤ 1 +

2C(2C + (N −K))

(N −K)2

=
(N −K)2 + 2C(N −K) + 4C2

(N −K)2

≤ (N −K)2 + 4C(N −K) + 4C2

(N −K)2
=

(
1 +

2C

N −K

)2

= (1 +
1

2
ϵ)2 ≤ 1 + ϵ+

1

2
ϵ2 +O(ϵ3) = eϵ.

Theorem 1 reveals that, for a fixed number of clients
K, the expansion of spreading sequence set would achieve
higher level of ϵ-DP. In particular, ϵ ∝ 1

N−K . Since the BS
(adversary) has no knowledge on the specific K of the total
N spreading sequences the clients have chosen, increasing
the size of A results in a heavier tail of the post-decoding
Cauchy noise, which achieves better privacy protection. By
choosing different sizes of the spreading sequence set and/or
selecting different numbers of active clients, we can provably
achieve different DP levels (i.e., ϵ) as shown in Theorem 1.
Note that larger noise (better privacy protection) will affect
the convergence rate of FL. We will discuss this impact next.

C. Convergence
We analyze the convergence performance theoretically of

FLORAS. We make the following standard assumptions on
loss functions that are commonly adopted in the convergence
analyses of FEDAVG and its variants [13].

Assumption 1. L-smooth: ∀ v and w, ∥fk(v)− fk(w)∥ ≤
L ∥v −w∥; µ-strongly convex: ∀ v and w,
⟨fk(v)− fk(w),v −w⟩ ≥ µ ∥v −w∥2; Unbiased SGD:
∀k ∈ [M ], E[∇f̃k(w)] = ∇fk(w); Uniformly bounded
gradient: ∀k ∈ [M ], E

∥∥∥∇f̃k(w)
∥∥∥2 ≤ H2.

We note that a Cauchy distribution has uncertain (infinity)
variance, which brings a significant challenge to the conver-
gence analysis, as the noise variance cannot be bounded. To
address this issue, we assume the BS applies a truncation
operation in the interval [−B,B] on the decoded global
parameters in (3):

x̃i ≈ max

(
min

(
K∑

k=1

xi
k +

N∑
k=K+1

aTk ni

aTk ns
, B

)
,−B

)
(6)

where B ≫ C. Note that the truncation operation is universal
(albeit sometimes implicit) in almost all practical systems,
since the signal values in the processing units are always finite.
As long as we ensure B ≫ C, the truncation operation has
very little impact on the received signal. For ease of exposition,
we make the following assumption on the noise term in (6).

Assumption 2. The noise term in (6) follows a truncated
Cauchy distribution within the interval [−B,B] with B ≫ C,
whose p.d.f. can be expressed as

fX(x) =
1

2 arctan
(

B
N−K

) N −K

x2 + (N −K)2
, x ∈ [−B,B].
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Fig. 1. Comparison of FLORAS and the channel inversion method with SNR
= 0 and 15 dB.

Note that the DP guarantee of FLORAS in Theorem 1 still
holds under Assumption 2. We next establish Theorem 2 as
the convergence guarantee of FLORAS.

Theorem 2. With Assumptions 1 and 2, for some γ ≥ 0,
if we select the learning rate as ηt = 2

µ(t+γ) , a wireless
system implementing FLORAS for FL uplink communications
achieves

E[f(wt)]− f∗ ≤ L

2(t+ γ)

[
4G

µ2
+ (1 + γ) ∥w0 −w∗∥2

]
,

for any t ≥ 1, where

G =
∑M

k=1
H2

k

M2 + 6LΓ + 8(E − 1)2H2 + M−K
M−1

4
K η2tE

2H2 +D(ϵ),

and D(ϵ) = 64C2

K2ϵ2 arctan(Bϵ
4C )

[
Bϵ
4C − arctan

(
Bϵ
4C

)]
E2H2.

The proof is omitted due to the space limitation. Theorem 2
demonstrates that FLORAS preserves the O(1/T ) convergence
rate of SGD. There are multiple components in constant G that
affect the convergence speed of FL. In particular,

∑K
k=1

H2
k

K2

reveals the variance reduction effect of SGD by involving
more clients. 6LΓ and 8(E−1)2H2 highlight the influence of
non-i.i.d. datasets and the number of local epochs, respectively.
The last term D(ϵ) in B captures the impact of Cauchy
noise, i.e., the level of privacy protection. We note that D(ϵ)
increases as ϵ decreases to 0. It implies that a higher level
of privacy protection will decrease the speed of convergence.
Therefore, Theorem 2 reveals the trade-off between privacy
protection and convergence rate, which provides guidance for
the practical system design.

V. EXPERIMENTS

In this section, we evaluate the performance of FLORAS
through numerical experiments. We first compare the learn-
ing performance of FLORAS with the widely investigated
channel inversion AirComp method. Then, we evaluate the
effect on the convergence rate of various DP levels. In
particular, we validate the theoretical results via real-world
FL tasks on the MNIST dataset, under different SNRs and
other system configurations. All convergence curves are the
average of five individual Monte Carlo trials. Details on the
dataset are as follows. The MNIST dataset contains multiple
handwritten digit figures of 20 × 20 pixels. The training
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Fig. 2. FLORAS with different DP levels with SNR = 20dB.

set contains 4, 000 examples that are evenly distributed over
K = 20 clients. The data is shuffled and randomly assigned
to each client. The test set size is 1, 000. We examine
FLORAS and the theoretical results on a multinomial lo-
gistic regression problem. Specifically, let f(w;xi) denote
the predictor with parameter w = (W,b) and the form
f(w;xi) = softmax(Wxi + b). The loss function is given
by loss(w) = 1

D

∑D
i=1 CrossEntropy(f(w;xi),yi) +

λ ∥w∥2. We note that this is a convex optimization problem
and we adopt the regularization parameter λ = 0.01 in the
experiments.

We first evaluate the performance of FLORAS compared
with the channel inversion method. We assume block Raleigh
fading hk ∼ CN (0, 1). For channel inversion, we adopt a
threshold 0.01 for the fading channel gain to avoid deep
fading. The following parameters are used for training: local
batch size 50, the number of local epochs E = 1, and
learning rate η = 0.005. Fig. 1(a) and Fig. 1(b) illustrate the
training loss and test accuracy performance versus the learning
round of FLORAS and channel inversion with high (red line)
and low (blue line) SNR values, respectively. For high SNR,
FLORAS and channel inversion have similar performance.
However, note that unlike FLORAS, channel inversion requires
full CSIT at each client, which incurs significantly larger
communication overhead. The advantages of FLORAS become
conspicuous in the low SNR case, in which noise becomes the
dominant factor of the convergence speed. FLORAS allows all
participated clients to make full use of the transmit power
and achieves significantly better performance. As shown in
Fig. 1(b), FLORAS achieves about 7.5% higher test accuracy
compared with channel inversion at SNR = 0 dB.

We next evaluate the convergence performance versus dif-
ferent levels of DP. In this experiment, we keep SNR = 20 dB
and K = 20, while changing the size of available orthogonal
sequences in set A to be 20, 21, 25 and 30, i.e., N−K = 0, 1, 5
and 10. As discussed in Section IV, the larger size of set A, the
higher DP level FLORAS achieves. The following parameters
are used for training: local batch size 20, the number of local
epochs E = 1, and learning rate η = 0.005. The training loss
with different privacy levels are shown in Fig. 2(a). It is clear
that although higher privacy level decreases the convergence
speed, the ML model can still converge with almost the

same training loss as that of the no-differential-privacy case
(N −K = 0). This is consistent with the theoretical analysis
in Section IV-C. The test accuracy convergence in Fig. 2(b)
further validates the effectiveness of FLORAS. We can see
that the test accuracies for moderate DP levels (N −K = 1
and 5) are almost the same as the case of N − K = 0, i.e.,
we can achieve certain DP levels almost for free. Even when
N −K = 10, the test accuracy loss is still very small, being
about 3.5% compared with the N −K = 0 case.

VI. CONCLUSION

We have proposed FLORAS, a differentially private Air-
Comp FL framework. Compared with the channel inversion
method, FLORAS does not require CSIT and performs much
more robustly in low SNR cases, which is crucial for IoT appli-
cations. The flexibility of adjusting the size of the orthogonal
sequence set allows us to easily control the ϵ-DP guarantee
of the system. From the analyses of convergence and DP,
we have established the trade-off between convergence speed
and privacy preservation, which has been further validated by
experiments on real-world FL tasks.
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