
1

CirFix: Automated Hardware Repair and its
Real-World Applications

Priscila Santiesteban, Yu Huang, Westley Weimer, Hammad Ahmad

Abstract—This article presents CirFix, a framework for automatically repairing defects in hardware designs implemented in languages
like Verilog. We propose a novel fault localization approach based on assignments to wires and registers, and a fitness function tailored
to the hardware domain to bridge the gap between software-level automated program repair and hardware descriptions. We also
present a benchmark suite of 32 defect scenarios corresponding to a variety of hardware projects. Overall, CirFix produces plausible
repairs for 21/32 and correct repairs for 16/32 of the defect scenarios. Additionally, we evaluate CirFix’s fault localization independently
through a human study (n=41), and find that the approach may be a beneficial debugging aid for complex multi-line hardware defects.

Index Terms—Circuit Designs, Automated Repair, Empirical Study, User Study

✦

1 INTRODUCTION

R ECENT increases in the complexity of hardware designs
have challenged the ability of developers to find and

repair defects in circuit descriptions [1]. While significant
effort has been devoted to efficiently verifying functional
correctness in hardware design descriptions, relatively little
work has been done in patching defects in such descriptions
automatically. By and large, debugging and repairing hard-
ware designs remains a very expensive and time-consuming
task [2]. Indeed, recent functional and security vulnerabili-
ties due to defects at the hardware design level have led to
expensive consequences [3], [4], [5]. To reduce the cost and
improve the maintenance of hardware designs, a solution
needs to not only precisely identify sources of defects in real-
world off-the-shelf hardware descriptions, but also automat-
ically produce repairs implementing correct functionality of
the circuit designs that can then be shown to developers
for validation before moving on to the synthesis phase.
Additionally, we desire a solution that applies directly to
both the behavioral aspects (i.e., higher-level descriptions
of circuit functionality) and the register-transfer level (RTL)
aspects (i.e., lower-level descriptions) of circuit designs, and
makes use of readily-available resources that are part of
hardware design to validate proposed repairs.

Previous work has attempted to address this problem
but may not satisfy all of these characteristics of a desired
solution. For instance, some techniques automatically local-
ize defects in design source code but suffer from high false
positive rates [6], [7].

Other approaches for automatic error diagnosis and
correction require formal specifications to conduct design
verification [8], which usually do not scale to large designs.

Furthermore, previous work does not operate on
behavioral-level descriptions of hardware circuits [9], [10].
On the other hand, in the realm of software, significant
research effort focuses on repairing bugs automatically [11],
[12], [13]. Automated program repair (APR) algorithms fix de-
fects in software by producing patches that pass all test cases
while retaining required functionality. Traditional APR for

software employs fault localization techniques to implicate
faulty code, and such techniques are often crucial to the
success of program repair. Interest in applying software
APR methods to hardware has been seen in the literature.
Some methods for localizing hardware errors focus on ap-
plying a model-based diagnosis paradigm and making use
of structure and behavior for software debugging [14], [15],
[16], [17].

While both software programs and hardware description
languages (HDLs) share programming concepts like expres-
sions, statements, and control structures, suggesting the pos-
sibility of repurposing software repair techniques to hard-
ware designs, we highlight two key differences between the
two domains: (1) HDL designs are inherently parallel and
often include non-sequential statements, since separate por-
tions of hardware can operate simultaneously. While some
conventional languages, such as Javascript, have support
for parallelism, APR typically focuses on software written
in languages such as C and Java that are generally based
around a serial execution model. (2) Software programs
usually use test cases to evaluate functional correctness,
where individual test cases may pass or fail depending on
the quality of the software. HDL designs, on the other hand,
use testbenches [18], which are programs with documented
and repeatable sets of stimuli, to simulate behaviors of a
device under test (DUT). In both academia and industry,
the majority of digital hardware design is done using such
HDLs.

We present two key insights to bridge the gap between
software repair techniques and hardware designs. We first
hypothesize that while traditional spectrum-based fault lo-
calization approaches do not apply to hardware designs
that feature a more parallel structure [19], dataflow-based
fault localization (e.g., [20]) approaches work well in this
domain. Second, we hypothesize that a traditional hardware
testbench can be instrumented to admit observations for
candidate patches that guide the search for APR.

Leveraging these insights, we present CirFix, a frame-
work for automatically repairing defects in hardware de-
signs implemented in languages like Verilog, one of the

2

most popular HDLs [21]. CirFix uses genetic programming
(GP), an iterative stochastic search technique, to find can-
didate repairs for defects in hardware designs. CirFix also
makes use of readily-available artifacts in the hardware
design process (e.g., testbenches, simulation environments)
to diagnose and repair defects in a circuit description. We
propose an approach to guide the search for a repair by
instrumenting hardware testbenches to record the values of
output wires at specified time intervals during a simulation
of the circuit design. Our novel fault localization utilizes
the simulations to assign blame to incorrect wires and
registers.1 CirFix then performs a bit-level comparison of
output wires against information for expected behavior to
assess functional correctness of candidate repairs. CirFix
employs a fixed point analysis of assignments made to
internal registers and output wires to implicate statements
and reduce the search space, enabling our approach to scale
to large circuit designs in industry.

We present a benchmark suite of 32 defect scenarios [22]
based on three hardware experts — two from industry
and one from academia — asked to transplant bugs they
observed in real life into 11 different Verilog projects. CirFix
can produce plausible repairs for 21 out of the 32 Verilog de-
fect scenarios within reasonable resource bounds, of which
16 are deemed correct upon manual inspection.

Furthermore, we evaluate the usability of our novel fault
localization algorithm independent of the automated repair
context through a human study in which n = 41 humans
assess its quality and usefulness. We find a statistically-
significant preference (p = 0.003) for CirFix fault local-
ization as a debugging aid in fixing multi-line hardware
defects, primarily in student applications (p = 0.01).

The main contributions of this paper are:

• CirFix, a repair algorithm for hardware designs.
• A novel dataflow-based fault localization approach

for HDL descriptions to implicate faulty design code.
• A novel approach to guide the search for a hardware

design repair that is compatible with the testbench-
based hardware testing process.

• A new benchmark suite of 32 scenarios, based on
proprietary bugs but available in 11 open projects.

• A systematic evaluation of CirFix on our benchmark
suite. CirFix was able to correctly repair 16 out of the
32 Verilog defects under consideration.

• A human study using CirFix’s fault localization al-
gorithm as a debugging aid on real-world and stu-
dent applications. We observe statistically significant
preference using the support for multi-line defects
(p = .003) in student applications (p = 0.01).

Additions relative to prior paper. This article extends
our ASPLOS 2022 paper [23], but also includes (1) a new
human study of the proposed fault localization algorithm
for hardware designs, (2) an independent assessment of
correctness of the produced CirFix patches from an expert
team [24], [25], [26], [27], [28], (3) an investigation of fault
localization sensitivity and, (4) a discussion of the degree
to which CirFix interacts with the synthesizability or timing

1. In HDLs like Verilog, wire elements are used to connect input and
output ports of a module instantiation, while registers stores values.

(a) Main block of the 4-bit counter with an overflow error

(b) Main testing logic from the 4-bit counter testbench

Fig. 1. A 4-bit counter with an overflow error in Verilog.

of a design. In Section 4.3 we introduce a human study to
investigate the incremental benefit of our fault localization
in various Verilog debugging scenarios. In Section 5.1 we
report an assessment of CirFix patches along an orthogonal
evaluation criterion from an independent expert APR team.
In Section 6 we analyze the results in terms of objective
performance and subjective judgements. In Section 5.1,
we evaluate CirFix’s repair performance by conducting a
targeted experiment that controls the quality of initially-
provided information. Lastly, we discuss synthesizability
and timing of repairs in Section 7.

2 MOTIVATING EXAMPLE

In this section, we use an example defect from a faulty 4-
bit counter with an overflow bit, implemented in Verilog, to
motivate the fault localization and candidate evaluation ap-
proaches used by CirFix. The main block of the source code
is shown in Figure 1a, with the corresponding testbench in
Figure 1b. The circuit design uses wires enable and reset
to increment (lines 35–37) and reset (lines 30–33) the counter
respectively. Incrementing the counter when it has a binary
value of 4’b1111 results in the overflow bit being set to
true (lines 39–41). This implementation incorrectly manages
the overflow bit: the if-statement at line 30 is missing an
assignment that resets overflow_out. Such defects can
have serious consequences — integer overflow errors can
be leveraged into significant security exploits [29].

3

For the purposes of this work, there are two key hard-
ware design concepts that we highlight for a general audi-
ence: circuit synchronization and parallelism.

Circuit synchronization. The main block of the circuit
design code shows an always block (line 27, Figure 1a)
that executes repeatedly until the simulation stops. The
execution of such blocks can only be triggered by changes
to wires in the sensitivity list that follows the always key-
word. Nearly every digital circuit design includes a clock
signal (line 50, Figure 1b) that oscillates between a high
and a low state (denoted by events posedge and negedge
respectively); circuits rely on clock signals to know when
and/or how to execute their programmed actions. A clock
cycle is the period of time it takes for the clock signal
to oscillate from high to low and back to a high state.
For the 4-bit counter in Figure 1a, the wire clk (denoting
the clock signal) is the only wire in the always block’s
sensitivity list (see line 27), and lines 28–42 are executed
every time that wire reaches a high state. Note that there
also exists a notion of asynchronous designs where the state
of the system can change in response to changing inputs.
However, given the increased complexity associated with
asynchronous designs, most hardware designs tend to be
synchronous in nature [30].

Parallelism. A key property of HDL designs not immedi-
ately apparent in Figure 1 is that parts of the design code
typically execute in parallel. When a design is realized into
actual hardware, individual components run all the time.
Indeed, every statement in a Verilog design not inside an
explicit sequential block of code exhibits concurrency. For
instance, for the 4-bit counter in Figure 1a, an implemen-
tation managing the overflow bit correctly would include
two assignments to counter_out and overflow_out (on
lines 31 and 32 respectively) that happen at the same time
when reset is true.

To automatically repair the design code in Figure 1a,
CirFix needs to first answer, for the original design and
each candidate repair: what part of the circuit, if any, is be-
having incorrectly? Unfortunately, standard spectrum-based
fault localization tools commonly used by APR for software
do not work for HDL designs that exhibit parallelism. To
overcome this challenge, we propose a novel fault localiza-
tion approach based on assignments to wires and registers.
We first instrument the existing testbench to record output
values at given time intervals. This instrumented testbench,
when used to simulate the design, reports the output values
from the circuit, which can be compared against expected
output. Any mismatch between expected and actual output
serves as the starting point for our fault localization. For the
4-bit counter in Figure 1, the testbench waits for 10 units of
time before sending the reset signal (line 65, Figure 1b —
cf. stimuli for unit tests in software). The procedural block
within the testbench that was waiting on the reset signal
(line 55, Figure 1b) then sets reset to true upon the next
falling edge of the clock signal. This causes any subsequent
executions of the if-statement that resets the wires (line
30, Figure 1a) to evaluate the true branch, after which the
counter is reset. A correct design should also reset the
overflow bit: at this point, the expected behavior requires
overflow_out to be 0, while the actual value recorded
by our instrumented testbench is x (the Verilog represen-

tation an uninitialized or unknown logic value). This causes
overflow_out to be implicated for fault localization, and
CirFix focuses repair efforts on assignments to this wire
and parts of design code that such assignments transitively
depend on (e.g., the conditional in line 39, Figure 1a).

For every candidate repair produced, CirFix needs to
also answer: how good (i.e., fit) is the proposed repair at
fixing the defect? Unfortunately, evaluation approaches for
candidate repairs from software cannot be applied to HDL
descriptions that typically use testbenches (see Figure 1b).
We address this using a novel fitness evaluation approach.
Our instrumented testbench records the values of output
wires and registers at every rising edge of the clock during
an otherwise standard hardware simulation. For developer-
specified time intervals from the design simulation (a clock
cycle by default), our fitness function compares each output
bit against the expected output: for every bit match, we add
to the fitness sum; for every bit mismatch, we subtract from
the sum. This fitness sum is then normalized. For the 4-
bit counter shown in Figure 1, the testbench simulates the
design code for 26 clock cycles, out of which the first 20 pro-
duce an output of x (i.e., uninitialized) for overflow_out
on the original design. This causes an output mismatch for
overflow_out for 17 clock cycles, resulting in a fitness
score of 0.58 (see Section 3.2 for CirFix fitness calculations).
A repair managing overflow_out correctly would match
expected behavior, resulting in a fitness of 1.0.

This faulty circuit code was obtained by having a hard-
ware expert from industry adversarially transplant defects
from their experience into open circuit descriptions (see
Section 4). We use this example to motivate and demonstrate
the basic design ideas behind CirFix, an approach that scales
well to larger circuit designs, as we will demonstrate.

3 TECHNICAL APPROACH

In this section, we present CirFix, an automated repair al-
gorithm for defects in hardware design code. Our prototype
implementation of CirFix operates on hardware descriptions
written in Verilog, and thus supports HDL programming
constructs such as sequential and parallel code, variable
reassignment, and synchronized code blocks. Our prototype
would require modifications to generalize to other hardware
description languages (e.g., adding support for AST parsing
or different simulation environments). The pseudocode is
shown in Algorithm 1.

CirFix applies our two-pronged HDL-specific approach
to implicate faulty design code and assess the correctness
of circuit descriptions to produce repairs that can then be
shown to human developers for review. Our fault localization
approach simulates a faulty circuit and assigns blame to
incorrect wire and register outputs (line 6 in Algorithm 1;
see Section 3.1). Note that while traditional software-based
APR techniques typically compute fault localization once at
the start of the search for repairs, we choose to repeatedly
re-localize to support multiple dependent edits made to the
source code. Our fitness function, tailored to the hardware
domain, scores each candidate patch to guide the search for
repairs (lines 4 and 18 in Algorithm 1; see Section 3.2).

At a high level, CirFix uses genetic programming
(GP) [31], an iterative stochastic search technique, to syn-
thesize candidate repairs to faulty HDL programs. The

4

Algorithm 1 The high-level CirFix pseudocode.
Input: Circuit design to be repaired, C .
Input: Instrumented testbench for circuit, TB .
Input: Expected output for circuit behavior, O.
Input: Fitness function, f .
Input: Parameters, popSize,maxGens, rtThreshold ,
mutThreshold .
Output: Repaired circuit description.

1: pop ← seed pop(C, popSize)
2: repeat
3: childPop ← ∅
4: while |childPop| ≤ popSize and
∀ candidate ∈ childPop. f(candidate,TB , O) < 1.0 do

5: parent ← tournament selection(pop, f)
6: fl set ← fault loc(parent)
7: if probability() ≤ rtThreshold then
8: child ← apply fix pattern(parent ,fl set)
9: childPop ← childPop ∪ {child}

10: else ▷ Repair operators
11: if probability() ≤ mutThreshold then
12: child ← mutate(parent ,fl set)
13: childPop ← childPop ∪ {child}
14: else
15: parent2 ← tournament selection(pop, f)
16: {c1 , c2} ← crossover(parent , parent2)
17: childPop ← childPon ∪ {c1 , c2}
18: until resources exhausted or
∃ candidate ∈ childPop. f(candidate,TB , O) = 1.0

19: return minimize(candidate,TB , O)

framework takes as input the source code implementing
a faulty circuit design, an instrumented testbench used to
simulate the circuit for testing and verification purposes, the
expected circuit behavior,2 and the input parameters. The
algorithm starts with the original source code and maintains
a population of program variants, each stored as a repair
patch [32] describing a sequence of abstract syntax tree (AST)
edits parameterized by unique node numbers. Each pro-
gram variant is obtained by applying a repair operator (lines
12 and 16 in Algorithm 1; see Section 3.3) or a repair template
(line 8 in Algorithm 1; see Section 3.3) to a parent selected
for reproduction. Candidate variants are selected for repro-
duction based on their fitness scores assigned by the CirFix
fitness function (line 5 in Algorithm 1; see Section 3.4). Our
fix localization identifies code to be inserted or replaced as
part of mutation operations (see Section 3.5). The algorithm
loops for several generations, each maintaining a population
of program variants, until a plausible repair is found that pro-
duces output (as observed by the instrumented testbench)
matching the expected circuit output, or allowed resources
are exhausted (i.e., the algorithm reaches a timeout or a
certain number of generations). For the final post processing
step, CirFix minimizes [33] a candidate repair to remove
extraneous operations not needed to obtain correct circuit

2. CirFix does not require perfect information for expected behavior
for every timestep: the developer can choose to only provide informa-
tion at certain intervals. See prior work RQ4 [23] for an evaluation of
the trade-off between the level of detail of expected output and repair
success.

Algorithm 2 High-level algorithm for fault localization for
HDL based on a fixed point analysis of assignments.
Input: Faulty circuit design code AST, ast.
Input: Simulation output, S : Time → Var → {0, 1, x, z}.
Input: Expected output, O : Time → Var → {0, 1, x, z}.
Output: Fault localization set, FL.

1: FL,mismatch ← ∅, ∅
2: mismatch ′ ← get output mismatch(O,S) ▷ Section 3.2
3: while mismatch ̸= mismatch ′ do
4: mismatch ← mismatch ∪mismatch ′

5: for node in ast do
6: if implicated(node,mismatch) then
7: FL← FL ∪ {node.id}
8: for each child of node do
9: FL← FL ∪ {child .id}

10: if type(child) = Identifier and
child /∈ mismatch then

11: mismatch ′ ← mismatch ′ ∪ {child}
12: return FL

output (line 19 in Algorithm 1; see Section 3.6). Candidate
repairs are not deployed directly but are instead shown to
human developers (e.g., during the pair process between
an RTL design engineer and a verification engineer [34])
for validation before the design is ultimately synthesized,
reducing maintenance costs [35], [36].

3.1 Fault Localization
Fault localization is critical to the success and efficiency
of APR [37]. Traditional APR for software often relies
on spectrum-based fault localization [38] to narrow down
defects to certain parts of a faulty program by sampling
the program counter. Such fault localization approaches do
not extend naturally to the parallel structure of hardware
descriptions [19].

To overcome this challenge, we propose a novel
dataflow-based fault localization approach to implicate
faulty code in HDL descriptions. Previous work analyz-
ing defects in large hardware projects reports that most
defects in Verilog descriptions correspond to assignment
statements and if-statements [39]. We present an algorithm
that implements an analysis of assignments made to wires
and registers in a circuit’s design code to implicate faulty
statements. Our proposed algorithm transitively captures
data and control dependencies in a context-insensitive fixed
point analysis. While traditional spectrum-based fault lo-
calization approaches for software return a ranked list of
implicated statements [40], [41], [42], our approach returns
a uniformly-ranked set: due to the parallel structure of HDL
designs, a set of implicated assignments that are equally
likely to contribute to the design defect suffices.

Algorithm 2 outlines the high-level pseudocode for our
fault localization approach. The algorithm takes as input the
AST of the faulty circuit design, the output from design sim-
ulation, and the expected circuit behavior (see Section 3.2 for
the simulated and expected outputs). It then compares the
simulation output against the expected behavior to produce
a set of identifiers (i.e., variable names) for output wires and
registers with mismatched values. Using this mismatch set

5

as a starting point, for every node in the AST, the algorithm
checks if the node is implicated by output mismatch3. Im-
plication for a node in the AST occurs when

• (Impl-Data): either the node corresponds to an as-
signment statement and the left child of the node
corresponds to an identifier in the mismatch set (cf.
data dependency analysis),

• (Impl-Ctrl): or the node corresponds to a conditional
statement and an identifier in the conditional state-
ment belongs to the mismatch set (cf. control depen-
dency analysis).

Any implicated node and all of the node’s children are
added to the fault localization set. Additionally, if any child
of an implicated node is itself an identifier not part of the
mismatch set, the name of the identifier is added to the
mismatch set (Add-Child). For example, for the 4-bit counter
introduced in Section 2, recall that the overflow_out
wire had incorrect output from the circuit simulation. This
causes the wire to be added to the mismatch set. The
CirFix fault localization implicates the only assignment to
overflow_out (line 40, Figure 1a) by rule (Impl-Data) in
the first iteration of the algorithm. Indeed, the entire if-
statement wrapping this assignment (line 39, Figure 1a)
becomes implicated by (Impl-Ctrl), bringing in the new
identifier counter_out to the mismatch set by (Add-
Child). The process is repeated until no new identifiers are
added to the mismatch set.

This novel approach to fault localization for hardware
is a good fit for automatically repairing HDL designs: it
returns a precise set of implicated AST nodes in a faulty
circuit design, is context-insensitive and therefore inexpen-
sive to compute, and applies directly to node types as-
sociated with ASTs for languages like Verilog. Note that
while we demonstrate the scalabaility of our approach on
a variety of hardware designs of different sizes (see Table 2),
our approach may require additional developer effort to
generalize to very complex designs (e.g., a microprocessor)
with millions of wires, gates, and registers. We discuss this
limitation in Section 8.

3.2 Fitness Evaluation

The fitness function evaluates the acceptability of a program
variant by assigning a value ranging continuously between
0 and 1 to the variant, with 1 indicating a plausible [43]
(i.e., testbench-adequate) repair ready to be shown to hu-
man developers. Fitness provides a termination criterion for
CirFix and guides the search for a repair. As mentioned in
Section 1, traditional APR for software uses test-case based
evaluation strategies to assess candidate repairs. Hardware
designs, by contrast, use testbenches to verify functional cor-
rectness (see Section 1 for details on the difference between
hardware and software evaluations). We present a novel
fitness function tailored to hardware to guide the search for
repairs to HDL designs. Our fitness function uses two key
insights: visibility and comparison.

3. In a focused investigation of our our three largest benchmarks,
both control flow complexity and also the number of wires/registers
were found to contribute equally (40–50% each) to the final fault
localization size, and thus the scalability of our algorithm.

Many traditional hardware testbenches monitor the val-
ues of output wires during simulation and assess correct-
ness based on the final output values. For instance, the
testbench for the 4-bit counter introduced earlier (Figure 1b)
may report that the final value of the counter is 5 and the
overflow bit is 1 when the simulation terminates. Some off-
the-shelf hardware testbenches, especially those for large
projects, may not even report the exact incorrect value,
reporting instead merely the presence or absence of an error
during simulation. We want our fitness function to assess
a candidate repair based on intermediary as well as final
output values, and assign fitness values to the repair based
on its overall closeness to the correct circuit design [44].
To do so, given a testbench for a faulty HDL description,
we instrument the testbench to record the values of output
wires and registers for specified time intervals. This instru-
mentation is easily automatable: every hardware testbench
must instantiate a device-under-test (DUT) and connect
wires to the module being instantiated (cf. unit tests in
software instantiating the object being tested); each module
in turn specifies input and output wires, and a static analysis
of the instantiation of the DUT can provide the information
needed to instrument a testbench automatically.

Once the testbench is instrumented, we simulate the
circuit design and compare the results against the expected
output to assess functional correctness of the HDL descrip-
tion. We desire a fitness function that assigns high values to
candidate repairs that display behavior similar to expected
behavior. To do so, we need to determine the relative contri-
bution of each bit to the fitness of a proposed repair. Given
a set of time steps Time, a set of output wires and registers
V ar, a simulation result S : Time → Var → {0, 1, x, z},
and expected output O : Time → Var → {0, 1, x, z},
where x or z correspond to unknown logic value and
high impedance respectively, for timestamp ci ∈ Time , we
sum over the n = |S(ci)| output bits of the circuit. We
compare the expected value for wire b from clock cycle
ci, Oci,b = O(ci(b)), against the actual value from the
simulation result, Sci,b = S(ci(b)). If the bits match, we
add to the fitness sum of the circuit; if the bits differ, we
subtract from the fitness. An additional penalty weight φ is
assigned to bits with values of x (uninitialized) or z (high
impedance).

The fitness sum, sum(S,O), and total possible fitness,
total(S,O), are defined as follows, where represents a bit
value of 0 or 1:

The normalized fitness of the circuit is then defined as:

fitness(S,O) =

{︄
0 sum(S,O) < 0
sum(S,O)
total(S,O) sum(S,O) ≥ 0

6

TABLE 1
Repair templates in CirFix

Defect Category Pattern Description

Conditionals Negate the conditional of a code block (e.g., if-
statement, while-loop)

Sensitivity Lists Trigger an always block on a signal’s falling edge
Trigger an always block on a signal’s rising edge
Trigger an always block on any change to a vari-
able within the block
Trigger an always block when a signal is level

Assignments Change a blocking assignment to non-blocking
Change a non-blocking assignment to blocking

Numeric Increment the value of an identifier by 1
Decrement the value of an identifier by 1

This novel approach to calculating normalized fitness is
effective at capturing whether or not a candidate design is
close to the correct implementation of the circuit, and at
guiding the search for a repair.

3.3 Repair Templates & Repair Operators

A repair template for a defect in code is defined as a pre-
identified pattern that can be applied to some aspect of
the code to fix the defect. The idea of using templates for
APR is well-studied for software [45], [46], [47]. We apply
repair templates to aid CirFix in its search for repairs. We
propose nine repair templates corresponding to four defect
categories for HDL designs. Of the four defect categories we
consider, three are suggested in previous work by Sudakr-
ishnan et al. [39] that analyzes the bug fix history of four
hardware projects written in Verilog and presents several
commonly-occurring fixes for HDL descriptions; we pro-
pose the remaining defect category based on our experience
with defects in hardware designs. The repair templates in
CirFix are presented in Table 1. Incorrect conditionals, sen-
sitivity lists, and assignments correspond to the three most
commonly occurring defects in the four hardware projects
analyzed in previous work [39, Tab. 2]. Note that our repair
templates focus on correct behavior from circuit designs
during simulation (cf. rules targeting synthesizability [48]).
For an incorrect conditional for a program branch (e.g., the
condition for a while-loop or an if-statement), our repair
templates can negate the conditional.

CirFix uses two standard repair operators from well-
known software repair approaches [22], [49], [50], mutation
and crossover, to search the nearby space of circuit designs
to produce a repair and to avoid local optima. The input
parameter mutThreshold (line 11, Algorithm 1) tunes the
relative application of mutation and crossover.

As in common software APR approaches (e.g., [22,
Sec. III-F]), the mutation operator itself can be characterized
into three subtypes: replace, insert, and delete. The mutate
function of the CirFix framework generates a random prob-
ability value and employs the user-provided replace, insert,
and delete thresholds to choose a mutation sub-type. The
replace operator picks a random node from the fault local-
ization space and replaces the node with another randomly
chosen node from the corresponding fix localization (see
Section 3.5) space. The insert operator picks a random node
from the fix localization space and inserts it after another
randomly picked node within a code block. The delete

operator picks a random node from the fault localization
and replaces it with an empty node — this operation is
equivalent to deleting certain statements from the program
variant under consideration.

CirFix uses the standard single-point crossover [51],
which picks a crossover point for each of the two parents. Edit
operations to the right of that point are swapped between
the two parents. This results in two children program vari-
ants, each carrying some information from both parents. The
crossover operator plays a key role in avoiding local optima
when searching for high-fitness patches.

3.4 Selection
Automated program repair techniques based on GP use
selection to choose parent variants from a population based
on fitness. Tournament selection [52], a selection approach that
selects a random pool of t program variants in a population
and selects the fittest member of this pool as the parent,
has been used widely for software-based APR [22], [49],
[53], [54]. CirFix uses tournament selection to select a parent
variant to transfer genetic information to the next generation
as a child variant. The top e% fittest program variants from
the previous generation are automatically included in the
next generation, a process known as elitism [55], [56].

3.5 Fix Localization
Given that fault localization has identified faulty design
code to be changed, our fix localization provides some guide-
lines on how to perform the changes. We use fix localization
to restrict the scope of the insert and replace operators to
reduce the number of syntactically-invalid mutants (cf. [57]).

For the insert operator, we propose to only use state-
ments types (e.g., conditional statements, assignments, etc.
— see Annex A.6.4 in the IEEE Standard for Verilog [58] for
the full BNF definition of statement types) as the sources
for insertion code. We further allow such statements to be
inserted only into initial or always blocks, since such
statements inserted elsewhere violate the syntax of Ver-
ilog [58, Annex A.6.2]. For the replace operator, we design
CirFix such that an item in a Verilog module [58, Annex
A.1.4] can be replaced either by another item of the same
type, or by an item sharing the same immediate parent type
(as specified in the formal syntax definition of Verilog [58,
Annex A]). We return to this decision in Section 7.

Our fix localization approach reduces the average num-
ber of mutants producing compilation errors in our proto-
type from 35% to 10%. This reduction is comparable to that
of fix localization techniques in software (e.g., [22]).

3.6 Repair Minimization
During the search for a repair, CirFix might produce edits to
the code that do not contribute to the repair (e.g., repeated
assignment statements within an always block). Such edits
do not increase the fitness of the candidate repair, but they
could introduce inefficiencies in the final circuit design or
affect the design’s readability [59].

CirFix removes such extraneous edits in a postprocessing
minimization step by finding a subset of the edits in a repair
patch from which no further elements can be dropped

7

without causing a reduction in the fitness of the patch. As
in APR for software (e.g., [22]), we use the delta debug-
ging algorithm [33] to efficiently (i.e., in polynomial time)
compute this one-minimal subset of the repair patch. The
minimized set of repairs is then converted back into HDL
code implementing the hardware design correctly.

4 EXPERIMENTAL SETUP

This section describes the experimental setup for our eval-
uation of CirFix, including the construction of our new
benchmark suite, our choice of experimental parameters,
and our human study on evaluating the usability of CirFix’s
novel fault localization.

For our prototype implementation of CirFix, we use
the open-source PyVerilog toolkit [60] (version 1.2.1, mod-
ified to support numbering for each node type) to parse
a Verilog description of a circuit and produce an AST
representing the circuit design code. We use Synopsys
VCS [61], the primary hardware verification tool used by
a majority of the world’s top-twenty semi-conductor com-
panies [62], to simulate the code using a manually instru-
mented testbench to assess functional correctness of the
circuit design. Our prototype for CirFix is implemented
using Python 3.6.8 and is made publicly available on GitHub
(https://github.com/hammad-a/verilog repair).

4.1 Benchmark Suite for Hardware Defects

For our evaluation of CirFix, we desire a benchmark suite
consisting of faulty hardware designs that are indicative
of defects in industry, comprise a wide range in terms of
project size, and correspond to a variety of components
found in real-world designs. To the best of our knowledge,
there are no publicly available benchmarks that satisfy our
requirements. Additionally, there is limited open source
community support for industrial hardware designs, since
such designs are often considered Intellectual Property (IP)
of the stakeholder companies. As such, we propose to adapt
the defect-seeding approach common in software [63], [64],
[65] and present a benchmark suite of defects scenarios [22],
[37] — each consisting of a circuit design, an instrumented
testbench for the design, information for correct circuit
behavior, and an expert-transplanted defect from real-life
experience — to be used for the evaluation of automated
repair techniques for hardware.

4.1.1 Selecting Hardware Projects
Every defect scenario includes a base circuit design and
a testbench, as introduced in Section 2 (Figure 1). We re-
quired circuit designs with an available testbench and that
admit simulation using the Synopsys VCS tool without
any changes to the design code. This is a common re-
quirement comparable to the benchmarks suites for APR in
software [22, Sec. IV-A] [66, Sec. 3.1]. The hardware projects
for our benchmark suite are presented in Table 2. For each
hardware project, we need an instrumented testbench to
record output values for our fitness function. While the
instrumentation process is automatable (see Section 3.2),
we manually instrument the testbenches for our prototype.
Each testbench instrumentation required under 10 lines of

TABLE 2
Benchmark hardware projects in our experiments. Project and

testbench sizes are measured by source lines of code as reported by
the Unix wc command.

Project Description Project Testbench
LOC LOC

decoder 3 to 8 3-to-8 decoder 25 56
counter 4-bit counter with overflow 56 135
flip flop T-flip flop 16 39
fsm full Finite state machine 115 66
lshift reg 8-bit left shift register 30 44
mux 4 1 4-to-1 multiplexer 19 51
i2c Two-wire, bidirectional serial bus

for data exchange between devices
2018 482

sha3 Cryptographic hash function 499 824
tate pairing Core for the Tate bilinear pairing

algorithm for elliptic curves
2206 983

reed solomon
decoder

Core for Reed-Solomon error cor-
rection

4366 148

sdram controller Synchronous DRAM memory con-
troller

420 95

Total 9770 2923

Verilog code, took at most 5 minutes of developer time, and
did not require any circuit-specific knowledge beyond that
available in the testbench (i.e., identifier names of output
wires and registers, and the clock cycle duration).

We choose six projects from undergraduate VLSI courses
to be indicative of repairing a small component in hardware
design. We augment this by choosing the remaining five
projects from OpenCores (a popular website for open-source
HDL designs) and GitHub collectively to be indicative of
repairing the entirety of a large circuit design. Unlike some
previous works that only use toy benchmarks for evaluation
(e.g., [8], [67]), our benchmarks include a range of project
sizes (in terms of source lines of code), and all projects —
including those from courses taught at the undergraduate
level — correspond to components found in real-world
hardware designs. To satisfy our variety requirement, we
include a project from each of the key cores listed on the
OpenCores website for certified projects (i.e., arithmetic,
communication, crypto, error correction, and memory).

4.1.2 Obtaining Information for Correct Circuit Behavior
CirFix requires information about expected behavior for a
circuit design to assign fitness values to candidate repairs.
In APR for software, guidelines for correct behavior often
take the form of passing and failing test cases [13]. More
generally, however, such information can be induced from a
previous version of the design known to be functional [68],
[69], [70], [71], [72], [73] or a combination of data mining and
static analyses of the design [74], [75], [76], [77], or manually
provided by the human developer [78], [79], [80], [81].

This so-called “oracle problem” [82] remains a challeng-
ing issue in general for hardware testing and automated
repair: implicit, high-level test oracles (e.g., “the program
does not divide by zero”) used by APR tools for software
do not typically carry over to hardware. Given that cir-
cuit designs exhibit parallelism and require synchronization
against a clock signal [83], how a circuit design reaches
a certain output is often equally important as the actual
final output produced. As such, any hardware test oracles
need detailed information about the intermediate values
from design simulation, and it does not suffice to only

https://github.com/hammad-a/verilog_repair

8

use the output values from the simulation as correctness
information for an approach like CirFix.

For our benchmark suite, we follow an established
approach in APR for software [11], [84] and employ a
previously-functioning version of the circuit design to
record the expected behavior information for circuits in our
benchmark suite. We acknowledge that such a previously-
functioning version might not always be available, or the
circuit specification may have changed. In that case, a devel-
oper can use a partially correct or most up-to-date version
of the circuit as a starting point, and manually annotate the
missing or incorrect bits based on knowledge of the circuit
design. This process is analogous to test suite evolution
in software [85]. Ultimately, however, if manual developer
effort and previous designs are both unavailable, CirFix
cannot be applied to repair defects in a circuit.

While we recognize that the process of manually an-
notating the correctness information may take longer than
manually fixing a single defect, this information is a one-
time cost as long as the high-level circuit specification
(i.e., I/O wires and registers, expected behavior) does not
change. Given the number of bugs that may arise during
the development and maintenance of a circuit design, we
believe that it would still be more cost effective to invest
developer effort in the correctness information, which can
then be used by CirFix during inexpensive machine idle
time (see discussion in Section 5.1).

4.1.3 Transplanting Hardware Defects

Since actual industrial defects are not made publicly avail-
able, we propose an approach based on defect transplantation
by experts. Previous works have used either randomly-
seeded or self-seeded defects for evaluation, potentially
admitting bias (e.g., [9]). To combat this, we recruited three
hardware experts — two of whom work in industry and one
who works in academia, with 19 years of experience with
hardware design collectively — to transplant (proprietary
or non-public) defects from their real-world experience into
otherwise-correct open source implementations of the hard-
ware projects in our benchmark suite. We desire defects in
our benchmark suite corresponding to a variety of complex-
ities, both in terms of finding and fixing the defect. As such,
we define two defect categories for this process:

• Category 1: A Category 1 (i.e., “easy”) defect denotes
mistakes pertaining to simpler, higher-level aspects
of circuit design.

• Category 2: A Category 2 (i.e., “hard”) defect denotes
more intricate errors that usually require more effort
to diagnose, understand, and/or fix.

To get the benefits of real-world defects in our bench-
mark suite, we instructed our recruited experts to transplant
and categorize real defects they have previously encoun-
tered to the open-source circuits in our benchmark. We also
asked our experts for “... variety in how the defects appear
and would be fixed, as long as that variety aligns with how
often [they] observe these bugs or mistakes in real life”. We
further required that any transplanted defects should com-
pile successfully and change the externally-visible behavior
of the circuit with respect to the instrumented testbench, and

TABLE 3
Repair results for CirFix. “Cat” indicates the category for the defect,
“Repair Time” shows the time for repair (in seconds), and a missing
time for repair indicates no repair was found in 5 independent trials.

CirFix produced plausible repairs to 21 of the 32 defect scenarios in our
benchmark suite, of which 16 were correct upon manual inspection by
the authors (denoted with a ✓) and 14 were deemed correct along a
different criteria by an independent expert team (denoted with a †).

Project Defect Description Cat Repair
Time (s)

decoder 3 to 8 Two separate numeric errors 1 ✓ 13984.3
Incorrect assignment 2 —

counter Incorrect sensitivity list 1 ✓† 19.8
Incorrect reset 1 ✓† 32239.2
Incorrect incremental of counter 1 ✓† 27781.3

flip flop Incorrect conditional 1 ✓† 7.8
Branches of if-statement swapped 1 ✓† 923.5

fsm full Incorrect case statement 1 —
Incorrectly blocking assignments 1 4282.2
Assignment to next state and default in
case statement omitted

2 1536.4

Assignment to next state omitted, incor-
rect sensitivity list

2 ✓† 37.0

lshift reg Incorrect blocking assignment 1 ✓† 14.6
Incorrect conditional 1 ✓† 33.74
Incorrect sensitivity list 1 ✓† 7.8

mux 4 1 1 bit instead of 4 bit output 1 —
Hex instead of binary constants 1 10315.4
Three separate numeric errors 2 15387.9

i2c Incorrect sensitivity list 2 ✓† 183
Incorrect address assignment 2 57.9
No command acknowledgement 2 ✓† 1560.5

sha3 Off-by-one error in loop 1 ✓† 50.4
Incorrect bitwise negation 1 —
Incorrect assignment to wires 2 —
Skipped buffer overflow check 2 ✓† 50.0

tate pairing Incorrect logic for bitshifting 1 —
Incorrect operator for bitshifting 1 —
Incorrect instantiation of modules 2 —

reed solomon Insufficient register size for values 1 —
decoder Incorrect sensitivity list for reset 2 ✓ 28547.8
sdram controller Numeric error in definitions 1 —

Incorrect case statement 2 —
Incorrect assignments to registers dur-
ing synchronous reset

2 ✓† 16607.6

correspond to approximately the same level of complexity
as that of real-world defects.

Table 3 lists the transplanted defects from our experts
that met these criteria. In total, our experimental setup
includes 32 different defect scenarios spanning across 11
hardware projects, with 19 Category 1 (i.e., “easy”) and 13
Category 2 (i.e., “hard”) defects. This benchmark suite is
1.5–10× as large as benchmark suites used in the hardware
diagnosis literature [6], [7], [8], [9], [39], [67].

4.2 Algorithm Parameters

We refer to each execution of CirFix as a trial. Each trial is
initialized with a distinct random seed for reproducibility
of our results, and conducted on a quad-core 3.4GHz ma-
chine with hyperthreading and 16GB of memory. We ran 5
independent CirFix trials for each defect scenario, stopping
when an acceptable repair was found. Each individual trial
was terminated after 8 generations of evolution or 12 hours
of wall-clock time (whichever came first).

For the GP parameters, we use population size
popSize = 5000, repair template threshold rtThreshold =
0.2, mutThreshold = 0.7. In line with established practices
from APR for software [22], [49], [53], we use deletion,
insertion, and replacement thresholds of 0.3, 0.3 and 0.4
respectively. For parent selection, we use a tournament
size t = 5 to increase the selection pressure on candidate

9

variants [86]. For elitism, we propagate the top e = 5% of
each generation to the next without any modifications.

For fitness evaluations, we use φ = 2 as additional
weight assigned to bits with values of x or z. This makes
incorrect comparisons between ill-defined wires twice as
detrimental to the fitness score of a candidate repair as
binary bit mismatches. We found that a weight φ = 1 did
not penalize such incorrect comparisons enough (resulting
in longer times to find a repair), while φ = 3 caused too sig-
nificant a drop in fitness for candidate variants (negatively
impacting the exploration of the search space for a repair).

We evaluated other values suggested by literature (e.g.,
smaller population sizes [84], [87]), and found no significant
differences in CirFix’s performance.

4.3 Human Study Protocol

We also investigate the usability of our novel fault lo-
calization algorithm (see Section 3.1), independent of the
automated repair context. We asked humans (i.e., hardware
engineers), rather than CirFix, to assess the quality and
usefulness of the fault localization algorithm. To investigate
the incremental benefit of our fault localization, we consider
three scenarios: the full output of the algorithm (see Sec-
tion 3.1), only initially implicated statements of the algo-
rithm (no transitive information, only line 1 of Algorithm
2), and no fault localization annotations.

Participant Recruitment. Under UM IRB-
HUM00199335, we recruited a combination of
undergraduate and graduate computer science students
(n = 41). One student reported having less than a month
of experience, ten students reported having 1 to 4 months
experience, seven students reported having 4 months to
1 year of experience, nine reported having 1 to 2 years
of experience, and the remaining six reported having 2
or more years of experience. We drew students from five
undergraduate courses, a graduate course, and a computer
engineering lab mailing list at the University of Michigan.
At the beginning of the survey, participants’ background in
Verilog was collected (e.g., any courses they have taken).
Participant data was anonymized, but they could optionally
request a $25 USD gift card as compensation. We collected
30

Debugging Scenarios. We sampled (uniformly at ran-
dom) 10 defect scenarios each from student and OpenCores
projects, with roughly equal numbers of Category 1 and 2
defects. To favor readability and comprehension within a
time-constrained human study (e.g., [88], [89]), we filtered
out defects that resulted in more than 100 lines of code
implicated by fault localization. This resulted in 12 snippets
from the programs in Table 2: eight from student projects
and four from OpenCore projects. Each debugging scenario
included information on the parent hardware design and
documentation on the desired properties and output.

Debugging Task. Each participant was sequentially pre-
sented with 6 distinct randomly-chosen debugging scenar-
ios. Each scenario was paired with a debugging hint: textual
highlighting of implicated code, as shown in Figure 2.

Participants were asked to: (1) identify faulty lines in the
snippet, (2) indicate which lines they would alter to fix the
defect, (3) propose how they would alter the lines to fix the

Fig. 2. Example of defect scenario presented to participants.

defect if they could patch it. If the snippet version presented
to the participant contained fault localization hints, the
participant also rated the usefulness and accuracy of those
hints on a 1–5 scale.

5 CIRFIX REPAIR EVALUATION

In this section, we present an empirical evaluation on our
benchmark suite of hardware defect scenarios. We analyzed
the following research questions:

RQ1. What fraction of defect scenarios can CirFix repair,
and how sensitive is our fault localization approach?

RQ2. How effective is the CirFix fitness function at
guiding the search for a repair to a circuit description?

In prior work [23], we addressed two additional research
questions: (1) what is the performance of CirFix on repairing
two different types of defects varying in difficulty and (2)
how sensitive is CirFix to the quality of the information for
expected behavior. We found CirFix to repair both Category
1 and 2 defects with comparably high success rates, and
found CirFix to not be overly sensitive to the quality of the
expected circuit behavior information, yielding high repair
rates and quality even under settings when low quality
correctness information is used as input to the algorithm.

5.1 RQ1. Repair Rate, Quality, and Sensitivity for CirFix

Repair Rate. Table 3 presents the repair results for each defect
scenario. CirFix produced plausible (i.e., testbench-adequate)
repairs for 21 of the 32 (65.6%) defects. Of the 11 defects
that were not repaired, 4 exhausted resource limits while
7 required edits not supported by CirFix operators and
repair templates. While a direct comparison between CirFix
and APR for software is not possible, we observe that the
repair rate of CirFix comparable to the reported repair rates
of well-known software repair approaches, e.g., GenProg
(52.4%) [22], Angelix (34.1%) [90], and TBar (53.1%) [46].
When comparing CirFix to a more straightforward search
algorithm applying edits at uniform to a circuit design, we
found that the brute force algorithm did not scale to the
complexity of defects in our benchmark suite and reported
no repairs within the 12 hour resource bounds. Though not
part of a comprehensive scientific evaluation, when tested
on simple single-edit defects (not part of our benchmark

10

suite) in smaller projects from undergraduate courses, the
brute-force algorithm still took hours to find repairs that
CirFix found in seconds to minutes, highlighting CirFix’s
efficient pruning of the search space. We leave a full inves-
tigation of CirFix against more straightforward search as
future work. Note that we can not compare CirFix to other
baselines for hardware repair, since at the time of writing,
there are no baselines that operate on source code level
Verilog descriptions to automatically repair defects; indeed,
that is precisely the improvement CirFix brings over the
state-of-the-art.

The average wall-clock time for a trial to find a repair
was 2.03 hours, of which an average of over 90% was spent
on fitness evaluations (i.e., design simulations). Most non-
repairs timed out after 12 hours, though defects for some
projects with smaller search spaces hit the 8 generation
maximum first. These results are in line with previously-
reported patterns of behavior for APR for software, sup-
porting our hypothesis that the CirFix algorithm is capable
of performing as well on hardware design defects as estab-
lished APR approaches do on software.

We acknowledge that wall-clock runtime for CirFix on
a given defect can be longer than that of an expert human
manually fixing the defect. However, CirFix was designed
to favor situations in which developer time is significantly
more expensive than machine time: it is often more cost-
effective to run tools like CirFix using inexpensive machine
idle time and then to employ expensive developer time to
ensure the repairs are correct before being synthesized [35].
As such, we see CirFix as being cost-effective in terms of
reducing the burden on designers.

Repair Quality. We follow the approach taken by Long
and Rinard [50] for patch assessment since it follows best
practices in the APR literature [43], [91]. We manually an-
alyze the 21 repairs produced by CirFix. We found 16 of
the generated repairs to exhibit correct behavior, with the
final 5 to be correct only with respect to the testbench (i.e.,
overfitting).4 While room for improvement remains, soft-
ware industrial deployments with similar rates have proved
useful: for example, Bloomberg reported that a 48% correct
patch rate was associated with “very positive” feedback and
a general “helpful” opinion [93, p. 5].

We augment this analysis with an independent as-
sessment from Yang et al., an established expert team in
APR [24], [25], [26], [27], [28], who analyzed the semantics
of the produced repairs against the human-written patches
and found 14 of the produced repairs to be semantically
identical to the human patches (see Table 3). While APR
expertise is not equivalent to domain expertise, APR ex-
perts tend to be more suited to assessing the patches pro-
duced by these methods due to “creative” (or adversarial
or potentially-overfitting) nature of such patches [94], [95],
[96], and evidence suggests that domain-experts may not
be a strong gold standard [97]. We acknowledge that this
assessment is not a substitute for a full human study on

4. We focus on correctness of a patch against the specification of
the circuit (e.g., ensuring the absence of clock- or reset-domain issues)
during our manual inspections. The synthesizability of the design is
left to be evaluated by the developer during the validation phase of
the hardware design process [92], but we discuss the synthesizability
of CirFix in practice in Section 7.

Fig. 3. A representative multi-edit repair by CirFix for a defect in the
sdram_controller benchmark. The original defect, with a missing
and an incorrect assignment, is shown in red; the repaired code is
shown in green. Edits on lines 8 and 9 correspond to insert and replace
operations respectively.

patch correctness; however, having two independent teams
find converging results adds confidence that a majority
of the plausible repairs do not overfit to the testbench (a
common problem in APR for software [50], [98], [99]), since
we inspect intermediate wire values when assigning fitness
scores. We do note that correctness is critical in hardware
designs (e.g., since manufactured chips cannot be easily
updated once deployed), and our use case does not involve
deploying patches directly but instead showing plausible
patches to developers to reduce maintenance costs [35], [36].

We observed that 7 out of the 21 minimized repairs were
multi-edit repairs, highlighting CirFix’s ability to produce
repairs to defects that require more than one change to the
circuit design. By comparison, common APR approaches for
software usually only produce single-edit repairs [11], and
only recently have there been works investigating multi-
edit repairs [90], [100]. For instance, in a faulty version of
the sdram_controller benchmark, one of our experts
changed assignments to two wires to transplant a Category
2 defect, causing incorrect functionality in the host interface.
CirFix assigned this faulty design code a fitness value of
0.818 based on output mismatch. CirFix repaired this defect
scenario in 4.6 hours by inserting a new assignment and
modifying an existing assignment. The original defect and
the repaired code are shown in Figure 3. This is an indicative
instance of CirFix repairing Category 2 (i.e., “hard”) defects
with multiple edits to the faulty circuit design. We return to
multi-edit repairs in the human study (Section 6).

Fault Localization Sensitivity. To assess repair performance
as fault localization quality decreases, we conducted a tar-
geted experiment reducing the quality of the initial fault
location available to CirFix in a controlled manner. This sort
of investigation, in which the sensitivity of the algorithm
with respect to fault localization is assessed, is important is
software APR [101], [102], [103], [104].

When simulation outputs are compared against expected
behavior to produce the initial set of wires and registers
with mismatched values (see Section 3.1), we also randomly
include some correct wires and registers (with probability
25%, 50%, or 75%) as “noise”. Because our fault localiza-
tion is a transitive fixed point calculation, additional initial
elements may result in larger fault localization sets (e.g.,
informally, the traditional scalability problem with fault lo-
calization is that almost everything may end up implicated).

We focus on defect scenarios CirFix successfully re-

11

TABLE 4
Repair results for CirFix with added noise to initial mismatch set for our
fault localization algorithm. “Defect Cat.” indicates the category for the
defect, “Normalized Repair Time” shows the normalized time for repair
(in seconds) when compared to the original repair, and a ’—’ indicates

no repair was found in 5 independent trials. “Noise” indicates the
percent of disturbance placed on the fault localization. The ordering of

the benchmarks follows Table 3.

Project Defect Normalized Repair Time
Cat. 25% Noise 50% Noise 75% Noise

decoder 3 to 8 1 1.11× — —
counter 1 0.49× 0.45× 0.05×

1 0.48× 0.58× 0.86×
1 0.06× 0.98× 0.98×

flip flop 1 0.99× 0.38× 1.86×
1 0.87× 1.18× 0.35×

fsm full 1 0.77× 0.08× 0.58×
2 0.58× 0.57× 0.81×
2 3.21× 3.24× 1.76×

lshift reg 1 1.07× 0.11× 0.11×
1 0.18× 0.49× 0.21×
1 1.01× 0.32× 0.60×

mux 4 1 1 0.27× 0.35× 0.61×
2 1.19× 1.27× 1.24×

i2c 2 0.93× 0.39× 0.34×
2 0.04× 0.13× 0.13×
2 18.57× — 15.88×

sha3 1 1.44× 2.80× 3.60×
2 0.67× 0.33× 0.73×

reed solomon 2 1.39× 0.52× 1.29×
decoder
sdram 2 0.11× 1.22× 0.55×
controller

paired. Table 4 presents normalized results of five trials at
each noise level. Of the 21 defect scenarios CirFix originally
plausibly repaired, CirFix also found plausible repairs for
all 21 when subjected to 25% noise, 19 at 50% noise, and
20 at 75% noise. Execution times with lower-quality fault
localization are not statistically different to those found
without fault localization noise (p = 0.7, p = 0.6, p = 0.9,
unpaired Student t-test), suggesting that CirFix performs
similarly even if the design or testbench does not admit
precise fault localization. Any difference in execution times
can be attributed to the randomness of the search for repairs
(a larger fault localization set may result in new candidate
repairs or repairs being considered in a different order).
An investigation of this outcome reveals that many of the
same registers and wires were transitively implicated in
both cases (i.e., with and without noise). For example, in
the largest benchmark (reed solomon decoder), there are
10 (out of 11 maximum) elements in the initial mismatch
set and 114 in the final fault localization set. With 75%
noise, there are 11 elements in the initial set but 124 in
the final fault localization set. This small increase suggests
that many of the potential wires and registers were already
transitively implicated without the added noise. Our tar-
geted experiment furthers confidence that CirFix’s novel
fault localization approach scales to larger designs or those
with more complicated or less precise testbenches that do
not admit accurate initial fault localization.

CirFix produced plausible repairs to 21 out of 32 (65.6%)
defect scenarios in our benchmark suite, of which 16
repairs were fully correct and 5 were correct only with
respect to the testbench. The CirFix repair rate is com-
parable to strong results from APR for software, sug-
gesting that our approach brings the benefits of APR
to hardware designs. Lastly, our sensitivity investigation
gives confidence that CirFix’s fault localization approach
scales to larger designs.

5.2 RQ2. Quality of Fitness Function
CirFix’s high repair rate suggests that our fitness function,
coupled with our testbench instrumentation approach, is
highly effective at guiding the search for repairs to faulty
circuit designs. We observe that for each change to design
code that brings a candidate repair closer to a correct repair,
our fitness function shows a corresponding increase in the
candidate repair’s fitness (i.e., our fitness function has a
strong fitness distance correlation, a trait that makes genetic
algorithms thrive [44]). This is best observed in transplanted
defects that require multiple edits to the design code to be
corrected. For instance, one of our experts transplanted a
defect in the counter project that required three edits to the
design be repaired. The triple-edit repair produced by CirFix
for this defect scenario incrementally raised the fitness of the
best candidate patch first from 0 to 0.58, then to 0.77, and
finally to 1.0 to produce a correct repair. Similar behavior is
seen for every other multi-edit repair produced by CirFix,
indicating that our fitness function is effective at capturing
incremental changes to a circuit design during the search for
a repair.

We also observe instances where CirFix produces a
repair deemed unfit by our fitness function and instru-
mented testbench but considered correct by the original,
unannotated testbench. We examine one such case in detail,
related to the out_stage module in the error correction
core reed_solomon_decoder. This module is responsible
for generating output bytes from pipelining input memo-
ries. A faulty version of this circuit obtained from one of
our experts removed the reset wire from the sensitivity
list of an always block. This caused incorrect resetting of
output wires by the circuit. Our fitness function assigns the
incorrect design code a non-perfect fitness value of 0.999.
The original testbench, however, reports no errors in the
incorrect code. The final repair produced by CirFix fixes this
defect and passes all checks by the original testbench and
our instrumented testbench. This suggests that our fitness
function and testbench instrumentation can catch errors
beyond the capabilities of the original testbench without
adding any additional testing logic.

The CirFix fitness function is highly effective at cap-
turing incremental changes to a circuit’s design code
to guide the search for a repair, and has the potential
to increase testing prowess without any added testing
logic to a bench.

6 EVALUATION OF HUMAN STUDY

Next, we present statistical analyses of the responses to our
human study. In total, 41 users participated in our survey

12

and each completed 6 debugging tasks. We consider the
following additional research questions:

RQ3. Does CirFix’s fault localization algorithm improve
designers’ objective performances?

RQ4. In what contexts do designers find CirFix’s fault
localization algorithm helpful?

6.1 RQ3. Fault Localization and Human Performance
We assessed programmer performance by evaluating (1) F-
scores (F1) of correctly-identified faults for each debugging
task by each participant and (2) total time taken to complete
a debugging task within no specific time limit (see Section
4.3). A participant is said to correctly identify faults for a
given defect scenario if they identified program line(s) that
contain a bug or missing line(s). F-scores were evaluated by
calculating the harmonic mean of recall and precision.

To evaluate the statistical significance of participants
utilizing the fault localization as a debugging aid as op-
posed to none, we used the unpaired Student t-test. We
did not observe a statistically-significant difference in time
taken to localize faults with full or no annotations from
our fault localization (p = 0.41). On average, participants
spent 299.6 seconds with full annotations as opposed to
239.0 seconds with no annotations. A participant with an
F-score of 1 correctly identified faulty program line(s) or
missing line(s) in the defect scenario, while a F-score of
0 meant no faulty program line(s) or missing line(s) were
correctly identified. We did find that the objective F-score for
participants given full localization was higher (F1 = 0.67)
than the objective F-score for participants who had half
fault localization (F1 = 0.33), which in turn was higher
than those without fault localization (F1 = 0.29). However,
this trend did not rise to the level of statistical significance
(p = 0.12). We predict that the results indicate CirFix data-
flow based notion of fault localization can be a useful tool
for manual debugging.

In addition, we found statistically-significant differences
in the F-scores between experts (F1 = 0.37) and novices
(F1 = 0.17) when they had CirFix’s fault localization with
a large effect size (p = 0.04, d = 0.54). This statistic did
not survive correcting for multiple comparisons. However,
all other significant values reported survive correcting for
multiple comparisons (q = 0.05) to avoid false discovery.
We used Cohen’s d due to similarities in standard deviations
in the groups.

CirFix fault localization produced no significant im-
provement in designer’s objective performance.

6.2 RQ4. Subjective Judgment of Fault Localization
We assessed participant subjective judgements of CirFix’s
fault localization support in various contexts, including
debugging multi-line defects and different circuit designs
(see Section 4.1).

For each presented stimulus with a debugging aid, par-
ticipants were asked to rate, on a Likert scale, the usefulness
and accuracy of the tool in helping them localize the circuit
defects as seen on Figure 4. Differences in the number
of responses per rating arise because not all participants
answered all questions.

Fig. 4. A visual representation of the distribution of ratings subjects gave
to CirFix’s fault localization when viewed as a debugging aid. Subjects
rated the tool as a debugging aid based on accuracy and usefulness on
a scale of 1–5, where 1 represents not at all accurate or useful and 5
represents extremely accurate or useful.

Participants rated full fault localization support on
student-developed designs to be significantly more useful
and accurate than full support for open source projects
(p = 0.01, d = 0.7; p = 0.002, d = 1.05, a large effect
size). These results suggest our algorithm would be more
beneficial for debugging in pedagogical environments.

Most interestingly, we find that participants rated
CirFix’s fault localization support to be significantly more
useful and accurate for debugging multi-line defects than
single-line defects with a large effect size (p = 0.002,
d = 1.04; p = 0.003, d = 0.86). Given that support for multi-
line software repairs is limited [105], [106], with most tools
only supporting single-line repairs, our results, by contrast,
are promising for reducing maintenance costs associated
with more complex defects in the hardware domain.

CirFix fault localization is may be significantly helpful
for multi-line defects (p = 0.002) in pedagogical con-
texts.

6.3 Human Study Discussion
CirFix includes two novel approaches that we hypothesize
contribute to its success in repairing hardware defects: the
fault localization algorithm and the fitness function. When
coupled with prior direct study of this fitness function [23,
Sec. 5.3] that found the function to be highly effective at
guiding the search for repairs, our human study helps tease
apart the two components. In particular, we conclude that
the fitness function is critical to CirFix’s overall success
(e.g., its high fitness distance correlation was shown in
Section 5.2). By contrast, the fault localization algorithm
is more useful for humans in particular contexts, such as
multi-line defects.

There have been previous concerns about ranked list
fault localization [107], [108] and the degree to which hu-
mans make effective use of multiple implicated lines. Al-
though not directly comparable, our fault localization both
does not utilize ranked lists and also does well in multi-line
contexts. We believe our success suggests promising future
directions.

Furthermore, the statistically significant results on the
subjective judgment of CirFix’s fault localization may prove
to be more beneficial for pedagogy. In our qualitative anal-
ysis of optional questions given to participants at the end of

13

the study, we found that participants, particularly novices,
who self-reported to be less effective at tasks related to
debugging hardware designs, rated the debugging features
(e.g., highlighting of implicated statements and naming
of implicated wires or registers) to be significantly useful
(p = 0.02, d = 0.97; p = 0.001, d = 1.35). This indi-
cates that debugging aids with supplemental supportive
features, such as our fault localization algorithm, could help
novices navigate these tasks. Despite advances in hardware
development platforms, novices still report intimidation by
circuitry [109]. The self-efficacy of students can be improved
by providing them with support they find useful, such as
our fault localization algorithm.

7 DISCUSSION OF SYNTHESIZABILITY AND TIMING

Professional hardware designers often aim to construct a
physical system that passes all tests in the real world. We
consider two ways a design may fail to complete that end-
to-end process: synthesizability and timing constraints.

Synthesizable designs are defined as descriptions that can
generate a physical system (e.g., ASIC) using a pre-defined
set of basic building blocks (see IEEE 1364.1 [58]). Synthe-
sizability centers on avoiding certain language constructs
(e.g., force and release, or fork and join, which are mainly
used for simulation purposes) that cannot translate into
physical circuits and may also depend on the electronic
design automation tools used. Because the line between syn-
thesizable and non-synthesizable designs is nuanced [110],
[111], designers may be instructed to follow established
guidelines [58], [112]. For example, it can be difficult to
synthesize module instances that initiate a delay on built-
in gates [113].

Timing constraints center on whether or not the circuit
converges to produce the correct answer in time. Informally,
signals must propagate and converge along the “critical
path” to an output within a given budget or frequency [114].
For example, a circuit design that is synthesized with a
10nm process and meets all timing constraints may not
behave correctly if it is instead fabricated with a larger,
slower 45nm process. Similarly, a design that meets timing
constraints when first fabricated but is then changed by
inserting additional delays on its critical path may then
fail to meet those previous constraints, e.g., FPGA timing
errors that may arise during the “place and route” step after
synthesis [115].

Since CirFix produces fixes to faulty hardware designs
ignoring plausible synthesizability or timing constraint
changes, we consider all 21 patches from Table 3 and
manually examined 18 to assess changes in the design that
may negatively impact the end-to-end process. We exclude
3 patches that repaired non-synthesizable designs not ap-
propriate for timing constraints. We found that no patches
introduced specific constructs that are characterized to lead
to non-synthesizability. In addition, we found 9/18 of the
patches to contain changes (such as adding delays along a
critical path) that we infer may impact the predefined timing
budgets in the design.

Because our notion of synthesizability is based solely
on structural elements of the Verilog design that can be
detected statically, a modified version of CirFix that avoids

introducing those elements would increase confidence that
if a design was synthesizable before CirFix, then it would
remain synthesizable after being patched by CirFix. Simi-
larly, CirFix might make use of static timing analysis (STA)
or worst case execution time (WCET) calculations and reject
edits that may slow the design. Unfortunately, however,
such static analyses of circuit designs are often inaccurate
or conservative (e.g., [116]). As a result, we expect that
practitioners would still carry out simulations, waveform
analyses, and post-fabrication testing to authenticate the
viability of a CirFix-patched system.

8 LIMITATIONS AND THREATS TO VALIDITY

Our results suggest that CirFix is highly effective at auto-
matically repairing defects in HDL descriptions. That said,
there are several limitations to our approach and threats to
the validity of our results that we describe in this section.

Timing bugs. Faults in HDL descriptions stemming
from timing flow issues and incorrect circuit behavior with
respect to the clock signal often go undetected by a tra-
ditional testbench, requiring instead complicated analyses
of waveforms from the simulation. Such timing bugs are
therefore not in scope of our approach that heavily relies
on testbenches to assess functional correctness of designs.
We note that while such bugs are complex to debug, they
represent only a subset of hardware defects in industry, and
a non-trivial amount of defects in hardware correspond to
functional correctness [117].

Threats to Validity. The parameters for the prototype
implementation of CirFix are chosen based on empirical
performance and may not be optimal. We do note, how-
ever, that the repair operators, fault and fix localization ap-
proaches, and representation choice for repairs matter more
than the actual values of the GP parameters for APR [118].

Our benchmark defects may not be indicative of defects
in real-world hardware projects, posing a potential threat
to external validity. To mitigate this threat, we evaluated
CirFix on a variety of hardware projects taken from differ-
ent sources, and had expert hardware designers transplant
defects from their real-life experience with HDL designs
covering a variety of defect types (see Section 4.1.3).

While our results on the scalability of CirFix’s repairs
gives us confidence that our implementation scales to larger
benchmarks than those we tested, additional developer
effort may be needed to apply CirFix to very large designs,
such as modularizing the design and testbench (cf. functions
and unit tests in software). We leave further optimizations
to the CirFix fault localization (e.g., more efficient pruning
of the search space) as future work.

Finally, our human study participants are students.
While they may represent new hires joining the workforce,
they are not indicative of experienced hardware designers.

9 RELATED WORK

Automatic Error Diagnosis and Correction in Hardware
Designs. While a significant amount of work has been
done in automatic error diagnosis of hardware designs, the
correction of such errors automatically has not been well-
explored to the best of our knowledge. Techniques in the

14

works of Jiang et al. [6] and Ran et al. [7] employ software
analysis approaches to identify statements in design code
responsible for defects, but suffer from high false positive
rates.

Bloem and Wotawa [8] use formal analysis of circuit
descriptions to identify defects, and Peischl and Wotawa
[14] use a model-based diagnosis paradigm that supports
source-level debugging of large VHDL designs at the state-
ment and expression level. This use of formal methods
for error diagnoses is orthogonal to our work, but could
be applied to reduce the search space for approaches like
CirFix.

Staber et al. [67] use state-transition analysis to diagnose
and correct hardware designs automatically, but their tech-
niques similarly do not scale to real-world circuits with large
state spaces. Our approach, by contrast, is more scalable to
larger, real-world hardware descriptions. Chang et al. [9] ex-
plicitly insert multiplexers to automatically diagnose faults
in hardware designs and suggest repairs; Madre et al. [10]
use Boolean equation solving to diagnose and rectify gate-
level design errors. By contrast, our technique applies to
both behavioral (higher level) and RTL aspects of a circuit
design.

Automated Program Repair for Software. In the realm
of software, significant research effort has been devoted
to repairing bugs automatically over the last decade [11],
[12], [13]. Automated program repair usually takes as input
source code with a deterministic bug and a test suite with
at least one failing test that reveals the bug, and aims
to automatically generate fixes to the buggy code. Test
suite based repair, where test cases are used to guide the
search for a patch, can be further divided into generate-
and-validate and semantics-driven approaches. Generate-
and-validate techniques produce candidate patches for the
buggy code and evaluate them against the test suite to check
if all tests pass [22], [32], [43], [49]. Semantics-driven ap-
proaches first extract constraints on a program based on test
suite execution and then use these constraints to synthesize
a patch [63], [90], [119], [120]. While software approaches to
APR make use of test suites to evaluate candidate repairs,
CirFix uses instrumented hardware testbenches to make
visible the internal and external behavior of a simulated
circuit for fitness evaluation. Additionally, APR for software
usually uses spectrum-based fault localization to implicate
faulty code, whereas CirFix uses our novel fault localization
approach supporting parallel hardware descriptions.

10 CONCLUSION

This paper presents CirFix, a framework for automatically
repairing defects in hardware designs implemented in lan-
guages like Verilog. CirFix makes use of readily-available
artifacts included in the hardware design process (e.g., test-
benches) to diagnose and repair defects in both behavioral
and RTL designs in the circuit description. These repairs
can then be shown to developers for validation before the
synthesis phase, reducing maintenance costs. The testbench-
based evaluation and the parallel structure of hardware
designs pose challenges that render traditional APR ap-
proaches from software inapplicable to the hardware do-
main. We present two key insights to bridge this gap. First,

we propose a method to instrument hardware testbenches
to admit a circuit’s behavior to guide the search for repairs.
We present a novel fitness function tailored that performs a
bit-level comparison of the made-visible output wire values
against expected behavior to assess functional correctness of
candidate repairs. Second, we present a novel fault localiza-
tion approach based on a fixed point analysis of assignments
made to registers and output wires to implicate statements
for defects, since spectrum-based approaches commonly
used in APR do not apply to hardware designs. Our sys-
tematic evaluation of CirFix presents a new benchmark
suite of 32 defect scenarios transplanted by three hardware
experts across 11 different Verilog projects. CirFix produces
plausible repairs for 21 out of 32 and fully correct repairs
for 16 out of 32 of the Verilog defects within reasonable
resource bounds. Lastly, we evaluated the relative utility of
our novel fault localization algorithm independent of our
automated repair context via a human study. We found a
statistically significant preference (p = 0.003) for CirFix
fault localization as a debugging aid in fixing multi-line
defects, primarily in student applications (p = 0.01).

ACKNOWLEDGMENTS

We gratefully acknowledge the partial support of the NSF
(#1908633) and AFRL (#2211749). Any opinions, findings, or
recommendations expressed are those of the authors and do
not necessarily reflect those of the US Government. We also
acknowledge Madeline Endres for her insights on human
studies of programming.

REFERENCES

[1] F. Schirrmeister, M. McNamara, L. Melling, and
N. Bhatnagar, “Debugging at the hardware/software
interface,” June 2012. [Online]. Available: https://www.
embedded-computing.com/embedded-computing-design/
debugging-at-the-hardware-software-interface

[2] H. Foster, “Assertion-based verification: Industry myths to re-
alities (invited tutorial),” in International Conference on Computer
Aided Verification. Springer, 2008, pp. 5–10.

[3] J. Wagner, “Intel could make billions off of meltdown & spectre,”
Feb 2018. [Online]. Available: https://www.digitaltrends.com/
computing/intel-could-make-billions-off-meltdown-spectre/

[4] D. Athow, “Pentium fdiv: The processor bug that shook
the world,” Oct 2014. [Online]. Available: https://www.
techradar.com/news/computing-components/processors/
pentium-fdiv-the-processor-bug-that-shook-the-world-1270773

[5] R. Lemos, “Intel releases fix for f00f bug,” Nov
1997. [Online]. Available: https://www.zdnet.com/article/
intel-releases-fix-for-f00f-bug/

[6] T.-Y. Jiang, C.-N. Liu, and J. Y. Jou, “Estimating likelihood of
correctness for error candidates to assist debugging faulty hdl
designs,” in 2005 IEEE International Symposium on Circuits and
Systems. IEEE, 2005, pp. 5682–5685.

[7] J.-C. Ran, Y.-Y. Chang, and C.-H. Lin, “An efficient mechanism
for debugging RTL description,” in The 3rd IEEE International
Workshop on System-on-Chip for Real-Time Applications, 2003. Pro-
ceedings. IEEE, 2003, pp. 370–373.

[8] R. Bloem and F. Wotawa, “Verification and fault localization for
vhdl programs,” Journal of the Telematics Engineering Society (TIV),
vol. 2, pp. 30–33, 2002.

[9] K.-h. Chang, I. Wagner, V. Bertacco, and I. L. Markov, “Automatic
error diagnosis and correction for rtl designs,” in 2007 IEEE
International High Level Design Validation and Test Workshop. IEEE,
2007, pp. 65–72.

[10] J. C. Madre, O. Coudert, and J. P. Billon, “Automating the diag-
nosis and the rectification of design errors with priam,” in 1989
IEEE International Conference on Computer-Aided Design. Digest of
Technical Papers, 1989, pp. 30–33.

https://www.embedded-computing.com/embedded-computing-design/debugging-at-the-hardware-software-interface
https://www.embedded-computing.com/embedded-computing-design/debugging-at-the-hardware-software-interface
https://www.embedded-computing.com/embedded-computing-design/debugging-at-the-hardware-software-interface
https://www.digitaltrends.com/computing/intel-could-make-billions-off-meltdown-spectre/
https://www.digitaltrends.com/computing/intel-could-make-billions-off-meltdown-spectre/
https://www.techradar.com/news/computing-components/processors/pentium-fdiv-the-processor-bug-that-shook-the-world-1270773
https://www.techradar.com/news/computing-components/processors/pentium-fdiv-the-processor-bug-that-shook-the-world-1270773
https://www.techradar.com/news/computing-components/processors/pentium-fdiv-the-processor-bug-that-shook-the-world-1270773
https://www.zdnet.com/article/intel-releases-fix-for-f00f-bug/
https://www.zdnet.com/article/intel-releases-fix-for-f00f-bug/

15

[11] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software re-
pair: A survey,” IEEE Transactions on Software Engineering, vol. 45,
no. 1, pp. 34–67, 2017.

[12] M. Monperrus, “The living review on automated program re-
pair,” HAL/archives-ouvertes.fr, Tech. Rep. hal-01956501, 2018.

[13] Y. Liu, L. Zhang, and Z. Zhang, “A survey of test based automatic
program repair.” JSW, vol. 13, no. 8, pp. 437–452, 2018.

[14] B. Peischl and F. Wotawa, “Automated source-level error local-
ization in hardware designs,” IEEE Design & Test of Computers,
vol. 23, no. 1, pp. 8–19, 2006.

[15] G. Friedrich, M. Stumptner, and F. Wotawa, “Model-based
diagnosis of hardware designs,” Artificial Intelligence, vol.
111, no. 1, pp. 3–39, 1999. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S000437029900034X

[16] F. Wotawa, “Using multiple models for debugging vhdl designs,”
in Proceedings of the 14th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems:
Engineering of Intelligent Systems, ser. IEA/AIE ’01. Berlin,
Heidelberg: Springer-Verlag, 2001, p. 125–134.

[17] ——, “On the relationship between model-based debugging
and program slicing,” Artificial Intelligence, vol. 135, no. 1, pp.
125–143, 2002. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0004370201001618

[18] M. M. Mano and M. Ciletti, Digital design: with an introduction to
the Verilog HDL. Pearson, 2013.

[19] Y. Huang, H. Ahmad, S. Forrest, and W. Weimer, “Applying au-
tomated program repair to dataflow programming languages,”
in GI @ ICSE 2021, J. Petke, B. R. Bruce, Y. Huang, A. Blot,
W. Weimer, and W. B. Langdon, Eds. internet: IEEE, 30 May
2021.

[20] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, “Fault
localization using execution slices and dataflow tests,” in Pro-
ceedings of Sixth International Symposium on Software Reliability
Engineering. ISSRE’95. IEEE, 1995, pp. 143–151.

[21] R. Keim, “What is a Hardware Description Lan-
guage (HDL)?” 2020, retrieved Jan 11, 2021 from
https://www.allaboutcircuits.com/technical-articles/
what-is-a-hardware-description-language-hdl/.

[22] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A
systematic study of automated program repair: Fixing 55 out of
105 bugs for $8 each,” in 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 2012, pp. 3–13.

[23] H. Ahmad, Y. Huang, and W. Weimer, “Cirfix: Automatically
repairing defects in hardware design code,” in Proceedings
of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems,
ser. ASPLOS 2022. New York, NY, USA: Association for
Computing Machinery, 2022, p. 990–1003. [Online]. Available:
https://doi.org/10.1145/3503222.3507763

[24] D. Yang, Y. Qi, and X. Mao, “Evaluating the strategies of state-
ment selection in automated program repair,” in International
Conference on Software Analysis, Testing, and Evolution. Springer,
2018, pp. 33–48.

[25] A. Guo, X. Mao, D. Yang, and S. Wang, “An empirical study
on the effect of dynamic slicing on automated program repair
efficiency,” in 2018 IEEE International Conference on Software Main-
tenance and Evolution (ICSME). IEEE, 2018, pp. 554–558.

[26] D. Yang, K. Liu, D. Kim, A. Koyuncu, K. Kim, H. Tian, Y. Lei,
X. Mao, J. Klein, and T. F. Bissyandé, “Where were the repair
ingredients for defects4j bugs?” Empirical Software Engineering,
vol. 26, no. 6, pp. 1–33, 2021.

[27] D. Yang, Y. Qi, X. Mao, and Y. Lei, “Evaluating the usage of fault
localization in automated program repair: an empirical study,”
Frontiers of Computer Science, vol. 15, no. 1, pp. 1–15, 2021.

[28] D. Yang, Y. Lei, X. Mao, D. Lo, H. Xie, and M. Yan, “Is the ground
truth really accurate? dataset purification for automated program
repair,” in 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2021, pp. 96–107.

[29] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy, “Return-oriented programming
without returns,” in Proceedings of the 17th ACM conference on
Computer and communications security, 2010, pp. 559–572.

[30] “Chapter 6 - the case for synchronous design,” in Top-
Down Digital VLSI Design, H. Kaeslin, Ed. Boston: Morgan
Kaufmann, 2015, pp. 357–389. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/B978012800730300006X

[31] J. R. Koza, Genetic programming: on the programming of computers
by means of natural selection. MIT press, 1992, vol. 1.

[32] T. Ackling, B. Alexander, and I. Grunert, “Evolving patches for
software repair,” in Proceedings of the 13th annual conference on
Genetic and evolutionary computation, 2011, pp. 1427–1434.

[33] A. Zeller, “Automated debugging: Are we close,” Computer,
no. 11, pp. 26–31, 2001.

[34] L. Bening and H. Foster, “Rtl formal verification,” Principles of
Verifiable RTL Design: A functional coding style supporting verifica-
tion processes in Verilog, pp. 103–129, 2001.

[35] W. Weimer, “Patches as better bug reports,” in Proceedings
of the 5th International Conference on Generative Programming
and Component Engineering, ser. GPCE ’06. New York, NY,
USA: Association for Computing Machinery, 2006, p. 181–190.
[Online]. Available: https://doi.org/10.1145/1173706.1173734

[36] Y. Lou, A. Ghanbari, X. Li, L. Zhang, H. Zhang, D. Hao,
and L. Zhang, “Can automated program repair refine fault
localization? a unified debugging approach,” in Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 75–87. [Online]. Available:
https://doi.org/10.1145/3395363.3397351

[37] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in
automatic software repair,” Software quality journal, vol. 21, no. 3,
pp. 421–443, 2013.

[38] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of the 24th
International Conference on Software Engineering. ICSE 2002. IEEE,
2002, pp. 467–477.

[39] S. Sudakrishnan, J. Madhavan, E. J. Whitehead Jr, and J. Renau,
“Understanding bug fix patterns in verilog,” in Proceedings of the
2008 international working conference on Mining software repositories,
2008, pp. 39–42.

[40] J. A. Jones and M. J. Harrold, “Empirical evaluation of the
tarantula automatic fault-localization technique,” in Proceedings of
the 20th IEEE/ACM international Conference on Automated software
engineering, 2005, pp. 273–282.

[41] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund, “A
practical evaluation of spectrum-based fault localization,” Journal
of Systems and Software, vol. 82, no. 11, pp. 1780–1792, 2009.

[42] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for
spectra-based software diagnosis,” ACM Transactions on software
engineering and methodology (TOSEM), vol. 20, no. 3, pp. 1–32,
2011.

[43] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch gen-
eration systems,” in Proceedings of the 2015 International Sympo-
sium on Software Testing and Analysis, 2015, pp. 24–36.

[44] T. Jones and S. Forrest, “Fitness distance correlation as a measure
of problem difficulty for genetic algorithms,” in ICGA, vol. 95,
1995, pp. 184–192.

[45] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 802–
811.

[46] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: revisiting
template-based automated program repair,” in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2019, pp. 31–42.

[47] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “AVATAR: fix-
ing semantic bugs with fix patterns of static analysis violations,”
in Proceedings of the 26th IEEE International Conference on Software
Analysis, Evolution, and Reengineering. IEEE, 2019, pp. 456–467.

[48] S. Sutherland, RTL Modeling with SystemVerilog for Simulation
and Synthesis Using SystemVerilog for ASIC and FPGA Design.
Sutherland HDL, Incorporated, 2017.

[49] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of
random search on automated program repair,” in Proceedings of
the 36th International Conference on Software Engineering, 2014, pp.
254–265.

[50] F. Long and M. Rinard, “Automatic patch generation by learning
correct code,” in Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2016,
pp. 298–312.

[51] R. Poli and W. B. Langdon, “Genetic programming with one-
point crossover,” in Soft Computing in Engineering Design and
Manufacturing. Springer, 1998, pp. 180–189.

https://www.sciencedirect.com/science/article/pii/S000437029900034X
https://www.sciencedirect.com/science/article/pii/S000437029900034X
https://www.sciencedirect.com/science/article/pii/S0004370201001618
https://www.sciencedirect.com/science/article/pii/S0004370201001618
https://www.allaboutcircuits.com/technical-articles/what-is-a-hardware-description-language-hdl/
https://www.allaboutcircuits.com/technical-articles/what-is-a-hardware-description-language-hdl/
https://doi.org/10.1145/3503222.3507763
https://www.sciencedirect.com/science/article/pii/B978012800730300006X
https://www.sciencedirect.com/science/article/pii/B978012800730300006X
https://doi.org/10.1145/1173706.1173734
https://doi.org/10.1145/3395363.3397351

16

[52] B. L. Miller and D. E. Goldberg, “Genetic algorithms, selection
schemes, and the varying effects of noise,” Evolutionary computa-
tion, vol. 4, no. 2, pp. 113–131, 1996.

[53] C. Le Goues, W. Weimer, and S. Forrest, “Representations and
operators for improving evolutionary software repair,” in Pro-
ceedings of the 14th annual conference on Genetic and evolutionary
computation, 2012, pp. 959–966.

[54] C. S. Timperley, “Advanced techniques for search-based program
repair,” Ph.D. dissertation, University of York, 2017.

[55] J. Vasconcelos, J. A. Ramirez, R. Takahashi, and R. Saldanha,
“Improvements in genetic algorithms,” IEEE Transactions on mag-
netics, vol. 37, no. 5, pp. 3414–3417, 2001.

[56] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic
programming approach to automated software repair,” in Pro-
ceedings of the 11th Annual conference on Genetic and evolutionary
computation, 2009, pp. 947–954.

[57] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automati-
cally finding patches using genetic programming,” in 2009 IEEE
31st International Conference on Software Engineering. IEEE, 2009,
pp. 364–374.

[58] IEEE, “Ieee standard for verilog hardware description language,”
IEEE Std 1364-2005 (Revision of IEEE Std 1364-2001), pp. 1–590,
2006.

[59] S. Romano, C. Vendome, G. Scanniello, and D. Poshyvanyk, “A
multi-study investigation into dead code,” IEEE Transactions on
Software Engineering, 2018.

[60] S. Takamaeda-Yamazaki, “Pyverilog: A python-based hardware
design processing toolkit for verilog hdl,” in International Sym-
posium on Applied Reconfigurable Computing. Springer, 2015, pp.
451–460.

[61] V. Synopsys, “Verilog simulator,” Avaliable HTTP: http://www.
synopsys. com/products/simulation/simulation. html, 2004.

[62] Synopsys, “VCS functional verification solution,” 2020.
[Online]. Available: https://www.synopsys.com/verification/
simulation/vcs.html

[63] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“Semfix: Program repair via semantic analysis,” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE,
2013, pp. 772–781.

[64] E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest, “Soft-
ware mutational robustness,” Genetic Programming and Evolvable
Machines, vol. 15, no. 3, pp. 281–312, 2014.

[65] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure and
its potential impact,” Empirical Software Engineering, vol. 10, no. 4,
pp. 405–435, 2005.

[66] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of exist-
ing faults to enable controlled testing studies for java programs,”
in Proceedings of the 2014 International Symposium on Software
Testing and Analysis, 2014, pp. 437–440.

[67] S. Staber, B. Jobstmann, and R. Bloem, “Finding and fixing
faults,” in Advanced Research Working Conference on Correct Hard-
ware Design and Verification Methods. Springer, 2005, pp. 35–49.

[68] P. McMinn, “Search-based failure discovery using testability
transformations to generate pseudo-oracles,” in Proceedings of
the 11th Annual conference on Genetic and evolutionary computation,
2009, pp. 1689–1696.

[69] R. Feldt, “Generating diverse software versions with genetic
programming: an experimental study,” IEE Proceedings-Software,
vol. 145, no. 6, pp. 228–236, 1998.

[70] L. I. Manolache and D. G. Kourie, “Software testing using model
programs,” Software: Practice and Experience, vol. 31, no. 13, pp.
1211–1236, 2001.

[71] S. R. Shahamiri, W. M. N. W. Kadir, S. Ibrahim, and S. Z. M.
Hashim, “An automated framework for software test oracle,”
Information and Software Technology, vol. 53, no. 7, pp. 774–
788, 2011. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950584911000589

[72] K. Aggarwal, Y. Singh, A. Kaur, and O. Sangwan, “A neural net
based approach to test oracle,” ACM SIGSOFT Software Engineer-
ing Notes, vol. 29, no. 3, pp. 1–6, 2004.

[73] F. Gholami, N. Attar, H. Haghighi, M. V. Asl, M. Valueian, and
S. Mohamadyari, “A classifier-based test oracle for embedded
software,” in 2018 Real-Time and Embedded Systems and Technolo-
gies (RTEST), 2018, pp. 104–111.

[74] S. Hertz, D. Sheridan, and S. Vasudevan, “Mining hardware
assertions with guidance from static analysis,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 6, pp. 952–965, 2013.

[75] J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, B. Xie, and H. Mei,
“Supporting oracle construction via static analysis,” in 2016 31st
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), 2016, pp. 178–189.

[76] M. Hanafy, H. Said, and A. M. Wahba, “New methodology
for digital design properties extraction from simulation traces,”
in 2015 Tenth International Conference on Computer Engineering
Systems (ICCES), 2015, pp. 91–98.

[77] S. R. Shahamiri, W. M. N. W. Kadir, and S. Z. Mohd-Hashim, “A
comparative study on automated software test oracle methods,”
in 2009 Fourth International Conference on Software Engineering
Advances, 2009, pp. 140–145.

[78] R. Binder, Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Professional, 2000.

[79] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo, “Opti-
mizing for the number of tests generated in search based test data
generation with an application to the oracle cost problem,” in
2010 Third International Conference on Software Testing, Verification,
and Validation Workshops, 2010, pp. 182–191.

[80] S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable
string test inputs using a natural language model to reduce
human oracle cost,” in 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation, 2013, pp. 352–361.

[81] G. Jahangirova, D. Clark, M. Harman, and P. Tonella, “Test
oracle assessment and improvement,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, 2016, pp.
247–258.

[82] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions
on Software Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[83] C. L. Seitz, C. Mead, and L. Conway, “System timing,” Introduc-
tion to VLSI systems, pp. 218–262, 1980.

[84] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Transactions
on Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.

[85] N. Alsolami, Q. Obeidat, and M. Alenezi, “Empirical analysis of
object-oriented software test suite evolution,” International Journal
of Advanced Computer Science and Applications, vol. 10, no. 11, 2019.

[86] B. L. Miller, D. E. Goldberg et al., “Genetic algorithms, tourna-
ment selection, and the effects of noise,” Complex systems, vol. 9,
no. 3, pp. 193–212, 1995.

[87] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen, “Automatic
program repair with evolutionary computation,” Communications
of the ACM, vol. 53, no. 5, pp. 109–116, 2010.

[88] Z. Sharafi, I. Bertram, M. Flanagan, and W. Weimer, “Eyes on
code: A study on developers code navigation strategies,” IEEE
Transactions on Software Engineering, 2020.

[89] S. Stapleton, Y. Gambhir, A. LeClair, Z. Eberhart, W. Weimer,
K. Leach, and Y. Huang, “A human study of comprehension
and code summarization,” in Proceedings of the 28th International
Conference on Program Comprehension, 2020, pp. 2–13.

[90] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable
multiline program patch synthesis via symbolic analysis,” in Pro-
ceedings of the 38th international conference on software engineering,
2016, pp. 691–701.

[91] J. H. Perkins, S. Kim, S. Larsen, S. P. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. T. Sullivan,
W. Wong, Y. Zibin, M. D. Ernst, and M. C. Rinard, “Automatically
patching errors in deployed software,” in Proceedings of the 22nd
ACM Symposium on Operating Systems Principles 2009, SOSP
2009, Big Sky, Montana, USA, October 11-14, 2009, J. N. Matthews
and T. E. Anderson, Eds. ACM, 2009, pp. 87–102. [Online].
Available: https://doi.org/10.1145/1629575.1629585

[92] V. Taraate, Digital logic design using verilog: coding and RTL synthe-
sis. Springer, 2016.

[93] S. Kirbas, E. Windels, O. McBello, K. Kells, M. Pagano, R. Sza-
lanski, V. Nowack, E. R. Winter, S. Counsell, D. Bowes, T. Hall,
S. Haraldsson, and J. Woodward, “On the introduction of auto-
matic program repair in Bloomberg,” IEEE Software, vol. 38, no. 4,
pp. 43–51, 2021.

[94] Y. Huang, K. Leach, Z. Sharafi, N. McKay, T. Santander, and
W. Weimer, “Biases and differences in code review using medical
imaging and eye-tracking: Genders, humans, and machines,”
in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations

https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.sciencedirect.com/science/article/pii/S0950584911000589
https://www.sciencedirect.com/science/article/pii/S0950584911000589
https://doi.org/10.1145/1629575.1629585

17

of Software Engineering, ser. ESEC/FSE 2020. New York, NY,
USA: Association for Computing Machinery, 2020, p. 456–468.
[Online]. Available: https://doi.org/10.1145/3368089.3409681

[95] J. Lehman, J. Clune, D. Misevic, C. Adami, L. Altenberg,
J. Beaulieu, P. J. Bentley, S. Bernard, G. Beslon, D. M.
Bryson, N. Cheney, P. Chrabaszcz, A. Cully, S. Doncieux,
F. C. Dyer, K. O. Ellefsen, R. Feldt, S. Fischer, S. Forrest,
A. Fundefinedenoy, C. Gagńe, L. Le Goff, L. M. Grabowski,
B. Hodjat, F. Hutter, L. Keller, C. Knibbe, P. Krcah, R. E.
Lenski, H. Lipson, R. MacCurdy, C. Maestre, R. Miikkulainen,
S. Mitri, D. E. Moriarty, J.-B. Mouret, A. Nguyen, C. Ofria,
M. Parizeau, D. Parsons, R. T. Pennock, W. F. Punch, T. S. Ray,
M. Schoenauer, E. Schulte, K. Sims, K. O. Stanley, F. Taddei,
D. Tarapore, S. Thibault, R. Watson, W. Weimer, and J. Yosinski,
“The surprising creativity of digital evolution: A collection of
anecdotes from the evolutionary computation and artificial life
research communities,” Artif. Life, vol. 26, no. 2, p. 274–306, may
2020. [Online]. Available: https://doi.org/10.1162/artl a 00319

[96] S. Urli, Z. Yu, L. Seinturier, and M. Monperrus, “How to design
a program repair bot? insights from the repairnator project,” in
2018 IEEE/ACM 40th International Conference on Software Engineer-
ing: Software Engineering in Practice Track (ICSE-SEIP), 2018, pp.
95–104.

[97] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram,
“How do fixes become bugs?” in Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ser. ESEC/FSE ’11. New
York, NY, USA: Association for Computing Machinery, 2011,
p. 26–36. [Online]. Available: https://doi.org/10.1145/2025113.
2025121

[98] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the
cure worse than the disease? overfitting in automated program
repair,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, 2015, pp. 532–543.

[99] X. B. D. Le, F. Thung, D. Lo, and C. Le Goues, “Overfitting in
semantics-based automated program repair,” Empirical Software
Engineering, vol. 23, no. 5, pp. 3007–3033, 2018.

[100] S. Saha et al., “Harnessing evolution for multi-hunk program
repair,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 13–24.

[101] K. Liu, L. Li, A. Koyuncu, D. Kim, Z. Liu, J. Klein, and T. F.
Bissyandé, “A critical review on the evaluation of automated
program repair systems,” Journal of Systems and Software, vol. 171,
p. 110817, 2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121220302156

[102] K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and
Y. Le Traon, “You cannot fix what you cannot find! an inves-
tigation of fault localization bias in benchmarking automated
program repair systems,” in 2019 12th IEEE Conference on Software
Testing, Validation and Verification (ICST), 2019, pp. 102–113.

[103] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and
L. Zhang, “Precise condition synthesis for program repair,” in
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing (ICSE), 2017, pp. 416–426.

[104] J. Xuan, M. Martinez, F. DeMarco, M. Clément, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic
repair of conditional statement bugs in java programs,” IEEE
Transactions on Software Engineering, vol. 43, no. 1, pp. 34–55, 2017.

[105] S. Saha, R. K. Saha, and M. R. Prasad, “Harnessing
evolution for multi-hunk program repair,” in Proceedings of
the 41st International Conference on Software Engineering, ser.
ICSE ’19. IEEE Press, 2019, p. 13–24. [Online]. Available:
https://doi.org/10.1109/ICSE.2019.00020

[106] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable
multiline program patch synthesis via symbolic analysis,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE), 2016, pp. 691–701.

[107] C. Parnin and A. Orso, “Are automated debugging techniques
actually helping programmers?” in Proceedings of the 2011
International Symposium on Software Testing and Analysis,
ser. ISSTA ’11. New York, NY, USA: Association for
Computing Machinery, 2011, p. 199–209. [Online]. Available:
https://doi.org/10.1145/2001420.2001445

[108] X. Xia, L. Bao, D. Lo, and S. Li, ““automated debugging con-
sidered harmful” considered harmful: A user study revisiting
the usefulness of spectra-based fault localization techniques with
professionals using real bugs from large systems,” in 2016 IEEE

International Conference on Software Maintenance and Evolution (IC-
SME), 2016, pp. 267–278.

[109] F. Anderson, T. Grossman, and G. Fitzmaurice, “Trigger-action-
circuits: Leveraging generative design to enable novices to
design and build circuitry,” in Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology,
ser. UIST ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 331–342. [Online]. Available:
https://doi.org/10.1145/3126594.3126637

[110] J. Gillenwater, G. Malecha, C. Salama, J. Grundy, and J. O’Leary,
“Formalizing and enhancing verilog,” 01 2007.

[111] C. Salama, J. Gillenwater, G. Malecha, A. Zhu, W. Taha, J. Grundy,
and J. O’Leary, “Synthesizable verilog,” 01 2007.

[112] J. Gillenwater, G. Malecha, C. Salama, A. Y. Zhu, W. Taha,
J. Grundy, and J. O’Leary, “Synthesizable high level hardware
descriptions: Using statically typed two-level languages to
guarantee verilog synthesizability,” in Proceedings of the 2008
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, ser. PEPM ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 41–50. [Online].
Available: https://doi.org/10.1145/1328408.1328416

[113] H. Bhatnagar, Advanced ASIC chip synthesis using Synopsys® De-
sign compiler™ Physical compiler™ and Primetime®. Springer US,
2002.

[114] K. Morris, “Timing is everything: The trouble with timing closure
in FPGA design,” Electronic Engineering Journal, May 2013.

[115] R. Aggarwal, “Fpga place & route challenges,” in Proceedings of
the 2014 on International symposium on physical design, 2014, pp.
45–46.

[116] S. Simoglou, C. Sotiriou, and N. Blias, “Static timing analysis
induced simulation errors for asynchronous circuits,” in 2021
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), 2021, pp. 1–4.

[117] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi,
H. Khattri, J. M. Fung, A.-R. Sadeghi, and J. Rajendran, “Hard-
fails: Insights into software-exploitable hardware bugs,” in
USENIX Security Symposium, 2019, pp. 213–230.

[118] A. Arcuri and G. Fraser, “On parameter tuning in search based
software engineering,” in International Symposium on Search Based
Software Engineering. Springer, 2011, pp. 33–47.

[119] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for
simple program repairs,” in 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, vol. 1. IEEE, 2015, pp.
448–458.

[120] M. Martinez and M. Monperrus, “Astor: A program repair library
for java,” in Proceedings of ISSTA, 2016.

Priscila Santiesteban received a BA in Com-
puter Science and Physics from Coe College
and is currently a graduate student at the Uni-
versity of Michigan. Her research interests relate
to software engineering with an emphasis on
human factors and programming.

Yu Huang received a BA in Aerospace Engi-
neering from Harbin Institute of Technology, an
MS in Computer Engineering from the University
of Virginia, and a PhD in Computer Science
and Engineering from the University of Michi-
gan. She is currently an Assistant Professor of
Computer Science at Vanderbilt University. Her
research focuses on software engineering and
human factors.

https://doi.org/10.1145/3368089.3409681
https://doi.org/10.1162/artl_a_00319
https://doi.org/10.1145/2025113.2025121
https://doi.org/10.1145/2025113.2025121
https://www.sciencedirect.com/science/article/pii/S0164121220302156
https://www.sciencedirect.com/science/article/pii/S0164121220302156
https://doi.org/10.1109/ICSE.2019.00020
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1145/3126594.3126637
https://doi.org/10.1145/1328408.1328416

18

Westley Weimer received a BA in Computer
Science and Mathematics from Cornell Univer-
sity, and an MS and a PhD in Computer Engi-
neering from the University of California, Berke-
ley. He is currently a Professor of Computer
Science at the University of Michigan. His main
research interests include static and dynamic
analyses to improve software quality and fix de-
fects, as well as medical imaging and human
studies of programming.

Hammad Ahmad received a BS degree in Com-
puter Science from Washington and Lee Uni-
versity and an MS in Computer Science and
Engineering from the University of Michigan. He
is currently a PhD candidate at the University of
Michigan. His research interests relate to soft-
ware engineering with an emphasis on human
factors and pedagogy.

	Introduction
	Motivating Example
	Technical Approach
	Fault Localization
	Fitness Evaluation
	Repair Templates & Repair Operators
	Selection
	Fix Localization
	Repair Minimization

	Experimental Setup
	Benchmark Suite for Hardware Defects
	Selecting Hardware Projects
	Obtaining Information for Correct Circuit Behavior
	Transplanting Hardware Defects

	Algorithm Parameters
	Human Study Protocol

	CirFix Repair Evaluation
	RQ1. Repair Rate, Quality, and Sensitivity for CirFix
	RQ2. Quality of Fitness Function

	Evaluation of Human Study
	RQ3. Fault Localization and Human Performance
	RQ4. Subjective Judgment of Fault Localization
	Human Study Discussion

	Discussion of Synthesizability and Timing
	Limitations and Threats to Validity
	Related Work
	Conclusion
	References
	Biographies
	Priscila Santiesteban
	Yu Huang
	Westley Weimer
	Hammad Ahmad

