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Abstract—Rate adaptation is a key mechanism in current IEEE

802.11 networks and next-generation cellular systems. Observing

that the operating time scale of rate adaptation is usually much

smaller than the user association and scheduling, we study a

joint design of wireless user association and scheduling and rate

adaptation with different time scales to maximize cumulative

system throughput while guaranteeing desired fairness among

users. We develop a maximum-weight type user association and

scheduling algorithm that combines the virtual queues (tracking

the scheduling debt for each user to ensure the desired fairness

guarantee) and Upper Confidence Bound (UCB) estimates in its

weight measure; each selected user then adopts the UCB algorithm

to perform rate adaptation in a smaller time scale. We show that

our proposed algorithm yields a cumulative regret growing with

the square root of the time horizon up to a logarithmic factor,

and achieves zero cumulative fairness violation after a certain

number of time frames. We demonstrate the efficiency of the

proposed algorithm via simulations using synthetic and realistic

data traces.

I. INTRODUCTION

Multiple access points (AP) are typically deployed to ensure
sufficient communication capacity for reliable and fast wireless
transmissions in crowded areas such as campuses, stadiums, air-
ports, subways, and shopping centers. Current APs are equipped
with rate adaptation capability that allows the transmitter to
adapt the transmission rate, via different channel coding and
modulation schemes, to the time-varying wireless channel,
which significantly improves system throughput. Moreover, the
rate adaptation will be a key physical-layer mechanism for next-
generation millimeter-wave (mmWave) communication systems
that typically have a large and unpredictable throughput fluctu-
ation (e.g., [1]). Rate adaptation typically operates every 100ms
in IEEE 802.11 systems [2] and on a much smaller time scale
(e.g., less than 10ms or even 1ms) in mmWave-based wireless
systems. Such an operation time scale is typically smaller than
the transmission session of each user. This necessitates a joint
user association and scheduling design and rate adaptation:
determines when and which AP each user should associate with
and is scheduled for wireless transmissions and then which
transmission rate each selected user should choose on a small
time scale during its scheduling period. The goal is to maximize
system throughput while guaranteeing desired fairness among
users (i.e., each user should be at least scheduled for a certain
fraction of time on average).
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User association and scheduling design is important for
efficiently managing interference in wireless networks and has
received extensive research efforts (e.g., [3], [4], [5], [6], [7],
[8]). However, the combination of joint user association and
scheduling design and rate adaptation with different operation
time scales is far less explored. In this paper, we consider the
case that user association and scheduling decisions are made ev-
ery T time slots. The user dissociation and association involve
disconnection and reconnection and thus typically require non-
trivial costs such as communication interruption and network
delay increment. Intuitively, a small T provides more flexibility
for APs to make association and scheduling decisions and
thus could potentially improve network performance. However,
it causes a more frequent dissociation and association and
thus introduces a high handover cost. While the frame-based
scheduling design (e.g., [9], [10]) for deadline-constrained
traffic shares some similarities with our problem context, the
user schedule is not fixed within the entire frame and thus is
fundamentally different from our problem.

On the other hand, rate adaptation is a key mechanism for
wireless communication systems to approach wireless channel
capacity, and has been widely studied in the literature. Earlier
works (e.g., [11], [12], [13]) developed heuristic rate selec-
tion algorithms to strike a balance between exploration and
exploitation. In [14], the authors formulated rate adaptation
as a Multi-Armed Bandit (MAB) problem, where each arm
corresponds to a rate and is associated with an unknown link
successful transmission probability. As such, all classical MAB
algorithms, such as Upper Confidence Bound (UCB [15]),
Kullback-Leibler UCB (KL-UCB [16]), and Thompson Sam-
pling [17], can be directly utilized to develop rate adaptation
algorithms with provable performance guarantees. The authors
in [14] further developed a KL-UCB-based rate adaptation
algorithm by exploiting the unimodal structure of the system
throughput with respect to the transmission rate. Subsequent
works [18], [19] further developed more efficient rate adapta-
tion algorithms based on Thompson Sampling. However, all
these rate adaptation algorithm designs focused on a single
wireless link and have not yet been integrated into the wireless
user scheduling design that operates on a much larger time
scale.

In this paper, we develop a joint wireless user association
and scheduling and rate adaptation algorithm with different
operating time scales. The goal is to maximize the cumulative
throughput over a finite time horizon while guaranteeing the



desired fairness among users, i.e., each user is scheduled at
least a certain fraction of time on average. Such a joint algo-
rithm design shares a similarity with the combinatorial bandits
with fairness constraints (e.g., [20], [21]), where each arm
corresponds to a user and fairness is ensured among users. In
particular, [20] introduced the virtual queues to address fairness
constraints and incorporated it into the algorithm design that
yields a cumulative regret growing with the square root of the
time horizon up to a logarithmic factor while guaranteeing long-
term fairness among users. [21] further developed an algorithm
with regret that grows with the square root of the time horizon
and agrees with the state-of-the-art instance-independent bound,
and zero cumulative fairness violation after a certain time.
Our problem setup differs from those works in the following
aspects. First, we consider joint user association, scheduling,
and rate adaptation with fairness constraints as opposed to
user scheduling in [20], [21]. Second, our user association
and scheduling are mainly based on the maximum weight-
based algorithm, instead of MAB-based online learning. Rather,
we utilize the MAB-based online learning approach to adapt
the rate for each scheduled user. In other words, a MAB
is embedded for each user in the joint user association and
scheduling and rate adaptation framework. Third, user associ-
ation and scheduling and rate adaptation operate at different
time scales, which brings unique challenges for the algorithm
design and theoretical analysis. To the best of our knowledge,
this is the first work for handling wireless user association and
scheduling and rate adaptation in different time scales. Our
main contributions to this work are summarized as follows:

• We develop an online-learning-based joint user association
and scheduling and rate adaptation that operate on different
time scales (cf. Section III). In particular, a MaxWeight-type
algorithm with the weight combining the virtual queues and
UCB estimates is utilized to determine the user association and
scheduling, while the UCB algorithm is employed to determine
the transmission rate of each selected user.

• We show that our proposed algorithm achieves
O(

p
K logK) regret over K time frames while zero cumulative

fairness violation can be achieved after a certain number of time
frames independent of K.

• We demonstrate the superior performance of our proposed
algorithm via simulations using synthetic data and the data
collected in realistic wireless networks.

Note on Notation: We use bold and script font of a variable
to denote a vector and a set, respectively. Let kxk1 and kxk
denote the l1 and l2 norm of the vector x, respectively. Let
f(x) = O(x) if f(x)  Cx, 8x � 0 for some positive real
number C.

II. SYSTEM MODEL

We consider a wireless system with N users and L access
points (APs). We divide time into frames, each having T time
slots. The access point makes the decision on serving users at
the beginning of each time frame and serves the selected users
over the entire frame. Here, a smaller frame size T allows
the user to have more flexibility to switch the AP with better

channel quality, but is at the cost of increasing the handover
overhead. As such, the frame size T balances the handover
cost and network performance. Due to the wireless interference
constraints, only a subset of users can transmit simultaneously
in each time frame. We define Sl,n(kT ) = 1 if user n is asso-
ciated with AP l for wireless transmission in time frame k, and
Sl,n(kT ) = 0 otherwise. We call S(kT ) , (Sl,n(kT ), 8l, 8n)
the feasible schedule denoting the set of users that can be served
by each AP simultaneously in frame k. Let S be the collection
of all feasible schedules.

Within each time slot of a frame, each selected user trans-
mits at the rate chosen from the set {r1, r2, · · · , rM}, where
0 < r1 < r2 < · · · < rM and M is the number of
available transmission rates. Let Xl,n,m(t) = 1 denote that
the wireless transmission of user n associated with AP l at
rate rm is successful in time slot t, and Xl,n,m(t) = 0
otherwise. Here, rmXl,n,m(t) represents the throughput when
user n associated with AP l transmits at rate rm in time slot
t. We assume that Xl,n,m(t) is independently and identically
distributed (i.i.d.) with an unknown mean µl,n,m 2 [0, 1].
Let Il,n,m(t) = 1 denote that user n associated with AP l
transmits at rate rm in time slot t, and Il,n,m(t) = 0 otherwise.
Hence, the received throughput of all users in frame k is
R(kT ) ,P(k+1)T�1

t=kT

P
l,n,m Sl,n(kT )rmXl,n,m(t)Il,n,m(t).

Our goal is to maximize the cumulative expected throughputPK�1
k=0 E[R(kT )] while guaranteeing fairness among users, i.e.,

each user is scheduled at least �n 2 (0, 1) fraction of time
on average. If the statistics of throughput (i.e., µl,n,m, 8l =
1, 2, · · · , L, 8n = 1, 2, · · · , N, 8m = 1, 2, · · · ,M ) are known
in advance, then our objective can be achieved by choosing
a randomized stationary schedule1 {q⇤(S), 8S 2 S}, where
q⇤(S) is the probability of selecting a feasible schedule S and
solves the following optimization problem:

max
q(S)

X

S2S
q(S)

LX

l=1

NX

n=1

Sl,nT max
m

rmµl,n,m (1)

s.t.
X

S2S
q(S)

LX

l=1

Sl,n � �n + �, 8n = 1, 2, . . . , N, (2)

where � > 0 is a “tightness” constant. Here, maxm rmµl,n,m

is the maximum achievable throughput for user n com-
municating with AP l in each time slot, and thusP

l,n Sl,nT maxm rmµl,n,m is its maximum throughput in one
time frame if the schedule S = (Sl,n) is selected. In the rest
of the paper, we let S⇤ denote the feasible schedule selected
by the optimal randomized stationary schedule q⇤(S). Within
each frame, each selected user n chooses I⇤ , (I⇤l,n,m)l,n,m 2
argmaxI

PM
m=1 rmµl,n,mIl,n,m, i.e., selecting the rate with the

maximum throughput, i.e., maxm rmµl,n,m, in each time slot.
However, the throughput statistics are unknown a priori in

practice. As such, each user needs to learn these statistics (also
known as (a.k.a.) exploration) and selects the empirically best
transmission rate so far (a.k.a. exploitation). This inevitably

1The existence of such a randomized stationary policy can be shown by
using the similar argument in [22] and its proof is omitted for brevity.



leads to the throughput loss compared to the case when the
throughput statistics are known beforehand. Our goal is to
design a joint user scheduling and rate adaptation algorithm
so that it not only meets the desired fairness requirement but
also minimizes the cumulative regret over consecutive K time
frames, which is the gap between the expected accumulated
throughput and the optimal throughput with known throughput
statistics, i.e.,

Reg(KT ) ,
X

k,l,n

E

2

4S⇤
l,n

(k+1)T�1X

t=kT

MX

m=1

rmµl,n,mI⇤l,n,m

3

5

�
X

k,l,n

E

2

4Sl,n(kT )

(k+1)T�1X

t=kT

MX

m=1

rmµl,n,mIl,n,m(t)

3

5 .

III. ALGORITHM DESIGN AND PERFORMANCE ANALYSIS

In this section, we develop an online-learning-based joint
user scheduling and rate adaptation algorithm by integrating the
key idea of the well-known UCB algorithm and virtual queue
techniques while respecting the different time scales of user
scheduling and rate adaptation. In particular, in the time scale
for user schedule, the virtual queues are introduced to guarantee
the desired fairness constraint (see [23] for an overview). In
contrast, in the time scale for rate adaptation, the UCB approach
is utilized to deal with the fundamental exploitation-exploration
tradeoff in online learning for each user to identify the best
transmission rate while achieving a minimum cumulative regret.

To ensure fairness among users, we maintain a virtual queue
for each user that tracks its scheduling “debt” over time frames.
In particular, let Qn(kT ) be the virtual queue-length of user n
at the beginning of time frame k, and its evolution over time
frames is described as follows:

Qn((k + 1)T ) =

 
Qn(kT ) + �n �

LX

l=1

Sl,n(kT ) + ✏k

!+

,

(3)

for k = 0, 1, 2, . . ., where (x)+ , max{x, 0} and ✏k > 0
is some control parameter that will be specified later. We set
Qn(0) = 0 as the system starts at k = 0.

Let Hl,n,m(t) be the number of time slots that user n
is associated with AP l and transmits at rate rm until time
slot t, i.e., Hl,n,m(t) , Pt�1

⌧=0 Sl,n(b⌧/T cT )Il,n,m(⌧), where
bxc denotes the maximum integer that is not greater than
x. We set Hl,n,m(0) = 0 due to the fact that the system
starts at t = 0. We use µl,n,m(t) to denote the fraction of
successful transmissions when user n is associated with AP
l and transmits at rate rm until time slot t, i.e., µl,n,m(t) ,⇣Pt�1

⌧=0 Sl,n(b⌧/T cT )Xl,n,m(t)Il,n,m(t)
⌘
/Hl,n,m(t). If

Hl,n,m(t) = 0, we set µl,n,m(t) = 1. Let wl,n,m(t) denote the
UCB estimate of user n associated with AP l using rate rm in
time slot t, which can be defined below:

wl,n,m(t) , min

(
µl,n,m(t) +

s
3 log t

2Hl,n,m(t)
, 1

)
, (4)

where
p
3 log t/(2Hl,n,m(t)) is the exploration bonus term

that measures the uncertainty of the sample mean estimate
µl,n,m(t). Note that a smaller Hl,n,m(t) implies less exploration
on user n using rate rm and thus more inaccuracy in the
estimate µl,n,m(t), in which case user n is encouraged to
transmit at rate rm for further exploration. In (4), we use the
truncated version of the UCB estimate, since the successful
transmission probability is at most 1. When Hl,n,m(t) = 0, we
set wl,n,m(t) = 1, i.e., if user n has not transmitted at rate
rm until time slot t, it should have the highest priority to be
served.

On one hand, we would like to schedule users with large
virtual queue-lengths in each time frame to meet the desired
fairness constraint. On the other hand, in order to achieve a low
cumulative regret, we prefer to schedule users and select their
rates with large UCB weights in each time slot. This motivates
the following online-learning-based joint user scheduling and
rate adaptation algorithm, as shown in Algorithm 1.

Algorithm 1 Online-Learning-based Joint User Association and
Scheduling and Rate Adaptation (OL-JUASRA) Algorithm

At the beginning of frame k, select a feasible schedule bS(kT ) ,
(bSl,n(kT ), 8l, 8n) satisfying

bS(kT ) 2 argmax
S2S

X

l,n

Sl,n

✓
Qn(kT )

+ ⌘kT max
m

rmwl,n,m(kT )

◆
,

where ⌘k = �
p
k/T (with ⌘0 = �/(2T )). Then, update the

virtual queue-lengths according to (3) with ✏k = (4rMLN1.5+
1)/(2

p
k + 1).

Within each time slot t in frame k, i.e., t = kT, kT +
1, . . . , (k + 1)T � 1, each selected user n associated with
AP l (i.e., bSl,n(kT ) = 1) chooses the rate index bmn(t) (i.e.,
bIl,n,bmn(t)(t) = 1 and bIl,n,m(t) = 0, 8m 6= bmn(t)) such that

bmn(t) 2 argmax
m

rmwl,n,m(t).

In the proposed OL-JUASRA algorithm, the increasing se-
quence {⌘k}k�0 balances the virtual queue-lengths and the
UCB estimates for throughput statistics over time frames.
Initially, the OL-JUASRA algorithm puts a larger weight on
the virtual queue-lengths to quickly guarantee desired fair-
ness while learning the best transmission rate for each user,
and then emphasizes more on the UCB weight to ensure
a smaller cumulative regret. The parameter ⌘k requires the
exact knowledge of the slackness constant, which is usually
unavailable in practice. We will demonstrate that the OL-
JUASRA algorithm with inaccurate slackness constants still
performs well via simulations in Section IV. Different from
prior works on combinatorial bandits with fairness constraints
(e.g., [21]), the user scheduling and rate selection have different
time scales. This requires carefully manipulating the virtual
queue-lengths and UCB weights and decoupling them in an
appropriate way in the performance analysis.



Next, we characterize the cumulative fairness violation of the
proposed OL-JUASRA algorithm.

Proposition 1 (Cumulative Fairness Violation): Under the
OL-JUASRA algorithm, if ✏k  �/2, the cumulative fairness
violation over K time frames can be upper bounded below:

NX

n=1

0

@E

2

4
K�1X

k=0

(k+1)T�1X

t=kT

(�n � Sn(t))

3

5

1

A
+

 NT
⇣
g(N, �, rM )�

p
K
⌘+

,

where g(N, �, rM ) = 74N2.5

� log
�
18N
�

�
+ (4rML + 3)N1.5 +

N1.5(6+�2)
� + 1 + N1.5(4rMLN1.5+1)2

�

�
1
� + 1

�
is a constant

depending on system parameters such as N, � and rM .
Proof: We first select the Lyapunov function

V (kT ) , kQ(kT )k,

and prove that the Lyapunov function has an expected negative
drift when V (kT ) is sufficiently large and its drift is absolutely
bounded. Then according to [21, Lemma 11], E [kQ(kT )k1]
can be upper bounded. Finally, we can derive the upper bound
of the cumulative fairness violation by combining the dynamics
of virtual queue-lengths and the analysis of E [kQ(kT )k1]. The
sketch of the proof is available in our technique report [24] due
to the space limit.

Remarks 1: We can see from Proposition 1 that the OL-
JUASRA algorithm achieves zero cumulative fairness violation
when K � g2(N, �, rM ). Moreover, the number of frames
required for achieving zero cumulative fairness violation is
independent of frame size T and thus the required number
of time slots for achieving zero cumulative fairness violation
linearly increases with the frame size T . Furthermore, the
amount of cumulative fairness violation linearly increases with
the frame size T . All these observations will be demonstrated
via simulations in Section IV.

We derive an upper bound on the cumulative regret under
the OL-JUASRA algorithm.

Proposition 2 (Cumulative Regret): Under the OL-JUASRA
algorithm with ✏k  �, the cumulative regret Reg(KT ) over K
time frames can be upper bounded as follows:

Reg(KT )  NrMT (4rMLN1.5 + 1)2

4�2
+ 2

p
KNT (� +

3

2�
)

+
NT (2� + 1)2(4rMLN1.5 + 1)3

16�4

+ LMNrM

✓
T + 3 +

5⇡2

6
+ (T + 1) log(KT )

◆

+ (T + 4)rM
p
6LMNSmaxKT log(KT )

+ rM

s
3LMNSmaxKT

2 log T

= O

✓
NT

p
K + LMNT log(KT )

+ T
p
LMNKT log(KT )

◆
.

Proof: We perform the drift-plus-penalty analysis. Unlike
prior work on the regret analysis (e.g., [21]), the different time
scales of user scheduling and rate selection impose unique
challenges on the corresponding regret bound analysis. In
particular, we need to upper bound the regret by carefully
decoupling the user decision and rate adaption in different time
scales. Please see Appendix A for the detailed proof.

Remarks 2: For the impact of the number of frames K on
the regret performance, our derived regret upper bound has the
same order O(

p
K logK) as the instance-independent upper

bound for the classical UCB algorithm. While the derived regret
upper bound increases with the frame size T , the simulations
demonstrate that the frame size has a marginal impact on the
regret performance. The reason is that each user has sufficient
time to identify its best transmission rate under different frame
sizes.

IV. SIMULATIONS

In this section, we evaluate the performance of our proposed
OL-JUASRA algorithm via simulations based on synthetic and
real-world data.

A. Synthetic Traces

We consider N = 10 users and L = 3 APs in an IEEE
802.11g wireless system, where each user can associate at
most one AP and each AP can schedule at most one user in
each time frame. We let � = 2.7

55 ⇥ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
where we recall that the nth element denotes the desired
scheduling fraction for user n. Each user has eight available
rates as follows (in Mbps): r1 = 6, r2 = 9, r3 = 12,
r4 = 18, r5 = 24, r6 = 36, r7 = 48, and r8 = 54,
and its corresponding successful transmission probability vec-
tor µ1 = [0.95, 0.9, 0.8, 0.65, 0.45, 0.25, 0.15, 0.10] at AP 1,
µ2 = [0.92, 0.87, 0.77, 0.62, 0.42, 0.22, 0.12, 0.07] at AP 2 and
µ3 = [0.90, 0.85, 0.75, 0.6, 0.4, 0.2, 0.1, 0.05] at AP 3.

Fig. 2 shows the impact of the frame size on the performance
of the OL-JUASRA algorithm with an exact slackness constant
(i.e., � = 0.1). We observe from Fig. 2a that the scheduling
fraction of each user is larger than its desired value under
different frame sizes, demonstrating that our algorithm achieves
long-term fairness. Moreover, our algorithm can guarantee zero
cumulative fairness violation, as shown in Fig. 2b, demonstrat-
ing that our algorithm can also achieve short-term fairness.
The larger the frame size, the longer time required to achieve
zero cumulative fairness violation and the larger amount of
cumulative fairness violation. Furthermore, we can see from
Fig. 2c that our algorithm achieves almost the same regret under
different frame sizes, indicating that the impact of the frame
size on the regret is marginal.

The parameter ⌘k in the OL-JUASRA algorithm requires
the knowledge of the slackness constant �, which is usually
not available in practice. As such, we study the impact of the
imperfect knowledge of the slackness constant on the system
performance. In particular, we compare the performance of our
algorithm with exact knowledge of the slackness (i.e., � = 0.1)
and its 50% inaccurate estimates (� = 0.05 and � = 0.10) when



(a) User Scheduling Fraction (b) Cumulative Fairness Violation (c) Cumulative Regret

Fig. 1: Impact of slackness constant �.

(a) User Scheduling Fraction (b) Cumulative Fairness Violation (c) Cumulative Regret

Fig. 2: Impact of frame size T .

Fig. 3: Experimental setup in a
classroom.

Fig. 4: A picture of
mmWave AP.

the frame size T is set to 5, as shown in Fig. 1. From Fig. 1,
we can see that the OL-JUASRA algorithm with inaccurate
slackness constants can still guarantee long-term fairness (cf.
Fig. 1a), zero cumulative fairness violation (cf. Fig. 1b), and
logarithmic regret (cf. Fig. 1c). Moreover, the overestimate
of the slackness constant (i.e., � = 0.15) leads to a larger
cumulative fairness violation and a longer time to achieve zero
cumulative fairness violation (cf. Fig. 1b), while it results in a
slight improvement in cumulative regret (cf. Fig. 1c).

B. Real-World Data Traces

Experimental Setup: We consider a 60 GHz mmWave short-
range communication network (e.g., 802.11ad [25]) in a class-
room as shown in Fig. 3, where one AP was placed on the wall
while 10 user devices are uniformly distributed over the whole
classroom. Ideally, commodity off-the-shelf (COTS) 802.11ad
devices should be used to evaluate our algorithm. However,
COTS 802.11ad routers do not provide the control of rate
adaptation. To overcome this challenge, we built a 60 GHz
mmWave testbed to measure the end-to-end channel quality

TABLE I: EVM table specified in IEEE 802.11ad standard [25]
(B: BPSK; Q: QPSK; 16Q: 16-QAM).

index (m) 1 2 3 4 5 6 7 8 9
postSNR (dB) -7 -9 -10 -11 -12 -14 -15 -16 -17

Modulation B B Q Q Q Q 16Q 16Q 16Q
Coding rate 1/2 5/8 1/2 5/8 3/4 13/16 1/2 5/8 3/4
� (postSNR) 0.5 0.63 1 1.25 1.5 1.63 2 2.5 3
Rate (Gbps) 0.73 0.91 1.46 1.825 2.19 2.37 2.92 3.65 4.38

of communication traces and conduct simulations based on
collected real-world data. The mmWave testbed consists of one
transmitter and one receiver, each of which was built using a
computer for baseband signal processing, a USRP X310 for
signal shaping, and ADI’s EVAL-HMC6300 Boards for signal
frequency conversion. Simplified 802.11ad PHY-layer signal
processing modules were implemented on the transmitter and
receiver to conduct real-time data packet transmission from the
AP to each user device.
Data Collection and Interpretation: We collect the post
signal-to-noise ratio (post-SNR) of decoded signal constella-
tions at each user device (receiver) every 1 ms for a total
time duration of 20 seconds. Eventually, the collected data
is a 30⇥30, 000 matrix, with each element representing the
instantaneous, end-to-end channel quality (i.e., postSNR) of the
communication link from AP to a user device. We will publish
our collected dataset for public access. Based on the measured
postSNR, we calculate the achievable data rate of 802.11ad link
as follows: r(postSNR) = f · ⌧ofdm

⌧gi+⌧ofdm
· Ndata

Nfft
· �(postSNR),

where f = 2.64GHz is the sampling rate, ⌧gi = 36.36ns is the
normal guard interval, ⌧ofdm = 194.56ns is the OFDM symbol
duration, Ndata = 336 is the number of subcarriers for data,
Nfft = 512 is the FFT size, and �(postSNR) is the adaptive



(a) User Scheduling Fraction (b) Cumulative Fairness Violation (c) Cumulative Regret

Fig. 5: Impact of frame size T in Trace-based simulation.

(a) User Scheduling Fraction (b) Cumulative Fairness Violation (c) Cumulative Regret

Fig. 6: Impact of slackness constant � in Trace-based simulation.

rate given in Table I.
Simulation Setup: We set each user’s desired scheduling
fraction the same as that in synthetic simulations, i.e., � =
2.1
55 ⇥ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. There are nine rates available
for selection, which are shown in the last row of Table I.
The data packet transmission result was estimated as follows.
Suppose the AP selects rm for a user device in the scheduling
phase and the user device measures snr as its postSNR, if
r(snr) � rm, the data packet transmission is successful;
otherwise, it fails.

Fig. 5 shows the performance of the OL-JUASRA algo-
rithm using our collected wireless channel traces. We again
observe from Fig. 5a that each user’s scheduling fraction is
larger than its desired value under different frame sizes, which
shows that our algorithm can guarantee long-term fairness. In
addition, as shown in Fig. 5b, our algorithm can also achieve
zero cumulative fairness violation and thus yields short-term
fairness. Similar to the synthetic simulations, a larger frame
size results in a long time to achieve zero cumulative fairness
and a larger amount of cumulative fairness violation. Moreover,
the OL-JUASRA algorithm can achieve sublinear regret and the
frame size has a negligible impact on the regret performance.
Different from the synthetic simulations, the impact of the
slackness constant � has a marginal impact on cumulative
fairness violation, as shown in Fig. 6.

V. CONCLUSION

In this paper, we studied the joint design of user association
and scheduling and rate adaptation with different time scales
in wireless networks to maximize cumulative throughput while
guaranteeing desired fairness among users. We developed a

MaxWeight-type user association and scheduling algorithm that
combines both the virtual queues and UCB estimates in its
weight measure. Each selected user utilizes the UCB algorithm
to determine a transmission rate on a small time scale. We
showed that our proposed algorithm yields O(

p
K logK) cu-

mulative regret over K time frames and achieves zero cumu-
lative fairness violation after a certain number of time frames.
We performed simulations to demonstrate the efficiency of the
proposed algorithm based on both synthetic and real-world data.

APPENDIX A
PROOF SKETCH OF PROPOSITION 2

The proof relies on the following key lemma that establishes
the relationship between the UCB weights at the beginning of a
time frame and their values in the consecutive time slots within
that frame.

Lemma 1: The gap between the UCB estimate in time slot
t in frame k (i.e., wl,n,m(t) for t = kT, kT + 1, . . . , (k +
1)T � 1) and the estimate in the first time slot of frame k (i.e.,
wl,n,m(kT )) can be bounded as follows:

wl,n,m(kT )

�wl,n,m(t)� T

Hl,n,m(t)
�

p
3

2
p
2Hl,n,m(t)

p
log T

(5)

and

wl,n,m(kT )  wl,n,m(t) +
T

Hl,n,m(t)
+ T

s
3 log t

2Hl,n,m(t)
. (6)

The proof of Lemma 1 requires to develop tight bounds between
the UCB weights at the beginning of the frame and their values



in each time slot within that frame. The sketch of proof is
available in our technique report [24] due to the space limit.

Next, we develop the regret upper bound under our proposed
OL-JUASRA algorithm. We rewrite the regret as follows.

Reg(KT )

,
X

k,l,n

E

2

4S⇤
l,n

0

@
(k+1)T�1X

t=kT

MX

m=1

rmµl,n,mI⇤l,n,m

1

A

3

5

�
X

k,l,n

E

2

4bSl,n(kT )

0

@
(k+1)T�1X

t=kT

MX

m=1

rmµl,n,m
bIl,n,m(t)

1

A

3

5

=
K�1X

k=0

�R(kT ), (7)

where �R(kT ) ,P(k+1)T�1
t=kT

P
l,n,mE

⇥
rmµl,n,mS⇤

l,nI
⇤
l,n,m

�rmµl,n,m
bSl,n(kT )bIl,n,m(t)

⇤
. Select the Lyapunov function

V1(Q) , 1
2

PN
n=1 Q

2
n and consider its expected drift. In the rest

of the proof, we omit the frame index kT associated with virtual
queue lengths Q and schedule S without causing ambiguity.

E[V1(Q((k + 1)T )� V1(Q(kT ))]


NX

n=1

E [(�n + ✏k)Qn]�
LX

l=1

NX

n=1

E
h
Qn
bSl,n

i
+Hk, (8)

where Hk , N
�
3/2 + ✏2k

�
.

Adding the term ⌘k�R(kT ) on both sides of (8) and utilizing
the fact that the optimal stationary randomized policy S⇤(kT )
is independent of the system state and stabilizes the system,
i.e., E[

PL
l=1 S

⇤
l,n(kT )] � �n + �, 8n, we have

E[V1(Q((k + 1)T )� V1(Q(kT ))] + ⌘k�R(kT )


X

n

E[(�n + ✏k)Qn]�
X

l,n

E[Qn
bSl,n] +Hk
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� rmµl,n,m
bSl,n

bIl,n,m(t)
⇤

 Hk +
X

l,n

E
h⇣

Qn + ⌘kT max
m

rmµl,n,m

⌘⇣
S⇤
l,n � bSl,n

⌘i

+ ⌘k
X

l,n,m
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t=kT

E
h
rmµl,n,m

⇣
I⇤l,n,m � bIl,n,m(t)

⌘
bSl,n

i
,

(9)

where the last step follows from the fact the optimal stationary
randomized policy S⇤(kT ) is independent of the system state
and stabilizes the system, i.e., E[S⇤

n(kT )] � �n + �, 8n and
holds for any k � k0 , (4rMLN1.5+1)2/4�2 such that ✏k0 
�.

Dividing ⌘k on both sides of (9) and summing over k =

k0, k0 + 1, . . . ,K � 1, we have

Reg(KT ) =
k0�1X

k=0

�R(kT ) +
K�1X

k=k0

�R(kT )

(a)
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(10)

where step (a) uses the fact that ⌘k is an increasing sequence
and Qn(k0T )  k0�n +

Pk0�1
k=0 ✏k  k0 +

Pk0�1
k=0 ✏k.

Utilizing the scheduling component of the OL-JUASRA
algorithm, we have

X
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m
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Similarly, we can bound
(k+1)T�1X

t=kT

X

m
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I⇤l,n,m � bIl,n,m(t)
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Substituting (11) into (10), we have
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For the term
PK�1

k=k0
Hk/⌘k, according to the definition of

⌘k, we can show that
K�1X

k=k0

Hk

⌘k
 2

p
KNT

✓
� +

3

2�

◆
. (13)

The analyses of G1(KT ) and G2(KT ) are similar to the line
of regret analysis in [20]. In particular, we can show that

G1(KT )  LNMrM

✓
1 +

⇡2

4

◆

+ 2rM
p
6LNMSmaxKT log(KT ), (14)

G2(KT )  LNMrM⇡2

6
. (15)

For G3(KT ) and G4(KT ), we first utilize Lemma 1 and
then upper bound G3(KT ) and G4(KT ) by G1(KT ) and
G2(KT ), respectively. Thus we can obtain the following re-
sults.

G3(KT )  LNMrM

✓
T +

⇡2

4

◆
+ LNMrMT log(KT )

+ (T + 2)rM
p

6LNMSmaxKT log(KT ), (16)

G4(KT )  LNMrM

✓
2 +

⇡2

6
+ log(KT )

◆

+ rM

s
3LMNSmaxKT

2 log(T )
. (17)

Hence, by substituting (13), (14), (15), (16), and (17) into (12),
we have the desired result.
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