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Abstract

Bayesian optimization is a technique for opti-
mizing black-box target functions. At the core
of Bayesian optimization is a surrogate model
that predicts the output of the target function at
previously unseen inputs to facilitate the selec-
tion of promising input values. Gaussian pro-
cesses (GPs) are commonly used as surrogate
models but are known to scale poorly with the
number of observations. Inducing point GP ap-
proximations can mitigate scaling issues, but
may provide overly smooth estimates of the tar-
get function. In this work we adapt the Vec-
chia approximation, a popular GP approximation
from spatial statistics, to enable scalable high-
dimensional Bayesian optimization. We develop
several improvements and extensions to Vecchia,
including training warped GPs using mini-batch
gradient descent, approximate neighbor search,
and variance recalibration. We demonstrate the
superior performance of Vecchia in BO using
both Thompson sampling and qUCB. On several
test functions and on two reinforcement-learning
problems, our methods compared favorably to
the state of the art, often outperforming inducing
point methods and even exact GPs.

Matthias Katzfuss
Texas A&M University

The basic idea of BO is to approximate the black-box func-
tion with a cheap-to-evaluate surrogate, typically a GP, and
perform optimization with the surrogate. Starting with an
initial collection of function evaluations, the trained GP is
combined with a heuristic to generate an acquisition func-
tion, which assigns values to unseen inputs. The input with
the highest acquisition value is evaluated and the result is
added to the dataset. This process continues iteratively un-
til a predefined stopping criterion is met or the computa-
tional budget is depleted.

As most BO techniques use a GP surrogate, they inherit the
scalability issues of GPs. It becomes expensive to search
a high-dimensional space when optimizing the acquisition
function. This work addresses this scalability issue by ex-
tending the Vecchia GP approximation from spatial statis-
tics [Vecchia, 1988, Katzfuss and Guinness, 2021] to work
in high dimensions with many observations. Through these
extensions, we demonstrate how Vecchia GPs can be used
in concert with existing BO procedures. To be precise, our
contributions are : (1) Introduce Vecchia GP approxima-
tions to the machine-learning community (2) Adapt Vec-
chia GPs to BO and improve their flexibility and scal-
ing with warped kernels, vector quantization, approximate
nearest neighbors, minibatch training, and variance correc-
tion (3) Empirically demonstrate the utility of Vecchia GPs
within existing BO frameworks.

2 E X I S T I N G  SOLUTIONS
1 INTRODUCTION

Bayesian optimization (BO) is a class of techniques
for black-box function optimization [Mockus, 1989].
BO has found success in a variety of areas, includ-ing
reinforcement learning [Calandra et al., 2016], tun-ing of
machine-learning algorithms [Swersky et al., 2013], A/B
testing [Letham et al., 2019] and material discovery
[Gomez-Bombarelli et al., 2018].
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There has been interest in scaling BO in two ways: higher
input dimensions and more function evaluations. While we
focus on the latter here, these two aspects are related, in
that successful high-dimensional optimization typically re-
quires many function evaluations.

High-dimensional BO is thoroughly studied with many
proposed solutions, including transformations to a lower-
dimensional space [Gomez-Bombarelli et al., 2018],
assuming an additive form for the target function
[Kandasamy et al., 2015],     and using sparsity-inducing
priors [Eriksson and Jankowiak, 2021].

Scaling BO to many function evaluations is less ex-
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plored. Existing approaches rely on additivity as-
sumptions [Wang et al., 2018] or GP approximations
[McIntire et al., 2016, Maddox et al., 2021]. The weighted
online Gaussian process (WGOP) [McIntire et al., 2016]
method uses a second sparse GP to learn hyperparame-
ters and as such is not a self-contained method. The on-
line variational conditioning (OVC) [Maddox et al., 2021]
method improves the efficiency of conditioning sparse GPs
on new data for look-ahead acquisition functions such as
batch knowledge gradient (qKG) [Wu and Frazier, 2016],
but it does not change the predictive performance of
sparse GPs. The trust region BO method (TuRBO)
[Eriksson et al., 2019] has also seen great success by rely-
ing on Thompson sampling and limiting the input search to
trust regions, which are determined by the lengthscale pa-
rameters of the GP. However, TuRBO relies on fitting exact
GPs to subsets of data within trust regions when using mul-
tiple trust regions, or using a global exact GP when there is a
single trust region. This means the method is still bound by
the computational complexity of exact GPs or it can-not
leverage all the available data when making predictions
within a trust region.

In this work we propose using Vecchia GPs as a drop-in
replacement for exact and sparse GPs within BO. We
show that existing GP-based BO methods can be made
scalable via the Vecchia approximation, and we estab-
lish that existing scalable BO methods can be improved
by using Vecchia GPs instead of inducing point meth-
ods [Hensman et al., 2013], which can suffer from impor-
tant limitations [Stein, 2014]. While local information
and nearest neighbor conditioning sets have been used
for variational approximations to GPs [Liu and Liu, 2019,
Tran et al., 2021, Wu et al., 2022], we believe our ap-
proach’s ease of use and strong performance justify further
investigation within the BO community. We hope to pro-
vide readers with a set of techniques for easily incorporat-
ing Vecchia GPs into existing BO procedures to improve
their scalability.

3 BACKGROUND

3.1     Review of Bayesian Optimization

For a “black-box” objective function, f ,  Bayesian opti-
mization aims to solve the problem

min f (x) ; (1)

over some input space X   Rd .  In BO, f  is often modeled as a
Gaussian process (GP), f ( )   GP ( ; K) ,  whose mean  and
kernel function K  depend on hyperparame-ters .

Function evaluations yi     =  f ( x i )  are obtained sequen-
tially. Given the first n observations y1:n  at inputs x1: n ,
the goal is to find a new input x n + 1 ,  such that the

global optimum of f  is likely at x n + 1 .  This is usually
achieved by maximizing an acquisition function, x n + 1  =
arg ma x x 2 X  a (xjy1:n ), which is a function that as-signs
a measure of value to unseen locations, and where  =  arg
max log p(y1:n ) is the maximum likelihood estimate.

Alternatively, new inputs can be chosen using Thomp-
son sampling [Thompson, 1933], which has been shown to
work well empirically [Chapelle and Li, 2011]. In Thomp-
son sampling, we consider a collection of M inputs, X  =
(x; : : : ; x ), sampled from the input space X .  We gen-
erate a joint sample from the posterior at these locations
(y; : : : ; y )   p(f (X ) jy1 : n ) .  We choose x n + 1  to be the
input value with the lowest sampled value, x n + 1  =  x ?  with
j  =  arg mini2f1; : : : ;M g y. If we want a batch of q >  1 query
points, we generate q independent batches from the
posterior over the same set X  and choose the lowest value
from each batch (avoiding duplicates).

3.2     Vecchia GP Approximations

Given n observations y1:n as described above,
the       Vecchia GP approximation       [Vecchia, 1988,
Katzfuss and Guinness, 2021] uses a modified likeli-
hood to turn the O(n3) complexity for standard GP
regression into O(nm3), with m  n. (A further
reduction to O(nm2) is possible by grouping observations
and re-using Cholesky factors [Schafer et al., 2021].) The
following provides details on Vecchia GPs, including the
likelihood and the posterior predictive distribution.

3.2.1     Likelihood

Recall that any joint density of n observations y1:n  can be
decomposed exactly as a product of conditional densities:
p(y1:n ) = n p(yi jy1:i 1), where y1:0 =  ; .  This moti-
vates the Vecchia approximation [Vecchia, 1988]:

p(y1:n )  pb(y1:n ) =  
Q

i = 1  p(yi jyc( i ) ); (2)

where each c(i)  f1; : : : ; i   1g is a conditioning index set
of size at most m, and the n conditional distributions
p(yi jyc( i ) ) are all Gaussian and can be computed in paral-
lel, each in O(m ) time.

3.2.2     Properties

Vecchia approximations have several attractive properties
[Katzfuss et al., 2022]. The joint distribution pb(y1:n ) =
N ( ; K )  implied by (2) is multivariate Gaussian, where the
inverse Cholesky factor K  1=2 is sparse with O(nm)
nonzero entries [Katzfuss and Guinness, 2021]. Under
the sparsity pattern implied by the c(i), the Vecchia ap-
proximation results in the optimal K  1=2 as measured
by Kullback-Leibler (KL)  divergence, K L(p(y )kpb(y ))
[Schafer et al., 2021].
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In general the matrix K  is dense but for GP hyperparame-
ter optimization and prediction we never need to explicitly
compute K .  Instead we work with another sparse matrix
U . U  is the the upper-lower Cholesky decomposition of
K ,  which is simply the inverse Cholesky factor of P c P r K .
Where P c  and P c  are permutation matrices that reverse
columns and rows, respectively. The elements of U  can be
computed in parallel and involve inverting m m matrices
(see Appendix D.1 for closed form expressions).

Growing the conditioning sets c(i) decreases the K L  diver-
gence [Guinness, 2018]; for m =  n   1, the approxima-
tion becomes exact, pb(y) =  p(y). Thus, m trades off low
computational cost (small m) and high accuracy (large m);
crucially, high accuracy can be achieved even for m  n in
many settings.

3.2.3     Ordering and Conditioning Sets

Aside from the choice of m, the accuracy of a Vecchia ap-
proximation depends on the ordering of y1:n  and on the
choice of the conditioning sets c(i) in (2).

In our experience, the highest accuracy for a given m can
be achieved by combining maximum-minimum-distance
(maximin) ordering with conditioning on the m (previously
ordered) nearest neighbors (NNs), which is illustrated in
Figure 1. Maximin sequentially picks each variable in the
ordering as the one that maximizes the minimum distance
to previously ordered variables. Exact maximin ordering
and NN conditioning can be computed in quasilinear time
in n, and m needs to grow only polylogarithmically with n
for -accurate Vecchia approximations with maximin or-
dering and NN conditioning under certain regularity condi-
tions [Schafer et al., 2021].

In Figure 1, we see that for index i  in the maximin ordering,
the m previously ordered NNs can be far away for small i
and very close for large i. This global and local behav-ior
helps Vecchia both learn accurate values for hyperpa-
rameters and make good predictions. This is in contrast to
low-rank approximations that effectively use the same con-
ditioning sets for each i  and hence focus on global behavior
at the cost of ignoring local structure.

The global-local nature of Vecchia can persist even with
other variable orderings, such as total random ordering.
This is demonstrated in Appendix A.1, where we com-
pare Vecchia (random ordering) and SVI-GP on functions
with high frequency fluctuations and sharp minima. On the
Michalwicz function [Molga and Smutnicki, 2005], Vec-
chia outperformed SVI-GP by several orders of magnitude
in terms of KL-divergence between the approximate GPs
and the exact GP. We attribute much of this success to Vec-
chia’s ability to model local fluctuations, even with random
ordering, as we further demonstrate on the Ackley-1 func-
tion in Appendix A.1.1.

3.2.4     Vecchia Predictions

The Vecchia approximation naturally allows for an accu-
rate approximation of the joint posterior predictive distribu-
tion of an unobserved np-vector y p [Katzfuss et al., 2020]
of the form

pb(yp jy1:n ) =  
Q

i = 1  p(yi jyc p ( i ) ) ; (3)

where y c p ( i )  denotes the m NNs of yp among y1:n  (or
y1:n  [  y , if joint predictions are desired), and the np
conditional distributions p(yi jyc ( i ) )  are all Gaussian and
can be computed in parallel, each in O(m3) time.

To be precise, the joint posterior predictive distribu-
tion is Gaussian with a sparse inverse Cholesky factor,
pb(yp jy1:n ) =  N ( p ; ( L T  L )  1). Where the mean and in-
verse Cholesky factor are given by,

p =  (Up; p ) 1 (Un ;p )T  y1:n ; L  =  Up; p;

With the entries of U  computed as in Equation 11. See
Appendix D for additional details on prediction.

3.3     Comparison with Local Expert Models

It should be observed that the Vecchia approxima-
tion is different than approximations that rely on
local     experts     [Tresp, 2000,     Yuan and Neubauer, 2008,
Cao and Fleet, 2014]. We briefly highlight the main
differences between the Vecchia approximation and local
experts.

With local experts, the data is partitioned into subsets on
which local models are trained. At test time the predic-
tions from each model are combined into a single predic-
tion. However, with Vecchia we never partition the data and
do not require a combining step when making predictions.

The assumptions on the structure of the covariance and pre-
cision matrix are also different between local experts and
Vecchia. For example, Product of Expert (PoE) based mod-
els assume zeros in the covariance matrix (often a block di-
agonal structure depending on the ordering of the data), but
Vecchia assumes zeros in the inverse of the Cholesky factor.
There has been work on allowing correlation between the
blocks in PoE models [Schurch et al., 2023], but the focus is
still on zeros in the covariance matrix rather than zeros in
the inverse Cholesky of the covariance matrix.

4 V E C C H I A  FOR BAY E S I A N
OPTIMIZATION

In this section we detail how Vecchia GPs work naturally
with standard BO GP modeling techniques. We also work
out how Vecchia can be modified to improve performance
for BO.
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i = 10 i = 100 i = 480

First-M Previously Ordered Conditioning Set All Data Data Point i

Figure 1: Illustration of maximin ordering and conditioning sets for n =  500 uniformly sampled inputs (grey dots) on
[0; 1]2. For i  =  10, i  =  100, and i  =  480 in the left, middle, and right panel, we show the ith input (cyan star) in the
maximin ordering, the previously ordered i    1 inputs (blue dots), including the (approximate) nearest m =  9 inputs (red
circles). For increasing i, the first i  inputs form increasingly dense grids, so that the distance to the m NN decreases
gradually and systematically. In contrast, for fully independent conditional approximations (FIC), each input has the same
conditioning set, here illustrated by the first m inputs in the maximin ordering (magenta squares). Thus F IC  effectively
ignores many closer previously-ordered inputs, which can lead to large approximation errors.

4.1     Warped Kernel ing the possibly high dimensional  such that,

It has been shown that input warping can improve BO per-
formance [Snoek et al., 2014], so we work out how Vecchia
can be altered to incorporate warping. We start by explain-
ing the idea of warping and how it can affect Vecchia.

A  flexible GP kernel can be obtained by taking a base ker-
nel K  (e.g., Matern 5/2) and warping the inputs with a non-
linear function w(),

K ( x ; x 0 )  =  K (kw ( x )       w(x0)k): (4)

The warping function we focus on is the Kumarswamy
CDF [Balandat et al., 2020]. For x  2  R d  we allow each di-
mension, x  , to be warped using different parameters, so for
the Kumarswamy CDF we have w(xi )  =  1 (1 x a i  )b i  for
i  =  1; :::; d. When ai =  bi  =  1 for all i  we simply return
x .  This choice is arbitrary and one could use other warping
functions such as a neural network [Wilson et al., 2016].

To fully utilize the flexibility of the warped kernel within
Vecchia GPs, we carry out the ordering and conditioning-
set selection based on Euclidean distance between the
warped inputs w(x1 ); : : : ; w(xn ) instead of the original in-
puts x1 ; : : : ; xn .

 =  arg m a x
X  

log p(yi jyc( i ) )
i = 1

An approximate solution is generally found using gradient
descent to optimize the sum of log terms. This approach
has a time complexity that is linear in n. However, each
term in the sum can be evaluated in O(m3) time. We use
this observation to approximate the gradient using mini-
batches indexed by b  f1; :::; ng:

r l o g  pb(y1:n )  
P

j 2 b ( n = j b j ) r  log p(yj jyc( j ) ):      (5)

With this change, the training time depends on the mini-
batch size b instead of the total data size n given the order-
ing and NN. This reduction in time complexity is critical, as
we are estimating the GP hyperparameters after each step
in the BO procedure.

Empirically we have observed notable speed up in training
time and consistent results regardless of batch size. Ap-
pendix G explores the results of different batch sizes when
fitting data from the Ackley-25 function with 1500 obser-
vations. The final loss achieved was consistent for all batch
sizes, but for the smallest batch size, namely 32, the result
was achieved in many fewer passes through the data.

4.2     Training Using Stochastic Gradient Descent
4.3     Nearest Neighbors and Ordering

Let  denote the vector of hyperparameters for the kernel
function K  which may include parameters for a warping
function w(). Fitting the Vecchia GP to data involves find-

The nearest-neighbor search can become a bottleneck in
the Vecchia procedure, and to alleviate this we sug-gest
using approximate NNs with product quantization [Jegou
et al., 2010, Johnson et al., 2017]. At a high level
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constructing the conditioning sets proceeds as follows,
given a database to query against we begin by constructing a
set of centroids of length Nlist . Then we create Voronoi
cells around each of these centroids and cluster the database
points based on which Voronoi cell they fall into. To find
the approximate conditioning set c~(i) for test point x  we
compare the query point x  against the centroids. We search
among data clustered into the Nprobe closest Voronoi cells
and return the m closest data points found. The two
parameters Nlist and Nprobe allow us to trade off speed and
accuracy when constructing our conditioning sets. If Nlist is
large and Nprobe is small the query will be fast, but we are
susceptible to a problem known as the ”edge effect” where a
query point is close to the boundary of a Voronoi cell. We
explore the impact of Nlist and Nprobe on the performance
of Vecchia GPs in Section 5.4.

For variable ordering a batched maximin ordering (see Ap-
pendix B) is natural for BO since we observed the data in
batches. By preserving the order of the previously seen data
points the complexity of ordering can be reduce to quasi-
linear in the query size.

4.4     Calibration of Predictive Variances

To improve uncertainty quantification for out-of-sample
predictions, we calibrate the marginal predictive variances
[Katzfuss et al., 2022].     In short, we maximize the log-
probability of the most recent query set by adding a term
to the diagonal of the covariance matrix.

To do this we update the hyperparameters based on all
available data, and then compute the posterior for the newly
observed query points as described in Section 3.2.4. Fi-
nally, we choose the variance inflation factor, bv , to maxi-
mize the posterior log-probability of this holdout set:

max log p(yj  ;   +  b I  ): (6)
bv 2[0;2]

More details can be found in Algorithm 2 in Appendix C.

With bv >  0, the predictive variance is inflated, which en-
courages more exploration in the resulting BO procedure.
Since the observations are processed to have zero mean and
variance equal to one, the value of bv is generally at most
1.4 but usually less than 0.1. In our experience, this vari-
ance correction is helpful when the observations are noisy
or the target function is highly variable. However, if the
function is smooth and we have noise-free observations,
simply using the initial Vecchia predictions is sufficient.
In our experiments we found the optimization of the log-
probability faster with additive variance inflation, as op-
posed to multiplicative variance inflation which has been
used in previous work [Katzfuss et al., 2022].

4.5     Speeding Up Existing BO Methods

Below we provide details for incorporating Vecchia GPs
into existing BO frameworks to improve their computa-
tional speed.

4.5.1     Vecchia with TuRBO

Trust Region Bayesian optimization (TuRBO)
[Eriksson et al., 2019] is a Bayesian optimization proce-
dure that uses hyper-rectangles called trust regions.     In
TuRBO, independent exact GPs are fit to data within the
trust regions. Query points are chosen using Thompson
sampling, and the regions grow or shrink based on how
often they contain new optima. TuRBO allows for a single
trust region (TuRBO-1) or t >  1 simultaneous trust regions
(TuRBO-t). TuRBO-1 is based on a single global GP fit to
all data, whereas TuRBO-t fits t local GPs, each using only
the data within one of the trust regions.

Veccchia fits in the TuRBO framework without much
change.     Using either TuRBO-1 or TuRBO-t, the same
(global) Vecchia GP is shared between all trust regions, and
predictions within each trust region are made using the m
NNs among all data (i.e., the NNs are not restricted to be in
the trust region). By conditioning on the NNs, we empha-
size the local behavior of the target function, and by train-
ing on all the data we ensure our hyperparameters are well
calibrated. For the remainder of this paper, we are referring
to TuRBO-1 when we say TuRBO.

4.5.2     Vecchia for Optimizing Parallel Acquisition
Functions with Gradients

To perform the inner optimization step when using par-
allel acquisition functions, such as q-EI or q-UCB, we
need to estimate the gradient of the acquisition function,
r L ( X ) .  This gradient can be estimate using Monte Carlo
[Wilson et al., 2018]:

m

r L ( X )  r ‘ ( y k ) ; (7)
k = 1

where ‘(yk )  is the acqusition function’s corresponding
utlity function, and the yk ’s are draws from the poste-
rior over f . For several parallel acquisition functions,
the convergence of the corresponding stochastic optimiza-
tion requires, among other things, that the mean and co-
variance functions of the GP be continuously differen-
tiable for each point in the domain [Wang et al., 2016,
Wu and Frazier, 2016]. This is guaranteed to be satisfied
for Vecchia GPs except for a set of points of measure zero,
and optimizing the acquisition function using standard gra-
dient descent works well in practice. For a detailed dis-
cussion on the impact of these discontinuities in Vecchia
predictions see Appendix M.2.
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Vecchia can improve the speed of the Monte Carlo es-
timate, by allowing for fast posterior sampling of the
yk ’s (see Section 3.2.4). In this work we use qUCB
[Wilson et al., 2017] as our acqusition function.

5 NUME R I C A L  COMPARISONS

We evaluated Vecchia GPs with qUCB and TuRBO on a set
of benchmarks [Balandat et al., 2020]. The synthetic func-
tions were Ackley-5, Hartmann-6, Branin-2 and Levy. For
the Levy function we used what we referred to as the Levy
55-20 function, where we warp the space with a sigmoid
type function and add irrelevent dimensions. Finally, we
used two reinforcement-learning examples, namely robot
pushing [Wang et al., 2018] and a lunar lander problem in
OpenAI’s gym environment. For the Lunar Lander we
must tune a PID controller [Eriksson et al., 2019] to suc-
cessfully land a Lunar module at a fixed point on a set of 50
maps. In the 14-dimensional robot-pushing problem
[Wang et al., 2018], there are two robot arms pushing ob-
jects towards a target location. We must minimize the dis-
tance to the target location. Experiment using the Rastrigin
function in 20 and 100 dimensions using budgets of 1,000
and 35,000 are given in Appendix K.

5.1     GP Surrogates

We compared the following GP surrogates:

intial space filling observations. Our code is based
on the original authors’ implementation: h t t p s :
//g i thub.com/ermongroup/bayes- opt .

Vecchia: Our method as described in the previous sec-
tions, where the likelihood is approximated by con-
ditioning each observation on the m NN subject to
the constraint that the neighbors appear before the
data point in the maximin ordering. Code for Vec-
chia GPs is available at h t t p s : / / g i t h u b . c o m /
f e j i3769/ V e c c h i a B O .

For the approximate methods, we let m increase polyloga-
rithmically with n, as m =  C0  log2 (n). The value of C0  was
set to 7.2; for details about this selection see Appendix F.2.
Each model uses a Matern 5/2 kernel as the base ker-nel K
in (4). For all experiments except the Levy example, we
used an affine warping, resulting in an automatic rele-vance
determination kernel K .  For the Levy example, in which
the input space was purposely warped, the warping function
was taken to be the Kumarswamy CDF.

5.2     Comparison Measures

For target functions whose optimum is not known, we sim-
ply used the best value found as our measure of perfor-
mance. For functions whose optimum is known, we used
regret as our measure of performance. Regret after t func-
tion evaluations is given by,

Exact GP: A  standard Gaussian process, which is very
slow for large n.

rt  =  min
t
fyi      f g; (8)

LR-First  m: Low-rank approximation where condition-
ing set was taken as the first m points in the maximin
ordering, the same for all n data points.

SVI-GP: The SVI  GP [Hensman et al., 2013] places a
Gaussian variational distribution on the outputs of
“pseudo-points”. The variational parameters, includ-
ing the location of the m inducing inputs, are learned
with stochastic mini-batch natural gradient descent.

WOGP: The weighted online Gaussian process
[McIntire et al., 2016] is an online inducing point
method that attempts to minimize a weighted KL-
divergence between a GP that incorporates all the
new data and a reduced GP. The weighted KL-
divergence encourages the reduced GP to match
the larger GP near input of the current maximum
in the training set. The m inducing input locations
are chosen from the data during this online learning
procedure.     The method relies on an auxiliary GP
to first estimate the GP hyperparameters and then
uses these fixed hyperparameters when performing
online learning. For WOGP hyperparameters we used
the hyperparameters from the SVI-GP trained to the

where f  is the true minimum and the min is taken over all
previously observed function values. Our regret curves are
averaged over independent repeats, and the bands around
each curve represent a 95% C.I. for the mean.

5.3     Results

5.3.1     Hartmann-6 and Ackley-5

The left panel of Figure 2 shows the Vecchia GP doing
the best among all approximate GPs on optimizing the
Hartmann-6 function. In the right panel of Figure 2 we see
Vecchia matching the performance of the exact GP on the
Ackley-5 function, and again beating all other approximate
GPs.

The strong performance of Vecchia on Ackley-5 is in line
with our analysis in Appendix A.1.1, where Vecchia out-
performed SVI-GP on the Ackley-1 function. In that ex-
periment we observed that Vecchia was able to capture
the high frequency fluctuations of the target function bet-
ter than the inducing point based SVI-GP. The local nature
of Vecchia naturally complements the TuRBO algorithm,
and BO in general.

https://github.com/ermongroup/bayes-opt
https://github.com/ermongroup/bayes-opt
https://github.com/feji3769/VecchiaBO
https://github.com/feji3769/VecchiaBO
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Figure 2: Mean and 95% C.I. of log regret for combination
of GP surrogates and acquisition functions. All GPs use the
base kernel, K .  Left: Hartmann-6 using qUCB with q =  4,
Vecchia does the best among all approximate GPs. Right:
Ackley-5 using TuRBO with batch size q =  20, Vecchia
matches the exact and again outperforms all approximate
GPs.

5.3.2     Branin and Levy

For the Branin-2 function the left panel of Figure 3 shows
that including variance inflation for Vecchia improved the
results. Both inflated and non-inflated Vecchia still out-
perform all other approximate GP surrogates. In the right
panel of Figure 3 we see that Vechia without warping out-
performs all GP surrogates, including the exact, and by
including warping Vecchia performs even better. While
warping for the exact GP actually hurt results. We believe
that the warping did not improve the exact GP the same
way it improved Vecchia because Vecchia with warping is
making the best local approximations of the function pos-
sible. Due to the NN conditioning, Vecchia was able to
focus on local behavior of this relatively complex function
and ignored irrelevant distant locations.

Figure 3: Mean and 95% C.I. of log regret for combi-
nation of GP surrogates, kernels and variance correction.
Left: Branin-2 using TuRBO q =  10, all GPs use the base
kernel, K .  Vecchia outperforms all the approximate sur-
rogates. Right: Warped and embedded 20-55 Levy using
TuRBO with batch size q =  20. The warped variants of
Vecchia and exact, use the warped kernel in Equation 4
with the Kumarswamy CDF, while all other GPs use the
base kernel, K .  Vecchia and Warped Vecchia outperform
all other surrogates.

Vecchia posterior. However, since the inflation factor is
based on predictive performance, as more data is collected
we inflate less and therefore explore less.

12D Lunar Lander, q = 50 14D Robot Pushing, q = 100
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For the 14D Robot Pushing problem Figure 4 shows Vec-
chia performed the best among all methods, eventually
even outperforming the exact GP for a large number of
function evaluations. In this experiment Vecchia GP in-
cluded variance inflation, and the variance inflation pushed
Vecchia just beyond the exact GP. As for the 12D Lunar
Lander, the left panel in Figure 4 shows that Vecchia and
SVI-GP performed best. Both outperformed the exact GP,
with SVI-GP just passing Vecchia. Just as with the 14D
robot pushing problem, the variance inflation helped Vec-
chia’s final performance.

We believe noisy functions and those with many local op-
tima are the most likely to benefit from variance inflation.
Our reasoning is that variance inflated Vecchia, much like
an epsilon greedy policy, injects a small amount of random-
ness into the search procedure. This encourages evaluating
points that may not have been likely under the non-inflated

Figure 4: Mean and 95% C.I. of the best value found
for combination of GP surrogates with the same base ker-
nel, K .  Left 12D Lunar Lander problem with batch size q
=  50. Both Vechia and SVI-GP outperform the ex-act.
Right 14D Robot Pushing problem with batch size q =
100. Vecchia bests all approximate GP methods and
surpasses the exact GP by 7500 evaluations.

5.4     Ablation Study

We now investigate how warping and the approximate near-
est neighbors, introduced in Section 4, affect Vecchia’s per-
formance in estimating the function of interest. To quantify
the performance of Vecchia predictions we use either mean
squared error (MSE) or negative log likelihood (NLL).
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Figure 5: Left Box plots showing the N L L  for Vec-
chia GPs (lower is better) using the original input space,
a warped space and the scaled space for Ackley-10. Warp-
ing results in the best performance among the three. Right
The MSE of Vecchia GPs (lower is better) with approxi-
mate nearest neighbors vs Nprobe. The colors denote differ-
ent values of Nlist and the stars represent the average value
of Nprobe such that 70% of the m nearest neighbors are cor-
rectly identified for a given Nlist .

The left plot in Figure 5 shows the N L L  for three different
Vecchia GPs: warped Vecchia, scaled Vecchia and stan-
dard response first Vecchia. In this experiment we gener-
ate data from a problem that is purposefully sparse using
the Levy-2 function. For more details see Appendix L.1.
The plots suggest that when the true function is low dimen-
sional, warping can improve results over other input trans-
forms. It may be that the strong performance of warped
Vecchia on the Levy-55-20 function can be attributed to
the low dimensional nature of the inputs.

The right plot in Figure 5 shows the effect of the parameters
Nlist and Nprobe when using approximate nearest neighbors
to construct conditioning sets. For this experiment we use
300,000 observations of the Ackley-20 function for training
and we vary Nlist and Nprobe to observe how these param-
eters affect the MSE of the Vecchia predictions. For more
details on this experiment see Appendix L.2. It’s worth
pointing out two features of this plot. The first is that we
can get similar performance as exact nearest neighbors us-
ing fast approximations. The second thing is that we can
use the recall (how many of the exact nearest neighbors are
recovered) of the approximate nearest neighbors as a way
to guide our choice of Nlist and Nprobe. That is as long as a
high proportion of the m nearest neighbors are recovered
correctly, then we should expect the approximate-NN con-
ditioning sets to provide similar performance to the exact-
NN conditioning sets.

6 DISCUSSION

We explored the use of approximate Vecchia GPs for
speeding up Bayesian optimization (BO). We described
how training of Vecchia GPs can be made efficient through
mini-batch gradient descent, approximate nearest neigh-
bors and approximate orderings. We examined how these

changes can affect the performance of Vecchia GPs on
sparse and large scale problems. Additionally, we incor-
porated Vecchia GPs within existing BO procedures.

In our numerical experiments we found Vecchia GPs to of-
ten be as or even more accurate than other GP surrogates,
including the exact GP. This is remarkable, in that, the Vec-
chia approximation not only improves regret, but it drasti-
cally reduces the computational complexity relative to the
exact GP, with a computational cost that largely depends
(linearly) on the mini-batch size. As a result, Vecchia can
be even computationally cheaper than approximate pseudo-
point methods such as SVI-GP, which must optimize over a
large number of hyperparameters related to the pseudo-
points, especially in high-dimensional input spaces, while
Vecchia does not include any additional hyperparameters
beyond those already present in the exact-GP model to be
approximated. We conjecture that Vecchia’s accuracy im-
provements are at least partially due to the global-local na-
ture of Vecchia GPs; the nearest-neighbor portion of Vec-
chia focuses on the local behavior of the target function
during prediction while using the entire dataset to esti-
mate the hyperparameters from the global information. To-
gether, Vecchia GPs naturally balance local and global in-
formation when estimating the target function.

Our results suggest that Vecchia GPs can be useful for
speeding up BO when many evaluations of the target func-
tion are feasible and necessary, and we are hopeful that
Vecchia approximations can be a standard tool for BO in
such settings. The primary limitations of Vecchia for BO
mainly rely on ordering and nearest neighbor selection, but
the ideas presented in Section 3.1 address these issues well
enough for many applications.

There are several potential avenues for future work. Vec-
chia GPs can be used to improve the O(dn3) time com-
plexity of sparse axis-aligned subspace BO (SAASBO)
[Eriksson and Jankowiak, 2021], which uses horseshoe-
like priors on the lengthscale parameters of the GP. In par-
ticular, the use of data-splitting [Neal and others, 2011] can
be employed to render O(dm3) time complexity once near-
est neighbors have been computed.

Another possible direction of work is constructing condi-
tioning sets in high dimensional spaces when there is no
low dimensional latent structure to exploit. In Appendix
L.3 we saw that the scaled Vecchia GP with Euclidean near-
est neighbors can readily exploit a low dimensional latent
space, but may require a large budget when the latent space
is truly high dimensional. While correlation based condi-
tioning sets [Kang and Katzfuss, 2021] are an existing so-
lution to this problem, we believe more work can be done to
improve Vecchia predictions for BO tasks with high di-
mensional latent spaces.

For highly noisy target functions, we believe that fur-
ther accuracy gains can be made by latent Vecchia ap-
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proximations with incomplete Cholesky decomposition
[Schafer et al., 2021] within Thompson sampling. Further,
correlation-based Vecchia GPs [Kang and Katzfuss, 2021]
may be well suited for neural architecture search
[Kandasamy et al., 2018].
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A V E C H I A  AND SVI-GP

The Stochastic Variational Infererence GP (SVI-GP) [Hensman et al., 2013] is an inducing point method that uses stochas-tic
vartiaional inference to train GPs in O(m3) time, where m is the number of inducing points. Throughout this paper we
compare with SVI-GP so in this section we highlight how Vecchia compares to SVI-GP on a set of simple regression tasks
when the function contains sharp minima or high frequency fluctuations. In our examples we let m denote both the number
of inducing points for SVI-GP and the number of nearest neighbors for Vecchia. Both models use a Matern 5/2 kernel
whose hyperparameters are tuned using a dataset of where the inputs are generated uniformly over the domain and the input
space is rescaled to the unit hypercube. Vecchia uses a random ordering of the data and relies on mini-batch gradient
descent during training.

A.1     Michalwicz Function and Sharp Minima

To demonstrate how Vecchia GPs perform on functions with sharp minima, we compared Vecchia GP to SVI-GP on the
Michalewicz function [Molga and Smutnicki, 2005].

We created training data by generating n =  500 observations from the 15-dimensional version of the function and adding
independent noise from N (0; 0:052). We then generated a test set mimicking a typical BO prediction setting by finding the
minimum in the training set and generating 50 noiseless realizations in a neighborhood of the minimum.

For a range of values for m, we fitted an exact Gaussian process, the Vecchia approximation and the SVI-GP, and computed all
the posteriors on the test set. Then we computed the KL-divergence K L(p(yp jy1:n )kpb(yp jy1:n )) between the exact
posterior and each of the approximate posteriors. We repeated this process, including generating new data, and averaged the
results as we varied m. For Vecchia, m corresponds to the number of NN, and for SVI-GP, m corresponds to the number
of inducing points.

Figure 6 shows the log of the KL-divergence for both models as we increase m. In this example, Vecchia outperformed
SVI-GP for all values of m by several orders of magnitude. Based on further exploration, we conjecture that Vecchia more
closely matches the local behavior of the function at the optima and SVI-GP is more prone to return estimates similar to the
average over the entire domain. This success at modeling local fluctuations makes Vecchia a strong candidate for BO, where
we often have sharp spikes at the global optima.

4

3

2

5 10      15 20 25

m

SVI−GP Vecchia

Figure 6: For prediction of the 15-dimensional Michalewicz function, the log of the KL-divergence between an exact GP
and approximate GPs based on the Vecchia approximation (blue) and the SVI-GP approximation (red).

A.1.1     Ackley Function and High-Frequency Data

To compare SVI-GP and Vecchia on functions with high-frequency fluctuations, we look at the 1D Ackley function over [
5; 5]. Figure 7 shows the means of both SVI-GP and Vecchia along with the true function and the training data. We can see
that SVI-GP provides oversmoothed predictions, but matches the low-frequency shape of the function. Vecchia both
matches the shape of the function well and captures the high frequency behavior of the function. Vecchia is able to capture
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this behavior even though the data is ordered randomly. This is good, because it means we can avoid the maximin ordering
step and still obtain high-quality results.

Ackley-1, m = 14
2.5

2.0

1.5

Training Data

True Func.

Vecchia Mean

SVI-GP Mean

1.0

0.5

0.0

−0.5

−1.0

−1.5

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7: Vecchia (dashed blue line) and SVI-GP (solid black line) posterior means for the 1D Ackley function with the
truth (solid red line) and training data (black stars) when m =  14.

B APPROXIMATE VA R I A B L E  ORDERING

The function below gives an approximate maxmin ordering which works well empirically, and can be run in parallel.
Additionally, we assume there is a function that can perform the exact maxmin ordering, such as Algorithm C.1 in the sup-
plementary material of [Schafer et al., 2021]. The algorithm works by dividing the inputs into smaller and smaller groups
until each group contains less than some predetermined number of points. Then, exact maximin ordering is performed on
these groups. Finally, the ordering from each group is combined into the final ordering.

Algorithm 1 Approximate MaxMin Ordering
1: Input: data x (i.e. inputs to target function), parameters M axSubsetS ize
2: N length(x)
3: if N  >  M axSubsetS ize then
4: order1 ApproximateM axM in(x[0 : f loor(N=2)]; M axSubsetS ize) fRun in Parallel.g
5: order2 ApproximateM axM in(x[f loor(N=2) : N ]; M axSubsetS ize) fRun in Parallel.g
6: order =  concatenate(order1; order2)
7: else
8: order =  GetE xactM axM in(x)
9: end if

10: Return order

C VA R I A N C E  C A L I B R AT I O N

The algorithm for recalibrating the predictive variance for Vecchia GPs based on holdout set.

The function K N N (a; b; c)  returns the c NN of b in c  and the function subsample(i; j ) selects a subsample of size j
from i .  The index set I x  are the last q points added to the dataset. That is the last query generated.
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Algorithm 2 Vecchia Variance Calibration
Input: data x; y, parameters , I
I O K N N ( x [ I x  ]; x; 5  q)ffinding neighbors of current best value of x.g
I O  =  subsample(IO ; q)frandomly keeping q of the best x ’s  neighbors.g
X  =  x[IO ] [  x[ I x  ]fforming validation set composed of best x  and its q neighbors.g
y~ =  x[IO ] [  y[ I x  ]
D  =  fx  n X ; y  n y~gfCreate a dataset excluding the validation set.g
L b      =  p(y~;  ;  +  bv ; D)fForm prediction for validation and inflate the posterior variance by bv .g Return:
arg maxbv 2[0;2] L b v  fReturn the bv that maximized the likelihood of the validation data.g

D PREDICTION

We consider the response first ordering (RF) using RF-standard (RF-stand) [Katzfuss et al., 2020]. In RF-stand, the j th
prediction location conditions on any previously ordered data point, including another prediction location. This means we
take into account the posterior covariance between some prediction locations if they are closer together than to training data.
For clarity, we use the subscript r  to refer to the observed data and the subscript and superscript p to refer to predictions.

We have
pb(yp jy1:n ) =  

Q
i = 1  p(yi jyc p ( i ) )  =  N ( p ; ( L T  L )  1);

where the mean, p, and inverse Cholesky factor, L ,  of the predictive distribution in 3 can be computed as:

p =  (Up; p ) 1 (Un ;p )T  y1:n ; L  =  Up; p

The matrices Up;p and Un ;p  are both sparse with at most m non-zero elements per column. This means the distribution in
(3) can be computed in O(npm3) time.

For prediction we form two matrices Ur;p       and Up;p      whose entries can be computed using equation 11
[Katzfuss et al., 2020]. Using the U  matrices we can get the posterior mean and the Cholesky factor of the posterior
variance with complexity dependent on the number of prediction locations, and not the sample size of the training data.

The Cholesky factor of the posterior precision for prediction locations is given by:

L p  =  (Up; p ) T (9)

The posterior predictive mean is given by
p =  (Up; p ) 1 Ur; p y1:n : (10)

D.1     U Matrix

Consider the matrix U, whose elements are given by:

< d  1=2;
Uj ; i  =  b( j ) d 1=2;

0;

i  =  j
j  2  g (i) (11)
otherwise;

where bT =  C (x i ; xg ( i ) )C (xg ( i ) ; xg ( i ) ) ,  di  =  C ( x i ; x i )      bT C (x g ( i ) ; x i )  and C ( x l ; x k )  =  K ( x l ; x k ) + 1 k = l
2 .  When we

allow the prediction locations to condition on other prediction locations then there will be non-zero elements in the matrix
Upp, and there will be columns with less than m non-zero elements in the matrix Un;p. The significance of this becomes
obvious when we consider the posterior mean, since a location may condition on less than m observations. The prediction
will instead rely on the value that was predicted at other unknown locations.

This works well when the number of observations is much greater than the number of predictions. If we restrict ourselves to
condition only on observed data then we ignore the joint nature of the posterior, but gain speed as all the operations can be
done in parallel.

In either case, the matrices Un;p and Upp will have at most m non-zero elements per column. This is clear from 11 since row
j  will have a non-zero for column i  if x i  conditions on x j ,  and by design each x i  conditions on at most m nearest
neighbors.
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E K E R N E L  AND WARPING

When the target function cannot be modeled by a stationary GP, it can help to first warp the input space through a non-
linear invertible function. To incorporate this tool into the Vecchia framework, we consider a general kernel that allows for
warping,

K ( x ; x 0 )  =  K (kw ( x )       w(x0)k); (12)

where k  k denotes Euclidean distance and K  is an isotropic covariance function. We assume the warping function to
operate element-wise on each of the d input dimensions, such that w (x)  =  w1 (x1 ); : : : ; wd (xd ))> , where w j ( x j )  =  !
(x j )= j ;  here, j  is the range parameter for the j th input dimension, and !  is bijective, continuous, and differentiable with
respect to . For our numerical experiments, we used the Kumarswamy CDF [Balandat et al., 2020], ! a ; b ( x )  =  1   (1
xa )b ; when its parameters are set to a =  b =  1, (4) becomes the well-known automatic relevance determination (ARD)
kernel.

For approximating a GP with a warping kernel, we propose the warped Vecchia approximation. Specifically, in (2), we
carry out the maximin ordering of y1:n  and the selection of NN conditioning sets c(i) based on Euclidean distance between the
corresponding warped inputs, w(x1 ); : : : ; w(xn ). For prediction of a new variable y at x ,  we also select c(i) as the m NNs to
w (x)  among w(x1 ); : : : ; w(xn ). In the special case of linear warping with ! ( x )  =  x ,  this warped Vecchia approach is
equivalent to the scaled Vecchia approximation for emulating computer experiments [Katzfuss et al., 2022].

Generally speaking, as long as the warping function is injective, then computing the distance between warped points w (x)
and w(x0 ) is equivalent to using some proper distance metric on the original inputs. For this reason, the warped Vecchia and
the scaled Vecchia can be seen as simply performing Vecchia GP regression with a learned distance metric.

F E XPE R I M E N T  D E TA I L S

Below are further details on the experimental setup.

F.1     Experimental Setup

During every round, each GP surrogate model under consideration was fit using all of the available data. Thompson
sampling was used within each TuRBO trust region, with the input locations chosen from a Sobol sequence. We evaluated the
GP at min(5000; max(5000; 100d)) locations q-separate times. We chose the batch of q elements to be the locations with
the q highest simulated values within Thompson sampling. For all surrogates, we used a Matern 5/2 covariance function
for K  in (4), assuming linear warping (i.e., a =  b =  1) for all examples except the Levy function. For approximate surrogate
models, we chose m as described in Section F.2. The input space for all test functions and problems was mapped to [0; 1]d. All
results were averaged over independent replicates, with starting points again chosen using a Sobol sequence.

F.2     Choosing m

For the approximate surrogates, we grow m polylogarithmically with n, m =  C0   log2 (n). To simplify our comparison
between surrogate models, we chose a single value of C0  for all our experiments. To choose this m, we looked at the regret vs
number of samples when we used the Vecchia approximation with E I  as our acquisition function and compared with the regret
curve using the exact GP. When using the Six-Hump camel function we found a C0  value of around 7.2 is the lowest for which
Vecchia tracked the exact solution closely. We excluded the Six-Hump camel function from the comparison of regret curves
to put the competing approximations on more even footing.

F.3     Levy 55-20 function

We used a modified version of the Levy-20 function to show the benefit of warping with Vecchia. We call this function
Levy 55-20, and it is simply the Levy-20 function with 35 extra irrelevant dimensions. The hyper cube on [0; 1]55 was
warped using w (x)  =  S (4  x    1) (S () is the sigmoid function) before being scaled to [ 5; 5]55. Only the first 20
dimensions are used to evaluate the Levy-20 function.
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G IMPACT OF B AT C H  S I Z E  DURING TRAINING

In this section we fit a Vecchia GP to data generated from 25D Ackley function on [ 3; 3]25. There are 1,500 observations
in total and we use a Matern 5/2 ARD covariance function.

Figure 8 shows the negative log-likelihood vs the log epoch (i.e., the number of passes through the data) during training for
different batch sizes. We can see that a batch size of approaches the same minima as all other batch sizes, but does so in
many fewer passes through the data. While the loss curve is slightly noisy near the end of training, in practice an early
stopping criteria is used to avoid unnecessary training time and unstable behavior.

The results shown are not unique to the Ackley-25 function, and are illustrative of the typical training dynamics for Vecchia
GPs trained using mini-batch gradient descent. For of our applications we find that a batch size of 64 offers a good balance
between stable training and speed.

Batch Size Impact on Negative Log-Likelihood vs Log(Epoch)

2200                                                                                                                                                                                                                             Batch Size : 32

Batch Size : 64
Batch Size : 120

2175

Batch Size : 200

Batch Size : 350
2150 Batch Size : 500

2125

2100

2075

2050

2025

2000

0.0 0.5 1.0 1.5 2.0

Log(Epoch)

Figure 8: Log-likelihood vs. epoch for different batch sizes.

H N E A R E S T  NEIGHBORS AND ORDERING

The nearest-neighbor search can become a bottleneck in the Vecchia procedure, but we have found that using ap-
proximate NN yields good performance. In particular, we suggest using approximate NNs with product quantization
[Jegou et al., 2010, Johnson et al., 2017]. This allows for balancing accuracy and speed as we consider how much data is
available. As illustrated in Figure 1, in our experience the approximate NN search is often good but not perfect for small to
medium maximin index i  (middle panel) but it is typically highly accurate for large i.

For ordering data, we have found that an approximate maximin ordering works well. The data is shuffled, split into disjoint
sets, ordered within each set, and recombined. Details of this procedure are given in Appendix 1. For really large datasets,
maximin ordering can even be replaced by a completely random ordering; while this may result in a slight decrease in
accuracy for a given m [Guinness, 2018], it still results in highly competitive predictions (e.g., see Section A.1.1).

Together, these changes result in Vecchia approximations that can be applied to 1,000-dimensional GPs with n =  100;000
observations and beyond.

I RUNTIME COMPARISON

In this section we look at the runtime performance of the Vecchia GP approximation compared to SVI-GP (GPyTorch
implemenation [Gardner et al., 2018]) on two test problems. The first is the the 10-D Michaelwicz (Michaelwicz-10)
function on [0; 2]10, and the second is the 10-D Ackley function (Ackley-10) on [ 15; 15]10.

Vecchia’s hyperparameters are optimized using Adam with a learning rate of 0.1, and SVI-GP’s hyperparameters are
optimized using Adam with a learning rate of 0.01. The variational parameters in SVI-GP are optimized using natural
gradient descent as suggested in [Hensman et al., 2013]. Both methods are trained using mini-batches of size 32. The
general training and evaluation procedure is as follows:
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1. Generate 1; 500 uniformly distributed training input/output pairs and 3,000 uniformly distributed test input/output
pairs from the target function.

2. Select a value for m (for Vecchia this is number of neighbors and for SVI-GP this is the number of global inducing
points).

3. Begin a timer.

4. Fit the GP to the training data. Terminate the training procedure when the relative loss over an exponentially weighted
window of mini-batch losses falls below a prespecified threshold.

5. Compute the Logarithmic loss on the test points for the GP posterior.

6. Measure the amount of time that has passed.

7. Repeat this process 10 times.

Both Vecchia and SVI-GP are fit and evaluated for each training test pair. The values of m we use are different for Vecchia and
SVI-GP, since SVI-GP requires many inducing points to achieve a comparable level of performance. Vecchia has values
of m that range from 2 to 25 on both functions. For SVI-GP we let m vary from 20 to 600 for Ackley-10 and from 50 to 850
on Michaelwicz-10.

The results of this comparison on Michaelwicz-10 are shown in Figure 9, where each point represents the Logarithmic score
for a single value of m for one repeat of the experiment. Notice that we are displaying the log of the negative Logarithmic
score because we want lower values to correspond to high performance. We can see from Figure 9 that Vecchia consistently
outperforms SVI-GP and this is likely due to the quickly fluctuating nature of the Michaelwicz function. For example in 1-D
if we limit the function to [0; 2] then the function is smooth and both Vecchia and SVI-GP will perform well, but as we extend
the right end of the interval the function becomes more volatile. Our choice of [0; 2]10 for this task was meant to highlight that
Vecchia can reach a better result faster than SVI-GP when the function is quickly fluctuating.

3.9

3.8

Surrogate

SVI−GP

3.64 Vecchia

3.63

3.7

3.62

3.61

1 2 3

3.6

0 20 40 60 80 Run Time
(seconds)

Figure 9: Log of the negative Logarithmic score on test set vs runtime for Vecchia and SVI-GP with the Michaelwicz-10
function. The values of m for Vecchia range from 2 to 25 and for SVI-GP m ranges from 50 to 850. Note: lower values on
the y-axis correspond to a better score.

The results on Ackley-10 are shown in Figure 10 where we see that Vecchia outperforms SVI-GP. In Figure 7 we saw that
SVI-GP had trouble capturing the location fluctuations on the Ackley-1 function, so it’s expected that SVI-GP would
perform poorly in high dimensions on this task. We believe a similar type of phenomen is driving the difference in
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performance. Interestingly, a similar analysis on the Griewank function on [-5,5], which produces a fairly smooth function for
such a small domain, showed that Vecchia wasn’t improving as much as we increased the value of m, but SVI-GP was
marginally increasing even as we approached the upper bound of the m considered. We excluded this result because it was
rather bland for both SVI-GP and Vecchia. However, it would be worth exploring which types of GP approximations are
amenable to different families of functions. We speculate that SVI-GP and other low rank and inducing point methods will
dominate in smooth spaces, but Vecchia is ideal for functions that fluctuate quickly.

3.9

3.8

3.7

Surrogate

3.55                                                                                                                             
SVI−GP

Vecchia

3.6
3.50

3.45

3.5
3.40

1 2 3 4 5

3.4

0 10 20 30 Run Time (seconds)

Figure 10: Log of the negative Logarithmic score on test set vs runtime for Vecchia and SVI-GP with the Ackley-10
function. The values of m for Vecchia range from 2 to 25 and for SVI-GP m ranges from 20 to 600. Note: lower values on
the y-axis correspond to a better score.

J D E TA I L S  ON MAXIMIN ORDERING

The maximin ordering is most clearly understood by assuming the first location is randomly selected, and then each
subsequent location is chosen so that we maximize the minimum distance to all previously ordered locations. To be
precise, let i j  denote the order of the i t h  location, assume i1 =  1 and then select each subsuquent i j ,  for j = 2, ..., n such that:

i j  =  arg max min d(i; k) (13)
i 2 I n I 1 : j      1                   1 : j      1

K R A S T R I G I N  E XPE R IM E NT S

Using the Rastrigin function we perform the same types of experiments as in Section 5. The 20 dimensional Rastrigin
function is evaluted on [ 5; 10]20 starting at 50 points and using a batch size (q) of 10. The total budget is 1,000. For the 100
dimensional problem we evaluated the function on [ 5; 10]100 with 50 initial points, a batch size (q) of 100 and a total budget
of 35,000. The results are shown in Figure 11, left corresponds to 20D and right to 100D. For both settings the Vecchia
GP outperformed all the surrogates except the exact GP on the 20 dimensional problem. We did not run the exact GP for the
100D problem because run time becomes expensive for N  >  20; 000.
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TuRBO (TS): Rastrigin−100, q = 100 TuRBO (TS): Rastrigin−20, q = 10

3.2 2.4
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Vecchia Exact First−m SVI−GP WOGP

Figure 11: Regret curves for the Rastrigin function in 100 dimensions (left) and 20 dimensions (right). The Vecchia GP
outperforms all other approximate surrogates, and is close to the exact when exact is included.

L A B L AT ION

L.1     Warping

To generate sparse data we take the Levy-2 function on its standard input space and add 8 irrelevant input dimensions. The
training data has 15,000 observations and the test data has 500 observations. The inputs points are generated uniformly at
random on the 10 dimensional hyper-cube.

L.2     Approximate Nearest Neighbors

We estimate the hyperparameters for the Vecchia GP (m =  100) using exact nearest neighbors. Then on 30 indepenent test
sets (each of size 1,000) we use approximate nearest neighbors to construct the conditioning sets for predictions. We sweep
over values of Nlist and Nprobe to construct the conditioning sets and we record the MSE. We also make note of what
percentage of the first m exact nearest neighbors we are able to recover for each setting of Nlist and Nprobe. The right plot in
Figure 5 shows the MSE as we increase Nprobe, and each curve represents a different value of Nlist . When Nprobe is equal to
Nlist the search is exact. We see that for each value of Nlist the MSE stabilizes to a fixed value as we increase Nprobe. The dots
on each curve represent the value of Nprobe necessary for at least 70% of the first m nearest neighbors to be correctly
recovered.

L.3     Effective Dimension

In this section we examine how the latent dimension of a problem impacts Vecchia performance in terms of MSE. To
accomplish this we work with the Ackley function and use the scaled Vecchia GP.

In this problem da, the ambient dimension, describes the dimension of the inputs space x  2  R d a  . Additionally, de, the
effective dimension, describes the true input dimension of the function, f .  That is f  : R d  !  R  and de <  da. For this
problem we let da =  50 and we vary de and note the MSE as we change the sample size.

Since Vecchia’s conditioning sets are based on Euclidean nearest neighbors, we should expect poor performance for high
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Test Set MSE vs de for Scaled Vecchia

Training Size

0.5 500
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Dimension (de)

Figure 12: The average MSE vs the latent dimension for the Ackley function. In all instances the ambient dimension is
held fixed at 50 (da =  50), but the latent dimension is varied (de). The different color curves represent the number of
observations present in the training set. We average over three repeats for every combination of training size and ambient
dimension.

effective dimension but good performance with low effective dimension. The reason being, that nearest neighbors in a truly
high dimensional space may result in a bad conditioning set, but Vecchia should be able to take advantage of a low effective
dimension. This should hold even though the ambient dimension is relatively high (da =  50) because we compute nearest
neighbors in a scaled space (scaled by the learned GP lengthscales).

In Figure 12 we observe that as we increase the sample size the MSE decreases, but for de =  30 we need a sample size of
2000 to get an average MSE of over 0.4. When de =  2, every sample size results in an MSE below 0.05. This supports the
idea that nearest neighbor based Vecchia is excellent for when the effective dimension is low, but nearest neighbor
conditioning sets may not be best for higher effective dimensions. However, these results do not hold if the conditioning sets
are chosen in another way, such as a correlation based approach [Kang and Katzfuss, 2021], or for Euclidean nearest
neighbors based on warping.

L.4     Variance Calibration

In this section we check how the variance calibration affects the negative log-likelihood (NLL) for the Vecchia and compare
this with SVI-GP. We observed in Appendix A  that it is difficult for SVI-GP to model high frequency data. Inspired by this
observation we would like to verify the assumption that when the MSE of the Vecchia model is lower than SVI-GP’s MSE,
then the variance calibration for Vecchia will result in a better N L L  than the variance calibration for SVI-GP. To test our
hypothesis, we work with the Michaelwicz funtion in 1D over the domain [0; 6], with a training set size of 500. The Vecchia
GP uses m =  50 neighbors and the SVI-GP is given m =  50 inducing points. We fit both models to the training data and
form predictions at a collection of 500 test points. We then calibrate the variances for each model using the same procedure as
in Section 4.4 but with an out of sample validation set. We repeat this procedure three times and average the results.

For Vecchia, the average MSE was 0.4, and the NLLs before and after calibration were, 178 and 0.9, respectively. For SVI-GP
the average MSE was 0.7, and the NLLs before and after calibration were 86 and 1.2, respectively. While calibration did
improve N L L  for both models, the Vecchia GP had a lower N L L  after calibration. We believe this is in part due to the
difference in MSE between the two models, since no matter how much we change the variance for SVI-GP, the mean
estimate will always limit the N L L  we can obtain.



~

~
2

Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
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Figure 13: Vecchia (m =  3) mean prediction (blue dots) with training data (red dots) and true function (faded black line). We
can see that the mean prediction has a noticeable jump at two locations where the conditioning sets change. The region
around 0.4 has a higher density of training data and the prediction is much smoother. Comment: dots were used for the
mean prediction to highlight the location of the two large jumps, and if an interpolating line were used instead the predictions
around 0.4 are still visibly smooth.

M PA R A L L E L  ACQUISITION FUNCTIONS

M.1     Details on qUCB

An acquisition function can be seen as the expectation of an integrand, ‘(y ) ,  where y   p(y jD ; X ) .  The integrand ‘ ( y )
quantifies how useful it would be to observe a particular y . The posterior, p(y jD ; X ) ,  represents our current belief about
how X  maps to y , given data D.

For example, in this work we use the parallel version of the upper confidence bound (i.e. qUCB). The value of the q U C B
acquisition function at location X ,  when y  has posterior mean  and posterior covariance , is given by:

Z
q U C B ( X ; )  = max( +  jy      j)N (y; ; )dy; (14)

where  : =    ( is a user specified hyperparameter).

For qUCB the integral in Equation 14 isn’t available in closed form, so we must rely on Monte Carlo sampling to estimate
the integral [Wilson et al., 2017].

M.2     Vecchia Discontinuities and Acquisition Functions

We now discuss the issue of discontinuitie in Vecchia predictions and how these discontinuities relate to optimizing parallel
acquisition functions.

For Vecchia, when making a prediction at a location x i  2  X  we form a conditioning set, g (i)  h(i), jg(i)j =  m, based on the
m nearest neighbors. If we move x i  the conditioning set may change. At the point where one nearest neighbor is replaced
by another, there will be a discontinuity in both the posterior mean and variance. The collections of points (in 1D), lines (in
2D), etc., where these discontinuities occur will have measure zero. This is visualized for the mean in Figure 13 where we
have seven discontinuities with two of them being large. However, when the data is dense, as around 0.4, the prediction is
smooth and the discontinuities are not noticeable.
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To understand the impact of these discontinuities, consider any point x i  that is at least  away from the location of a
discontinuity. Within the  ball centered at x i ,  the posterior mean and covariance will behave just as an exact GP would if the
training data was composed of only the points in the conditioning set g(i). Therefore, the unbiasedness of any Monte Carlo
gradient estimate based on an exact GP would hold for a Vecchia GP in the  ball centered around x i .


