
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA

978-1-939133-35-9

Open access to the Proceedings of the

2023 USENIX Annual Technical Conference

is sponsored by

Zhuque: Failure is Not an Option, it’s an Exception
George Hodgkins, University of Colorado, Boulder; Yi Xu and Steven Swanson,

University of California, San Diego; Joseph Izraelevitz,

University of Colorado, Boulder

https://www.usenix.org/conference/atc23/presentation/hodgkins

Zhuque: Failure is Not an Option, it’s an Exception

George Hodgkins∗

University of Colorado, Boulder

Yi Xu∗

University of California, San Diego

Steven Swanson

University of California, San Diego

Joseph Izraelevitz

University of Colorado, Boulder

Abstract

Persistent memory (PMEM) allows direct access to fast

storage at byte granularity. Previously, processor caches

backed by persistent memory were not persistent, compli-

cating the design of persistent applications and reducing their

performance. A new generation of systems with flush-on-fail

semantics effectively offer persistent caches, offering the po-

tential for much simpler, faster PMEM programming models.

This work proposes Whole Process Persistence (WPP), a

new programming model for systems with persistent caches.

In the WPP model, all process state is made persistent. On

restart after power failure, this state is reloaded and execution

resumes in an application-defined interrupt handler.

We also describe the Zhuque runtime, which transparently

provides WPP by interposing on the C bindings for system

calls in userspace. It requires little or no programmer effort

to run applications on Zhuque.

Our measurements show that Zhuque outperforms state

of the art PMEM libraries, demonstrating mean speedups

across all benchmarks of 5.24× over PMDK, 3.01× over

Mnemosyne, 5.43× over Atlas, and 4.11× over Clobber-

NVM. More important, unlike existing systems, Zhuque

places no restrictions on how applications implement con-

currency, allowing us to run a newer version of Memcached

on Zhuque and gain more than 7.5× throughput over the

fastest existing persistent implementations.

1 Introduction

Persistent memory (PMEM) exposes fast storage devices as

byte-addressable main memory, allowing the processor to

access persistent data via load and store instructions. The

durability of PMEM enables an application’s in-memory data

to survive across system reboots and unexpected power fail-

ures. It promises to realize a vision of high performance, data

persistence, a simple programming interface, and low storage

overhead at the same time.

∗The first two authors contributed equally to this work

However, building a system that realizes the promise of

persistent programming is not simple. The contents of CPU

caches do not survive power loss, and, since caches may delay

evicting a modified cache line, writes may not reach PMEM

in program order. This makes reasoning about the state of

memory after a crash extremely challenging.

Programming systems (e.g., libraries, programming mod-

els, language support, and compilers) to help address the chal-

lenges of persistent memory programming have proliferated

over the last decade. Broadly, three families of systems have

emerged: each takes a different approach to consistency, and

each faces significant challenges which bar widespread adop-

tion.

The first and largest family [50, 63, 68, 71] requires pro-

grammers to access persistent state only through well-defined

atomic operations (often called transactions). This provides a

clean notion of consistency: after recovery from crash, each

atomic section has either executed entirely or not at all. How-

ever, like all transactional memory models, this approach suf-

fers from serious weaknesses: it is fundamentally incompat-

ible with non-transactional synchronization, and has never

gained significant traction in real systems.

The second family of systems [6, 26, 30, 42] uses FASEs,

regions of code protected by locks, as atomic regions for

PMEM updates. Legacy code can run with minimal changes,

but these systems suffer from fundamental weaknesses arising

from complex locking schemes and external IO. As we will

show, addressing these weaknesses either cripples the system

or essentially reduces it to a transaction-based system.

The final family of systems takes the more dramatic step of

making everything in the system persistent via whole-system

persistence (WSP) [47]. WSP provides the conceptually sim-

plest programming model: Nothing much changes and, from

the program’s perspective, crashes never occur. WSP faces

two major challenges: First, making all of memory persistent

has until recently been infeasible, because regularly flushing

volatile caches to PMEM creates enormous performance over-

heads. Second, making everything persistent would require

a far-reaching redesign of many system components, for an

USENIX Association 2023 USENIX Annual Technical Conference 833

unclear benefit.

We think that WSP-style persistence is due for a renais-

sance: The advent of PMEM devices and platforms supporting

flush-on-fail semantics (e.g. eADR for NVDIMMs or GPF for

CXL devices) allows developers to treat caches as effectively

persistent [14, 29], removing the main performance argument

against WSP. Further, we believe that limiting the scope of

persistence to a process – yielding Whole Process Persistence

(WPP) – and providing well-defined, application-level seman-

tics for system failures combine to produce a programming

model that is fast, flexible enough to support legacy programs

and complex locking schemes, and easy for programmers to

use and understand.

WPP provides a simple abstraction to the process: its entire

memory is persistent and will survive a power outage. If a

power outage occurs, the process receives an OS signal after

restart notifying it of the crash. The process can install a

normal error handler for this signal which cleans up and exits,

or performs more complex application-specific recovery; by

default, program execution simply continues at the point of

failure.

This work makes the following contributions:

• We identify a fundamental limitation of FASE-based

PMEM systems.

• We introduce the WPP programming model, which treats

power failure as a recoverable exception.

• We build the Zhuque runtime which provides WPP and

describe its design and implementation.

• We provide experiments demonstrating the viability of

the WPP system and its performance improvements over

existing alternatives.

Zhuque is faster than existing PMEM programming sys-

tems. It is between 4.7× and 10.14× faster than PMDK [50],

Mnemosyne [63], Atlas [6] and Clobber-NVM [68] on

STAMP applications. Zhuque is also more flexible than these

systems: Since Zhuque is agnostic about the application’s

locking scheme, it can run the most recent version of mem-

cached, while those systems cannot. As a result, our Zhuque-

based persistent memcached is more than 7.5× faster than

any similar system. We also demonstrate Zhuque’s flexibil-

ity by running unmodified Python benchmarks with minimal

performance loss.

The rest of this paper is organized as follows. Section 2 pro-

vides some background on PMEM and associated software

systems. Section 3 describes fundamental limitations of prior

art necessitating the WPP model. We discuss the WPP design

and musl-based system implementation in Section 4 and Sec-

tion 5, respectively. Section 6 showcases the performance of

WPP. We discuss related work in Section 7 and conclude the

paper in Section 8.

2 Background

PMEM has introduced new possibilities for designing stor-

age systems: programs can have byte-addressable access to

terabytes of persistent data at near-DRAM latencies. How-

ever, utilizing PMEM in a both performant and programmer-

friendly manner remains a challenging problem.

This section begins by describing our machine model, and

then reviews existing general-purpose persistent memory pro-

gramming models and their limitations to motivate WPP.

2.1 Machine Model

WPP is designed for a multi-core, cache-coherent machine

equipped with PMEM (e.g. Intel DC Persistent Memory [28]

or persistent CXL.mem devices [53]), and supporting flush-

on-fail semantics, meaning that they provide a hardware guar-

antee that all in-flight and cached writes will reach PMEM in

the event of an external power failure (as opposed to a fault in

the machine or its onboard power supply). Such guarantees

are provided by eADR-compliant platforms and NVDIMMs,

and CXL platforms and devices supporting Global Persistent

Flush (GPF). eADR and GPF are similar solutions targeting

different device interfaces: the primary hardware requirement

for both is that the platform must store sufficient energy to

allow caches and internal device buffers to be drained to per-

sistence after a power failure [1, 53].

On x86 systems, both eADR and GPF require system

firmware to initiate and oversee the drain to persistence in

response to a System Management Interrupt (SMI) [1, 13, 14].

Upon receiving this interrupt, the processor retires all in-flight

instructions, drains all stores to the cache, and saves architec-

tural state (register file etc.) to a designated per-core memory

region before beginning execution of the SMI handler [16]. In

both GPF and eADR, this handler first flushes the processor

caches (and, for CXL, the caches of any CXL.cache device),

and then proceeds to flush the buffers on the PMEM devices

(NVDIMMs for eADR, CXL.mem devices for GPF) [1, 14].

2.2 Persistent Programming Models

Most existing persistent programming libraries rely on mark-

ing regions as failure-atomic, that is, all of the code region’s

effects will survive a failure or none will. Models differ in

whether regions are explicitly marked (transactional) or in-

ferred from locks (FASE-based). In addition, one work has

proposed making the whole system persistent.

2.2.1 Transactional Libraries

Transactional PMEM libraries expect the programmer to ex-

plicitly mark failure atomic sections. For concurrency, these

libraries either rely on off-the-shelf transactional memory

systems or require the use of their own locks. For example,

834 2023 USENIX Annual Technical Conference USENIX Association

NV-Heaps [9], Mnemosyne [63], and DudeTM [41] are built

on existing transactional memory (TM) systems, and imple-

ment their failure-atomicity techniques (e.g. redo or undo

logging) on top of those systems.

Meanwhile, transactional libraries that rely on locks gen-

erally expect transactions to acquire and release locks in a

conservative, strong strict two-phase locking pattern [51, 64],

that is: transactions acquire all locks at transaction begin,

transactions release all locks at transaction commit, and locks

are released in the order they are acquired. For example,

PMDK [50], Pangolin [71] and Clobber-NVM [68] require

applications to follow this lock pattern.

2.2.2 FASE-based libraries

Atlas [6] proposed the concept of failure-atomic sections

(FASEs) as an alternative to transactions. A FASE is a failure-

atomic operation which begins when a thread acquires its first

lock and ends when it holds none — importantly, the final

lock held may be different from the first lock. Because this

locking scheme allows updates to be visible to other FASEs

before a FASE commits, FASE-based libraries are required to

track dependencies between threads, and roll back dependent

FASEs in case of failure. Because FASEs are dynamically

formed at runtime, user annotation is not required for exist-

ing lock-based code. NVThreads [26], JUSTDO [30], and

iDO [42] follow this model.

2.2.3 Whole System Persistence

Instead of basing persistence on bounded sections of code,

whole-system persistence (WSP) [47] focuses on the persis-

tence of the entire system. WSP describes a system substan-

tially similar to eADR and GPF, where an interrupt at power

failure triggers the draining of volatile caches/buffers to per-

sistence. This model requires no annotation and avoids the

extra work done by transactional or FASE-based systems, but

requires that large amounts of state be made persistent at

the instant of failure, which until the advent of flush-on-fail

systems was not possible.

3 Limitations of Prior Art

In this section, we argue that the existing programming mod-

els for persistent memory, namely transactional or FASE-

based, necessitate an alternative path, especially when work-

ing with legacy code.

Fortunately, the emergence of persistent caches has enabled

our efforts to develop a revitalize a model that does not fit

either of these directions, namely, whole process persistence,

in which all process state is preserved at a power failure.

3.1 Limitations of Transactions

The fact that many failure atomicity libraries leverage transac-

tional memory is not surprising — transactions are commonly

leveraged for durability within databases and file systems.

When applied to (volatile) multi-threaded code, the transac-

tional memory programming model simplifies concurrency

by exporting to the programmer “single global lock” seman-

tics, that is, the programmer should simply protect groups of

accesses to shared data as “transactions,” each of which are

mutually exclusive. The transactional programming model

is in theory appealing as programmers need not worry about

data races on shared data, multiple locks, or parallel perfor-

mance. To this transactional programming model, many fail-

ure atomicity libraries add persistence: transactions become

both visible to other threads, and persistent, upon transaction

completion.

In practice, however, despite decades of research and dedi-

cated hardware support, (volatile) transactional memory has

failed to become a common programming paradigm for gen-

eral purpose multi-threaded code. Transactions generally mix

poorly with both other synchronization methods (locks, bar-

riers, condition variables, etc.) [4, 70] and IO [45, 52], tend

to incur significant performance overhead when compared

to fine grained locking [4, 19], and are incompatible with

legacy multi-threaded code [52], whose locking discipline

is rarely compatible without significant rewriting. Support

for transactional memory in C++, for example, remains ex-

perimental [45]. There is no indication that persistent trans-

actional memory systems will solve these problems, indeed,

they appear to perpetuate them.

Generally, the transactional programming model is ex-

ported to the programmer using a scoped transaction, (e.g.

transaction{}) and the library guarantees transactions will

execute mutually exclusively (e.g. PMDK’s C++ interface).

However, for PMEM, transactional libraries may syntactically

decouple mutual exclusion from failure atomicity due to lan-

guage limitations (e.g. PMDK’s C interface). In such an API,

the library expects the programmer to first explicitly acquire

the necessary locks to gain mutual exclusion before, subse-

quently, executing the transaction’s failure atomic contents.

Despite this apparent separation, a transactional PMEM

library’s programming model imposes hard limits on the lock-

ing discipline - it expects that all transactional updates are

mutually exclusive and isolated by the locking discipline.

This restriction effectively forces the application to use a

limited locking scheme such as single-global-lock or strong

strict conservative two phase locking to protect any failure-

atomic update. The programming model explicitly disallows

releasing or acquiring a lock while executing a failure-atomic

update.

For more complex locking schemes in which failure-atomic

writes are visible to other threads before they are committed,

the use of a FASE-based programming model is required,

USENIX Association 2023 USENIX Annual Technical Conference 835

and is often necessary for legacy programs as, in general,

their existing synchronization fails to follow the restrictive

transactional requirements.

3.2 Limitations of FASEs

Despite being, at first appearances, more compatible with

legacy code, we argue the FASE-based model is also funda-

mentally flawed, or, at the very least, excessively permissive.

The FASE model defines a failure-atomic code region as a

“contiguous critical section,” that is, it defines a failure-atomic

code region as stretching from a thread’s first lock acquire

until the point where it holds no locks. While flexible with re-

spect to locking scheme, this model requires tracking runtime

dependencies between concurrently running failure-atomic

code regions, which may not be isolated from each other.

This permissiveness results in complicated and degenerate

scenarios for recovery.

As a contribution of this work, we demonstrate that, for

certain adversarial application patterns, any FASE-based sys-

tem will either fail to recover or collapse into a degenerate

case in which literally all program state must be logged for

recovery, including volatile data never accessed within failure

atomic regions — effectively, the FASE programming model

requires whole process persistence for correctness.

Theorem 3.1 (FASE Limitation) There exist applications

for which, in order to consistently recover from a crash, a

reasonably permissive FASE-based failure atomicity system

requires all volatile program state be available at recovery.

We prove this theorem by counterexample. This counterex-

ample (Figure 1) can emerge naturally where two threads com-

municate via shared variables and one executes IO, a common

pattern in event-based servers. In these servers, some threads

handle the IO socket (thread 2 in example), some threads are

application workers (thread 1), and they communicate via

shared flags to manage outstanding requests. Detecting this

pattern requires detailed reasoning about synchronization, and

therefore prevents the blind use of FASEs on applications.

In the remainder of this section, we describe the counterex-

ample and a brief sketch of our proof’s reasoning. A full proof

by contradiction, formal definitions, and additional discussion

incorporating related work can be found in Appendix A.

Figure 1 gives our adversarial application that breaks FASE-

based systems. In this example, two threads compute a fixed

series of four values for nonvolatile variable x. Thread 1 com-

putes the first value, Thread 2 the second and third, and Thread

1 the final, fourth value.

The two “tricks” of the code are that (1) the long FASE

executed by thread 1 (lines 6 through 22) spans the entire

example and (2) the third value of x, computed, but not as-

signed, outside of a FASE (line 39), is dependent on an access

to a large volatile array Q.

1 lock_t lock0, lock1, lock2;

2 bool cond1 = false, cond2 = false;

3 int Q[] = rand(); // large random volatile array

4 nvm<int> x = 0; // x resides in nvm

5 void thread1{

6 lock0.lock();

7 x = (int s1=f1(x));

8

9 lock1.lock();

10 cond1 = true;

11 lock1.unlock();

12

13 bool w = true;

14 while(w){

15 lock2.lock();

16 if(cond2)

17 {w = false;}

18 lock2.unlock();

19 }

20

21 x = (int s4=f4(x));

22 lock0.unlock();

23 }

24 void thread2{

25 bool w = true;

26 while(w){

27 lock1.lock();

28 if(cond1){

29 w = false;

30 x =(int s2=f2(x));

31 }

32 lock1.unlock();

33 }

34

35 int in;

36 printf("x=%d", s2);

37 scanf("%d",&in);

38 /∗∗∗∗∗/

39 int s3 = f3(s2,in,Q);

40

41 lock2.lock();

42 x = s3;

43 cond2 = true;

44 lock2.unlock();

45 }

Figure 1: FASE counterexample

Recovery of this example presents an unsolvable prob-

lem. First, we note that Thread 1’s long FASE, due to failure-

atomicity semantics, forces recovery to recover either to the

very beginning of the program or the very end. However, both

options are impossible for a crash at line 38, just before x’s

third value is computed. At this point, thread 2 has already

issued IO, so rolling back program state at recovery is in-

consistent with the external world. However, rolling forward

from this point requires the computation of the third value of

x, which is dependent on an arbitrarily sized volatile array (Q).

Since Q can be of any size, it can be replaced, without loss

of generality, with any or all of the program’s volatile state,

effectively requiring whole process persistence.

Our proof requires failure atomicity systems to be “reason-

ably permissive,” by which we mean that this counter example

can be expressed as valid input for the system. Systems that

restrict locking to two-phase-locking (e.g. [50,68]) or a single,

semantic, global lock (i.e. transactional memory [63]) avoid

this counterexample by prohibiting the locking pattern. Of

course, by the same token, this restriction hampers their utility

for legacy code, which rarely follows such a strict locking

discipline.

The FASE programming model may be fixable by prohibit-

ing situations like the counter-example. Simple (but undesir-

able) solutions include prohibiting all volatile accesses or all

IO in the program. Alternatively, we could try to prohibit the

precise counter-example problem by targeting the interplay

836 2023 USENIX Annual Technical Conference USENIX Association

Figure 2: Virtual memory in Zhuque. The runtime modifies

the backing store based on the mapping type, but the interface

presented to the userspace application does not change.

between FASE dependencies, volatile accesses, and IO. One

potential approach to achieve this involves a specification that

disallows volatile accesses concurrently with a FASE execu-

tion. However, formally defining this specification is tricky,

and formally verifying the proper use of FASEs is almost

certainly undecidable through the halting problem. Notably,

the requirement of a transactional locking scheme (e.g. strict,

strong conservative 2PL) would also prevent the counterex-

ample by explicitly disallowing its locking discipline.

To our knowledge, all existing FASE-based systems (e.g. [6,

26,30,42]) are “reasonably permissive” and would both accept

this code as valid input and fail to recover correctly on it.

4 Design

Whole process persistence (WPP) is our answer to the limita-

tions of transaction- and FASE-based programming models.

In WPP, the in-memory state of an individual process is made

persistent with, in simple cases, no modification to the ap-

plication, primarily by interposing on the creation of virtual

memory mappings (see Figure 2). WPP is designed for sys-

tems with flush-on-fail support, so we expect the contents of

the process’s PMEM-backed cache lines to survive a power

failure. When the process is restarted after a power failure,

it receives an OS signal, which it can ignore or handle with

a signal handler. If no signal handler is installed, or if the

installed signal handler does not exit the program, each thread

continues execution at the point where it was interrupted by

the failure.

There are several benefits to this model over transactions

and FASEs. First and most importantly, WPP solves the prob-

lem described in Section 3 by discarding the concept of a

failure-atomic section. The visible effects of an instruction

on process state (that is, not including effects on OS state or

peripherals) are guaranteed to survive a failure at least from

the point at which they are visible to other threads. Second,

restarting at the point of failure removes the need to "redo"

or "undo" any writes at recovery, and with it the need to keep

a persistent log and incur the cost of extra writes to PMEM.

Third, no longer needing to define failure-atomic sections

either reduces the programmer’s burden directly, compared to

manually-annotated failure-atomicity systems, or allows them

to design concurrency schemes orthogonal to persistency with-

out incurring overhead, unlike FASE-based systems.

There are two requirements that must be satisfied in order

for an application to use WPP. The first is that its thread-

ing and virtual memory must be managed using a well-

defined API for those purposes (i.e., on POSIX: mmap(),

pthread_create(), etc). Any modern application targeting

a POSIX system would have to go out of its way in order to

violate this requirement.

The second is that applications must check error returns

from system calls and other mechanisms that access non-

process-private state, to detect failure-related errors beyond

the process boundary, such as an application using a file on a

filesystem that was not remounted after system restart. This

requirement is more onerous than the first, but in our experi-

ence a wide range of applications can be correctly restarted

without modification or special handling.

The principal challenge in implementing WPP is preserving

process state across a power failure. Continuing execution

after failure requires that the process’s virtual address space,

volatile architectural state, and relevant kernel-resident state

(e.g., the file descriptor table) are a) persistent or b) can be

resurrected along with the application.

The remainder of this section introduces Zhuque, our run-

time implementing WPP, and describes how it makes process

state persistent and restores that state after failure.

4.1 Overview

Zhuque provides WPP functionality by interposing on sys-

tem calls which allocate resources (memory, file descriptors,

threads), and by modifying the application startup process. In

order to do this, we modified libc, which provides C bind-

ings for system calls and implements the application startup

process. Zhuque also requires small changes to the kernel to

protect userspace context when failures occur in kernel mode

(see Section 5.3 for details).

Interposing on system calls allows Zhuque to ensure that all

application state which is normally volatile is instead stored in

PMEM, as shown in Figure 2. It also allows Zhuque to track

memory mappings and system calls so it can reconstruct the

program’s address space and re-create its kernel-resident state

after a failure. Remaining volatile architectural state (e.g., the

register file) is preserved by writing it to PMEM at failure.

When the application is resurrected after failure, Zhuque

restores the application’s address space, respawns its threads,

and each thread reloads its architectural state. Execution re-

sumes by calling the program’s power failure signal handler,

if it exists, and then resuming execution of each thread at the

point interrupted by power failure.

USENIX Association 2023 USENIX Annual Technical Conference 837

4.2 Ensuring State Persistence

The first requirement that Zhuque must fulfill is ensuring

that all state required for continuing correct execution of a

program is preserved across power failures. This state can

be divided into three categories based on its storage location:

architectural state, memory state, and file state.

If a system supports flush-on-fail, it would be possible to

modify its firmware to write per-thread architectural state

(register file, floating-point configuration, etc.) to PMEM in

response to power failure. However, we do not have the ability

to modify that firmware, so we emulate it using userspace

signals (see heading Power Failure in Section 5.1). We also

save architectural state to PMEM on every kernel entry, in

case a failure occurs in kernel mode (see Section 5.3).

File state is either inherently persistent, if the file was

opened read-only or if changes have been written to disk,

or is buffered awaiting being written to disk, in which case it

is actually memory state and is handled as described below.

Automatically ensuring memory state is persistent is more

complex, and is one of the main innovations of this design.

Memory state itself can be divided into dynamic and static

memory.

Dynamic memory Programs conjure dynamically allo-

cated (heap) memory and thread stacks by calling anonymous

mmap() (often via malloc()). Zhuque interposes on mmap()

so that requests for anonymous memory return DAX-mapped

persistent memory backed by a runtime-managed PMEM file,

making heap and stack memory persistent.

Static memory Before an application binary is executed,

the loader uses mmap() to create memory regions to hold

code and static data (globals) from the application binary and

linked dynamic libraries. Zhuque treats these regions differ-

ently based on whether they are un/zero-initialized, or initial-

ized to non-zero values. The loader creates un/zero-initialized

regions with anonymous mmap(), so they are treated as dy-

namic memory.

Initialized static memory, however, actually takes up space

in the binary, and is loaded by mapping that region of the bi-

nary into memory as a private mapping. Thus, Zhuque trans-

forms any writable, private mapping backed by a file to a

writable, shared mapping that is backed by a PMEM file (see

Figure 2), which is populated with the initialization values

from the binary.

This mechanism also cleanly handles other outputs of dy-

namic loading, like relocations of position-independent code

and cross-binary symbol resolutions, since they also are stored

in writable, file-backed, private mappings.

4.3 Ensuring Correct Restoration

Having persisted the application’s state, we also have to en-

sure it can be restored correctly. Recovery must restore the

application address space, restore kernel-resident state, and

restore architectural state.

Application address space All of the PMEM-backed

memory mappings managed by Zhuque, as well as any other

mappings the application created with mmap(). Zhuque stores

the mapping table in a persistent memory file, and updates

it to match any changes to the address space as they occur,

so no action is required at failure to ensure this metadata is

persistent.

At recovery, restoring the virtual memory map to its previ-

ous state must be done first, because all other state to be

restored is stored in virtually mapped persistent memory.

Restoration consists of re-mapping each virtual memory re-

gion with the correct backing store and access permissions.

This restoration also replaces dynamic loading.

Kernel-resident state Any data required for continuing

execution that resides outside the address space (and architec-

tural state) of the process. The specific data varies depending

on operating system and implementation decisions: for in-

stance, Zhuque tracks the state of open Linux file descriptors

in PMEM and restores them at restart using system calls. We

discuss Zhuque’s handling of kernel-resident state in Sec-

tion 5.

Architectural state Any state stored in the processor itself

and directly accessible from software. This state is per-thread,

and since it includes the program counter and stack pointer

registers, restoring it is equivalent to restarting execution of

the thread (so it must be done last).

Zhuque manipulates the saved PC and stack so that the

thread resumes as if it had just called the application-defined

failure handler (if it exists), and then that handler returns to

the point interrupted by execution when it executes a RET

instruction. To avoid references to a thread which has not yet

been recreated, threads wait to restart execution after they are

created until all threads have been created.

5 Implementation

Zhuque is based on the musl implementation of the C standard

library runtime [46], plus a minor modification to the Linux

kernel (Section 5.3). Figure 3 depicts Zhuque’s place in the

runtime environment, and Figure 4 shows the changes to

control flow at initialization and termination. This section

describes the life cycle of a Zhuque process, describes how

Zhuque handles the userspace-kernel boundary, and finally

discusses some limitations of our prototype implementation.

5.1 Process Life Cycle

When Zhuque starts a process, it checks an environment vari-

able for a path to a directory which holds or will hold the

persistent state for that process. One file in the directory holds

the process’s global “process context”, a memory map of a C

838 2023 USENIX Annual Technical Conference USENIX Association

Figure 3: Zhuque architecture. User applications link to the

C APIs provided by musl libc, and we modify the implemen-

tation of the APIs and the arguments passed to the underlying

system calls. To protect against failures in kernel mode, we

save userspace context to PMEM on entry to the kernel.

structure. The directory also holds all other persistent memory

files allocated during the process’s life.

Zhuque takes control of the process after the dynamic

loader loads its own metadata using information provided

by the kernel (“loader bootstrapping”). If the context file is

present, then Zhuque takes steps to restart the process. If the

context file is missing, but the environment variable is set,

then it is a newly created Zhuque process (i.e., a clean start).

Clean start In the clean start case, Zhuque creates and ini-

tializes the process context file. Then, it records the locations

of the dynamic loader and the main binary in the mapping

table and remaps their static memory sections to memory

backed by a persistent file. This retroactive process is nec-

essary because our userspace runtime cannot interpose on

mappings created by the kernel.

Next, control returns to the loader and it loads the applica-

tion’s dynamically-linked dependencies. Our code intercepts

the loader’s calls to mmap() and mprotect() during this pro-

cess in order to record the mapping metadata and transform

any writable, private mappings into persistent memory re-

gions.

After loading is complete, control returns to Zhuque just

before main() executes. Zhuque copies main()’s arguments

into PMEM and runs it in a new thread with a persistent stack.

Power failure To save volatile architectural state (e.g. the

register file) to PMEM at failure, we propose repurposing

existing functionality. NVDIMM eADR and CXL GPF both

rely on a System Management Interrupt (SMI) to implement

the flush-on-fail process on x86 systems (see Section 2.1).

SMI handling saves volatile architectural state to a desig-

nated per-core region (the SMRAM) before beginning exe-

cution of the handler, and x86 allows the SMRAM to be

PMEM-backed [16]. However, the location of the SMRAM

is controlled by system firmware. Unfortunately, updates to

firmware must be signed by the manufacturer — the firmware

uses encryption to prevent modification by the end user [15],

so we were unable to make this change for our prototype.

Instead, to test Zhuque’s application support, we emulate

the SMI’s state save using userspace signals. If SIGPWR is

delivered while the process is executing, the volatile thread

receives it and sends a second signal to each thread. When

the kernel interrupts a thread to run the signal handler, it first

pushes the register file and other state needed to resume ex-

ecution onto the persistent thread stack. The handler body

saves the current stack pointer and some context not saved

by handler entry in PMEM, and then exits the thread directly,

preserving the contents of the stack. Thus, at recovery, we

have access to a persistent memory region containing a snap-

shot of volatile architectural state at failure, as if it had been

saved by an SMI.

Restart after failure On restart, the runtime opens the

context file, re-creates PMEM mappings, re-opens file de-

scriptors, and finally re-maps file-backed memory. If a file

descriptor was closed after being used to create a mapping, it

is temporarily re-opened while the mapping is restored.

After the virtual memory map and file set are re-established,

Zhuque restarts the execution of each thread from the point of

failure. Zhuque does this by starting each thread with the same

start routine, and the same initial stack pointer, so that the

bottom frames of the stack are overwritten with new frames

of the same size, and the contents of application frames are

preserved. From this entry routine, we use assembly to restore

architectural state, including setting the stack pointer and PC

to the addresses saved at failure. Execution resumes within

the runtime’s failure handler, which calls the user-defined

failure handler if present. If there is no user-defined handler,

or the handler does not exit the program, execution continues

at the point interrupted by the signal at failure.

5.2 Kernel-resident State

In order to preserve correctness in a userspace-only implemen-

tation, our runtime tracks and restores two pieces of kernel

state tied to the process: the file descriptor set and the thread

set.

To track the thread set, our runtime interposes on calls to

pthread_create(), wrapping the passed thread entry point

and arguments in our own entry point function (which itself is

wrapped in the musl entry point function). It also saves both

the Linux and pthreads identifiers for the thread; the Linux

ID is used at failure to signal each thread individually with

tgkill(), while the pthreads ID is the address of the thread

metadata, and is used at restoration to continue execution

at the point of failure. The Linux ID of a thread changes

when the process is restarted, while the pthreads ID does

not, because we restart threads at recovery with a modified

version of pthread_create()which uses an existing thread

metadata object rather than creating a new one.

USENIX Association 2023 USENIX Annual Technical Conference 839

Figure 4: Zhuque runtime control flow. Zhuque modifies runtime startup and termination; application code is not modified.

To track the file descriptor set, Zhuque interposes on calls

which assign (e.g. open(), socket()), modify (e.g. fcntl(),

bind()), or release (i.e. close()) file descriptors and replays

them at restart, using dup() to patch any discrepancy in as-

signed descriptors. This approach is sufficient for sockets

with stateless protocols, epoll file descriptors, and simple

file accesses.

However, pipes and files require special handling: for reg-

ular files, we ensure that they will not be deleted between

failure and restoration by creating separate hardlinks to the

files and using those to reference the file, deleting them when

the program exits cleanly; we also open them without kernel

buffering (i.e. with O_SYNC) due to the limits of a userspace

implementation. And for pipes, we use the splice() fam-

ily of system calls to save and restore unconsumed contents

at failure/restoration. Support for restoring network sockets

is best-effort, and a more systematic approach to network

support under WPP is an interesting future extension of this

work.

5.3 Failures in kernel mode

When an application makes a system call, or is suspended

by an interrupt, the kernel will save the application’s volatile

architectural state on the suspended thread’s kernel stack and

restore it when application execution resumes. In our imple-

mentation the kernel stack is volatile, so we must save this

state in persistent memory to allow recovery if power failure

interrupts the kernel-mode operation.

To enable this, we added a prctl() operation to designate

a page as a redundant state save area. We added code on all

entries from user- to kernel-mode which checks whether such

a page has been provided, and if so saves the state there as

well as to the kernel stack. Accesses to the page must not fault:

since a page fault is itself an interrupt, a fault in interrupt entry

deadlocks the kernel. We found that there is no way (in our

test kernel version) to reliably prevent access to a filesystem

DAX page from faulting, so we use device DAX to provide

the save memory.

5.4 Limitations

There are two notable limitations of our implementation, nei-

ther of which is fundamental to the design.

Multi-process applications are not supported. Zhuque

currently has no support for persisting multiple processes in

the same process tree; if an application under our runtime

forks a new process while leaving the LD_RELOAD environ-

ment variable unchanged, the child process will crash when

it attempts to use the same context object as its parent. By

the same token, we make no attempt to preserve OS process

IDs across failures, so applications that save and retrieve their

PID after failure may find it invalid. Our runtime supports

unrestricted concurrency schemes, so we believe it would

be possible to extend it to support multi-process operation

by interposing on the creation and termination of processes,

similar to our approach to threads.

Some ASLR is not supported. Address space layout ran-

domization (ASLR) is a security technique which randomizes

the address of virtual memory mappings. Random addresses

returned by mmap()to userspace are not an obstacle, since

the randomization only occurs once under Zhuque. However,

Zhuque cannot prevent the kernel from mapping libc and

the application binary at a random location at restart, which

means that their static memory cannot be recreated at the

same locations when ASLR is enabled. It would be possible

to move those mappings after they are created, but since it

does not otherwise affect correctness or performance, and it

would add significant complexity to the startup process, we

chose not to implement this feature.

6 Evaluation

In this section, we evaluate Zhuque’s performance to provide

answers to the following questions:

• How much performance improvement does Zhuque pro-

vide for persistent applications compared to existing li-

braries?

• How much performance overhead does Zhuque incur

compared to native, volatile execution?

• What benefits does Zhuque provide by enabling zero-

840 2023 USENIX Annual Technical Conference USENIX Association

dhartha Chatterjee. Software transactional memory:

Why is it only a research toy? Commun. ACM,

51(11):40–46, November 2008.

[5] Daniel Castro, Paolo Romano, and João Barreto. Hard-

ware transactional memory meets memory persistency.

In 2018 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pages 368–377, 2018.

[6] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud

Bhandari. Atlas: Leveraging locks for non-volatile

memory consistency. In Proceedings of the 2014 ACM

International Conference on Object Oriented Program-

ming Systems Languages & Applications, OOPSLA ’14,

pages 433–452. ACM, 2014.

[7] Shimin Chen and Qin Jin. Persistent b+-trees in non-

volatile main memory. Proc. VLDB Endow., 8(7):786–

797, February 2015.

[8] Chi Cao Minh, JaeWoong Chung, C. Kozyrakis, and

K. Olukotun. Stamp: Stanford transactional applica-

tions for multi-processing. In 2008 IEEE International

Symposium on Workload Characterization, pages 35–46,

2008.

[9] Joel Coburn, Adrian M. Caulfield, Ameen Akel,

Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and

Steven Swanson. NV-Heaps: Making persistent objects

fast and safe with next-generation, non-volatile mem-

ories. In Proceedings of the Sixteenth International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’11, pages

105–118, New York, NY, USA, 2011. ACM.

[10] Nachshon Cohen, David T. Aksun, Hillel Avni, and

James R. Larus. Fine-grain checkpointing with in-cache-

line logging. In Proceedings of the Twenty-Fourth Inter-

national Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS

’19, pages 441–454. Association for Computing Machin-

ery, 2019.

[11] Jeremy Condit, Edmund B. Nightingale, Christopher

Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-

rick Coetzee. Better I/O through byte-addressable, per-

sistent memory. In Proceedings of the ACM SIGOPS

22nd Symposium on Operating Systems Principles,

SOSP ’09, pages 133–146, New York, NY, USA, 2009.

ACM.

[12] George Copeland, Michael Franklin, and Gerhard

Weikum. Uniform object management. In Interna-

tional Conference on Extending Database Technology,

pages 253–268. Springer, 1990.

[13] Intel Corporation. Asynchronous event handling. In

CXL Type 3 Memory Device Software Guide, page 65.

June 2021. Revision 1.0.

[14] Intel Corporation. Gpf sequence. In CXL Type 3 Mem-

ory Device Software Guide, page 121. June 2021. Revi-

sion 1.0.

[15] Intel Corporation. Microcode update facilities: Update

signature and verification. In Intel 64 and IA-32 Ar-

chitectures Software Developer’s Manual, volume 3,

chapter 10.11, pages 10–36–10–37. March 2023. Order

No. 325462-079US.

[16] Intel Corporation. System management mode: Smram.

In Intel 64 and IA-32 Architectures Software Devel-

oper’s Manual, volume 3, chapter 32.4, pages 32–4–32–

9. March 2023. Order No. 325462-079US.

[17] Andreia Correia, Pascal Felber, and Pedro Ramalhete.

Romulus: Efficient algorithms for persistent transac-

tional memory. In Proceedings of the 30th ACM Sym-

posium on Parallelism in Algorithms and Architectures,

SPAA ’18, pages 271–282. Association for Computing

Machinery, 2018.

[18] Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, and

Vijay Nagarajan. Lazy release persistency. In Proceed-

ings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’20, pages 1173–1186. As-

sociation for Computing Machinery, 2020.

[19] Dave Dice, Alex Kogan, Yossi Lev, Timothy Merrifield,

and Mark Moir. Adaptive integration of hardware and

software lock elision techniques. In Proceedings of the

26th ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’14, pages 188–197. Association

for Computing Machinery, 2014.

[20] David Dice, Virendra J. Marathe, and Nir Shavit. Lock

cohorting: A general technique for designing numa

locks. ACM Trans. Parallel Comput., 1(2), February

2015.

[21] Python Software Foundation. The python performacne

benchmark suite, 2021.

[22] Michal Friedman, Maurice Herlihy, Virendra Marathe,

and Erez Petrank. A persistent lock-free queue for non-

volatile memory. In Proceedings of the 23rd ACM SIG-

PLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’18, pages 28–40. Association for

Computing Machinery, 2018.

[23] Ellis R Giles, Kshitij Doshi, and Peter Varman. Soft-

wrap: A lightweight framework for transactional support

of storage class memory. In 2015 31st Symposium on

Mass Storage Systems and Technologies (MSST), pages

1–14. IEEE, 2015.

[24] Vaibhav Gogte, William Wang, Stephan Diestelhorst,

Peter M Chen, Satish Narayanasamy, and Thomas F

Wenisch. Relaxed persist ordering using strand persis-

tency. In 2020 ACM/IEEE 47th Annual International

Symposium on Computer Architecture (ISCA), pages

652–665. IEEE, 2020.

[25] Swapnil Haria, Mark D. Hill, and Michael M. Swift.

Mod: Minimally ordered durable datastructures for per-

sistent memory. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for

Programming Languages and Operating Systems, AS-

USENIX Association 2023 USENIX Annual Technical Conference 845

PLOS ’20, pages 775–788. Association for Computing

Machinery, 2020.

[26] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy,

Kimberly Keeton, and Patrick Eugster. Nvthreads: Prac-

tical persistence for multi-threaded applications. In Pro-

ceedings of the Twelfth European Conference on Com-

puter Systems, EuroSys ’17, pages 468–482. Association

for Computing Machinery, 2017.

[27] Intel Corporation. Pmdk issues: introduce hybrid trans-

actions, 2017.

[28] Intel Corporation. Intel Optane DC Persistent Memory,

2019.

[29] Intel Corporation. eADR: New Opportunities for Per-

sistent Memory Applications, 2021.

[30] Joseph Izraelevitz, Terence Kelly, and Aasheesh

Kolli. Failure-Atomic Persistent Memory Updates via

JUSTDO Logging. In Proceedings of the Twenty-First

International Conference on Architectural Support

for Programming Languages and Operating Systems,

ASPLOS ’16, pages 427–442, New York, NY, USA,

2016. ACM.

[31] Joseph Izraelevitz, Lingxiang Xiang, and Michael L

Scott. Performance improvement via always-abort htm.

In 2017 26th International Conference on Parallel Ar-

chitectures and Compilation Techniques (PACT), pages

79–90. IEEE, 2017.

[32] Jungi Jeong and Changhee Jung. Pmem-spec: persis-

tent memory speculation (strict persistency can trump

relaxed persistency). In Proceedings of the 26th ACM

International Conference on Architectural Support for

Programming Languages and Operating Systems, pages

517–529, 2021.

[33] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,

Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.

Splitfs: Reducing software overhead in file systems for

persistent memory. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles, pages 494–

508, 2019.

[34] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen,

and Thomas F. Wenisch. High-performance transac-

tions for persistent memories. In Proceedings of the

Twenty-First International Conference on Architectural

Support for Programming Languages and Operating

Systems, ASPLOS ’16, pages 399–411. Association for

Computing Machinery, 2016.

[35] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali

Saidi, Steven Pelley, Sihang Liu, Peter M. Chen, and

Thomas F. Wenisch. Delegated persist ordering. In The

49th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO-49. IEEE Press, 2016.

[36] Kunal Korgaonkar, Joseph Izraelevitz, Jishen Zhao, and

Steven Swanson. Vorpal: Vector clock ordering for

large persistent memory systems. In Proceedings of

the 2019 ACM Symposium on Principles of Distributed

Computing, PODC ’19, page 435–444. Association for

Computing Machinery, 2019.

[37] Eta Labs. libc-bench, 2021.

[38] Charles R Landau. The checkpoint mechanism in

keykos. In [1992] Proceedings of the Second Inter-

national Workshop on Object Orientation in Operating

Systems, pages 86–91. IEEE, 1992.

[39] libMemcached.org. libMemcached, 2011.

[40] Linux Kernel Organization. Direct Access for Files,

2020.

[41] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai

Qian, Yongwei Wu, Weimin Zheng, and Jinglei Ren.

Dudetm: Building durable transactions with decoupling

for persistent memory. In Proceedings of the Twenty-

Second International Conference on Architectural Sup-

port for Programming Languages and Operating Sys-

tems, ASPLOS ’17, pages 329–343. Association for

Computing Machinery, 2017.

[42] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee,

Michael L Scott, Sam H Noh, and Changhee Jung.

ido: Compiler-directed failure atomicity for nonvolatile

memory. In 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 258–

270. IEEE, 2018.

[43] Amirsaman Memaripour, Anirudh Badam, Amar Phan-

ishayee, Yanqi Zhou, Ramnatthan Alagappan, Karin

Strauss, and Steven Swanson. Atomic in-place updates

for non-volatile main memories with kamino-tx. In

Proceedings of the Twelfth European Conference on

Computer Systems, EuroSys ’17, pages 499–512. Asso-

ciation for Computing Machinery, 2017.

[44] Memcached. http://memcached.org/.

[45] Transactional memory study group (SG5). Technical

specification for c++ extensions for transactional mem-

ory iso/iec ts 19841:2015, 2015.

[46] musl libc, 2021. https://musl.libc.org/.

[47] Dushyanth Narayanan and Orion Hodson. Whole-

system persistence with non-volatile memories. In Sev-

enteenth International Conference on Architectural Sup-

port for Programming Languages and Operating Sys-

tems (ASPLOS 2012). ACM, March 2012.

[48] Faisal Nawab, Joseph Izraelevitz, Terence Kelly,

Charles B Morrey III, Dhruva R Chakrabarti, and

Michael L Scott. Dalí: A periodically persistent hash

map. In 31st International Symposium on Distributed

Computing (DISC 2017). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2017.

[49] Edmund B Nightingale, Kaushik Veeraraghavan, Pe-

ter M Chen, and Jason Flinn. Rethink the sync. ACM

Transactions on Computer Systems (TOCS), 26(3):1–26,

2008.

[50] pmem.io. Persistent Memory Development Kit, 2017.

http://pmem.io/pmdk.

[51] Yoav Raz. The principle of commitment ordering, or

846 2023 USENIX Annual Technical Conference USENIX Association

guaranteeing serializability in a heterogeneous environ-

ment of multiple autonomous resource mangers using

atomic commitment. In Proceedings of the 18th Inter-

national Conference on Very Large Data Bases, VLDB

’92, pages 292–312. Morgan Kaufmann Publishers Inc.,

1992.

[52] Wenjia Ruan, Trilok Vyas, Yujie Liu, and Michael Spear.

Transactionalizing legacy code: An experience report

using gcc and memcached. In Proceedings of the 19th

International Conference on Architectural Support for

Programming Languages and Operating Systems, AS-

PLOS ’14, pages 399–412. Association for Computing

Machinery, 2014.

[53] Andy Rudoff, Chet Douglas, and Tiffany Kasanicky. Per-

sistent memory in cxl. In Proceedings of the 2021 SNIA

Persistent Memory + Computational Storage Summit,

April 2021.

[54] J. Ruppert. A delaunay refinement algorithm for quality

2-dimensional mesh generation. Journal of Algorithms,

1995.

[55] Steve Scargall. PMDK Internals: Important Algorithms

and Data Structures, pages 313–331. Apress, 2020.

[56] Jonathan S Shapiro and Jonathan Adams. Design evo-

lution of the eros single-level store. In USENIX An-

nual Technical Conference, General Track, pages 59–72,

2002.

[57] Jonathan S Shapiro, Jonathan M Smith, and David J

Farber. Eros: a fast capability system. In Proceedings of

the seventeenth ACM symposium on Operating systems

principles, pages 170–185, 1999.

[58] Eugene Shekita and Michael Zwilling. Cricket: A

mapped, persistent object store. Technical report, Uni-

versity of Wisconsin-Madison Department of Computer

Sciences, 1990.

[59] Seunghee Shin, James Tuck, and Yan Solihin. Hiding

the long latency of persist barriers using speculative exe-

cution. In Proceedings of the 44th Annual International

Symposium on Computer Architecture, ISCA ’17, pages

175–186. Association for Computing Machinery, 2017.

[60] Frank G Soltis. Fortress Rochester: The Inside Story of

the IBM iSeries. System iNetwork, 2001.

[61] Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and

Ali José Mashtizadeh. The aurora operating system:

revisiting the single level store. In Proceedings of the

Workshop on Hot Topics in Operating Systems, pages

136–143, 2021.

[62] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-

ganathan, and Roy H. Campbell. Consistent and durable

data structures for non-volatile byte-addressable mem-

ory. In Proceedings of the 9th USENIX Conference

on File and Stroage Technologies, FAST’11, page 5.

USENIX Association, 2011.

[63] Haris Volos, Andres Jaan Tack, and Michael M. Swift.

Mnemosyne: Lightweight persistent memory. In ASP-

LOS ’11: Proceeding of the 16th International Confer-

ence on Architectural Support for Programming Lan-

guages and Operating Systems, New York, NY, USA,

2011. ACM.

[64] Gerhard Weikum and Gottfried Vossen. Transactional

Information Systems: Theory, Algorithms, and the Prac-

tice of Concurrency Control and Recovery. Morgan

Kaufmann Publishers Inc., 2001.

[65] Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A

file system for storage class memory. In Proceedings of

2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’11,

pages 39:1–39:11, New York, NY, USA, 2011. ACM.

[66] Zhenwei Wu, Kai Lu, Andrew Nisbet, Wenzhe Zhang,

and Mikel Luján. Pmthreads: Persistent memory threads

harnessing versioned shadow copies. In Proceedings

of the 41st ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI 2020,

pages 623–637. Association for Computing Machinery,

2020.

[67] Jian Xu and Steven Swanson. {NOVA}: A log-

structured file system for hybrid volatile/non-volatile

main memories. In 14th {USENIX} Conference on File

and Storage Technologies ({FAST} 16), pages 323–338,

2016.

[68] Yi Xu, Joseph Izraelevitz, and Steven Swanson. Clobber-

nvm: Log less, re-execute more. In To appear in the Pro-

ceedings of International Conference on Architectural

Support for Programming Languages and Operating

Systems (ASPLOS), 2021.

[69] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,

Khai Leong Yong, and Bingsheng He. Nv-tree: Reduc-

ing consistency cost for nvm-based single level systems.

In Proceedings of the 13th USENIX Conference on File

and Storage Technologies, FAST’15, pages 167–181.

USENIX Association, 2015.

[70] Richard M. Yoo, Yang Ni, Adam Welc, Bratin Saha,

Ali-Reza Adl-Tabatabai, and Hsien-Hsin S. Lee. Kick-

ing the tires of software transactional memory: Why

the going gets tough. In Proceedings of the Twentieth

Annual Symposium on Parallelism in Algorithms and

Architectures, SPAA ’08, pages 265–274. Association

for Computing Machinery, 2008.

[71] Lu Zhang and Steven Swanson. Pangolin: A

fault-tolerant persistent memory programming library.

In 2019 {USENIX} Annual Technical Conference

({USENIX}{ATC} 19), pages 897–912, 2019.

A Proof

In this appendix, we provide a proof of theorem 3.1:

Theorem 3.1 (FASE Limitation) There exist applications

for which, in order to consistently recover from a crash, a

USENIX Association 2023 USENIX Annual Technical Conference 847

reasonably permissive FASE-based failure atomicity system

requires all volatile program state be available at recovery.

A.1 Definitions

We begin by defining terms. By application we mean a multi-

threaded program, executed as a process. The process’s in-

ternal state consists of all its data, including heap, globals,

and stack. Some memory locations are designated nonvolatile,

their contents (the nonvolatile state) survive a power outage;

the remainder are volatile, and their contents (the volatile

state) are lost. The process may perform IO operations —

we term the set of IO operations performed by an executing

process its external state. The process, being multi-threaded,

contains code regions that execute while a lock is held, these

are termed critical sections.

If power is lost during process execution, its volatile state

is lost. The purpose of a failure atomicity system is to pro-

vide consistent recovery from a power outage. For consistent

recovery, the system selects a point in execution, termed the

recovery point. The recovery point is consistent with the ex-

ternal state; process execution from initialization through

the recovery point would generate the observed IO. For fail-

ure atomicity, the recovery point also lies outside all critical

sections. Consistent recovery of a process consists of select-

ing a valid recovery point and restoring the persistent state’s

contents to its values as of this point. If the power failure

interrupts a critical section, consistent recovery will involve,

for failure atomicity, chosing a recovery point outside the

critical section and undoing or redoing changes made within

the section.

We assume a powerful failure atomicity system which is

free, during pre-crash execution, to intercept the process at

any point and log data in nonvolatile memory. After a crash,

the system has access both to these logs and the process’s non-

volatile state — its task is to ensure that the nonvolatile state

is restored to a recovery point; consistent with IO operations

and outside any critical section. The failure atomicity system

must be reasonably permissive with respect to its program-

ming model — we require the system’s programming model

to support our adversarial example. To all our knowledge, all

existing FASE-based systems are “reasonably permissive”.

Figure 1 gives our counterexample. The “trick” is that

the long FASE executed by thread 1 (lines 6 through 22)

is dependent on non-FASE code executed by thread 2 that

contains both IO and accesses to large volatile data (lines 36

through 39).

A.2 Proof Sketch

We prove Theorem 3.1 by contradiction. We consider a pro-

cess executing the code sample in Figure 1 and suffering a

power failure on line 38. Suppose, for contradiction, there

exists a FASE system for which, given this situation, could

restore the program’s nonvolatile state to a recovery point

consistent with the external state and outside any critical sec-

tion. As thread 1, by construction, executes a critical section

(FASE) for its duration, our recovery point for thread 1 must

lie at line 6 or line 22 — all other points violate failure atom-

icity. We consider both options.

Suppose the recovery point lies at line 6 (i.e. recover x to

0), it is inconsistent with the external process state due to the

IO executed before the failure on lines 36 and lines 37, which

indicate that thread 2 (and therefore thread 1) have progressed

beyond this recovery point, leading to a contradiction.

Suppose the recovery point lies at line 22 (i.e. recover x

to s4). First we note that the value s4 has a true dependence

(read-after-write) on s3, and s3 has a true dependence on

both the inputed seed in and large volatile array Q. Since s3

cannot be computed before in is known, s3must be computed

after the scanf on line 37 is executed. Since the failure can

interrupt the computation of s3 after the scanf, all inputs

to f3 must be preserved in nonvolatile storage for recovery.

However, since Q is an arbitrarily sized volatile array, Q can

be of any size and can be replaced, without loss of generality,

with any or all of the program’s volatile state, requiring the

failure atomicity system to preserve all volatile process state

and leading to a contradiction.

B Artifact Appendix

B.1 Abstract

This appendix describes the artifact submitted with this pa-

per. The artifact contains files to build a Docker image with

Zhuque installed as the system libc, and containing all bench-

marks and comparison PMEM systems evaluated in Section 6.

It also contains our patch against the Linux kernel necessary

for correct resumption, described in Section 5.3.

B.2 Scope

The artifact allows verification of the following claims:

• All performance results from Section 6, for both Zhuque

and comparison systems.

• Zhuque can successfully restart programs after an simu-

lated asynchronous failure, as described in Section 5.1.

• The kernel modification correctly saves userspace ar-

chitectural state to the redundant state save area, as de-

scribed in Section 5.3.

The artifact does not verify the following claims:

• The kernel modification is sufficient to protect against a

failure in kernel mode (we cannot simulate this type of

failure).

• The formal claims made in Section 3 about FASE-based

systems.

848 2023 USENIX Annual Technical Conference USENIX Association

B.3 Contents

The artifact is organized into these key directories (see

README for detailed listing):

• musl-src: Source code of Zhuque-musl.

• musl-src/src/psys: Zhuque core implementation.

• clobber-pmdk: Source code for comparison PMEM

systems and their versions of application benchmarks.

• apps: Zhuque/native implementations of application

benchmarks.

• pigframe: Materials to build and test our kernel modifi-

cation.

B.4 Hosting

This artifact is hosted in a Github repository at

https://github.com/georgehodgkins/Zhuque_artifact.

The commit ID for the current version is

ffc033972bb36adc23b7a4b8c8b2cc6d736bff53. See

README for build instructions.

B.5 Requirements

The only software required for the artifact is Docker on a

Linux kernel; the build process bootstraps all other dependen-

cies. Zhuque and most comparison applications can be run on

a system without PMEM, but only a system with PMEM can

fully reproduce the reported results. Zhuque was mostly de-

veloped against a rather old kernel version (4.15.18), and we

have sometimes observed unexpected behavior when running

on newer kernels.

We built and tested the artifact on the evaluation machine

described in Section 6. Our kernel modification targets the

Ubuntu kernel fork at version 4.15.0-169. The Docker image

is based on Alpine Linux 3.14.

USENIX Association 2023 USENIX Annual Technical Conference 849

	Introduction
	Background
	Machine Model
	Persistent Programming Models
	Transactional Libraries
	FASE-based libraries
	Whole System Persistence

	Limitations of Prior Art
	Limitations of Transactions
	Limitations of FASEs

	Design
	Overview
	Ensuring State Persistence
	Ensuring Correct Restoration

	Implementation
	Process Life Cycle
	Kernel-resident State
	Failures in kernel mode
	Limitations

	Evaluation
	Evaluation Setup
	Microbenchmarks
	Python Benchmarks
	Memcached
	Vacation and Yada

	Related Work
	Conclusion
	Proof
	Definitions
	Proof Sketch

	Artifact Appendix
	Abstract
	Scope
	Contents
	Hosting
	Requirements

