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a b s t r a c t

Stochastic gradient descent (SGD) and projected stochastic gradient descent (PSGD) are
scalable algorithms to compute model parameters in unconstrained and constrained
optimization problems. In comparison with SGD, PSGD forces its iterative values into
the constrained parameter space via projection. From a statistical point of view, this
paper studies the limiting distribution of PSGD-based estimate when the true parameters
satisfy some linear-equality constraints. Our theoretical findings reveal the role of
projection played in the uncertainty of the PSGD-based estimate. As a byproduct, we
propose an online hypothesis testing procedure to test the linear-equality constraints.
Simulation studies on synthetic data and an application to a real-world dataset confirm
our theory.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

With the rapid increase in availability of data in the past two decades or so, many classical optimization methods
or statistical problems such as gradient descent, expectation–maximization or Fisher scoring cannot be applied in the
resence of large datasets, or when the observations are collected one-by-one in an online fashion [4,19]. To overcome
he difficulty in the era of big data, a computationally scalable algorithm called stochastic gradient descent (SGD) proposed
n the seminal work [16] has been widely applied and achieved great success [1,5,22]. In comparison with classical
ptimization methods, one appealing feature of SGD is that the algorithm only requires accessing a single observation
uring each iteration, which makes it scale well with big data and computationally feasible with streaming data.
Due to the success of SGD, the studies of its theoretical properties have drawn a great deal of attention. The theoretical

nalysis of SGD can be categorized into two directions based on different research interests. The first direction is about
he convergence rate. Existing literature shows that SGD algorithm can achieve a (in terms of regret) O(1/T ) convergence
ate for strongly convex objective functions (e.g., see [2,8]), and a O(1/

√
T ) rate for general convex cases [11], where T is

the number of iterations. The second direction focuses on applying SGD to statistical inference. It was proved that the SGD
estimate is asymptotic normal (e.g., see [12]) under suitable conditions. However, unlike classical parameter estimates,
the SGD estimate may not be root-T consistent, and its convergence rate depends on the learning rate. To improve the
convergence rate, [14,18] independently proposed the averaged stochastic gradient descent (ASGD) estimate, which was
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btained by averaging the updated values in all iterations. They showed that the ASGD estimate is root-T consistent,
hile its asymptotic normality was proved by [15]. Following [15], there is a vast amount of work related to conducting
tatistical inference based on ASGD estimates. For example, [19] proposed a hierarchical incremental gradient descent
HIGrad) procedure to construct the confidence interval for the unknown parameters. In comparison with ASGD estimate,
he flexible structure makes HiGrad easier to parallelize. In [4], the authors developed an online bootstrap algorithm to
onstruct the confidence interval, which is still applicable when there is no explicit formula for the covariance matrix of
he ASGD estimate. Recently, [3] proposed a plug-in estimate and a batch-means estimate for the asymptotic covariance
atrix. With strong convexity assumption on the objective function, they proved the convergence rate of the estimates.
When there are constraints imposed on the parameters, the SGD algorithm is often combined with projection, which

orces the iterated values into the constrained parameter space. The convergence rate of this projected stochastic gradient
escent (PSGD) is also well studied (e.g., see [11]), which is proved to be the same as that of SGD. In the view of statistical
nference, [9] studied the asymptotic distribution of PSGD estimate when the model parameters are in the interior of
he constrained parameter space. It was proved that the projection operation only happens a finite number of times
lmost surely. As a consequence, the limiting distribution of PSGD estimate is exactly the same as that of SGD estimate.
ecently, [6] studied the limiting distribution of averaged projected stochastic gradient descent (APSGD) estimate, which
s the averaged version of PSGD. When the model parameters are in the interior of the constrained parameter space,
PSGD and ASGD estimates have the same limiting distribution.
This paper aims to quantify the uncertainty in APSGD estimates when the model parameters satisfy some linear-

quality constraints. Compared to the existing literature, a significant difference of our model is that the model parameters
re not in the interior of the constrained parameter space. Therefore, the projection operation will take place during
very iteration, and the limiting distribution of the APSGD estimate turns out to be a degenerate multivariate normal
istribution. The contribution of current work is threefold:

i) We derive the limiting distribution of the APSGD estimate, which is proved to be at least as efficient as ASGD estimate
nder mild conditions.
ii) An online specification test for the linear-equality constraints is proposed based on the difference between APSGD
nd ASGD estimates.
iii) Our findings reveal that, when the true parameters are not in the interior of the parameter space, the APSGD and
SGD estimates could have different limiting distributions.

This paper is organized as follows. In Section 2, we mathematically formulate the parameters estimation problem
with linear-equality constraints. Section 3 proposes the APSGD estimate and studies its asymptotic properties. An online
pecification test is proposed in Section 4. All the mathematical proofs are deferred to the appendix. A set of Monte Carlo
imulations to investigate the finite sample performance of the proposed methods and an application to a real-world
ataset are provided in a supplementary material.

. Problem formulation

We consider the problem to conduct statistical inference about the model parameter

θ∗
= argmin

θ∈Rp

{
L(θ ) := E[l(θ, Z)]

}
, (1)

here l(θ, Z) is the loss function, and Z is a single copy drawn from an unknown distribution Fθ∗ . Moreover, we assume
hat additional information about the truth θ∗ is available:

Bθ∗
= b, (2)

here B and b are some prespecified matrix and vector with comfortable dimensions. The loss function specified by (1)
s quite general and covers many popular statistical models, which are illustrated by the following examples.

xample 1 (Mean Estimation). Suppose Z ∈ Rp is random vector with mean θ∗
= E(Z). The loss function becomes

(θ, z) = 1
2∥z − θ∥2 with θ, z ∈ Rp.

Example 2 (Linear Regression). Let the random vector be Z = (Y , X⊤)⊤ with Y ∈ R and X ∈ Rp satisfying Y = X⊤θ∗
+ ϵ.

Here ϵ ∈ R is the random noise with zero mean. The loss function can be chosen as l(θ, z) =
1
2 (y − x⊤θ )2 with

y ∈ R, x, θ ∈ Rp, and z = (y, x⊤)⊤.

Example 3 (Logistic Regression). Suppose that the observation Z = (Y , X⊤)⊤ with Y ∈ {−1, 1} and X ∈ Rp satisfying
Pr(Y = y|X = x) = [1 + exp(−yx⊤θ∗)]−1. The loss function is l(θ, z) = log(1 + exp(−yx⊤θ )) with y ∈ {−1, 1}, x, θ ∈ Rp,
and z = (y, x⊤)⊤.

Example 4 (Maximal Likelihood Estimation). Let Fθ∗ be the distribution of Z , and the function form of Fθ∗ is known except
the value of θ∗. The loss function is the negative log likelihood: l(θ, z) = − log(F (z)).
θ

2
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In general, the function form of L(θ ) is unknown, as it relies on the distribution Fθ∗ . Instead, classical statistical methods
stimate θ∗ based on the sample counterpart of L(θ ) as follows:

θ̃T = argmin
θ∈Rp

1
T

T∑
t=1

l(θ, Zt ) s.t. Bθ = b, (3)

where Z1, . . . , ZT are the i.i.d. observations generated from distribution Fθ∗ . However, the computation of θ̃T in (3) involves
calculating a summation among T terms, which is not efficient when sample size T is large. Moreover, in many real-world
scenarios, the observations are collected sequentially in an online fashion. With the growing number of observations, data
storage devices cannot store all the collected observations or there is no enough memory to load the whole dataset. In
this case, the classical estimation procedures are not computationally feasible.

Before proceeding, we introduction some notation. Let ∥v∥ =
√

v⊤v denote the Euclidean norm of the vector v. For
any matrix A ∈ Rq×k, we define ∥A∥ = supx∈Rk

√
x⊤A⊤Ax as its operator norm, A− as its Moore–Penrose inverse, and

rank(A) as its rank. For two symmetric matrices V1, V2 ∈ Rk×k, we say V1 ⪰ V2 if x⊤V1x ≥ x⊤V2x for all x ∈ Rk. We use
the notation

P
−→ and

L
−→ to denote convergence in probability and in distribution, respectively. For t ≥ 1, we denote Ft

as the sigma algebra generated by {Z1, . . . , Zt}. We denote χ2(k) as the chi-square distribution with degree of freedom
k, and χ2(δ, k) as the non-central chi-squared distribution with noncentrality parameter δ and degree of freedom k, for
positive integer k and positive constant δ.

3. Projected Polyak–Ruppert averaging

To overcome the drawbacks of the classical methods, we consider the following PSGD algorithm. Choosing an initial
value θ0 ∈ Rp, we recursively update the value as follows:

θt = Π(θt−1 − γt∇l(θt−1, Zt )), (4)

where Π(·) is the projection operator onto the affine set {θ ∈ Rp
: Bθ = b}, and γt > 0 is the predetermined learning

rate (or step size). The updating equation in (4) can be explicitly written in matrix form as

θt = c + P[θt−1 − γt∇l(θt−1, Zt )− c],

where P ∈ Rp×p is the orthogonal projection matrix onto Ker(B), and c ∈ Rp is any vector satisfying Bc = b. Following [15],
we define the APSGD estimate as follows:

θ T =
1
T

T∑
t=1

θt . (5)

By projection operation in (4), the estimate θ T satisfies (2). It is worth mentioning that, the average in (5) can be updated
ecursively in an online fashion as

θ t =
t − 1
t

θ t−1 +
1
t
θt ,

hich is also obtainable with a large sample size. To discuss the theoretical properties of θ T , we need the following
Assumption.

Assumption A1. There exist constants K , ϵ > 0 such that the following statements hold.

(i) The learning rate satisfies γt = γ t−ρ , for some constants γ > 0 and ρ ∈ (1/2, 1).
(ii) The objective function L(θ ) is convex and continuously differentiable for all θ ∈ Rp. Moreover, it is twice continuously
differentiable at θ = θ∗, where θ∗ is the unique minimizer of L(θ ).
(iii) For all θ, θ̃ ∈ Rp, the inequality ∥∇L(θ )−∇L(θ̃ )∥ ≤ K∥θ − θ̃∥ holds.
(iv) The Hessian matrix G := ∇

2L(θ∗) ∈ Rp×p is positive definite. Furthermore, the inequality ∥∇
2L(θ ) − ∇

2L(θ∗)∥ ≤

K∥θ − θ∗
∥ holds for all θ with ∥θ − θ∗

∥ ≤ ϵ.
(v) For all θ ∈ Rp, it holds that E(∥∇l(θ, Z)∥2) ≤ K (1 + ∥θ∥2), and the matrix S := E(∇l(θ∗, Z)∇l⊤(θ∗, Z)) ∈ Rp×p is
positive definite.
(vi) For all θ with ∥θ − θ∗

∥ ≤ ϵ, it holds that E(∥∇l(θ, Z)−∇l(θ∗, Z)∥2) ≤ δ(∥θ − θ∗
∥), where δ(·) is a function such that

δ(v) → as v → 0.
(vii) For each θ ∈ Rp, there exist a constant ϵθ > 0 and a measurable function Mθ (z) with E(Mθ (Z)) < ∞ such that

sup
θ̃ :∥θ̃−θ∥≤ϵθ

∥∇l(θ̃ , Z)∥ ≤ Mθ (Z) almost surely.

(viii) The projection matrix P satisfies P2
= P⊤

= P and rank(P) = d for some integer d ∈ {0, . . . , p}.
3
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emark 1. Assumption A1(i) specifies the learning rate for tth iteration. The learning rate satisfies
∑

∞

t=1 γt = ∞ and
∞

t=1 γ 2
t < ∞, which is widely used in literature [4,15,19]. Assumptions A1(ii)–A1(vii) are regularity conditions about

he objective function L(θ ) and the lose function l(θ, z), which are standard and also adopted in [4]. Assumption A1(viii)
s to characterize the linear-equality constraint Bθ∗

= b. In particular, when P = I and d = p, the APSGD estimate θ T in
5) becomes the ASGD estimate without projection in [15].

heorem 1. Under Assumption A1, it follows that

θ T = θ∗
−

1
T

T∑
t=1

(PGP)−ζt + op(T−1/2),

where ζt = ∇l(θt−1, Zt )−∇L(θt−1). Moreover, the following statement holds:
√
T (θ T − θ∗)

L
−→ N(0, (PGP)−S(PGP)−).

Theorem 1 provides the asymptotic expansion and limiting distribution of the APSGD estimate θ T . Notice that θt−1 ∈

Ft−1, and Zt is independent from Ft−1, so E(ζt |Ft−1) = 0, which implies that ζ1, . . . , ζT is a martingale-difference process.
Under Assumption A1, we can apply the martingale central limit theorem (e.g., see [13]) to derive the limiting distribution.
It is worth mentioning the differences and connections between Theorem 1 and the existing results. First, [15] considered
n unconstrained parameter space and showed that the ASGD estimate is asymptotically distributed as N(0,G−1SG−1).
heorem 1 can be viewed as an extension of [15] from P = I to a general projection matrix P . Second, [6] studied the
PSGD estimate when the model parameters are in the interior of the constrained parameter space, and they showed
hat APSGD have the same limiting distribution as PSGD. However, Theorem 1 reveals the different limiting distributions
f APSGD and PSGD in our model. The reason behind this difference is that our model parameter θ∗ is not in the interior
f the constrained parameter space {θ ∈ Rp

: Bθ = b}.
Let us revisit examples in previous section and investigate the limiting distributions of the corresponding APSGD

stimates.

xample 1 (Continued). Suppose the covariance of Z is Σ . We can verify ∇l(θ, z) = −(z − θ ), ∇2l(θ, z) = I , G = I , and
= Σ . So the asymptotic covariance of the APSGD estimate is PΣP .

xample 2 (Continued). Suppose ϵ is independent from X with E(ϵ) = 0, E(ϵ2) = σ 2. It can be verified that ∇l(θ, z) =
(y− x⊤θ )x, ∇2l(θ, z) = xx⊤, G = E(XX⊤), and S = σ 2E(XX⊤) = σ 2G. Hence, the APSGD estimate is asymptotically with
ovariance matrix σ 2(PGP)−.

xample 3 (Continued). Suppose ϵ is independent from X with E(ϵ) = 0, E(ϵ2) = σ 2, and V = E(XX⊤). It is not difficult
o verify that

∇l(θ, z) =
−yx

1+ exp(yx⊤θ )
, ∇

2l(θ, z) =
exp(yx⊤θ )

[1+ exp(yx⊤θ )]2
xx⊤, G = S = E

(
exp(X⊤θ∗)

[1+ exp(X⊤θ∗)]2
XX⊤

)
.

s a consequence, the APSGD estimate is asymptotically normal with covariance matrix (PGP)−.

xample 4 (Continued). Assume almost surely for all Z , the map θ → Fθ (Z) is twice continuously differentiable. Due to the
roperties of log likelihood function, the Fisher information matrix satisfies Iθ∗ := E[∇2l(θ∗, Z)] = E[∇l(θ∗, Z)∇l(θ∗, Z)] =
= S. Therefore, we show that the covariance matrix is (PIθ∗P)−.

It is worth discussing the role of the constraint (2) played in the estimation. For this purpose, let us denote θ T ,I and
θ T ,P as the APSGD estimates using projection matrices I and P , respectively. By Theorem 1, their asymptotic covariance
atrices are VI := G−1SG−1 and VP := (PGP)−S(PGP)−. For a general loss function l(θ, z), the performance θ T ,P is not
ecessarily better than θ T ,I . To see this, let us consider a special case of Example 1.

Example 1 (Continued). Suppose θ∗
= (θ∗

1 , θ∗

2 )
⊤
∈ R2, B = (1,−1) and b = (0, 0)⊤. The linear-equality constraint in (2)

becomes θ∗

1 = θ∗

2 . Moreover, we assume Σ = Diag(σ 2, 3σ 2). We can verify that

VP =

(
σ 2 σ 2

σ 2 σ 2

)
, VI =

(
σ 2 0
0 3σ 2

)
.

As a consequence, neither VP ⪰ VI nor VI ⪰ VP holds.

However, for a board class of loss functions, the following Lemma suggests θ T ,P is at least as efficient as θ T ,I .

emma 1. Under Assumption A1, if S = cG for some constant c > 0, then VI = cG−1 and VP = c(PGP)−. Moreover, it follows
hat V ⪰ V , and the equality V = V holds if and only if P = I .
I P I P

4
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Lemma 1 indicates that, under an additional condition, the estimation performance of θ T ,P is improved by utilizing the
dditional information in (2). The additional condition S = cG holds for many popular models, including Examples 2–4. In

particular, for the negative log likelihood loss function in Example 4, the asymptotic covariance matrix (PIθ∗P)− coincides
the Cramér–Rao lower bound for constrained maximal likelihood model (e.g., see [7,10].

To apply Theorem 1, the unknown covariance matrix needs to be estimated. For this purpose, the following regularity
conditions on l(θ, z) are imposed.

Assumption A2. There exists a constant ϵ > 0 such that, for each θ with ∥θ − θ∗
∥ ≤ ϵ, the function θ → l(θ, Z) has a

continuous Hessian matrix ∇
2l(θ, Z) almost surely. Moreover, there exists a measurable function M(z) with E(M(Z)) < ∞

satisfying ∥∇
2l(θ, Z)∥ ≤ M(Z) for all θ with ∥θ − θ∗

∥ ≤ ϵ almost surely.

The existence of the second-order derivatives of θ → l(θ, z) in Assumption A2 is to estimate G = ∇
2L(θ∗) based on its

sample counterpart, while the dominating function M(Z) is required to allow changing the order of the gradient operator
and expectation, namely, ∇2E[l(θ∗, Z)] = E[∇2l(θ∗, Z)]. To estimate the covariance matrix, let us define

ĜT =
1
T

T∑
t=1

∇
2l(θ t , Zt ), ŜT =

1
T

T∑
t=1

∇l(θ t , Zt )∇l⊤(θ t , Zt ), (6)

which both can be recursively calculate by

Ĝt =
t − 1
t

Ĝt−1 +
1
t
∇

2l(θ t , Zt ), Ŝt =
t − 1
t

Ŝt−1 +
1
t
∇l(θ t , Zt )∇l⊤(θ t , Zt ).

The following lemma provides a consistent estimate for the covariance matrix.

Lemma 2. Under Assumptions A1 and A2, it follows that (PĜTP)−ŜT (PĜTP)− = (PGP)−S(PGP)− + op(1).

Combining Theorem 1 with Lemma 2, we can construct an (1 − α)× 100% confidence interval for the function g(θ∗)
s

g(θ T )± zα/2

√
∇g⊤(θ T )(PĜTP)−ŜT (PĜTP)−∇g(θ T )

T
, (7)

where zα/2 is the α/2×100% upper quartile of standard normal. Since θ T , ĜT and ŜT can be computed in an online fashion,
so is the confidence interval in (7).

4. Specification test

As a byproduct of Theorem 1, we propose a specification test for the constraint in (2). Specifically, we aim to test the
following hypotheses:

H0 : Bθ∗
= b vs. H1 : Bθ∗

= b+ β for some β ̸= 0.

For this purpose, we define the test statistic

κT = T (θ T ,P − θ T ,I )⊤Ŵ−(θ T ,P − θ T ,I ). (8)

Here Ŵ = (I−P)Ĝ−1
T ,I ŜT ,I Ĝ−1

T ,I (I−P) is a weight matrix with ĜT ,I and ŜT ,I being the matrices in (6) calculated using projection
matrix I . Essentially, Ŵ estimates the weight matrix W = (I− P)G−1SG−1(I− P). The idea of the proposed test statistic in
(8) is simple and straightforward. Under H0, both θ T ,P and θ T ,I consistently estimate θ∗. Hence, their difference, as well
as κT , should be around zero. However, under H1, due to model misspecification, θ T ,P is inconsistent, and the difference
θ T ,P − θ T ,I does not vanish. Based on (8), we propose the following asymptotic size α testing procedure:

reject H0 if κT > χ2
α (p− d), (9)

here χ2
α (p− d) is the α × 100% upper quartile of χ2 distribution with degree p− d. The following theorem reveals the

imiting behavior of the statistic κT and the validity of the proposed testing procedure.

Theorem 2. Suppose Assumptions A1 and A2 are satisfied. Then the following statements are true:

i) Under H0 : Bθ∗
= b, the convergence κT

L
−→ χ2(p− d) holds.

ii) Under H1 : Bθ∗
= b+ β for some β ̸= 0, it follows that κT → ∞ in probability.

iii) Under Ha : Bθ∗
= b+ β

√
T
for some β ̸= 0, it holds that κT

L
−→ χ2(µ⊤W−µ, p− d), where µ ∈ Rp is any vector satisfying

µ = β .
5
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s a consequence, for any α ∈ (0, 1), it follows that

lim
T→∞

Pr(κT > χ2
α (p− d)|H0) = α, lim

T→∞

Pr(κT > χ2
α (p− d)|H1) = 1.

Theorem 2 provides the asymptotic distributions of κT under null hypothesis H0 and local alternative hypothesis Ha,
hich are chi-square and noncentral chi-squared, respectively. Moreover, it shows that κT will diverge under alternative
ypothesis H1. Consequently, it verifies that testing procedure in (9) is consistent and has an asymptotic size α.

RediT authorship contribution statement

Ruiqi Liu: Conceptualization, Methodology, Writing – review & editing. Mingao Yuan: Software, Validation. Zuofeng
hang: Supervision.

cknowledgments

The authors gratefully acknowledge the constructive comments and suggestions from the Editor-in-Chief Dr. Dietrich
on Rosen, an associate editor, and two anonymous referees. Zuofeng Shang acknowledges supports by National Science
oundation DMS-1764280 and DMS-1821157.

ppendix

In the appendix, we collect all the mathematical proofs of the main theorems and related lemmas.

emma A.1. Let H ∈ Rp×p be a positive definite matrix and suppose that γt = γ t−ρ for some constants γ > 0, ρ ∈ (1/2, 1).
et us define squared matrices

W j
j = I, W t

j = (I − γt−1H)W t−1
j = · · · =

t−1∏
k=j

(I − γkH) for t ≥ j,

W
t
j = γj

t−1∑
i=j

W i
j = γj

t−1∑
i=j

i−1∏
k=j

(I − γkH).

Then the following statements hold:

(i) There are constants K > 0 such that ∥W
t
j∥ ≤ K for all j and all t ≥ j.

ii) 1
t

∑t−1
j=0 ∥W

t
j − H−1

∥ → 0 as t → ∞.

Proof. This is Lemma 1 of [15]. □

emma A.2. Let A ∈ Rp×p be a positive definite matrix and P be a projection matrix such that P = P⊤ and rank(P) = d.
hen there exists an orthonormal matrix U ∈ Rp×p such that

U⊤PU =

(
Id 0
0 0

)
, U⊤PAPU =

(
Ωd 0
0 0

)
, U⊤(PAP)−U =

(
Ω−1

d 0
0 0

)
,

here Id ∈ Rd×d is the identity matrix, and Ωd is a diagonal matrix with diagonal elements ρ1, . . . , ρd > 0. Moreover, it
ollows that (PAP)−P = (PAP)−, P(PAP)− = (PAP)− and (PAP)−(PAP)x = x for all x satisfying Px = x.

Proof. For any x ∈ Rp with PAPx = 0, it holds that x⊤PAPx = 0 and Px = 0 by the positive definiteness of A. Clearly,
Px = 0 implies PAPx = 0. Therefore, we conclude that Ker(PAP) = Ker(P) and rank(PAP) = rank(P) = d.

For simplicity, we denote S = PAP . By direct examination, S and P are diagonalizable, and they commute. By simple
linear algebra, there exist eigenvectors u1, u2, . . . , up that simultaneously diagonalize P and S. W.L.O.G, we assume Pui = ui
for i ∈ {1, . . . , d} and Pui = 0 for i ∈ {d + 1, . . . , p}. We further assume ρ1, ρ2, . . . , ρp to be the eigenvalues of S
corresponding to the eigenvectors u1, u2, . . . , up. By the above notation, it shows that

ρiui = Sui = PAPui = 0 for i ∈ {d+ 1, . . . , p}.

Since rank(S) = d, we conclude that ρi > 0 for i ∈ {1, . . . , d}. As a consequence, U = (u1, . . . , up) and Ωd =

Diag(ρ1, . . . , ρp) will be the desired choices. Moreover, it is not difficult to verify that

(PAP)−P = U
(

Ω−1
d 0

)
U⊤U

(
Id 0

)
U⊤

= U
(

Ω−1
d 0

)
U⊤

= (PAP)−.

0 0 0 0 0 0

6
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imilarly, we can prove that P(PAP)− = (PAP)−. Suppose that x satisfies Px = x, then x =
∑d

i=1 ciui for some
1, . . . , cd ∈ R. As a consequence, it follows that PAPx = PAP

∑d
i=1 ciui =

∑d
i=1 ciρiui. Notice that PAP =

∑d
i=1 ρiuiu⊤i

and (PAP)− =
∑d

i=1 ρ−1
i uiu⊤i , we have (PAP)−(PAP)x =

∑d
i=1 ρ−1

i uiu⊤i
∑d

i=1 ciρiui =
∑d

i=1 ciui = x. □

Lemma A.3. Under Assumption A1, it follows that

lim
t→∞

1
t

t−1∑
j=0

∥γj

t−1∑
k=j

k∏
i=j+1

P(I − γiG)P − (PGP)−∥ = 0.

Moreover, there is a constant K > 0 such that ∥γj
∑t−1

k=j
∏k

i=j+1 P(I − γiG)P∥ ≤ K for all j and all t ≥ j.

roof. Since G is positive definite by Assumption A1(iv), it follows from Lemma A.2 that

U⊤P(I − γiG)PU = U⊤PU − γiU⊤PGPU =

(
Id − γiΩd 0

0 0

)
,

here U is an orthonormal matrix, Id ∈ Rd×d is the identity matrix, and Ωd ∈ Rd×d is a diagonal and positive definite
atrix. As a consequence, we have

k∏
i=j+1

P(I − γiG)P = U
(∏k

i=j+1(Id − γiΩd) 0
0 0

)
U⊤.

y Lemma A.1, we have

lim
t→∞

1
t

t−1∑
j=0

∥γj

t−1∑
k=j

k∏
i=j+1

(Id − γiΩd)− Ω−1
d ∥ = 0,

which further leads to the first statement according to Lemma A.2. Applying Lemma A.2 again, we obtain the second
onclusion. □

emma A.4. Let c1 and c2 be arbitrary positive constants. Support that γt = γ t−ρ for some constants γ > 0 and ρ ∈ (1/2, 1).
oreover, assume a sequence {Bt}

∞

t=1 satisfies

Bt ≤
γt−1(1− c1γt )

γt
Bt−1 + c2γt .

Then sup1≤t<∞ Bt < ∞.

roof. This Lemma A.10 in [19]. □

emma A.5. Let F (x) be a differentiable convex function defined on Rp with a unique minimizer x∗. Suppose there exist
onstants ρ, r > 0 such that x → F (x) − ρ

2 ∥x∥
2 is convex for all x with ∥x − x∗∥ ≤ r. Then for all x ∈ Rp, it holds that

x− x∗)⊤∇F (x) ≥ ρ∥x− x∗∥min{∥x− x∗∥, r}.

Proof. This is Lemma B.1 in [19]. □

roof of Theorem 1. We sketch the proof of Theorem 1. By iteration formula in (4), we have

θt = c + P(θt−1 − γtyt − c), yt = ∇l(θt−1, Zt ) = ∇L(θt−1)+ [∇l(θt−1, Zt )−∇L(θt−1)] := R(θt−1)+ ζt , (10)

where c ∈ Rp is any vector satisfying Bc = b. Let ∆t = θt − θ∗. Since P(θ∗
− c) = θ∗

− c , it follows that

∆t = θt − θ∗
= c + P(θt−1 − γtyt − c)− θ∗

= c + P(∆t−1 − γtyt + θ∗
− c)− θ∗

= P∆t−1 − γtPyt
= P∆t−1 − γtPR(θt−1)− γtPζt = P∆t−1 − γtPG∆t−1 − γtPζt − γtP(R(θt−1)− G∆t−1)

= P(I − γtG)∆t−1 − γtPζt − γtP(R(θt−1)− G∆t−1)

=

[ t∏
j=1

P(I − γjG)
]
∆0 +

t∑
j=1

[ t∏
i=j+1

P(I − γiG)P
]
γjPζj +

t∑
j=1

[ t∏
i=j+1

P(I − γiG)P
]
γjP(R(xj−1)− G∆j−1).
7
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1
T

T∑
t=1

∆t =
1
T

T∑
t=1

[ t∏
j=1

P(I − γjG)
]
∆0 +

1
T

T∑
t=1

t∑
j=1

[ t∏
i=j+1

P(I − γiG)P
]
γjPζj

+
1
T

T∑
t=1

t∑
j=1

[ t∏
i=j+1

P(I − γiG)P
]
γjP(R(xj−1)− G∆j−1) := S1 + S2 + S3. (11)

n Lemmas A.10 and A.11, we will show that

S1 + S2 =
1
T
(PGP)−

T∑
t=1

ζt + op(T−1/2), S3 = op(T−1/2).

Finally, we prove the asymptotic normality based on martingale C.L.T. in Lemma A.12. □

Lemma A.6. Under Assumption A1, the following statements hold for some constants ϵ, K > 0.

(i) (θ − θ∗)⊤R(θ ) ≥ ϵ∥θ − θ∗
∥min{∥θ − θ∗

∥, ϵ} for all θ ∈ Rp.
(ii) E(ζt |Ft−1) = 0.
(iii) E(∥ζt∥2|Ft−1) ≤ K (1+ ∥θt−1∥

2) almost surely.
(iv) ∥R(θ )∥2 ≤ K (1+ ∥θ∥2).
(v) ∥R(θ )− G(θ − θ∗)∥ ≤ K∥θ − θ∗

∥
2 for all θ with ∥θ − θ∗

∥ ≤ ϵ.

Proof. For statement (i), by Assumption A1(iv), we know L(θ ) satisfies the conditions in Lemma A.5 with some ρ, r > 0.
Therefore, it follows that

(θ − θ∗)⊤R(θ ) = (θ − θ∗)⊤∇L(θ ) ≥ ϵ∥θ − θ∗
∥min{∥θ − θ∗

∥, ϵ},

where ϵ = min{ρ, r}.
For statement (ii), since θt−1 ∈ Ft−1 and Zt is independent from Ft−1, we have E(∇l(θt−1, Zt )|Ft−1) = ∇L(θt−1).
Similarly, by Assumption A1(v), the statement (iii) follows from the inequality below:

E(∥ζt∥2|Ft−1) = E[∥∇l(θt−1, Zt )−∇L(θt−1)∥2|Ft−1] ≤ E(∥∇l(θt−1, Z)∥2|Ft−1) ≤ K (1+ ∥θt−1∥
2).

Statement (iv) follows, as ∥R(θ )∥2 = ∥∇L(θ )∥2 = ∥∇L(θ ) − ∇L(θ∗)∥2 ≤ K 2
∥θ − θ∗

∥
2
≤ 2K 2(∥θ∗

∥
2
+ ∥θ∥2) by

ssumption A1(iii).
To prove statement (v), by Assumption A1(iv) and Taylor expansion, we have

∥R(θ )− G(θ − θ∗)∥ = ∥R(θ )− R(θ∗)− G(θ − θ∗)∥ = ∥R(θ )− R(θ∗)−∇
2L(θ∗)(θ − θ∗)∥

= ∥∇
2L(θ̃ )(θ − θ∗)−∇

2L(θ∗)(θ − θ∗)∥ ≤ K∥θ − θ∗
∥
2 for all θ with ∥θ − θ∗

∥ ≤ ϵ,

here θ̃ is a vector between θ and θ∗. □

emma A.7. Suppose Assumption A1 holds. Then there exists a constant K > 0 such that

∥R(θ )− G(θ − θ∗)∥ ≤ K∥θ − θ∗
∥
2 for all θ ∈ Rp.

Proof. By Assumptions A1(iii) and A1(iv), we have

∥R(θ )− G(θ − θ∗)∥ = ∥R(θ )− R(θ∗)− G(θ − θ∗)∥ ≤ ∥R(θ )− R(θ∗)∥ + ∥G(θ − θ∗)∥ ≤ (K + ∥G∥)∥θ − θ∗
∥

≤ (K + ∥G∥)∥θ − θ∗
∥
2/ϵ for all θ with ∥θ − θ∗

∥ ≥ ϵ.

Combining with statement (v) in Lemma A.6, we complete the proof. □

Lemma A.8. Under Assumption A1, it holds that limt→∞ θt = θ∗ almost surely.

Proof. Notice that θt − c ∈ Ker(B) for all t ≥ 1, so it follows that

θt − θ∗
= c + P[θt−1 − γt∇l(θt−1, Zt )− c] − θ∗

= θt−1 − θ∗
− γtP[R(θt−1)+ ζt ].

Moreover P∆t = ∆t for t ≥ 1, we have

∥∆t∥
2
= ∥∆t−1 − γtPR(θt−1)− γtPζt∥

2
= ∥∆t−1 − γtPR(θt−1)∥2 − 2γt∆

⊤

t−1Pζt + 2γ 2
t R

⊤(θt−1)Pζt + γ 2
t ∥Pζt∥

2

= ∥∆t−1∥
2
+ γ 2

t ∥PR(θt−1)∥2 − 2γt∆
⊤

t−1R(θt−1)− 2γt∆
⊤

t−1ζt + 2γ 2
t R

⊤(θt−1)Pζt + γ 2
t ∥Pζt∥

2

≤ ∥∆ ∥
2
+ γ 2

∥R(θ )∥2 − 2γ ∆⊤ R(θ )− 2γ ∆⊤ ζ + 2γ 2R⊤(θ )Pζ + γ 2
∥ζ ∥

2 for all t ≥ 2. (12)
t−1 t t−1 t t−1 t−1 t t−1 t t t−1 t t t

8
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aking conditional expectation on both sides of (12) and by Lemma A.6, we show that there exist constants K , ϵ > 0 such
hat

E(∥∆t∥
2
|Ft−1) ≤ ∥∆t−1∥

2
− 2γt∆

⊤

t−1R(θt−1)+ γ 2
t ∥R(θt−1)∥2 + γ 2

t E(∥ζt∥
2
|Ft−1)

≤ ∥∆t−1∥
2
− 2γt∆

⊤

t−1R(θt−1)+ γ 2
t K (1+ ∥θt−1∥

2)+ γ 2
t K (1+ ∥θt−1∥

2)

= ∥∆t−1∥
2
− 2γt∆

⊤

t−1R(θt−1)+ 2γ 2
t K (1+ ∥θt−1∥

2)

≤ ∥∆t−1∥
2
+ 2γ 2

t K (1+ 2∥θ∗
∥
2
+ 2∥∆t−1∥

2)− 2γt∆
⊤

t−1R(θt−1)

= (1+ 4γ 2
t K )∥∆t−1∥

2
+ 2γ 2

t K (1+ 2∥θ∗
∥
2)− 2γt∆

⊤

t−1R(θt−1)

≤ (1+ 4γ 2
t K )∥∆t−1∥

2
+ 2γ 2

t K (1+ 2∥θ∗
∥
2)− 2γtϵ∥∆t−1∥min{∥∆t−1∥, ϵ}. (13)

Since
∑

∞

t=1 γt = ∞ and
∑

∞

t=1 γ 2
t < ∞, applying Robbins–Siegmund Theorem (e.g., see [17]), we have ∥∆t∥

2
→ V almost

surely for some random variable V , and
∞∑
t=1

2γtϵ∥∆t−1∥min{∥∆t−1∥, ϵ} < ∞ almost surely.

As a consequence, it follows that limt→∞ ∥∆t−1∥ → 0 almost surely. □

Lemma A.9. Suppose Assumption A1 holds. Then for any M > 0, there exists a constant KM > 0 such that

E[∥θt − θ∗
∥
2I(τM > t)] ≤ KMγt for all t ≥ 0,

where τM = inf{i ≥ 1 : ∥θi − θ∗
∥ > M} is a stopping time.

Proof. By Lemma A.8, for any δ > 0, there exists a M > 0 such that Pr(sup1≤t<∞ ∥θt − θ∗
∥ ≤ M) ≥ 1 − δ. Notice

{τM > t} ∈ Ft and on event {τM > t}, ∥θ1 − θ∗
∥, . . . , ∥θt − θ∗

∥ are bounded by M , using (12), Lemmas A.6 and A.7, we
have

∥∆t∥
2I(τM > t) ≤ ∥∆t∥

2I(τM > t − 1)

≤

(
∥∆t−1∥

2
+ γ 2

t ∥R(θt−1)∥2 − 2γt∆
⊤

t−1R(θt−1)− 2γt∆
⊤

t−1ζt + 2γ 2
t R

⊤(θt−1)Pζt + γ 2
t ∥ζt∥

2
)

× I(τM > t − 1).

By similar calculation in (13), we show that there exist constants K , ϵ > 0 such that

E(∥∆t∥
2I(τM > t)|Ft−1) ≤

(
1+ 4γ 2

t K∥∆t−1∥
2
+ 2γ 2

t K (1+ 2∥θ∗
∥
2)− 2γtϵ∥∆t−1∥min{∥∆t−1∥, ϵ}

)
I(τM > t − 1).

Notice that ∥∆t−1∥min{∥∆t−1∥, ϵ} = ∥∆t−1∥
2 if ∥∆t−1∥ ≤ ϵ, and ∥∆t−1∥min{∥∆t−1∥, ϵ} = ∥∆t−1∥ϵ ≥ ∥∆t−1∥

2ϵ/M if
ϵ < ∥∆t−1∥ ≤ M , we conclude that

E(∥∆t∥
2I(τM > t)|Ft−1) ≤

(
(1+ 4γ 2

t K )∥∆t−1∥
2
+ 2γ 2

t K (1+ 2∥θ∗
∥
2)− 2γtϵ

2M−1
∥∆t−1∥

2) I(τM > t − 1)

≤ (1− 2γtϵ
2M−1

+ 4γ 2
t K )∥∆t−1∥

2I(τM > t − 1)+ 2γ 2
t K (1+ 2∥θ∗

∥
2).

here we use the fact that ∥∆t−1∥ ≤ M on event {τM > t−1}. Taking expectation again, if γt ≤ ϵ2/(4MK ), then it follows
hat

E[∥∆t∥
2I(τM > t)] ≤ (1− 2γtϵ

2M−1
+ 4γ 2

t K )E[∥∆t−1∥
2I(τM > t − 1)] + 2γ 2

t K (1+ 2∥θ∗
∥
2)

≤ (1− γtϵ
2M−1)E[∥∆t−1∥

2I(τM > t − 1)] + 2γ 2
t K (1+ 2∥θ∗

∥
2).

pplying Lemma A.4, we conclude that, there exists a constant KM > 0 such that E[∥∆t∥
2I(τM > t)] ≤ KMγt for all

≥ 0. □

emma A.10. Under Assumption A1, it follows that

S1 + S2 =
1
T
(PGP)−

T∑
t=2

ζt + op(T−1/2),

where S1 and S2 are defined in (11).

Proof. Let θ̂0 = θ0 ∈ Rp be the initial value for iteration. We define sequence

θ̂t = c + P(θ̂t−1 − γtht − c) with ht = Gθ̂t−1 − Gθ∗
+ ζt , for t ≥ 1,

where G ∈ Rp×p is the positive definite matrix defined in Assumption A1(iv), ζt is the process defined in (10), and c ∈ Rp

satisfies Bc = b. The proof is divided into four steps.
9
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tep 1: This step is to show that limt→∞ θ̂t = θ∗ almost surely. Let us define ∆̂t = θ̂t − θ∗, which is different from
t = θt − θ∗. By the fact that P(θ∗

− c) = θ∗
− c , we have

∆̂t = c + P(θ̂t−1 − γtht − c)− θ∗
= c + P(∆̂t−1 − γtht + θ∗

− c)− θ∗
= P∆̂t−1 − γtPht

= P∆̂t−1 − γtP(Gθ̂t−1 − Gθ∗
+ ζt ) = P∆̂t−1 − γtPG∆̂t−1 − γtPζt = P(I − γtG)∆̂t−1 − γtPζt . (14)

s a consequence, it follows from (14) that

∥∆̂t∥
2
= ∥P(I − γtG)∆̂t−1∥

2
− 2γtζ

⊤

t P(I − γtG)∆̂t−1 + γ 2
t ∥Pζt∥

2

≤ (1− γtλ)2∥∆̂t−1∥
2
− 2γtζ

⊤

t P(I − γtG)∆̂t−1 + γ 2
t ∥ζt∥

2, (15)

here λ > 0 is the smallest eigenvalue of G. Taking conditional expectation, it follows that

E(∥∆̂t∥
2
|Ft−1) ≤ (1− 2γtλ + γ 2

t λ2)∥∆̂t−1∥
2
+ γ 2

t E(∥ζt∥
2
|Ft−1) = (1+ γ 2

t λ2)∥∆̂t−1∥
2
+ γ 2

t E(∥ζt∥
2
|Ft−1)

− 2γtλ∥∆̂t−1∥
2

≤ (1+ γ 2
t λ2)∥∆̂t−1∥

2
+ γ 2

t K (1+ ∥θt∥
2)− 2γtλ∥∆̂t−1∥

2

≤ (1+ γ 2
t λ2)∥∆̂t−1∥

2
+ γ 2

t K (1+ 2∥∆t∥
2
+ 2∥θ∗

∥
2)− 2γtλ∥∆̂t−1∥

2,

here Lemma A.6(iii) is used. Since limt→∞ ∥∆t∥ = 0 almost surely by Lemma A.8 and
∑

∞

t=1 γ 2
t < ∞ by

Assumption A1(i), it follows that
∑

∞

t=1 γ 2
t K (1+2∥∆t∥

2
+2∥θ∗

∥
2) < ∞ almost surely. Hence, Robbins–Siegmund Theorem

(e.g., see [17]) implies that

lim
t→∞

∥∆̂t∥
2
→ V̂ ,

∞∑
t=1

γt∥∆̂t∥
2 < ∞ almost surely,

for some random variable V̂ . Since
∑

∞

t=1 γt = ∞, we conclude that limt→∞ ∥∆̂t∥
2
= 0 almost surely.

Step 2: Let us define stopping times τ̂M = inf{j ≥ 1 : ∥∆̂j∥ > M} and τM = inf{j ≥ 1 : ∥∆j∥ > M} for M > 0. This step is
to prove that for any M > 0, there exists a constant KM > 0 such that

E[∥∆̂t∥
2I(τ̂M > t, τM > t)] ≤ KMγt for all t ≥ 1. (16)

Using (15) again, we have

∥∆̂t∥
2I(τ̂M > t, τM > t) ≤ ∥∆̂t∥

2I(τ̂M > t − 1, τM > t − 1)

≤ (1− γtλ)2∥∆̂t−1∥
2I(τ̂M > t − 1, τM > t − 1)+ γ 2

t ∥ζt∥
2I(τ̂M > t − 1, τM > t − 1)

− 2γtζ
⊤

t P(I − γtG)∆̂t−1I(τ̂M > t − 1, τM > t − 1).

Taking conditional expectation and noticing that {τ̂M > t − 1, τM > t − 1} ∈ Ft−1, Lemma A.6(iii) further leads to

E[∥∆̂t∥
2I(τ̂M > t, τM > t)|Ft−1] ≤

(
(1− γtλ)2∥∆̂t−1∥

2
+ γ 2

t E(∥ζt∥
2
|Ft−1)

)
I(τ̂M > t − 1, τM > t − 1)

≤

(
(1− γtλ)2∥∆̂t−1∥

2
+ γ 2

t K (1+ ∥θt−1∥
2)
)
I(τ̂M > t − 1, τM > t − 1)

≤

(
(1− γtλ)2∥∆̂t−1∥

2
+ γ 2

t K (1+ 2∥∆t−1∥
2
+ 2∥θ∗

∥
2)
)
I(τ̂M > t − 1, τM > t − 1)

≤ (1− 2λγt + λ2γ 2
t )∥∆̂t−1∥

2I(τ̂M > t − 1, τM > t − 1)+ 2γ 2
t K (1+M2

+ ∥θ∗
∥
2),

where we use the fact that ∥∆t−1∥ ≤ M when τM > t − 1. Taking expectation again, we have

E[∥∆̂t∥
2I(τ̂M > t, τM > t)] ≤ (1− 2λγt + λ2γ 2

t )E[∥∆̂t−1∥
2I(τ̂M > t − 1, τM > t − 1)] + 2γ 2

t K (1+M2
+ ∥θ∗

∥
2)

≤ (1− λγt )E[∥∆̂t−1∥
2I(τ̂M > t − 1, τM > t − 1)] + 2γ 2

t K (1+M2
+ ∥θ∗

∥
2),

where we use the fact that γt ≤ 1/λ for large t . The above inequality further implies that

E[∥∆̂t∥
2I(τ̂M > t, τM > t)]

γt
≤

γt−1(1− λγt )
γt

E[∥∆t−1∥
2I(τ̂M > t − 1, τM > t − 1)]

γt−1
+ 2γtK (1+M2

+ ∥θ∗
∥
2).

ow applying Lemma A.4, we conclude that sup1≤t<∞ E[∥∆̂t∥
2I(τ̂M > t, τM > t)]/γt < ∞, which further implies (16).

tep 3: This step is to show

1
√

T∑ θ̂t−1 − θ̂t

γ
= op(1). (17)
T t=2 t

10
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ince both θ̂t and θt are strongly consistent by Step 1 and Lemma A.8, for any ϵ > 0, there exists a constant M > 0 such
hat

Pr( sup
1≤t<∞

∥∆̂t∥ ≤ M) ≥ 1− ϵ, Pr( sup
1≤t<∞

∥∆t∥ ≤ M) ≥ 1− ϵ. (18)

y direction examination, it follows that

1
√
T

T∑
t=2

θ̂t−1 − θ̂t

γt
=

1
√
T

T∑
t=2

θ̂t−1 − θ∗
+ θ∗

− θ̂t

γt
=

1
√
T

T∑
t=2

θ̂t−1 − θ∗

γt
−

1
√
T

T∑
t=2

θ̂t − θ∗

γt

=
1
√
T

T−1∑
t=1

θ̂t − θ∗

γt+1
−

1
√
T

T∑
t=2

θ̂t − θ∗

γt
:= D1 − D2 + D3,

here

D1 =
1
√
T

θ̂1 − θ∗

γ2
, D2 =

1
√
T

θ̂T − θ∗

γT
, D3 =

1
√
T

T−1∑
t=2

(θ̂t − θ∗)(γ−1
t+1 − γ−1

t ).

It suffices to bound the above three terms. Clearly D1 = op(1). For D2, we have the following bound

∥D2∥ =
1

√
TγT

∥θ̂T − θ∗
∥ =

1
√
TγT

∥∆̂T∥

≤
1

√
TγT

∥∆̂T∥I(τ̂M > T , τM > T )+
1

√
TγT

∥∆̂T∥I(τ̂M ≤ T )+
1

√
TγT

∥∆̂T∥I(τM ≤ T ) := D21 + D22 + D23.

y (16) and Assumption A1(i), we have

E(D21) ≤
1

√
TγT

√
E[∥∆T∥

2I( ˆτM > T , τM > T )] ≤

√
KM

TγT
=

√
KM

γ T 1−ρ
→ 0.

The definitions of τ̂M and τM indicate that {sup1≤t<∞ ∥∆̂t∥ ≤ M} ⊂ {τ̂M > T } and {sup1≤t<∞ ∥∆t∥ ≤ M} ⊂ {τM > T }. By
(18), we see that

Pr(τ̂M > T ) ≥ Pr( sup
1≤t<∞

∥∆̂t∥ ≤ M) ≥ 1− ϵ, Pr(τM > T ) ≥ Pr( sup
1≤t<∞

∥∆t∥ ≤ M) ≥ 1− ϵ. (19)

Since for any δ > 0, it follows that

D22 =

{
1

√
TγT

∥∆̂T∥ if τ̂M ≤ T ;

0 if τ̂M > T ;
D23 =

{
1

√
TγT

∥∆̂T∥ if τM ≤ T ;

0 if τM > T ,

e see that

{D22 > δ/3} ⊂ {τ̂M ≤ T }, {D23 > δ/3} ⊂ {τM ≤ T } (20)

ombining the above inequalities, for any δ > 0, we deduce that

Pr(∥D2∥ > δ) ≤ Pr(D21 > δ/3)+ Pr(D22 > δ/3)+ Pr(D23 > δ/3)

≤
3
δ

√
KM

γ T 1−ρ
+ Pr(τ̂M ≤ T )+ Pr(τM ≤ T ) ≤

3
δ

√
KM

γ T 1−ρ
+ 2ϵ,

hich further implies that limT→∞ Pr(∥D2∥ > δ) ≤ 2ϵ. Since ϵ > 0 can be arbitrarily chosen, we show that D2 = op(1).
o handle D3, we use the following decomposition

∥D3∥ ≤
1
√
T

T−1∑
t=2

∥θ̂t − θ∗
∥ |γ−1

t+1 − γ−1
t |I(τ̂M > t, τM > t)+

1
√
T

T−1∑
t=2

∥θ̂t − θ∗
∥ |γ−1

t+1 − γ−1
t |I(τ̂M ≤ t)

+
1
√
T

T−1∑
t=2

∥θ̂t − θ∗
∥ |γ−1

t+1 − γ−1
t |I(τM ≤ t)

=
1
√
T

T−1∑
t=2

∥∆̂t∥ |γ
−1
t+1 − γ−1

t |I(τ̂M > t, τM > t)+
1
√
T

T−1∑
t=2

∥∆̂t∥ |γ
−1
t+1 − γ−1

t |I(τ̂M ≤ T )

+
1
√

T−1∑
∥∆̂t∥ |γ

−1
t+1 − γ−1

t |I(τM ≤ T ) := D31 + D32 + D33.

T t=2

11
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e obtain from (16) that

E
( ∞∑

t=2

1
√
t
∥∆̂t∥ |γ

−1
t+1 − γ−1

t |I(τ̂M > t, τM > t)
)
≤

∞∑
t=2

|γ−1
t+1 − γ−1

t |
√
t

E[∥∆̂t∥I(τ̂M > t, τM > t)]

≤

∞∑
t=2

|γ−1
t+1 − γ−1

t |
√
t

√
E[∥∆̂t∥

2I(τ̂M > t, τM > t)] ≤
∞∑
t=2

|γ−1
t+1 − γ−1

t |
√
t

√
KMγt

=

√
KM

∞∑
t=2

1
√
t
1
γ
|(t + 1)ρ − tρ |

√
γ t−ρ =

√
γKM

∞∑
t=2

1
√
t
tρ
[(

t + 1
t

)ρ

− 1
]
√
t−ρ

≤

√
γKM

∞∑
t=2

1
√
t
tρ
[(

t + 1
t

)
− 1

]
√
t−ρ =

√
γKM

∞∑
t=2

1
t3/2−ρ/2 < ∞,

where we use Assumption A1(i) that γt = γ tρ for some ρ ∈ (1/2, 1). The above inequality also implies that
∞∑
t=2

1
√
t
∥∆̂t∥ |γ

−1
t+1 − γ−1

t |I(τ̂M > t, τM > t) < ∞ almost surely.

s a consequence of Kronecker’s lemma, we show that D31 = op(1). Using (19) and similar arguments as (20), for any
δ > 0, we have

Pr(∥D3∥ > δ) ≤ Pr(D31 > δ/3)+ Pr(D32 > δ/3)+ Pr(D33 > δ/3)
≤ Pr(D31 > δ/3)+ Pr(τ̂M ≤ T )+ Pr(τM ≤ T ) ≤ Pr(D31 > δ/3)+ 2ϵ.

aking limit, it holds that limT→∞ Pr(∥D3∥ > δ) ≤ 2ϵ. Since ϵ > 0 can be arbitrarily chosen, we show that D3 = op(1).
ombining the rates of D1,D2,D3, we verify (17)
tep 4: Using (14), we have

∆̂t = P(I − γtG)∆̂t−1 − γtPζt = P∆̂t−1 − γtPG∆̂t−1 − γtPζt .

Since P∆̂t = ∆̂t for t ≥ 1, it further leads to

γtPGP∆̂t−1 = γtPG∆̂t−1 = −P(∆̂t − ∆̂t−1)− γtPζt = −P(θ̂t − θ̂t−1)− γtPζt for all t ≥ 2.

Taking summation, we show that
T+1∑
t=2

PGP∆̂t−1 = PGP∆̂T +

T∑
t=2

PGP∆̂t−1 = PGP∆̂T − P
T∑

t=2

θt − θt−1

γt
− P

T∑
t=2

ζt ,

hich further implies that

1
√
T
PGP

T∑
t=1

∆̂t =
1
√
T
PGP∆̂T −

1
√
T
P

T∑
t=2

θt − θt−1

γt
−

1
√
T
P

T∑
t=2

ζt := E1 − E2 − E3.

Using the strong consistency of θ̂t in Step 1 and (17) in Step 3, we show that E1 = op(1) and E2 = op(1). Moreover, by
iterative substitution and the fact that θ̂0 = θ0, (14) leads to

∆̂t = P(I − γtG)∆̂t−1 − γtPζt =

[ t∏
j=1

P(I − γjG)
]
∆̂0 +

t∑
j=1

[ t∏
i=j+1

P(I − γiG)
]
γjPζj

=

[ t∏
j=1

P(I − γjG)
]
∆0 +

t∑
j=1

[ t∏
i=j+1

P(I − γiG)P
]
γjPζj,

which, by averaging, further implies that

1
T

T∑
t=1

∆̂t =
1
T

T∑
t=1

[ t∏
j=1

P(I − γjA)
]
∆0 +

1
T

T∑
t=1

t∑
j=1

[ t∏
i=j+1

P(I − γiG)P
]
γjPζj = S1 + S2.

otice that (PGP)−P = (PGP)− by Lemma A.2, we complete the proof. □

Lemma A.11. Under Assumption A1, it follows that S = o (T−1/2), where S is defined in (11).
3 p 3

12



R. Liu, M. Yuan and Z. Shang Journal of Multivariate Analysis 191 (2022) 105017

P

B

w
γ

F

S

L

roof. Changing the order of summation leads to

S3 =
1
T

T∑
t=1

t∑
j=1

[ t∏
i=j+1

P(I − γiG)P
]
γjP(R(θj−1)− G∆j−1) =

1
T

T∑
j=1

T∑
t=j

[ t∏
i=j+1

P(I − γiG)P
]
γjP(R(θj−1)− G∆j−1).

y Lemma A.8, for any ϵ > 0, there exists a constant M > 0 such that

Pr(τM > T ) ≥ Pr( sup
1≤t<∞

∥∆t∥ ≤ M) ≥ 1− ϵ, (21)

here τM = inf{j ≥ 1 : ∥∆j∥ > M} is the stopping time defined in Lemma A.9. Let us define constant αT
j =

j
∑T

t=j

(∏t
i=j+1 P(I − γiG)P

)
. Lemmas A.3 and A.7 lead to

∥
√
TS3∥ ≤

 1
√
T

T∑
j=1

αT
j P(R(θj−1)− G∆j−1)

 ≤
1
√
T

T∑
j=1

∥αT
j ∥∥P(R(θj−1)− G∆j−1)∥ ≤

K
√
T

T∑
j=1

∥R(θj−1)− G∆j−1∥

≤
K 2

√
T

T∑
j=1

∥∆j−1∥
2
≤

K 2

√
T

T∑
j=1

∥∆j−1∥
2I(τM ≤ j− 1)+

K 2

√
T

T∑
j=1

∥∆j−1∥
2I(τM > j− 1)

≤
K 2

√
T

T∑
j=1

∥∆j−1∥
2I( sup

1≤t<∞

∥∆t∥ > M)+
K 2

√
T

T∑
j=1

∥∆j−1∥
2I(τM > j− 1) := S31 + S32.

For the first term, using (21) and similar arguments as (20), for any δ > 0, we have

Pr(S31 > δ/2) ≤ Pr( sup
1≤t<∞

∥∆t∥ > M) ≤ ϵ.

or the second term, Lemma A.9 implies that

E
( ∞∑

j=1

∥∆j∥
2I(τM > j)
j1/2

)
≤ KM

∞∑
j=1

γj

j1/2
= KM

∞∑
j=1

γ

j1/2+ρ
< ∞,

where we use Assumption A1(i) that γj = γ j−ρ for some ρ ∈ (1/2, 1). The above inequality also implies that
Pr(

∑
∞

j=1 j
−1/2

∥∆j∥
2I(τM > j) < ∞) = 1. Applying Kronecker’s lemma, we show that S32 → 0 almost surely as T → ∞.

Combining the bounds of S31 and S32, we conclude that

lim
T→∞

Pr(∥
√
TS3∥ > δ) ≤ lim

T→∞

Pr(S31 > δ/2)+ lim
T→∞

Pr(S32 > δ/2) ≤ ϵ.

ince ϵ > 0 can be arbitrarily chosen, we show that
√
TS3 = op(1). □

emma A.12. Under Assumption A1, it follows that T−1/2 ∑T
t=1 ζt

L
−→ N(0, S).

Proof. We decompose the process ζt as follows:

ζt = ∇l(θt−1, Zt )−∇L(θt−1) = ∇l(θ∗, Zt )+ [∇l(θt−1, Zt )−∇l(θ∗, Zt )−∇L(θt−1)+∇L(θ∗)] := ηt + ξt .

Assumption A1(vi) and Lemma A.8 imply that

E(∥ξt∥2|Ft−1) ≤ E(∥∇l(θt−1, Zt )−∇l(θ∗, Zt )∥2|Ft−1) ≤ δ(∥θt−1 − θ∗
∥) → 0 almost surely.

Moreover, by Cauchy–Schwarz inequality, it follows that

E(∥ηtξ
⊤

t ∥|Ft−1) ≤ E(∥ηt∥∥ξt∥|Ft−1) ≤
√
E(∥ηt∥

2)
√
E(∥ξt∥2|Ft−1) → 0 almost surely.

As a consequence of the above two inequalities, we show that

E(ζtζ⊤

t |Ft−1) = E(ηtη
⊤

t )+ 2E(ηtξ
⊤

t |Ft−1)+ E(ξtξ⊤

t |Ft−1) → S almost surely,

where S = E[∇l(θ∗, Z)∇l⊤(θ∗, Z)] ∈ Rp×p is a positive definite matrix defined in Assumption A1(v). For any ϵ > 0, direct
calculation leads to

E(∥ζt∥2I(∥ζt∥ > ϵ
√
T )|Ft−1) ≤ E[2(∥ηt∥

2
+ ∥ξt∥

2)I(∥ηt∥ + ∥ξt∥ > ϵ
√
T )|Ft−1]

≤ E[2(∥ηt∥
2
+ ∥ξt∥

2)I(2∥ηt∥ > ϵ
√
T , ∥ηt∥ ≥ ∥ξt∥)|Ft−1] + E[2(∥ηt∥

2
+ ∥ξt∥

2)I(2∥ξt∥ > ϵ
√
T , ∥ηt∥ < ∥ξt∥)|Ft−1]

≤ 4E[∥ηt∥
2I(∥ηt∥ ≥ ϵ

√
T/2)|Ft−1] + 4E[∥ξt∥2I(∥ξt∥ ≥ ϵ

√
T/2)|Ft−1] ≤ 4E[∥ηt∥

2I(∥ηt∥ ≥ ϵ
√
T/2)]

+ 4δ(∥θ − θ∗
∥).
t−1

13
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ince θj = ∇l(θ∗, Zj) are i.i.d., and limt→∞ δ(∥θt−1 − θ∗
∥) = 0 almost surely, we conclude that

lim
T→∞

1
T

T∑
t=1

E(∥ζt∥2I(∥ζt∥ > ϵ
√
T )|Ft−1) = 0 almost surely.

By the C.L.T. for martingale-difference arrays (e.g., see [13]), we prove the asymptotic normality. □

roof of Lemma 1. It suffices to show that G−1
− (PGP)− is positive semidefinite and has rank p− d. Since rank(P) = d

y Assumption A1(viii), and P is diagonalizable, there exists an orthogonal matrix U ∈ Rp×p such that

P = U
(
Id 0
0 0

)
U⊤, U⊤GU =

(
X Y
Y⊤ Z

)
,

for some matrices X, Y , Z with comfortable dimensions. As a consequence, it follows that

PGP = U
(
Id 0
0 0

)
U⊤GU

(
Id 0
0 0

)
U⊤

= U
(
Id 0
0 0

)(
X Y
Y⊤ Z

)(
Id 0
0 0

)
U⊤

= U
(
X 0
0 0

)
U⊤.

Let S = Z − Y⊤X−1Y ∈ R(p−d)×(p−d) be the Schur complement of X . Since G is positive definite by Assumption A1(iv), so
is S. The matrix block inversion formula implies that

G−1
= U

(
X Y
Y⊤ Z

)−1

U⊤
= U

(
X−1

+ X−1YS−1Y⊤X−1
−X−1YS−1

−S−1Y⊤X−1 S−1

)
U⊤

= U
(
X−1 0
0 0

)
U⊤

+ U
(
X−1YS−1Y⊤X−1

−X−1YS−1

−S−1Y⊤X−1 S−1

)
U⊤

= (PGP)− + U
(
X−1YS−1/2

−S−1/2

) (
S−1/2Y⊤X−1,−S−1/2

)
U⊤,

which proves the positive semidefiniteness. Because rank(S−1/2) = p− d and (S−1/2Y⊤X−1,−S−1/2) ∈ R(p−d)×p, we verify
that G−1

− (PGP)− has rank p− d. □

Lemma A.13. Let Σ, Σ̂ ∈ Rp×p be symmetric with eigenvalues λ1 ≥ · · · λp and λ̂1 ≥ · · · λ̂p. Fixing 1 ≤ r ≤ s ≤ p, let us
define d = s−r+1, and let V = (vr , vr+1, . . . , vs) ∈ Rp×d, V̂ = (v̂r , v̂r+1, . . . , v̂s) ∈ Rp×d have orthonormal columns satisfying
Σvj = λjvj and Σ̂ v̂j = λ̂jvj for j ∈ {r, r + 1, . . . , s}. If e := inf{|λ̂ − λ| : λ ∈ [λs, λr ], λ̂ ∈ (−∞, λ̂s−1] ∪ [λ̂r+1,∞)} > 0,
where λ̂0 := −∞ and λ̂p+1 := ∞, then it follows that ∥VV⊤

− V̂ V̂⊤
∥ ≤ 2∥Σ̂ − Σ∥/e. Moreover, the eigenvalues satisfy

|λ̂i − λi| ≤ ∥Σ̂ − Σ∥.

Proof. It follows from Davis–Kahan Theorem (e.g., see [21]) and Weyl’s inequality [20]. □

Lemma A.14. Let Σ, Σ̂n ∈ Rp×p be positive semidefinite matrices such that rank(Σ̂n) = rank(Σ) and Σ̂n → Σ as n → ∞.
Then limn→∞ Σ̂−

n = Σ−.

Proof. Let distinct eigenvalues of Σ be ρ1 > ρ2 > · · · > ρd = 0, and suppose that there are kj ≥ 1 eigenvalues
λj,1 = λj,2 = · · · = λj,kj equal to ρj, for j ∈ {1, . . . , d}. We denote vj,s as the eigenvector corresponding to eigenvalue λj,s.
Similarly, we define (λ̂j,s, v̂j,s) as the eigenpair of Σ̂n for j ∈ {1, . . . , d} and s ∈ {1, . . . , kj}. However, in general, we do not
ave λ̂j,1 = λ̂j,2 = · · · = λ̂j,kj . Moreover, the eigenvalues can be chosen to be in an increasing order such that

λ̂j,1 ≥ λ̂j,1 ≥ · · · ≥ λ̂j,kj for all j ∈ {1, . . . , d},

λ̂1,s1 ≥ λ̂2,s2 ≥ · · · ≥ λ̂d,sd for all sj ∈ {1, . . . , kj} and j ∈ {1, . . . , d}.

By Lemma A.13, we see that λ̂j,s → λj,s = ρj for all j ∈ {1, . . . , d}. As a consequence, when n is sufficiently large, there
exists a constant ϵ > 0 such that

ρj+1 < ρj − ϵ ≤ λ̂j,s ≤ ρj + ϵ < ρj−1 for all s ∈ {1, . . . , kj} and j ∈ {1, . . . , d− 1}.

ince rank(Σn) = rank(Σ), it holds that λ̂d,s = λd,s = ρd = 0. For each j ∈ {1, . . . , d − 1}, applying Lemma A.13 to
igenpairs (λj,s, vj,s) and (λ̂j,s, v̂j,s) with s ∈ {1, . . . , kj}, we have e ≥ ϵ and kj∑

v̂j,sv̂
⊤

j,s −

kj∑
vj,sv

⊤

j,s

 ≤ 2∥Σ̂n − Σ∥/ϵ = op(1),

s=1 s=1

14
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hich further implies that kj∑
s=1

λ̂−1
j,s v̂j,sv̂

⊤

j,s −

kj∑
s=1

λ−1
j,s vj,sv

⊤

j,s

 =

 kj∑
s=1

λ̂−1
j,s v̂j,sv̂

⊤

j,s −

kj∑
s=1

ρ−1
j vj,sv

⊤

j,s


≤

 kj∑
s=1

λ̂−1
j,s v̂j,sv̂

⊤

j,s −

kj∑
s=1

ρ−1
j v̂j,sv̂

⊤

j,s

+

 kj∑
s=1

ρ−1
j v̂j,sv̂

⊤

j,s −

kj∑
s=1

ρ−1
j vj,sv

⊤

j,s


≤

kj∑
s=1

|λ̂−1
j,s − ρ−1

j |∥v̂j,sv̂
⊤

j,s∥ + ρ−1
j

 kj∑
s=1

v̂j,sv̂
⊤

j,s −

kj∑
s=1

vj,sv
⊤

j,s

 =

kj∑
s=1

|λ̂−1
j,s − ρ−1

j | + op(1),

here we used the fact that ρj > 0 for j ∈ {1, . . . , d− 1}. Finally, notice that
kj∑

s=1

|λ̂−1
j,s − ρ−1

j | = oP (1), Σ−
=

d−1∑
j=1

kj∑
s=1

λ−1
j,s vj,sv

⊤

j,s, Σ̂−
=

d−1∑
j=1

kj∑
s=1

λ̂−1
j,s v̂j,sv̂

⊤

j,s,

e complete the proof. □

emma A.15. Suppose a sequence of matrices {An}
∞

n=1 ∈ Rp×p satisfies limn→∞ An = A where A ∈ Rp×p is positive definite.
Let P ∈ Rp×p be a projection matrix such that P2

= P and P⊤
= P. Then limn→∞(PAnP)− = (PAP)−.

Proof. Since A is positive definite, so is An when n is sufficiently large. Hence PAnP and PAP both have the same rank as
. The desired result follows from Lemma A.14. □

emma A.16. Under Assumptions A1 and A2, it follows that ĜT = G+op(1), (PĜTP)− = (PGP)−+op(1), and ŜT = S+op(1).

Proof. Since θ T → θ∗ almost surely as T → ∞ by Lemma A.8, it follows from the continuity of θ → ∇
2l(θ, Z) at θ∗ in

ssumption A2 that limT→∞ ∥∇
2l(θ T , ZT )−∇

2l(θ∗, ZT )∥ = 0 almost surely. As a consequence, when T → ∞, we have 1
T

T∑
t=1

(
∇

2l(θ t , Zt )−∇
2l(θ∗, Zt )

) ≤
1
T

T∑
t=1

∇2l(θ t , Zt )−∇
2l(θ∗, Zt )

 → 0 almost surely.

By Assumption A2, Lebesgue’s Dominated Convergence Theorem, and L.L.N., we can see

1
T

T∑
t=1

∇
2l(θ∗, Zt ) = E[∇2l(θ∗, Zt )] + op(1) = ∇

2L(θ∗)+ op(1).

Combining the above, we show that ĜT = G+ op(1).
Similarly, we have limT→∞ ∥∇l(θ T , ZT )∇l⊤(θ T , ZT ) − ∇l(θ∗, ZT )∇l⊤(θ∗, ZT )∥ = 0 almost surely by the differentiability

of θ → ∇l(θ, Z) in Assumption A2. Moreover, by L.L.N., we can derive ŜT = S + op(1). Finally, applying Lemma A.15, we
complete the proof. □

Proof of Lemma 2. Lemma 2 is a direct consequence of Lemma A.16. □

Proof of Theorem 2. Under H0, by Theorem 1, it follows that

θ T ,P − θ∗
= −

1
T

T∑
t=1

(PGP)−ζt + op(T−1/2), θ T ,I − θ∗
= −

1
T

T∑
t=1

G−1ζt + op(T−1/2).

ince P(PGP)− = (PGP)− by Lemma A.2, we have

(I − P)(θ T ,P − θ T ,I ) =
1
T

T∑
t=1

(I − P)[G−1
− (PGP)−]ζt + op(T−1/2) =

1
T

T∑
t=1

(I − P)G−1ζt + op(T−1/2).

y Lemma A.12, we show that
√
T (θ T ,P − θ T ,I )

L
−→ N(0,W ), where W = (I − P)G−1SG−1(I − P). By delta method, we

have
√
T [W−

]
1/2(θ T ,P − θ T ,I )

L
−→ N(0, V ), where V = Diag(1, . . . , 1, 0, . . . , 0) ∈ Rp×p is a squared matrix with rank p− d.

The above convergence further leads to T (θ T ,P − θ T ,I )⊤W−(θ T ,P − θ T ,I )
L
−→ χ2(p − d). By Lemma A.16, it follows that

ĜT ,I = G + op(1) and ŜT ,I = S + op(1). Moreover, both W and Ŵ are of rank p − d. As a consequence of Lemma A.14, it
follows Ŵ = W + o (1). Applying Slutsky’s Theorem, we compete the proof of the result under H .
p 0
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Under H1, since Bθ∗
= b + β , for some β ̸= 0. Consider the following decomposition θ∗

= θ̃∗
+ µ with Bθ̃∗

= b and
Bµ = β . Clearly, (I−P)µ ̸= 0, as (I−P)µ = 0 implies Pµ = µ and µ ∈ Ker(B), which is impossible. Since Bθ T ,P = Bθ̃∗

= b,
we have

(I − P)(θ T ,P − θ T ,I ) = (I − P)(θ T ,P − θ∗
+ θ∗

− θ T ,I ) = (I − P)(θ T ,P − θ̃∗
− µ + θ∗

− θ T ,I )

= −(I − P)µ − (I − P)(θ T ,I − θ∗). (22)

oreover, by Lemma A.2, we have Ŵ−(I − P) = (I − P)Ŵ−
= W−. Following (22), we have

T (θ T ,P − θ T ,I )⊤Ŵ−(θ T ,P − θ T ,I ) = Tµ⊤Ŵ−µ + T (θ T ,I − θ∗)⊤Ŵ−(θ T ,I − θ∗)+ 2T (θ T ,I − θ∗)⊤Ŵ−µ := J1 + J2 + J3.

or S1, let λ̂1, λ̂p−d and λ1, λp−d be the largest and smallest non-zero eigenvalues of Ŵ andW respectively. By Lemma A.14,
e know λ̂1 ≤ 2λ1 and λ̂p−d ≥ λp−d/2 with probability approaching 1. Then by Lemma A.2, we conclude that

J1 ≥
T

λ̂
∥(I − P)µ∥2 ≥

T
2λ

∥(I − P)µ∥2 with probability approaching 1.

Since Theorem 1 implies that θ T ,I − θ∗
= Op(T−1/2), it follows that

J2 ≤ T∥W−
∥∥θ T ,I − θ∗

∥
2
≤

T

λ̂p−d
∥θ T ,I − θ∗

∥
2
≤

2T
λp−d

∥θ T ,I − θ∗
∥
2
= Op(1).

Similarly, by Cauchy–Schwarz inequality, we can show

|J3| ≤ 2T∥Ŵ−
∥∥θ T ,I − θ∗

∥∥µ∥ ≤
2T

λ̂p−d
∥θ T ,I − θ∗

∥∥µ∥ ≤
4T

λp−d
∥θ T ,I − θ∗

∥∥µ∥ = Op(T 1/2).

Combining the three bounds, we prove that T (θ T ,P − θ T ,I )⊤Ŵ−(θ T ,P − θ T ,I ) → ∞ with probability approaching 1.
Suppose the local alternative Ha : Bθ∗

= b+β/
√
T holds. Consider the following decomposition θ∗

= θ̃∗
+µ/

√
T with

Bθ̃∗
= b and Bµ = β . By Lemma A.2, we have (Ŵ−)1/2(I − P) = (I − P)(Ŵ−)1/2 = (Ŵ−)1/2. By similar proof to (22), we

have

(I − P)(θ T ,P − θ T ,I ) = −(I − P)µ/
√
T − (I − P)(θ T ,I − θ∗),

hich further leads to

(Ŵ−)1/2(θ T ,P − θ T ,I ) = (Ŵ−)1/2(I − P)(θ T ,P − θ T ,I ) = −(Ŵ−)1/2(I − P)µ/
√
T − (Ŵ−)1/2(θ T ,I − θ∗) := R1 − R2.

ince Ŵ−
= W + op(1), it follows that

√
TR1 = −(W−)1/2(I − P)µ + op(1) = −(W−)1/2µ + op(1). Moreover, Theorem 1

implies that
√
TR2 = (W−)1/2(θ T ,I − θ∗)+ op(1)

L
−→ N(0, (W−)1/2G−1SG−1(W−)1/2).

By direct calculation, it can be verified that

(W−)1/2G−1SG−1(W−)1/2 = (W−)1/2(I − P)G−1SG−1(I − P)(W−)1/2 = (W−)1/2W (W−)1/2 = V ,

where V = Diag(1, . . . , 1, 0, . . . , 0) ∈ Rp×p is a squared matrix with rank p − d. As a consequence, we show that
T (θ T ,P − θ T ,I )⊤Ŵ−(θ T ,P − θ T ,I )

L
−→ χ2(µ⊤W−µ, p− d). □

ppendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2022.105017.
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