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1. Introduction

With the rapid increase in availability of data in the past two decades or so, many classical optimization methods
for statistical problems such as gradient descent, expectation-maximization or Fisher scoring cannot be applied in the
presence of large datasets, or when the observations are collected one-by-one in an online fashion [4,19]. To overcome
the difficulty in the era of big data, a computationally scalable algorithm called stochastic gradient descent (SGD) proposed
in the seminal work [16] has been widely applied and achieved great success [1,5,22]. In comparison with classical
optimization methods, one appealing feature of SGD is that the algorithm only requires accessing a single observation
during each iteration, which makes it scale well with big data and computationally feasible with streaming data.

Due to the success of SGD, the studies of its theoretical properties have drawn a great deal of attention. The theoretical
analysis of SGD can be categorized into two directions based on different research interests. The first direction is about
the convergence rate. Existing literature shows that SGD algorithm can achieve a (in terms of regret) O(1/T) convergence
rate for strongly convex objective functions (e.g., see [2,8]), and a O(l/ﬁ) rate for general convex cases [11], where T is
the number of iterations. The second direction focuses on applying SGD to statistical inference. It was proved that the SGD
estimate is asymptotic normal (e.g., see [12]) under suitable conditions. However, unlike classical parameter estimates,
the SGD estimate may not be root-T consistent, and its convergence rate depends on the learning rate. To improve the
convergence rate, [14,18] independently proposed the averaged stochastic gradient descent (ASGD) estimate, which was
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obtained by averaging the updated values in all iterations. They showed that the ASGD estimate is root-T consistent,
while its asymptotic normality was proved by [15]. Following [15], there is a vast amount of work related to conducting
statistical inference based on ASGD estimates. For example, [19] proposed a hierarchical incremental gradient descent
(HIGrad) procedure to construct the confidence interval for the unknown parameters. In comparison with ASGD estimate,
the flexible structure makes HiGrad easier to parallelize. In [4], the authors developed an online bootstrap algorithm to
construct the confidence interval, which is still applicable when there is no explicit formula for the covariance matrix of
the ASGD estimate. Recently, [3] proposed a plug-in estimate and a batch-means estimate for the asymptotic covariance
matrix. With strong convexity assumption on the objective function, they proved the convergence rate of the estimates.

When there are constraints imposed on the parameters, the SGD algorithm is often combined with projection, which
forces the iterated values into the constrained parameter space. The convergence rate of this projected stochastic gradient
descent (PSGD) is also well studied (e.g., see [11]), which is proved to be the same as that of SGD. In the view of statistical
inference, [9] studied the asymptotic distribution of PSGD estimate when the model parameters are in the interior of
the constrained parameter space. It was proved that the projection operation only happens a finite number of times
almost surely. As a consequence, the limiting distribution of PSGD estimate is exactly the same as that of SGD estimate.
Recently, [6] studied the limiting distribution of averaged projected stochastic gradient descent (APSGD) estimate, which
is the averaged version of PSGD. When the model parameters are in the interior of the constrained parameter space,
APSGD and ASGD estimates have the same limiting distribution.

This paper aims to quantify the uncertainty in APSGD estimates when the model parameters satisfy some linear-
equality constraints. Compared to the existing literature, a significant difference of our model is that the model parameters
are not in the interior of the constrained parameter space. Therefore, the projection operation will take place during
every iteration, and the limiting distribution of the APSGD estimate turns out to be a degenerate multivariate normal
distribution. The contribution of current work is threefold:

(i) We derive the limiting distribution of the APSGD estimate, which is proved to be at least as efficient as ASGD estimate
under mild conditions.

(ii) An online specification test for the linear-equality constraints is proposed based on the difference between APSGD
and ASGD estimates.

(iii) Our findings reveal that, when the true parameters are not in the interior of the parameter space, the APSGD and
ASGD estimates could have different limiting distributions.

This paper is organized as follows. In Section 2, we mathematically formulate the parameters estimation problem
with linear-equality constraints. Section 3 proposes the APSGD estimate and studies its asymptotic properties. An online
specification test is proposed in Section 4. All the mathematical proofs are deferred to the appendix. A set of Monte Carlo
simulations to investigate the finite sample performance of the proposed methods and an application to a real-world
dataset are provided in a supplementary material.

2. Problem formulation

We consider the problem to conduct statistical inference about the model parameter
60* = argmin{L(0) := E[I(0, Z)]}, (1)
OeRP

where (0, Z) is the loss function, and Z is a single copy drawn from an unknown distribution Fy«. Moreover, we assume
that additional information about the truth 6* is available:

BO* = b, )

where B and b are some prespecified matrix and vector with comfortable dimensions. The loss function specified by (1)
is quite general and covers many popular statistical models, which are illustrated by the following examples.

Example 1 (Mean Estimation). Suppose Z € RP is random vector with mean 6* = E(Z). The loss function becomes
I(6,2) = 1llz — 6> with 6, z € RP.

Example 2 (Linear Regression). Let the random vector be Z = (Y, X )" with Y € R and X € RP satisfying Y = X'6* + «.
Here ¢ € R is the random noise with zero mean. The loss function can be chosen as I(0,z) = i(y — x"0)? with

2
yeR,x,0 ecRP,andz = (y,x")".

Example 3 (Logistic Regression). Suppose that the observation Z = (Y,X")" with Y € {—1,1} and X € RP satisfying
Pr(Y = y|X = x) = [1 + exp(—yx"6*)]"1. The loss function is (6, z) = log(1 + exp(—yx'6)) withy € {—1, 1}, x,0 € R?,
andz = (y,x")".

Example 4 (Maximal Likelihood Estimation). Let Fy+ be the distribution of Z, and the function form of Fy+ is known except
the value of 0*. The loss function is the negative log likelihood: (6, z) = — log(Fy(z)).
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In general, the function form of L(#) is unknown, as it relies on the distribution Fy+. Instead, classical statistical methods
estimate 0* based on the sample counterpart of L(6) as follows:

T

~ 1
fr =argmin — Y "1(6,Z) st BO =b, 3)
perr T —
where Zi, . .., Z are the i.i.d. observations generated from distribution Fy+. However, the computation of &7 in (3) involves

calculating a summation among T terms, which is not efficient when sample size T is large. Moreover, in many real-world
scenarios, the observations are collected sequentially in an online fashion. With the growing number of observations, data
storage devices cannot store all the collected observations or there is no enough memory to load the whole dataset. In
this case, the classical estimation procedures are not computationally feasible.

Before proceeding, we introduction some notation. Let ||v] = v/ vTv denote the Euclidean norm of the vector v. For
any matrix A € R7*, we define ||A| = SUP,erk VXTATAX as its operator norm, A~ as its Moore-Penrose inverse, and

rank(A) as its rank. For two symmetric matrices V;, Vo, € R we say V; = V5 if x' Vix > x"Vyx for all x € R¥. We use
. P L . .ye . . . . .
the notation — and — to denote convergence in probability and in distribution, respectively. For t > 1, we denote F;

as the sigma algebra generated by {Z;, ..., Z;}. We denote x2(k) as the chi-square distribution with degree of freedom
k, and x2(8, k) as the non-central chi-squared distribution with noncentrality parameter § and degree of freedom k, for
positive integer k and positive constant 4.

3. Projected Polyak-Ruppert averaging

To overcome the drawbacks of the classical methods, we consider the following PSGD algorithm. Choosing an initial
value 6y € RP, we recursively update the value as follows:

O = H(6;—1 — ¥ VI(0—1, Zt)), (4)

where I71(-) is the projection operator onto the affine set {§ € RP : B9 = b}, and y; > 0 is the predetermined learning
rate (or step size). The updating equation in (4) can be explicitly written in matrix form as

Oy = ¢+ PlOi—1 — v VIO—1,Z;) — ],

where P € RP*P is the orthogonal projection matrix onto Ker(B), and ¢ € R? is any vector satisfying Bc = b. Following [15],
we define the APSGD estimate as follows:

T
— 1
Or = f;a. (5)

By projection operation in (4), the estimate 67 satisfies (2). It is worth mentioning that, the average in (5) can be updated
recursively in an online fashion as

7.=""1g +]e
t — t t—1 ttv

which is also obtainable with a large sample size. To discuss the theoretical properties of 67, we need the following
Assumption.

Assumption A1. There exist constants K, € > 0 such that the following statements hold.

(i) The learning rate satisfies 3, = yt~*, for some constants y > 0 and p € (1/2, 1).

(ii) The objective function L(#) is convex and continuously differentiable for all & € RP. Moreover, it is twice continuously
differentiable at & = 6*, where 6* is the unique minimizer of L(9).

(iii) For all 6, € R, the inequality || VL(6) — VL(A)|| < K||® — 6] holds.

(iv) The Hessian matrix G := V2L(#*) € RP*P is positive definite. Furthermore, the inequality ||V2L(6) — V2L(6*)|| <
K||6 — 6*| holds for all 8 with |0 — 6| < e.

(v) For all & € RP, it holds that E(||VI(6,Z)||?) < K(1 + ||#]|?), and the matrix S := E(VI(0*, Z)VIT(6*,Z)) € RP*P is
positive definite.

(vi) For all @ with [|0 — 6*| < e, it holds that E(||VI(8, Z) — VI(6*, Z)||?) < 8(||0 — 6*||), where §(-) is a function such that
8(v) »> as v — 0.

(vii) For each 6 € IRP, there exist a constant €5 > 0 and a measurable function My(z) with E(My(Z)) < oo such that

sup  ||VI(, Z)|| < Mp(Z) almost surely.
6:16—6l1<eq

(viii) The projection matrix P satisfies P> = PT = P and rank(P) = d for some integer d € {0, ..., p}.

3
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Remark 1. Assumption A1(i) specifies the learning rate for tth iteration. The learning rate satisfies Zfi] ¥ = oo and
Zf; )/[2 < 00, which is widely used in literature [4,15,19]. Assumptions A1(ii)-A1(vii) are regularity conditions about
the objective function L(#) and the lose function I(#, z), which are standard and also adopted in [4]. Assumption A1(viii)

is to characterize the linear-equality constraint BO* = b. In particular, when P = I and d = p, the APSGD estimate 67 in
(5) becomes the ASGD estimate without projection in [15].

Theorem 1. Under Assumption Al, it follows that
T

_ 1 _ _
Or =6 —¥;(PGP) ¢+ 0p(T7Y2),

where ¢ = VI(6;_1,Z;) — VL(6;_1). Moreover, the following statement holds:
JT(@r — 6*) 5 N(0, (PGP)~S(PGP)™).

Theorem 1 provides the asymptotic expansion and limiting distribution of the APSGD estimate #7. Notice that 6;_; €
Fi—1, and Z; is independent from F;_1, so E(¢;|F;—1) = 0, which implies that ¢y, ..., ¢{r is a martingale-difference process.
Under Assumption A1, we can apply the martingale central limit theorem (e.g., see [13]) to derive the limiting distribution.
It is worth mentioning the differences and connections between Theorem 1 and the existing results. First, [15] considered
an unconstrained parameter space and showed that the ASGD estimate is asymptotically distributed as N(0, G"1SG™1).
Theorem 1 can be viewed as an extension of [15] from P = I to a general projection matrix P. Second, [6] studied the
APSGD estimate when the model parameters are in the interior of the constrained parameter space, and they showed
that APSGD have the same limiting distribution as PSGD. However, Theorem 1 reveals the different limiting distributions
of APSGD and PSGD in our model. The reason behind this difference is that our model parameter 6* is not in the interior
of the constrained parameter space {0 € RP : B9 = b}.

Let us revisit examples in previous section and investigate the limiting distributions of the corresponding APSGD
estimates.

Example 1 (Continued). Suppose the covariance of Z is X. We can verify VI(0,z) = —(z — 0), V2I(0,z) =1, G = I, and
S = X. So the asymptotic covariance of the APSGD estimate is P XP.

Example 2 (Continued). Suppose ¢ is independent from X with E(¢) = 0, E(e?) = 2. It can be verified that VI(0,z) =
—(y—xT0))x, V2I(0,z) = xx", G=EXXT), and S = 6%E(XXT) = ¢2G. Hence, the APSGD estimate is asymptotically with
covariance matrix o?(PGP)~.

Example 3 (Continued). Suppose ¢ is independent from X with E(¢) = 0, E(¢?) = ¢2, and V = E(XXT). It is not difficult
to verify that

VI, z)

_ T Tpo*
I V219, 2) eXPOX 0) 7 G:S:E(—exp(x ’ ))]2 T).

— S =" 7 _xx
1+ exp(yxT6) [1+ exp(yxT9)]? [1+exp(XTO*

As a consequence, the APSGD estimate is asymptotically normal with covariance matrix (PGP)~.

Example 4 (Continued). Assume almost surely for all Z, the map 8 — F,(Z) is twice continuously differentiable. Due to the
properties of log likelihood function, the Fisher information matrix satisfies Iy« := E[V2I(0*, Z)] = E[VI(6*, Z)VI(6*,Z)] =
G = S. Therefore, we show that the covariance matrix is (Plp+P)~.

It is worth discussing the role of the constraint (2) played in the estimation. For this purpose, let us denote 67 ; and
Or.p as the APSGD estimates using projection matrices I and P, respectively. By Theorem 1, their asymptotic covariance
matrices are V; := G~!SG™! and Vp := (PGP)~S(PGP)~. For a general loss function (8, z), the performance 71 p is not
necessarily better than 5”. To see this, let us consider a special case of Example 1.

Example 1 (Continued). Suppose 6* = (0},605)" € R%, B = (1,—1) and b = (0,0)". The linear-equality constraint in (2)
becomes 6} = 6. Moreover, we assume X = Diag(a2, 30%). We can verify that

V_0202 _020
P=\e2 o2)° “\0 30%2)°

As a consequence, neither Vp > V; nor V; > Vp holds.

<

However, for a board class of loss functions, the following Lemma suggests 7 p is at least as efficient as 07 .

Lemma 1. Under Assumption A1, if S = cG for some constant ¢ > 0, then V; = ¢G~' and Vp = c(PGP)~. Moreover, it follows
that V; = Vp, and the equality V; = Vp holds if and only if P = .

4
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Lemma 1 indicates that, under an additional condition, the estimation performance of 07 p is improved by utilizing the
additional information in (2). The additional condition S = cG holds for many popular models, including Examples 2-4. In
particular, for the negative log likelihood loss function in Example 4, the asymptotic covariance matrix (Ply«P)~ coincides
the Cramér-Rao lower bound for constrained maximal likelihood model (e.g., see [7,10].

To apply Theorem 1, the unknown covariance matrix needs to be estimated. For this purpose, the following regularity
conditions on I(0, z) are imposed.

Assumption A2. There exists a constant € > 0 such that, for each 6 with |0 — 6*| < ¢, the function 6 — (0, Z) has a
continuous Hessian matrix V2I(6, Z) almost surely. Moreover, there exists a measurable function M(z) with E(M(Z)) < oo
satisfying || V2I(6, Z)|| < M(Z) for all 6 with ||@ — 0*| < e almost surely.

The existence of the second-order derivatives of @ — (6, z) in Assumption A2 is to estimate G = V2L(#*) based on its
sample counterpart, while the dominating function M(Z) is required to allow changing the order of the gradient operator
and expectation, namely, V2E[I(6*, Z)] = E[V?1(8*, Z)]. To estimate the covariance matrix, let us define

T T
A1 _ L1 _ _
Gr=x ?_1 V20, 2), Sr= T ?_1 VIO, Z:)VI' (0, Z), (6)

which both can be recursively calculate by

~ t—1a

1 — A t—1
G = —, Gt_1+?vzl(9[,zt), Se =

R 1_ _
Set 4 £ VIO, ZOVI 01, Z0),
The following lemma provides a consistent estimate for the covariance matrix.

Lemma 2. Under Assumptions A1 and A2, it follows that (PGrP)~Sy(PGrP)~ = (PGP)~S(PGP)~ + 0,(1).

Combining Theorem 1 with Lemma 2, we can construct an (1 — «) x 100% confidence interval for the function g(6*)
as

: (7)

g(eT):tZa/z\/VgT(@T)(PGTP)?T(PGTP)Vg(@T)

where 7, is the a/2 x 100% upper quartile of standard normal. Since 07, f;T and §T can be computed in an online fashion,
so is the confidence interval in (7).

4. Specification test
As a byproduct of Theorem 1, we propose a specification test for the constraint in (2). Specifically, we aim to test the

following hypotheses:

Ho:B9* =b vs. H;:BO* =b+ B for some 8 # 0.
For this purpose, we define the test statistic

ir =T(@rp — 01.1) W (Orp — 1.). (8)
Here W = (I—P)CT_W}§T,,€IT__}(I—P) is a weight matrix with é” and §T1, being the matrices in (6) calculated using projection
matrix I. Essentially, W estimates the weight matrix W = (I — P)G~1SG~(I — P). The idea of the proposed test statistic in
(8) is simple and straightforward. Under Hy, both 67 p and 67 consistently estimate 6*. Hence, their difference, as well

as «r, should be around zero. However, under H;, due to model misspecification, 81 p is inconsistent, and the difference
Ot p — 61, does not vanish. Based on (8), we propose the following asymptotic size « testing procedure:

reject Hy if wr > x2(p — d), (9)

where x(f(p —d) is the @ x 100% upper quartile of x? distribution with degree p — d. The following theorem reveals the
limiting behavior of the statistic xr and the validity of the proposed testing procedure.

Theorem 2. Suppose Assumptions A1 and A2 are satisfied. Then the following statements are true:

(i) Under Hy : BO* = b, the convergence kr X x2(p — d) holds.

(ii) Under Hy : B6* = b + B for some B # 0, it follows that k; — oo in probability.

(iii) Under H, : B8* = b+ % for some B # 0, it holds that kr Y x2(W "W, p— d), where u € RP is any vector satisfying
Bu = B.
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As a consequence, for any « € (0, 1), it follows that
lim Pr(xr > x2(p — d)|Ho) = @, lim Pr(xr > x2(p — d)|H;) =
T—o00 T—o00

Theorem 2 provides the asymptotic distributions of 7 under null hypothesis Hy and local alternative hypothesis H,,
which are chi-square and noncentral chi-squared, respectively. Moreover, it shows that « will diverge under alternative
hypothesis H;. Consequently, it verifies that testing procedure in (9) is consistent and has an asymptotic size «.
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Appendix
In the appendix, we collect all the mathematical proofs of the main theorems and related lemmas.

Lemma A.1. Let H € RP*P be a positive definite matrix and suppose that y; = yt=" for some constants y > 0, p € (1/2, 1).
Let us define squared matrices

t—1
W=1, W=(1-yaHW = =[[d-nH) fort=j
k=j
t—1 i—1

—VJZW —VJZH(I—WH

i=j k=j
Then the followmg statements hold:

(i) There are constants K > 0 such that ||W;|| <K for all jand all t > j.
.. ~1 o5t _
(ii) %Zfzol IW; —=H™'| = 0 ast — oc.

Proof. This is Lemma 1 of [15]. O

Lemma A.2. Let A € RP*P be a positive definite matrix and P be a projection matrix such that P = PT and rank(P) = d.
Then there exists an orthonormal matrix U € RP*P such that

o (la 0O T (24 0 Tioap—17 _ (25 0
UPU_<O o>’ UPAPU_(O O), U(PAP)U_<0 o)

where I; € R%™4 is the identity matrix, and $24 is a diagonal matrix with diagonal elements p1, ..., pg > 0. Moreover, it
follows that (PAP)"P = (PAP)~, P(PAP)~ = (PAP)~ and (PAP)~(PAP)x = x for all x satisfying Px = x.

Proof. For any x € RP with PAPx = 0, it holds that x" PAPx = 0 and Px = 0 by the positive definiteness of A. Clearly,
Px = 0 implies PAPx = 0. Therefore, we conclude that Ker(PAP) = Ker(P) and rank(PAP) = rank(P) = d.
For simplicity, we denote S = PAP. By direct examination, S and P are diagonalizable, and they commute. By simple

linear algebra, there exist eigenvectors uj, uy, .. ., u, that simultaneously diagonalize P and S. W.L.0.G, we assume Pu; = u;
fori € {1,...,d} and Pu; = O fori € {d + 1,...,p}. We further assume p1, p2, ..., pp to be the eigenvalues of S
corresponding to the eigenvectors uy, u, ..., u,. By the above notation, it shows that

pil = Su; = PAPu; =0 forie{d+1,...,p}.

Since rank(S) = d, we conclude that p; > 0 fori € {1,...,d}. As a consequence, U = (uq,...,u,) and 24 =
Diag(p1, ..., pp) will be the desired choices. Moreover, it is not difficult to verify that
;' 0 I 0 ;' 0
(PAPYP=U[" uTu (¢ ut=u (™" UT = (PAP)".
0 0 0 o 0 0
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Similarly, we can prove that P(PAP)~ = (PAP)~. Suppose that x satisfies Px = x, then x = Zf;l ciu; for some
C1,...,¢4 € R. P:is a colnsequence, it follows that PAPx = PAP ]ZL c,u,-d = Z?:] Cipiu(ii. Notice that PAP = Z?:] piuu;
and (PAP)” = Yt p; 'uiu, we have (PAP)~(PAP)x = Y i, p; 'uity] Y i, Cipitti = D ¢, Gl = X. [

Lemma A.3. Under Assumption Al, it follows that

lim Z ||y]Z H P(I = %G)P — (PGP)” || = 0.

k=j i=j+1

k

Moreover, there is a constant K > 0 such that ||y; L;; l_[i=j+] P(I — y;G)P|| <K foralljand all t > j.

Proof. Since G is positive definite by Assumption A1(iv), it follows from Lemma A.2 that

— %if2q 0)

I
UTP(I — y,G)PU = UTPU — y,UTPGPU = ( d o 0

where U is an orthonormal matrix, I; € R is the identity matrix, and £2; € R%*¢ is a diagonal and positive definite
matrix. As a consequence, we have

]_[ P(I — yiG)P = U (H—JH(’O_ is2a) 8) u.
i=j+1

By Lemma A.1, we have

lim Zny]Z]"[Id—y,rzd 2;'=0,

k=j i=j+1

which further leads to the first statement according to Lemma A.2. Applying Lemma A.2 again, we obtain the second
conclusion. O

Lemma A4. Let cq and c; be arbitrary positive constants. Support that y; = yt—* for some constants y > 0 and p € (1/2, 1).
Moreover, assume a sequence {B;}2°, satisfies

(1 —c
B < LS b il ” lyt)Btfl + oVt
t

Then sup;<;_o, Br < o0.
Proof. This Lemma A.10in [19]. O
Lemma A.5. Let F(x) be a differentiable convex function defined on RP with a unique minimizer x*. Suppose there exist
constants p,r > 0 such that x — F(x) — §||x||2 is convex for all x with ||x — x*|| < r. Then for all x € RP, it holds that
(x = x*)TVF(x) > pllx — x*|| min{||x — x*||, ).
Proof. This is Lemma B.1in [19]. O
Proof of Theorem 1. We sketch the proof of Theorem 1. By iteration formula in (4), we have

O =Cc+P(0—1 —yeyr — ), Yo = VIOi—1,Z;) = VL(O;—1) + [VUOi-1, Zt) — VL(Or—1)] :== R(6r—1) + &k, (10)
where ¢ € RP is any vector satisfying Bc = b. Let A; = 6; — 0*. Since P(6* — c) = 6* — c, it follows that

A =0—0"=c+POr—1 — vy —C)— 0" =c+PAr—1 — iy +60" —c)— 0" =PA_1 — y:Py;

=PA: 1 — yiPR(O: 1) — VP& = PAr1 — ¥ePGAt 1 — ¥eP& — P(R(Or—1) — GAr 1)
=P(I — G)Ar—1 — P& — viP(R(Or—1) — GAi—1)
t
= [HP(I — %G ]Ao + Z[ []ru-vc ]y,P;, + Z[ []Pu-nc }yjP(R(xj_l) —GAj4).
j=1 =1 bi=j+1 =1 bizj+1

7
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Taking average, we show that

fZAt Z[le—y, ]Ao+ ZZ[HPI—V, ]y,P;J

t=1 -j=1 t=1 j=1 =i=j+1

1 T t t
+ o ZZ[ []ru- y,-G)Pi|yjP(R(le) —GAj_1) == S1+ S + Ss. (11)

t=1 j=1 bi=j+1

In Lemmas A.10 and A.11, we will show that

1
Si+S2 = Z(PGPY™ D e+ 0p(T12), S5 = 0,(T'7%)

t=1

Finally, we prove the asymptotic normality based on martingale C.L.T. in Lemma A.12. O

Lemma A.6. Under Assumption A1, the following statements hold for some constants €, K > 0.

(i) (0 )TR( ) > €| — 6*|| min{||6 — 6*||, €} for all 6 € RP.
(ii) (cflf[ 1)=0.

(iil) ECI¢elI?|Fe—1) < K(1 + [16,—111*) almost surely.

(iv) [IRO)II> < K(1+ [6]°).

(v) |IR(8) — GO — 0%)|| < K||6 — 6*|)? for all & with |0 — 6% < e.

Proof. For statement (i), by Assumption A1(iv), we know L(0) satisfies the conditions in Lemma A.5 with some p,r > 0.
Therefore, it follows that
(0 —6")RO) = (0 — 6") VL) = €]|6 — 6% min{]|6 — 67|, €},

where € = min{p, r}.
For statement (ii), since 6;,_; € F;_1 and Z; is independent from F;_, we have E(VI(0;_1, Z;)|F;_1) = VL(6;_1).
Similarly, by Assumption A1(v), the statement (iii) follows from the inequality below:

E(1¢e 1121 Fe—1) = ELNVIO—1, Z¢) — VLOe—1)II*| Fe—1] < EUIVIOe—1, )| Fe—1) < K(1 + [|6—1]1).

Statement (iv) follows, as [[R(0)I> = [[VL(O)|* = IIVL(O) — VLO*)|* < K*|6 — 6*[|> < 2K>*(||6*|> + [16]*) by
Assumption Al(iii).
To prove statement (v), by Assumption A1(iv) and Taylor expansion, we have

IR() — G0 — 6*)|| = |R(6) — R(6*) — G(6 — 6*)|| = [[R(O) — R(8*) — VZL(6*)(6 — 6)
= || V2L(D)(O — 6%) — V2L(6*)(O — )| < K||6 — 6*|)* for all 6 with |0 — 6%|| < e,

where 6 is a vector between 0 and 9*. O

Lemma A.7. Suppose Assumption Al holds. Then there exists a constant K > 0 such that
IR(O) — G(6 — 6%)|| < K||6 — 6*||> for all 6 € RP.

Proof. By Assumptions Al(iii) and A1(iv), we have
IR(0) — G(6 — 6")]l = IIR(O) — R(O™) — GO — 6%)| < [IR(®) — ROF)II + [IG(O — 6")]| < (K + |Gl — 0™
< (K+ IGINII6 — 6*)1?/e for all 6 with |8 — 6% > €.

Combining with statement (v) in Lemma A.6, we complete the proof. O
Lemma A.8. Under Assumption Al, it holds that lim;_, ., 6; = 6* almost surely.

Proof. Notice that 8, — c € Ker(B) for all t > 1, so it follows that
O — 0" =c+ P61 — v VI(6i_1,Z;) — c] — 0* =61 — 0" — VeP[R(6:—1) + &
Moreover PA; = A, for t > 1, we have
IA? = [Ac—1 — %PR(Or—1) — VePLl” = 1| Aim1 — ePRO—1)I? = 27e AP + 212RT (0—1)PEe + v2 1P|
= A1 l® + Y2 IPRO—)I> = 27 A RO—1) = 20 A & + ZyZRT(HM)Pa + ¥ IPgl?
<A1 1?4+ 2IRO—)I* = 2 AL {RO—1) = 20: AL & + 27 RT(O—1)PG + 7Nl &lI* forall £ > 2. (12)
8
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Taking conditional expectation on both sides of (12) and by Lemma A.6, we show that there exist constants K, € > 0 such
that
E(I AP Fi-1) < 1Acall® = 27 AL ROc1) + V2 IRG-)I? + v BN &7 1 Fe1)

< 1Al? = 21 AL R(O—1) + 2K+ 1101 11*) + 2 K(1 + 16—1]1%)

= | A11® = 27e AL RO—1) + 27K + 16:111)

< 1Al + 272K+ 206% 1% + 2 A1 11?) = 27 A R(Be—1)

= (1+ 477K A1 11 + 202K (14 2116 11%) = 21 AL 4R(Bc 1)

< (1+ 492K A1 + 207 K(1 + 20167 |1%) — 2ye€l| Ay || ming [ Ac_q ], €} (13)

Since ) >, 7t =ocoand Y .-, ¥ < oo, applying Robbins-Siegmund Theorem (e.g., see [17]), we have | A¢||> — V almost
surely for some random variable V, and

o0
ZzthHAt—IH min{[[A¢_1l, €} < oo almost surely.
t=1

As a consequence, it follows that lim; . o [|A¢—1]| — 0 almost surely. O

Lemma A.9. Suppose Assumption A1 holds. Then for any M > 0, there exists a constant Ky; > 0 such that
ELlI6 — 6**I(zm > 1)] < Ky for all t > 0,
where tyy = inf{i > 1: ||6; — 8*| > M} is a stopping time.
Proof. By Lemma A.8, for any § > O, there exists a M > 0 such that Pr(sup;<;_., [I16; — 0| < M) > 1 — 4. Notice

{tm > t} € 7 and on event {ty > t}, |61 — 6%, ..., |6 — 0*| are bounded by M, using (12), Lemmas A.6 and A.7, we
have

IANPI(tn > £) < AN (Tm > t — 1)

< (HAH I + Y2 IRG-)I” — 272 A 4R(Bc—1) — 27e A48 + 2¥7RT (6:-1)PE: + yfuanz)
X I(zy >t —1).
By similar calculation in (13), we show that there exist constants K, € > 0 such that
E(N APt > 0)|Feo1) < (14 477K Acall® 4 207K+ 2]10%(1°) — 2yc€l| Ac—1 | min{ [ Ac_1 |, €}) I(zm > ¢ — 1).

Notice that [|A,_y|| min{[|A;_1l, €} = [[Ac—1]1? if [A—1]l < € and | A;—]| min{[|Ar—1]|, €} = [[Ar_qll€ = [[Ac—1]Pe/M if
€ < ||A¢_1]| < M, we conclude that

E(IANPI(m > 0)Fe—1) < (14 42K A1 + 27K + 2010%]1°) — 2yee*M A1 1?) I(zm > £ — 1)
<(1=2pEM "+ 4P2K)| A 1P1(tn > € — 1)+ 22K(1 + 2(16%]%).

where we use the fact that |A,_;|| < M on event {7y > t — 1}. Taking expectation again, if y, < €2/(4MK), then it follows
that

E[ APt > 0)] < (1= 2y€>M™" + 4y KE[| AP I(zy > t — 1]+ 27K(1 + 2[16%1%)
< (1= M EN AP (tn > £ — DI+ 272K(1+2[0%]%).
Applying Lemma A.4, we conclude that, there exists a constant Ky > 0 such that E[||A.||?I(ty > t)] < Kyy: for all
t>0. O

Lemma A.10. Under Assumption Al, it follows that

;
1 1
— - -1/2
S1+5 = T(PGP) [2_2 & +0p(T779),

where Sy and S, are defined in (11).
Proof. Let éo = 6 € RP be the initial value for iteration. We define sequence
0 = ¢ 4 P(6r—1 — ythe — ¢) with hy = GO,_1 — GO* + ¢;, for t > 1,

where G € RP*P is the positive definite matrix defined in Assumption A1(iv), ¢ is the process defined in (10), and ¢ € R?
satisfies Bc = b. The proof is divided into four steps.
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Step 1: This step is to show that lim,_, ét = 6* almost surely. Let us define At = é[ — 0*, which is different from
Ay = 6; — 6*. By the fact that P(6* — ¢) = 6* — ¢, we have
A =C+P(ét—1 —yihe —c) — 6" =C+P(At—1 —yihe + 6% —c) — 6" =PAq — ytPh,
=PAq — VtP(Gét—1 —GO* +¢)= PA 4 — J/tPGAr—1 - ¥P& =PI — VtG)At—l — VtP¢&e. (14)
As a consequence, it follows from (14) that
141> = IPU = %G)A 111> — 218 PU = Q) A1 + V2 1IPE |1
< (1= yhP1Acal? =218 PU = G A + 2142, (15)
where A > 0 is the smallest eigenvalue of G. Taking conditional expectation, it follows that
E(IAcPIF1) < (1= 27h 4+ A A P + ¥ZEUE P Fer) = (14 A A 1P + ¥ BN  Fen)
=2y M|l Al
<+ A 1P + v2KA + 16:1) — 2yl A |12
S+ 2R A P + v2K(+ 21 Al + 2010%17) = 2y Al Ac-all?,

where Lemma A.6(iii) is used. Since lim;_. ||[A¢]] = O almost surely by Lemma A.8 and Zfil y[2 < oo by
Assumption A1(i), it follows that ) . | y2K(14+2||A¢||*+2]|6%]|*) < oo almost surely. Hence, Robbins-Siegmund Theorem
(e.g., see [17]) implies that
o0
lim A >V, )yl Adl® < oo almost surely,
t—o00 =

for some random variable V. Since Zfil ¥ = 00, we conclude that lim;_, o, ||At||2 = 0 almost surely.
Step 2: Let us define stopping times 7y = inf{j > 1: [|4;]| > M} and )y = inf{j > 1: ||A;|| > M} for M > 0. This step is
to prove that for any M > 0, there exists a constant Ky; > 0 such that

E[| A2 I(Zy > t, T > t)] < Ky forallt > 1. (16)
Using (15) again, we have
IANI(Ey >t oy > t) < A I(Gy >t — 1,7y > t — 1)
<=y A PIA P > t = 1o > 6= 1)+ V216 (E >t — 1, > £ — 1)
— 208 PU = G A 4l(Ey > t — 1,7y > t — 1).

Taking conditional expectation and noticing that {Ty; >t — 1, 7y > t — 1} € F;_1, Lemma A.6(iii) further leads to
BN AP I > ¢ > O1Fe1] < (1= ydPI A 1P 4+ 72BN 1F)) 1w > €= Lorg > €= 1)
= (0= YO PUA I + 72K + 10 |D) 1 > €= 1 > €= 1)
< ((1 — v AP 1Al + 2K+ 21 A + 2||¢9*||2)) Ity >t—1my>t—1)
< (1= 22 + 22V A PI(En > £ = 1o > £ = 1) 4 277K(1+ M? + [67]%),
where we use the fact that ||A;_1]| < M when 1y > t — 1. Taking expectation again, we have
ELIAcIPI(Ew > € o > 0] < (1= 20y + A2y B A P13 > ¢ = ooy > £ — D]+ 2y7K(1+ M? + [|6%|%)
< (1= Ay Bl At PGy > £ = 1, oy > €= 1]+ 207K(1 + M + ]j0*]),
where we use the fact that y; < 1/ for large t. The above inequality further implies that
ELIAPI(Em > £, i > 1)] _ YT =4p) E[lAcalP1(tm >t — 1, oy > £ = 1)]
Vi Vi Vi-1

+ 27K (1 + M? + [|6%]2).

Now applying Lemma A.4, we conclude that sup;;_., E[||ﬁ[||21(%M > t, Ty > t)]/y: < oo, which further implies (16).
Step 3: This step is to show

T A~

1 é[, —9[
72 ! = 0,(1). (17)

—2 Ve

~

10
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Since both 6, and 6; are strongly consistent by Step 1 and Lemma A.8, for any € > 0, there exists a constant M > 0 such
that

Pr( sup [|Al <M)>1—e, Pr(sup A <M)>1—¢. (18)
1<t<oo 1<t<oo
By direction examination, it follows that
T

1 Zé[,]—é[_ 1 iét,]—g*-}—e*—é[_ 1 ié[,]—e* 1 iét—e*
VT = Ve JT =2 Ve VT = 143 T - I
T-1 » T »
1 0, — 9* 6 —
= — =Dy — Dy + D3,
JT Ve ; 143 ! 2 ’
where
T-1
1 6, —6* 1 0 —0* 1 5 1
D, = . D= , =— =0 )Y — v )
JT » JT VT ; a
It suffices to bound the above three terms. Clearly D; = 0,(1). For D, we have the following bound
D2l = 16 — 0%l = 1Al
f vr ﬁVT
1 N 1 ~
< AT > T, 7 > T) + lAr[I(Z (tm < T) = D1 + D + Da3.
VTyr VTyr

By (16) and Assumption A1(i), we have

K,
Ity > T,y > T)] —M
T’)/T Tl P

The definitions of ) and 7y indicate that {Sup;<_., | A¢ll < M} C {2y > T} and {sup1<t-co l1All <M} C {zm > T}. By
(18), we see that

Pr(iy > T) > Pr( sup [|AJ| <M)>1—¢, Pr(zy >T)>Pr( sup [|A]l <M)>1—e. (19)

1<t<oo 1<t<oo

E(Dy1)

Since for any § > 0, it follows that

b, {ﬁlwnﬁrn itiy =T {ﬁlwnﬁrn if o < T:
ifty >T; 0 ifty >T,
we see that
{D2 > 8/3} C{tm < T}, (D23 >34/3} C{em =T} (20)
Combining the above inequalities, for any § > 0, we deduce that

Pl‘(”Dz” > 8) < Pl'(Dz] > 8/3) + Pl‘(Dzz > 5/3) + PF(D23 > 8/3)

<3| Ku +Pr(2y < T)+Pr(ty <T) < 3 | Ku +2
—_ T T - €,
=5\ yTi-r M M s\ yTi-»

which further implies that limr_, o Pr(||D2|| > §) < 2e. Since € > 0 can be arbitrarily chosen, we show that D, = o0,(1).
To handle D3, we use the following decomposition

T
1 ~
IDsll < — E 16 — 0% 1l ly:3) T(Em >ty > )+ —= E 16 — %1 1yt — v " (Em < 0)
f t — t+1 — Yt ﬁ — t t+1 t

T-1
1
—= D 0=y — v < )
ﬁ t=2
_l T-1 1 T
1A vy — v MG >t > O+ —= Y 1Ay — v HE < T)
T — t+1 t M M JT Zz 7t t M
1 T-1
+ Wi | Acll |Vt111 — ¥ 'll(tm < T):=Ds1 + D3 + D3s.
t=2

11
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We obtain from (16) that
=1 =y — v
E(Y — 1Al Iyl — v 'HGEw >t >t))§ T B[ Ac(3m > t, v > )]
<Z\/{ Y1 = Ve M M tXZ: NG el Tm M

7 ‘1| (7
_Z e /E Gy > oy > 01 <Y Yt

t=2

_mz (417 _tp|m—mzw[(f“) _1] =

!
|

v Kuve

t+1
/ 2:7p Y 1 = 2:7
< )/I(M t |:< t ) ]] t—P = ]/I(M Z t3/2—p/2 < 00,
where we use Assumption Al(i) that y; = yt” for some p € (1/2, 1). The above inequality also implies that

Z f”A el lysy — v (> £,y > ) < oo almost surely.

As a consequence of Kronecker’s lemma, we show that D3; = 0,(1). Using (19) and similar arguments as (20), for any
8 > 0, we have

Pr(|Ds|l > 8) < Pr(Ds; > 8/3) + Pr(D3» > 8/3) + Pr(Ds3 > 8/3)
< Pr(Ds3; > 8/3) + Pr(fy < T)+ Pr(ty < T) < Pr(D3; > 8/3) + 2e.

Taking limit, it holds that limr_, o, Pr(||Ds|| > 8) < 2e¢. Since € > 0 can be arbitrarily chosen, we show that D3 = 0,(1).
Combining the rates of D1, D5, D3, we verify (17)
Step 4: Using (14), we have

Ar = P(I = %G)A¢—1 — P& = PA1 — nPGA—1 — P&
Since PA, = A, for t > 1, it further leads to
ytPGPAt—l = )/rPGAt—l = —P(A; — A1) — viPs = —P(0; — b,—1) — vePg  forallt > 2.

Taking summation, we show that

T+1 T
. 9
§ PGPA,_; = PGPA; + E PGPA,_; = PGP A; —P§ O =01
Yi
t=2 t=2

—PZ;I,

which further implies that

T
Or — 0r—1
PGP A PGPA —P —713 g =E E, — E
Z o= =POPAr - — ; " 7 ;t 1 —E» — Es.

Using the strong consistency of 6, in Step 1 and (17) in Step 3, we show that E; = op(1) and E; = o0,(1). Moreover, by
iterative substitution and the fact that 6y = 6, (14) leads to

t
=P(1—yfc)At_1—nycf=[]‘[P(I—y] ]Ao+Z[HP1—% ]y]P;,
j=1

Jj=1 =i=j+1
t t t
= [1‘[ P(I — yjc)} Ao+ Z[ []ru- in)Pi| YiP;,
j=1 j=1 “i=j+1
which, by averaging, further implies that
t 1 T t
[[T70-w#]a0+ 7 22[ [1ra-rs P b =i+
=l Jj= )

Notice that (PGP)"P = (PGP)~ by Lemma A.2, we complete the proof. O

Lemma A.11. Under Assumption Al, it follows that S3 = 0,(T~1/2), where Ss is defined in (11).

12
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Proof. Changing the order of summation leads to
T T

T t t
= %ZZ[ []Pu- in)P:ijP(R(Q 1) —GAj1) ;ZZ[]‘[ P(I — y,c)P]yjP(R( )i1) — GAj_1).

t=1 j=1 “i=j+1 =1 t=j Sisj+1

By Lemma A.8, for any € > 0, there exists a constant M > 0 such that

Pr(zy > T) = Pr( sup [[Al =M)>1—e¢, (21)
1<t<o
where 7y = inf{j > 1 : ||4;] > M} is the stopping time defined in Lemma A.9. Let us define constant oij =

% Yt (TTi_j+1 PU — %G)P). Lemmas A.3 and A.7 lead to

T T
1 1
VTS| < —TZa,TP(R(@_l)—cAj_l) SﬁZIIafIIIIP(R( 1) = GAj ”<TZ”R )i-1) = GAj |
j=1 j=1 j=1
K2 & K? < K2 &
< =Y 1AL £ == Y Al (o <j— 1D+ —= > I Ai-lPi(my > — 1)
ﬁ; j—1 ﬁ]:Zl j—1 M ﬁ; j—1 M

T T
(2

f Z 141 PIC sup 1Al > M) + f Z 1A 171(tn > j— 1) = S31 + Sxa.

For the first term, using (21) and similar arguments as (20), for any § > 0, we have

Pr(S3; > 8/2) < Pr( sup [|A¢ll > M) <e.

1<t<oo

For the second term, Lemma A.9 implies that
o0 o0
471121t > J) 4
E(Z 172 = Ku Z ji72 = Ku Zjl/2+p =< 00,
j=1 j=1

where we use Assumption Al(i) that y; = yj* for some p € (1/2,1). The above inequality also implies that
Pr(z U141 (tm > ) < o0) = 1. Applying Kronecker's lemma, we show that S3; — 0 almost surely as T — oo.
Combmmg the bounds of S3; and S3,, we conclude that

lim Pr(||~/TSs|| > 8) < lim Pr(S3; > 8/2) + lim Pr(Syp > 8/2) <€
T—o0 T—o0 T—o0
Since € > 0 can be arbitrarily chosen, we show that +/TS; = op(1). O

Lemma A.12. Under Assumption Al, it follows that T~1/? ZZ:] & X N, S).

Proof. We decompose the process ¢; as follows:

G = VU6 —1,Z) — VL(O—1) = VIO™, Z;) + [VIO -1, Zc) — VIO*, Z;) — V(1) + VLO)] == ne + &.
Assumption Al(vi) and Lemma A.8 imply that

E(1& 1171 Fe-1) < EUIVEOr—1, Z) = VIO, Z)I*| Fi1) < 8([16c—1 — 07|) — O almost surely.
Moreover, by Cauchy-Schwarz inequality, it follows that

E(lIne& 17i-1) < ECmellI& N Fi-1) < VE(neIPWEE 1?1 Fi—1) — 0 almost surely.
As a consequence of the above two inequalities, we show that

B¢, |1 Fe1) = E(en') + 2E(me& | Fi1) + E(&& | F1) > S almost surely,

where S = E[VI(0*, Z)VIT(0*, Z)] € RP*P is a positive definite matrix defined in Assumption A1(v). For any € > 0, direct
calculation leads to

E(IGNPING N > ev/T)|Fe-1) < ER(1Ime I + H&P el + &) > ev/'T)|Fea]

< ER(Inel? + IENDIQInell > ev'T, Inell = &I Fem1] + ER0me |1 + 1ENPDIQRIEN > /T, Inell < & IDIFi-1]

< 4E[IneIP1CImell = ev/T/2)|Fem1] + 4ELIENPIUIE N > eV/T/2)|Femr] < 4ELne 1P I(Inell = /T /2)]
+45(/16_1 — O*).

13
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Since §; = VI(0*, Z;) are i.i.d., and lim,_, 8(||;—1 — €¥||) = 0 almost surely, we conclude that
1 T
Jim ;E(HQHZI(HQH > ev/T)|Fi—1) = 0 almost surely.

By the C.L.T. for martingale-difference arrays (e.g., see [13]), we prove the asymptotic normality. O

Proof of Lemma 1. It suffices to show that G~' — (PGP)~ is positive semidefinite and has rank p — d. Since rank(P) = d
by Assumption Al(viii), and P is diagonalizable, there exists an orthogonal matrix U € RP*P such that

o ls O\, T e (XY
P_U(O O)U, uteu=(yr ).

for some matrices X, Y, Z with comfortable dimensions. As a consequence, it follows that

ol O\, (e O\, (la O\(X Y\(la O\, . (X O\, T
PGP_U<O 0)UGU<0 O)U =U(g ollyt )5 o)UT=Ulp o)U™

Let S =Z — Y'X7'Y € RP~D*(P~9) pe the Schur complement of X. Since G is positive definite by Assumption A1(iv), so
is S. The matrix block inversion formula implies that

-1
_ X Y X T4 X 1ys—lyTx-1  —x-lys-!
¢'=u (YT z) ut=u ( —S~ly X! s )U

(XY 0, T X~1ys—lyTx—1  —x~1ys~!
—U( 0 0)” +U< —sTly X! 51

—1yc—1/2
UT =(PGP)” +U (x_sysl/z ) (S712yTX"1, —s~V)UuT,

which proves the positive semidefiniteness. Because rank(S~"/2) = p —d and (S~1/2YTX ™!, —5~1/2) ¢ RP~=D*P e verify
that G™! — (PGP)” hasrankp —d. O

Lemma A.13. [et X, 5 € RP*P be symmetric with eigenvalues A; > --- A, and 5\\.1 > -~-)ALP. Fixing1 <r <s <p, let us

defined = s—r+1,and let V.= (vr, 41, . . ., v5) € RPXY, V= (Dr, Dri1. - ... b5) € RP*® have orthonormal columns satisfying
vy = Myjand Xv; = Ay forje {r,r+1,...,s). Ife:=inf{|]A — A| : & € [As, Ar], A € (—00, As—1] U [Ar41, 00)} > O,
where Ao = —oo and Ap4q = oo, then it follows that I[WT —VVT|| < 2||¥ — X|/e. Moreover, the eigenvalues satisfy

A= 2l <11 = 2|l
Proof. It follows from Davis-Kahan Theorem (e.g., see [21]) and Weyl's inequality [20]. O

Lemma A.14. Let X, fjn € RP*P be positive semidefinite matrices such that rank(f?n) = rank(X') and ﬁ’,, — XY asn— oo
Then lim,_, o X7 = X~.

Proof. Let distinct eigenvalues of X be p; > p, > --- > pg = 0, and suppose that there are k; > 1 eigenvalues
A1 =Aja ==k equal to pj;, for j € {1, ..., d}. We denote v;; as the eigenvector corresponding to eigenvalue ;.
Similarly, we define ():j’s, vjs) as the eigenpair of pon forje{1,...,d}ands e {1, ..., k;}. However, in general, we do not
have )A\j,l = )A»j,z =-...= Aj’kj. Moreover, the eigenvalues can be chosen to be in an increasing order such that

j\»jj 25\1‘,1 2”'25‘1-’9’ forallje{l,...,d},

Mgy = hos, = - > hgs, foralls;e(1,....kj}andje(1,...,d).

By Lemma A.13, we see that ):j,s — Ajs = pj forall j € {1,...,d}. As a consequence, when n is sufficiently large, there
exists a constant € > 0 such that

pj+1<pj—€§)tj,5§pj+€<pj_1 forallse{1,...,k}andje {1,...,d—1}.

Since rank(X,) = rank(X), it holds that ):d,s = Ags = pg = 0. For eachj € {1,...,d — 1}, applying Lemma A.13 to

A

eigenpairs (A;, vjs) and (A, ) with s € {1, ..., k;}, we have e > ¢ and
kj

ki

A AT T
2 ijsvj,s_i VjsVjs
s=1 s=1

< 2|5, — Zl/e = 0y(1),

14
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which further implies that
ki
-1 T
vj,s ,s Z)‘js Vi,sVjs
s=1
kj
RIS SN 1 DOPl v wutt
s=1

ki kj ki
21 —1y5 T | —1
= E Mj,s - |||U] s | I+ /OJ § U]s - § VisVis|| = § |)\j,5 - P |+ 0p(1),
s=1 s=1 s=1

where we used the fact that p; > 0 for j € {1, ...,d — 1}. Finally, notice that

ki
-1 T
v,s s_§ Pj VjsVjs
s=1
ki
<

d—1 ki -1 ki

ki

-1 -1 -
D o = = 0p(1), Y vl = Z AN
s=1 s=1

Jj=1 s=1 j=1
we complete the proof. O

Lemma A.15. Suppose a sequence of matrices {A};2, € RP*P satisfies lim,_,o An = A where A € RP*P is positive definite.
Let P € RP*P be a projection matrix such that P> = P and PT = P. Then lim,_, o(PA,P)~ = (PAP)".

Proof. Since A is positive definite, so is A, when n is sufficiently large. Hence PA,P and PAP both have the same rank as
P. The desired result follows from Lemma A.14. O

Lemma A.16. Under Assumptions A1 and A2, it follows that Gr = G+ 0,(1), (PGrP)~ = (PGP)~ +0,(1), and St = S +0,(1).

Proof. Since f;7 — 6* almost surely as T — oo by Lemma A.8, it follows from the continuity of 6 — V210, Z) at 6* in
Assumption A2 that limr_ « || V2107, Zr) — Vzl(e* Zr)|| = 0 almost surely. As a consequence, when T — oo, we have

T
H;Z(wkat,zt) — V2I(6*, Z,) ) Z
=1

t=1

v2(8,, Z,) — V6%, Z,)|| — 0 almost surely.

By Assumption A2, Lebesgue’s Dominated Convergence Theorem, and L.L.N., we can see

] T
= D O VRUO*, Z0) = EIVZH60*, Z)] + 0p(1) = VL(6*) + 0p(1).

t=1

Combining the above, we show that @T =G+ 0p(1).

Similarly, we have limr_.« VIO, Zr)VIT (67, Zr) — VI(6*, Zr)VIT(0*, Zr)|| = 0 almost surely by the differentiability
of  — VI(6,Z) in Assumption A2. Moreover, by LLL.N., we can derive St = S + o0p(1). Finally, applying Lemma A.15, we
complete the proof. O

Proof of Lemma 2. Lemma 2 is a direct consequence of Lemma A.16. O

Proof of Theorem 2. Under Hy, by Theorem 1, it follows that
1 1
Orp—0% = —7 ;(PGPYC[ +0,(T™"%), 61, —6* = -7 ; G g + 0y(T7172).

Since P(PGP)~ = (PGP)~ by Lemma A.2, we have
T

(I = P)Orp —O11) = %Z(z —P)[G™" — (PGP)"1¢: + 0p(T™1/?) = Z“ —P)GTg 4 0)(T7V2).

t=1
By Lemma A.12, we show that ~/T(67p — 07) % N(0, W), where W = (I — P)G~'SG~(I — P). By delta method, we
have ~/T[W~1"2(0rp — O7,) X N(0, V), where V = Diag(1,...,1,0,...,0) € RP*P is a squared matrix with rank p — d.
The above convergence further leads to T(6rp — 01;) W= (0rp — 01) % ¥%(p — d). By Lemma A.16, it follows that

é” = G+ o0p(1) and §T,, = S 4 0p(1). Moreover, both W and W are of rank p — d. As a consequence of Lemma A.14, it
follows W = W + 0,(1). Applying Slutsky’s Theorem, we compete the proof of the result under Ho.
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Under Hj, since B9* = b + B, for some B = 0. Consider the following decomposition 6* = 6* + with BO* = b and
Bu = B. Clearly, (I —P)u # 0, as (I —P)u = 0 implies Pu = p and p € Ker(B), which is impossible. Since Bdt p = BO* = b,
we have

(I = P)Orp —Org) = (I — P)Orp — 0% + 6% —Or;) = — P)Orp — 0F — u+ 6% —0r)
=—(I = P)u — (I = P)(Or; — 6%). (22)
Moreover, by Lemma A.2, we have W*(I —P)=(1- P)W* = W~. Following (22), we have
TOrp — 1)) W (@rp — O11) =Tt ' W™ + T(Or, — 0°) W (@) — 6°) + 2T(0r,; — 0") W™ = J1 + )2 + J.
For Sy, let ):1, ip,d and A1, Ap_q be the largest and smallest non-zero eigenvalues of W and W respectively. By Lemma A.14,

we know A, < 241 and A, 4 > A, 4/2 with probability approaching 1. Then by Lemma A.2, we conclude that

T T
= KH(I —P)ul? = ill(l — P)u||? with probability approaching 1.

Since Theorem 1 implies that 67 — 6* = 0,(T~1/2), it follows that

b < TIW™ |67, — 6%

2T —
01 < =161, — 011> = 0,(1).
p—d Ap—d

Similarly, by Cauchy-Schwarz inequality, we can show

=1 1D * 2T -~ * aT * 1/2
Usl = 2TIW 187 — 6™ Il < =— 11871 — 6%l = P 67,1 — 0 llpll = Op(T 7).
p—d P—

Combining the three bounds, we prove that T(81.p — 67,)TW~(6r.p — 61.;1) — oo with probability approaching 1.
Suppose the local alternative H, : BO* = b+ 8/ /T holds. Consider the following decomposition 6* = 6* + w/ T with

BO* = b and By = B. By Lemma A.2, we have (W~)/2(I — P) = (I — PYW )2 = (W~)V2. By similar proof to (22), we
have

(I = P)@rp —0r) = —(I — P)u/NT — (I — P)(Br; — 6%),
which further leads to
(W)2@rp — 1) = (WAL = PYBrp — O7,1) = (W)X — P)u/NT — (W)V2(@r, — 6%) := Ry — Ry

Since W~ = W + 0,(1), it follows that ~/TR; = —(W~)"/2(I — P)u + 0,(1) = —(W )21 + 0,(1). Moreover, Theorem 1
implies that

VTR, = (W) (01, — 6%) + 0,(1) = N(O, (W™)2G7SG (W )"/2).
By direct calculation, it can be verified that
(W)2GTISG (W )2 = (W) (1 = P)GTISGT (T — PYW )2 = (W) Pw(w )2 =,

where V = Diag(1,...,1,0,...,0) € RP*P is a squared matrix with rank p — d. As a consequence, we show that
p— — A -_— f— L
T(Orp —O1.))' W (Orp —O11) > x* (W' W p,p—d). O

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2022.105017.
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