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Abstract

In this paper, we consider uncertain linear systems with

input quantizers over communication channels subject to

packet loss, and we assume dynamic switching from an

unstable state matrix to a more unstable one during the

operation. We then investigate the effectiveness of two

learning-based control strategies for stabilizing this class of

dynamical systems: the Adaptive Quantized Control (AQC)

and the Deep Reinforcement Learning (DRL). The adaptive

setup assumes acknowledgment messages on packet losses

are received by the adaptive controller, while the state

matrix is unknown and the input matrix is known. On

the other hand, the DRL operates without acknowledgment

messages and relies on the knowledge of both the state

and input matrices. Results show that DRL outperforms

adaptive techniques in damping amplitudes and improving

convergence speed. However, when faced with both packet

loss and model uncertainty, the mathematical guarantees

provided by AQC can better handle stability and uncertainty

across a wider range of model parameters.

1 Introduction

Modern systems’ complexity has presented several chal-
lenges for classical and modern control techniques.
However, there has been a recent trend toward uti-
lizing learning-based control methods, particularly in
high-dimensional spaces [1]. Over the past decade, deep
learning has significantly impacted both the theoretical
and practical aspects of machine learning by enabling
its application to non-Euclidean spaces, such as graphs
with interdependencies. This revolution has expanded
the scope and capabilities of machine learning beyond
traditional Euclidean spaces [2]. The integration of deep
learning and reinforcement learning, known as deep re-
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inforcement learning (DRL), has been the subject of
extensive control-related studies [3, 4, 5]. The ideas be-
hind DRL are similar to those of deep Q-network (DQN)
as seen in [6]. The DQN is limited to discrete and fi-
nite actions whereas DRL, on the other hand, allows
for continuous and infinite control actions, as described
in [7]. In this work, we analyze the behavior of an un-
stable system under two different types of control: the
deep deterministic policy gradient (DDPG) reinforce-
ment learning, which is learning-oriented and the quan-
tized control which is adaptive-oriented.

Additionally, the term “quantization” in this con-
text refers to the limitation of communication within a
specific bandwidth in networked systems. The concept
of using quantization for stabilization of linear systems
with finite control signals and measurements was in-
troduced in the reference [8]. The state information is
quantized in a coarse manner, with the level of precision
becoming finer as it approaches the origin in a logarith-
mic manner. This can also be alternatively explained
using the more widely accepted sector-bounded quan-
tizer [9]. Beyond that, dealing with the uncertain sys-
tem, the adaptive control with input quantizer is stud-
ied by [10] which is also implemented into systems with
packet loss η [11]. This means there exists a probabil-
ity p̄ of control signal not being sent to the plant, with
some variations of the non-linear uncertain system [12].
Note that with stabilization guaranteed [8, 9, 10, 11], it
is interesting to see how the learning approach performs
under some limitations [13].

The DDPG reinforcement learning is a combined
deterministic-actor a = µθ(s) instead of the stochastic
πθ(a|s) = P[a|s; θ] and the Q-value critic Q(s, a) which
both applies the feed-forward neural network (FFNN)
[7, 14]. The stability is guaranteed as presented in
[15] over uncertain systems with sector-bounded for the
non-linear activation function. However, we design the
dynamic changes in the simulation to see how robust
the trained DRL control performs under specific trained
system A considering the dynamic change beyond the
environment Aw. The two dynamics encompass systems
ranging from modestly unstable to highly unstable, as
defined later.
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Figure 1: Adaptive quantized control (K, v) method with
time-varying quantizer q(k, u(k)). The solid arrows between
blocks mean the connected information whereas the dashed
arrow show there exists a possibility not being connected.
The dashed arrows behind blocks deduces the time-varying.

The paper begins by providing an overview of
adaptive quantized control with full acknowledgment
messages, as depicted in Fig.1. In Section 2, we
consider packet loss, represented by η(k) := 0, 1, and in
Section 3, we present actor-critic DDPG reinforcement
learning as a comparison. Sections 4 and 5 provide
numerical examples and a performance analysis of the
two controllers, both with and without quantization,
ultimately leading to the conclusion.

2 Adaptive Quantized Control

In this section, we introduce the adaptive quantized
control method presented in [10], which was further
developed for harsh systems with packet loss in [11].
We consider the quantized control signal v(k) to be
successfully transmitted to the system according to a
constant parameter η(k) to decide whether or not the
information was received by the system Fig.1. Thus, the
discrete-time linear uncertain plant G over noisy channel
is modeled as,

x(k + 1) = Ax(k) + η(k)Bv(k)(2.1)

with x(0) = x0, k ∈ N0 where x ∈ R
n is the state vector,

v ∈ R
m denotes the quantized control signal, whereas

A ∈ R
n×n and B ∈ R

n×m represent the matrices of
unknown system and known input, respectively. The
term η(k), ∀k represents binary independent random
variables, where a value of η(k) := 1 indicates that the
control signal was completely received, while a value
of η(k) := 0 indicates that information was lost. This
transmission condition is affected by some probability
p̄ such that P{η(k) = 0} ≤ p̄, ∀k where 0 ≤ p̄ < 1.
The quantized control is designed as function of control
u(k),

v(k) = q(k, u(k))(2.2)

where u(k) = H(k)x(k) and q(k, ui) describes the time-
varying logarithmic quantized function written as

qi ≜







φi(k, j), if ui ∈ (φi(k, j + 1), φi(k, j)]

−φi(k, j), if ui ∈ [−φi(k, j),−φi(k, j + 1))

0, if ui = 0

j ∈ I, i = 1, . . . ,m(2.3)

with φi(k, j) = ai(k)ρ
j
i (k), i = 1, . . . ,m and ai(k) > 0,

0 < ρi(k) < 1 while qi(·, ·) and ui define the i−th term
of q(·, ·) and u in turn. If the term j is preferred to be
negative, the value of φi(k,−j) alters to φi(k,−j) :=
ai(k)/ρ

j
i (k), i = 1, . . . ,m. Moreover, ρi(·) declares the

coarseness of the quantizer qi(·, ·) for certain ui. Note
that (2.3) could be transformed as a time-varying sector-
bounded memoryless input nonlinearities Q given by,

Q ≜{q : N0 × R
m → R

m : q(·, 0) = 0,
[
q(k, u)−M1(k)u]

⊤[q(k, u)−M2(k)u
]
≤ 0,

u ∈ R
m, k ∈ N0}

(2.4)

where M1 ∈ R
m and M2 ∈ R

m imply the diagonal
matrix formed as M1 ≜ diag[M11 , . . . ,M1m ] > 0
and M2 ≜ diag[M21 , . . . ,M2m ] > 0 satisfying positive
definiteness M2 −M1 > 0 as portrayed in Fig.2 with
ρi =M1i/M2i , ∀i ∈ R

m. For the scalar perspective, the
sector-bounded Q (2.4) is translated into,

M1i(k)u
2
i ≤ qi(k, ui)ui ≤M2i(k)u

2
i ,(2.5)

where ui ∈ R, k ∈ N0, ∀i ∈ R
m. Recalling

ρi(·) =
M1i(·)

M2i(·)
=

1− βδi(·)

1 + βδi(·)
, i = 1, . . . ,m(2.6)

in which δ(·) ≜ 1
β
[M2(·) +M1(·)]

−1
[M2(·)−M1(·)] for

β ̸= 0, the coarseness ρi(·, ·) is now set as a function of
δi(·) while due to the change of the time k, the quantizer
q(k, ·) is according to the formula of

∆(k) ≜ diag[δ1(k), . . . , δm(k)]

=
1

β
[M2(·) +M1(·)]

−1
[M2(·)−M1(·)] ,(2.7)

In this work, we aim to compare the performance of
adaptive quantized control with that of actor-critic
reinforcement learning. Both control methods utilize
quantization to reduce communication bandwidth. The
detailed concept and stability analysis of the adaptive
quantized control can be found in [10]. We next
decompose the quantizer q(·, ·) into its linear and non-
linear components as follows:

q(k, u) =
1

2
[M1(k) +M2(k)]u+ qs(k, u)(2.8)
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where the non-linear modified qs : N0 × R
m → R

m is a
set of Qs expressed as,

Qs ≜{qs : N0 × R
m → R

m : qs(·, 0) = 0,

q⊤s (k, u)qs(k, u)−
1

4
u⊤ [M2(k)−M1(k)]

2
u ≤ 0,

u ∈ R
m, k ∈ N0} .(2.9)

For the stochastic system, we adopt the definition and
proof of Lyapunov stability in probability from [16].

Definition 2.1. Let us consider a stochastic discrete-
time system as follows,

xk+1 = f(xk, yk+1), k ∈ N0(2.10)

where xk ∈ R
n and {yk : k ∈ N} shows a R

d−valued
stochastic process on a probability space (Ω,F,P). The
notation of Ω comprises the sample space, F makes up
a set of events, and P : F→ [0, 1] constitutes a function
matching the probabilities to events. The measurable
function yk maps Ω into state-space Ω0 ∈ R

d, ∀ω ∈ Ω
and for Fk = σ(y1, . . . , yk), ∀k ≥ 1, F0 = {Ø,Ω},
{Fk}, ∀k is an increasing sequence of σ−field. The origin
of (2.10) is classified to be:

1. stable in probability if limx0→0 P[supk∈N ∥xk∥ >
ϵ] = 0 for any ϵ > 0;

2. asymptotically stable in probability if the stable
holds and limx0→0 P[limk→∞ ∥xk∥ = 0] = 1;

3. exponentially stable in probability if for γ > 1 inde-
pendent of ω, limx0→0 P[limk→∞ ∥γ

kxk∥ = 0] = 1

For a set Q ⊆ R
n the origin of (2.10) is classified to be:

1. locally (globally) a.s in Q if starting from x0 ∈ Q
(x0 ∈ R

n), all the sample paths xk stay in Q (Rn)
∀k ≥ 0 and converge to the origin almost surely;

2. locally (globally) exponentially stable in Q if it is
locally (globally) a.s and the convergence moves
exponentially fast

The asymptotic convergence of (2.10) and its stability
inspired by [16, 17] is presented as follows,

Lemma 2.1. For the stochastic system being defined in
(2.10), let xk be a Markov chain and let V : Rn → R be
a Lyapunov positive definite function. For some λ > 0,
given a set Qλ := {xk : 0 ≤ V (xk) < λ} provided that

E[V (xk+1)]− V (xk) = −ϑ(xk) ≤ 0, ∀k(2.11)

where xk ∈ Qλ and ϑ(·) is continuous, therefore the two
conditions might apply:

Figure 2: Left: logarithmic quantized q for m = 1, Right:
the instance for [M2(k) ∈ {1 + âµ

j
i : j ∈ I},M1(k) ≡ 1].

(i) if x0 ∈ Qλ, the paths remain in Qλ with at least
probability 1 − V (x0)/λ, V (xk) converges to some
limit and limk→∞ ϑ(xk) = 0 with probability 1

(ii) recalling the case (i), for every γ > 0, ∃δ > 0, such
that ϑ(xk) ≥ δ for |xk| > γ and ϑ(0) = 0, therefore
the origin of (2.10) is globally a.s

We continue the overview of the adaptive quantized
control, which is divided into several conditions [10, 11]
and we here consider the acknowledgement messages to
the gain controlK of whether or not the packet loss η(k)
occurs using the time-varying variable qs(k, u). Finally,
we are asserting the adaptive control with parameters
written as follows, in order, as steps along with the
associated key theorem from [11] on how to design the
adaptive quantized control (AQC),

1. Let R ∈ R
n×n > 0 and let γ ∈ (0, 1)

2. Solve the Riccati equation with P ≥ In,

P = Ã⊤PÃ+R− Ã⊤PB
(
B⊤PB

)−1
B⊤PÃ

3. Let As ≜ Ã + BK ′′
g where Ã ≜ A + BK ′

g and

K ′′
g ≜ −(B⊤PB)−1B⊤PÃ. The matrix As is then

Hurwitz provided that (A,B) is stabilizable. Note
that Ã is assumed to be known and unstable

4. Let Q ∈ R
m×m and ε > 0, the Q ∈ (0, 2Im) and

1

ε
(2Im −Q)− 2B⊤PB ≥ 0,

are guaranteed. Thanks to P,Q, ε for always exist

Theorem 2.1. Recalling the discrete linear uncertain
system G in (2.1) where A is an unknown system where
σ(A) < σ̄A, the rank of B denoted as ρ(B) = m, and the
pair of (A,B) is stabilizable. Given that the controller
knows whether or not the packet loss happened and
assuming the upper bound of the probability p̄ satisfies

p̄

1− p̄

(
λmax(P )σ̄

2
AIn − P

)
< γR(2.12)
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therefore, according to steps 1-4, the adaptive control
with acknowledgement message

u(k) = 2 [M1(k) +M2(k)]
−1
K(k)x(k),(2.13)

where K(k) ∈ R
m×n, the quantized M1(k) and M2(k)

satisfying the following equation

R− 2K⊤(k)∆(k)B⊤PB∆(k)K(k) ≥ γR > 0(2.14)

for all k ∈ N0 with (2.2) and the updated gain

K(k + 1) = K(k)−
η(k)

1 + x⊤(k)Px(k)
QB† [x(k + 1)

− Asx(k)−Bqs(k, u(k))]x
⊤(k)(2.15)

guarantees the Lyapunov stability such that the solution
(x(k),K(k)) ≡ (0,Kg) where Kg ≜ −(B⊤PB)−1B⊤PA
and Kg := K ′

g +K ′′
g given by (2.1), (2.2), (2.13), and

(2.15) converges as limk→∞ x(k) = 0, ∀x0 ∈ R
n

Finally, equation (2.14) should hold at all times, imply-
ing that the sector bounds of M1(k) and M2(k) must
also be time-varying. One simple method to ensure
compliance with equation (2.14) is to fix M1(k) and
make M2(k) time-varying. This can be achieved by
defining M1(k) as a constant equal to Im and M2(k) as
1 + âµj

i : j ∈ I, where â > 0 and µi > 0 for all i. Since
M2(k)−M1(k) is positive definite thenM2(k) > Im and
supposedM2(k) is bounded with a parameterMϕ as the
maximum such that M1(k) < M2(j), j ∈ I ≤Mϕ. Then
the issue is to find the suitable j as the best parameter of
M2(k) at given step k to be delivered to the controller.
The design of the AQC algorithm is outlined in Algo-
rithm 1. To evaluate its performance against the AQC,
the reinforcement learning design will be presented next.

3 DDPG Reinforcement Learning

We consider deep-deterministic policy gradient (DDPG)
developed by [7, 14] which uses the deterministic direct
mapping states to action u = µθ(x) instead of the
probabilistic ones πθ(u|x) = P[u|x; θ]. The two terms
x and u represent the spaces of the states x ⊆ S
and the actions u ⊆ A. The problem is built as
the Markov decision process (MDP) comprising the
spaces of (S,A) and the distributions of an initial
state with density p1(x1) and the stationary transition
p(xt+1|xt, ut) := p(xt+1|x1, u1, . . . , xt, ut) for arbitrary
trajectory (xk, uk), ∀k ∈ (S,A). Furthermore, the
agent applies the off-policy information and the Bellman
equation to learn the Q-value function which is then
determined to learn the policy µθ with the optimum one
µ∗
θ. The control mechanism is designed to maximize the

expected cost function J(µθ) = E[rγt |µθ],

Algorithm 1 Adaptive Quantized Control

Require: A,B, x0, k(on),K0, R := I2 → P ≥ I2, p̄
1: Q← (0, 2Im) ▷ (a, b) := a < Q < b
2: Kg ← −(B

⊤PB)−1B⊤PA
3: As ← A+BKg

4: for k = 1 : t(max) do
5: pc ← N (µ, σ) ▷ Gaussian between 0 and 1
6: if pc > p̄ then

7: η(k)← 1, otherwise η(k)← 0
8: end if

9: if k ≥ td then ▷ td := dynamic change
10: (A,B)← (Aw, Bw)
11: end if

12: γ ← (0, 1), δ ← Eq. 2.13
13: if δ ≥ 1 then ▷ 0 < δ < 1
14: M2(k)←Mϕ, ρ←

1
ϕ
▷ M2(k) :=Mϕ is max

15: else

16: for ji, ∀i = 1 : n do ▷ M1 < M2(ji) < Mϕ

17: if δ > 1
β
(M2 +M1)

−1(M2 −M1) then
18: j ← ji and stop

19: end if

20: end for

21: u(k)← Eq. 2.13, v(k)← Eq. 2.3
22: end if

23: x(k + 1) = Ax(k) + η(k)Bv(k)
24: qs(k)← Eq. 2.8, K(k + 1)← Eq 2.15
25: end for

Figure 3: Actor-critic DDPG Reinforcement learning with
time-varying quantizer q(k, u(k)).

J(µθ) =

∫

S

ρµ(x)

∫

A

µθ(x, u)r(x, u) du dx(3.16)

where the return rγt denotes the sum of the discounted
future rewards from time instant t onwards defined as,

rγt = r1 + γr2 + γ2r3 + · · · =
∞∑

k=t

γk−tr(xk, uk)(3.17)

with the discount factor γ ∈ (0, 1). If the policy µθ

and the associated cost function J(µθ) are taken such
that it maximizes the function, ∀x ∈ R, ∀t ∈ [0, T ], then
J(µθ) = J(µ∗

θ) and µθ = µ∗
θ.
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Figure 4: Actor-critic DDPG reinforcement learning design.

This DDPG is closely related to the DQN with
the following explanations. The value function of the
state-actionQµ(x, u) is expressed as the expected return
given by (x, u, µθ) and the discounted state distribution
ρµ(x′). If the optimal action function Q∗(x, u) is ob-
tained, then in arbitrary given state, the optimal action
u∗(x) is declared as u∗(x) = argmaxuQ

∗(x, u). Due
to the fact the action is continuous, the value function
Q∗(x, u) is assumed as differentiable over action argu-
ment and it leads to construct the gradient-based rule
for µθ(x). This allows to approach the expensive compu-
tation optimization as maxuQ(x, u) ≈ Q(x, µθ(x)). For
the discrete perspective, the Bellman equation showing
the optimal value function Q∗(x, u) is written as follows,

Q∗(x, u) = Ex′∼P

[

r(x, u) + γmax
u′

Q∗(x′, u′)
]

(3.18)

where x′ ∼ P says that the next state x′ is sampled by
the system given a certain distribution P(·|x, u). Now,
as the action is deterministic and continuous, the Q-
value function is constructed with neural network ϕ such
that Qϕ(x, u) collects a set Φ of transition (x, u, r, x′, d)
where d points whether or not the next state x′ is
the terminal. Finally, the mean squared Bellman error
(MSBE) describing the error of Qϕ(x, u) into Bellman’s,

ξΦ = r + γ(1− d)max
u′

Q∗(x′, u′)

L(ϕ,Φ) = Ex,u,r,x′,d∼Φ

[

(Qϕ(x, u)− ξΦ)
2
](3.19)

and the reward is presented as a function of error e := x
with some arbitrary small constant ψ to negate the zero
division and a parameter threshold Th if the system
performs beyond the permitted values, therefore

r(k) =







−100, x < −Th, x > Th
1

e+ ψ
, otherwise

(3.20)

Now, recall a linear uncertain system in (2.1) with
a feedback deep-reinforcement learning (DRL) control
as in Fig.3 with quantizer (2.2). The state x(k) ∈ R

np

is also the output x(k) := y(k) and u(k) ∈ R
nu makes

up the input. The actor-critic DRL control performs
two sequential feed-forward neural network (FFNN).
The actor -DRL takes the observation x using single
direction with ℓa−layer while the critic-DRL relies on
two inputs, the observation x and control action u
under ℓc−layer. This control u comes from the actor -
DRL, where the observation comprises ℓco−layer and
the action constitutes ℓca−layer before being added
with ℓcs−layer. The value of ℓc−layer is defined as
ℓc := max(ℓca, ℓco) + ℓcs. The FFNN actor -DRL with
ℓa−layer is denoted as,

ϕ0(k) = x(k)(3.21a)

ϕi(k) = ∆i (Wiϕi−1(k) + bi)
︸ ︷︷ ︸

vi(k)

, ∀i = 1→ ℓa(3.21b)

u(nu)(k) =Wℓa+1ϕℓa(k) + bℓa+1 := v
(nu)
ℓa+1(3.21c)

where the weight matrixWi ∈ R
mi×mi−1 , ∀i = 1, . . . , ℓa

and the bias bi ∈ R
mi handles the linear operations for

i−th layer resulting vi ∈ R
ni containing mi−neurons

with m0 = np so that for j−th neuron, ∀j = 1, . . .mi

runs the calculation of (3.22),

vi(k) := v
(j)
i (k) =

mi−1∑

t=1

W
(t)
i ϕ

(t)
i−1(k) + b

(t)
i ,(3.22)

for all j = 1, . . .mi The non-linear operations of
activation functions ∆i ∈ R

ni in i−th layer drive the
vi with ni is a row matrix with length of the scalar
multiplication of ni := mi × mi−1 with outputs of
ϕi ∈ R

ni . The activation function ∆i is represented
as the element-wise ∆i(vi) := [λ(v1), · · · , λ(vni

)] where
λ(v) := tanh(v) or ReLU λ(v) := max(0, v). The size
of the last linear operation should have the same that
of control signal u, vℓa+1 ∈ R

nu . Therefore, the actor
collects the values of the linear vq := [v1, · · · , vℓa ] ∈ R

nq

and the non-linear ϕq := [ϕ1, · · · , ϕℓa ] ∈ R
nq in which

nq :=
∑

ℓa
ni along with ∆q(vq) resulting the control

signal u(k) to the plant and as the input of critic-RL.
The input-output relationship of actor is shown as,

[
u(k)
vq(k)

]

= Nℓa





x(k)
ϕq(k)
1



 , ϕq = ∆(vq(k))(3.23)

and the matrix N consists of the weights Wq ∈ R
nq+1

and the biases bq ∈ R
nq+1 corresponding to the inputs
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Algorithm 2 Reinforcement Learning with Quantizer

Require: A,B, x0, k(on), R := I2 → P ≥ I2, FFNN
ψ, τa, τc, γ, ts, E , T

1: for k = 1 : t(max) do
2: observe state x(k) and take an action ur(k)
3: observe a reward r(k)
4: if k ≥ td then ▷ td := Dynamic change
5: (A,B)← (Aw, Bw)
6: end if

7: γ ← (0, 1) ▷ (a, b) := a < γ < b
8: δ ← Eq. 2.13 with K := urx

−1

9: v(k)← do step 10 - 20 of Algorithm 1, changing
Kx with the control signal from RL → ur(k)

10: x(k + 1) = Ax(k) + η(k)Bv(k)
11: end for

[w, ϕq, 1] and outputs [u, vq]

N :=















0 0 0 · · · Wℓa+1 bℓa+1

W1 0 · · · 0 0 b1
0 W2 · · · 0 0 b2
...

...
. . .

...
...

...
0 0 · · · Wℓa 0 bℓa















(3.24)

This results in decomposing the FFNN from the non-
linear activation function and stability of these forms are
studied in [18]. With the same procedures, the FFNN
critic-RL with ℓc−layer is also denoted as,

φ0(t) =
[
u(t) x(t)

]⊤

φi(t) =

[
∆i (Wiφi−1(t) + bi) , ∀i ∈ ℓca
∆i (Wiφi−1(t) + bi) , ∀i ∈ ℓco

]⊤

φj(t) = φℓca(t) + φℓco(t), j := max(ℓca, ℓco)

φj(t) = ∆j (Wiφj−1(t) + bj) , ∀j = 1, . . . , ℓcs

rc(t) =Wℓcs+1φℓcs(t) + bℓcs+1 := vℓcs+1 ∈ R
rc

(3.25)

where the construction is straight-forward exactly the
same as that of actor -DRL (3.21-3.24) and from here,
to differ the control signal of DRL from AQC, we use
the term ur(k) := u(k). If the optimal values (x∗, u∗r)
satisfy (2.1), then the state x∗ could be propagated via
FFNN to reach the equilibrium values v∗i , w

∗
i for the

inputs/outputs of every activation function, resulting
(vq, wq) = (v∗, w∗). Thus, (x∗, u∗r , v

∗, w∗) is an equi-
librium point of (2.1), (3.21) and (3.25) if the follow-
ing dynamic holds, x(k + 1) = Ax∗(k) + Bq(k, u∗r(k)).
This paper shows a training given to DRL and see how
it performs beyond the environment. While the AQC
works with unknown A around the gain Kg such that
As := A + BKg is known, this DRL performs under a
known linear system A, which is then examined beyond
the trained system, with Aw and packet loss.

4 Numerical Results and Findings

In this section, we provide numerical illustrations to
show the effectiveness of the suggested control meth-
ods. There are four scenarios to analize: 1) the adap-
tive quantized control (AQC); 2) the AQC such that
∃p̄i, ∀i = {1, 2, 3} : p̄1 = 0.15, p̄2 = 0.30 and p̄3 > 0.5;
3) the trained DRL with A system and input quantizer;
4) example 3 holds with the packet loss ∃p̄i, ∀i. Keep
in mind those four scenarios will be also considered the
dynamical switching from A to Aw according to time
parameter td = {10s, 15s, 20s, 25s, 30s} and the control
starts from k(on) = 1s. Let us consider the linear un-
certain system and the noisy channel given by

z(k + 2) + βζz(k + 1) + αζz(k) = η(k)bζv(k),

z(0) = z0, z(1) = z1, k ∈ N0,
(4.26)

where βζ , αζ ∈ R, ∀ζ = 1, 2 are the unknown constants,
bζ ∈ R, ∀ζ comprise the known constants, z(k) ∈ R, and
v(k) ∈ R results in quantizer control u(k). The random
process η(k), k ∈ N0 decides whether or not the signal is
transmitted based on P{η(k) = 0} ≤ p̄i, ∀k. The states
would be x1(k) = z(k) and x2(k) = z(k + 1) where the
modest unstable system A and the worse Aw are written
as follows

A =

[
0 1
−α1 −β1

]

, Aw =

[
0 1
−α2 −β2

]

with x = [x1, x2]
⊤, x(0) = x0, B = [0, bζ ]

⊤, ∀ζ. The R
is chosen as Im,m := 2 so as to solve Riccati equation in
step 2 as P = diag[1, 2] > Im. The constants α1 = 1.5,
α2 = 2, β1 = β2 = −0.5 and bζ = 0.4, ∀ζ. Here, we
are considering only one state x1(k) so that the sector-
bounds M1(k) ≡ 1 and M2(k) ∈ {1 + 3× (1.3)j , j ∈ I}.
This j in M2(j) makes the M2(k) time-varying such
that M1 := 1 < M2(j) < Mϕ := 10. The DRL uses the
same quantizer yet applying the control signal ur from
the trained DRL in A unstable system. The observation
spaces e(k) = x(k) = y(k) are infinite while the action
spaces are bounded |A| < Aϕ := 100. The learning
rates of actor τa and critic τc are defined as 10−4 and
10−3 in turn. The FFNN of actor uses the tanh and
softmax activation funtion with 25 neurons while the
FFNN of critic combines the ReLU activation functions
for both paths (state x, action ur from actor) with 50
and 25 neurons. The discount factor γ, the sample time
ts, maximum episode E and the terminal training T are
setup with γ = 0.9, ts = 1s, E = 1000, and T = 750.

The results are exhibited in Fig.5 and Fig.6. The
simulations present various dynamic switches (red-
dashed), from unstable A to more unstable system Aw,
based on time parameter td from three different initial
conditions x0. As for the AQC, it can be seen in Fig.5,
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(a) Adaptive Quantized Control, η(k) = 1, ∀k
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Figure 5: Performances of AQC and DRL with two different
initial condition x0 and various dynamic change time td.

if the switches happen earlier, it impacts the system
performance worse than the later changes. This is due
to the adaptive gain K has already closely converged
to the optimal values for the later changes. Whilst to
the AQC with packet loss η(k) with some probabilities
p̄i, it applies the acknowledgement messages to the con-
troller, meaning that the control K receives the infor-
mation whether or not the packet loss happens via time-
varying qs in (2.15). It is because v(k) and the quantized
input u(k) via time-varying M2(k) are always updated
at any time instant k regardless any loss η(k) := 0. In
[11], it is mentioned, for control with acknowledgement
messages, there is always stability guaranteed for p̄ sat-
isfying the upper-bound in (2.12) whereas this range
reduces to 0 ≤ p̄ ≤ 0.5 if the control K does not have
the information, qs not being sent to K. Interestingly,
being trained in A unstable system with quantizer as de-

α2 = 1 2 3 4 5 . . . 18 19 20

RL ✓ ✓ × × × . . . × × ×
AQC ✓ ✓ ✓ ✓ ✓ . . . ✓ × ×
AC ✓ ✓ ✓ ✓ ✓ . . . ✓ ✓ ✓

Table 1: Stability comparison of three control methods
across different dynamic switches A→ Aw at time td

picted in Fig.2, the DRL control can stabilize the system
with dynamic changes Aw less than 10s. This is obvi-
ous because, as the MDP, the DRL already knows the
optimal values while the impulsive at first is due to dif-
ferent initial conditions compared to the training value
with x0 = [0, 0]⊤. However, when dealing with packet
loss, the mathematical guaranteed AQC outperforms
the DRL which should act beyond the action spaces.
Keep in mind that the AQC uses the known As and un-
known A while the DRL is feedback with the known A,
otherwise it could not stabilize the system, i.e., training
in As and experimenting in A.
Remark : Table 1 presents a summary of the stability
performance for various switching scenarios of A→ Aw

at time td, as α2 is varied from 1 to 20. It is noted that
the DRL control demonstrates effective performance
only within the narrow range of the trained environ-
ment, which was trained with α2 = 1. In contrast, the
AQC control, being a special case of adaptive control
(AC), exhibits stability over a wider range of α2 values,
whereas the AC control demonstrates stability for all
reported α2 values in the table.

5 Conclusion

The comparative framework of the AQC and the DDPG
DRL has been constructed along with the numerical ex-
amples. The dynamic changes and the packet loss sig-
nals to approach the real conditions have been chosen to
see the robustness of the DRL beyond the training en-
vironments. The results indicate the trade-off and limi-
tations of the learning-oriented control working beyond
the training environments. Finally, future research will
focus on ensuring the stability of DRL in the presence
of packet loss.
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