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We prove residual-type a posteriori error estimates in the maximum norm for a linear scalar elliptic

convection–diffusion problem that may be singularly perturbed. Similar error analysis in the energy norm

by Verfürth indicates that a dual norm of the convective derivative of the error must be added to the

natural energy norm in order for the natural residual estimator to be reliable and efficient. We show that the

situation is similar for the maximum norm. In particular, we define a mesh-dependent weighted seminorm

of the convective error, which functions as a maximum-norm counterpart to the dual norm used in the

energy norm setting. The total error is then defined as the sum of this seminorm, the maximum norm of the

error and data oscillation. The natural maximum norm residual error estimator is shown to be equivalent to

this total error notion, with constant independent of singular perturbation parameters. These estimates are

proved under the assumption that certain natural estimates hold for the Green’s function for the problem

at hand. Numerical experiments confirm that our estimators effectively capture the maximum-norm error

behavior for singularly perturbed problems, and can effectively drive adaptive refinement in order to

capture layer phenomena.

Keywords: a posteriori error estimate; maximum norm; singular perturbation; convection–diffusion.

1. Introduction

Our goal is to prove residual-type a posteriori error estimates in the maximum norm for singularly

perturbed convection–diffusion equations of the form

Lu := −εΔu + div(au) + bu = f in Ω , u = 0 on ∂Ω . (1.1)

Here, 0 < ε ≤ 1, Ω is a polyhedral domain in R
n, n = 2, 3, and we assume that a = (a1, . . . , an),

b and f are sufficiently smooth on Ω̄ , and that |a| > 0, b ≥ 0 and b + 1
2

diva ≥ 0 in Ω̄ . We make

additional assumptions on the Green’s function of L, which agree with the sharp bounds on the Green’s

function for a particular case of (1.1), rigorously proved in Franz & Kopteva (2011a,b, 2012, 2022).

We emphasize that our estimates are robust with respect to the singular perturbation parameter ε, up

to logarithmic terms that typically arise in the context of maximum norm estimates for finite element

methods.
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2 A. DEMLOW ET AL.

A guiding principle of a posteriori error estimation is that estimators should be reliable and efficient

(i.e., provide a posteriori upper and lower bounds) for the error notion under consideration. For

symmetric elliptic problems, residual-type error estimators of the type, we consider here are well known

to be reliable and efficient for energy and a number of Lp-type norms, up to a data oscillation term that is

heuristically of higher order and measures the distance of the right-hand side f to a piecewise polynomial

space. By contrast, for convection–diffusion problems, it is known that standard residual estimators

reliably bound the error in the energy norm defined by |||v|||2 = ε‖∇v‖2
L2(Ω)

+ ‖(b + 1
2
diva)1/2v‖2

L2(Ω)
,

but are not efficient. To be more precise (Verfürth, 2005), the natural energy-norm residual estimator

then is reliable and efficient up to data oscillation for the error notion |||u−uh|||+|||a ·∇(u−uh)|||∗, where

|||ϕ|||∗ := supv∈H1
0(Ω)\{0}

(ϕ,v)
|||v||| , that is for the sum of the energy norm and a dual norm of the convective

derivative of the error (also to be referred to as the convective error). The dual convective norm is weaker

and thus may be asymptotically negligible, but can also dominate the error as measured in the energy

norm until layers in the solution are sufficiently refined. This framework is explained in Tobiska &

Verfürth (2015), where residual-type a posteriori error estimates are proved for several stabilized finite

element methods for equations of the type (1.1) (see also Verfürth, 2005, 2013). Philosophically, we

closely follow this work, but while considering the maximum norm rather than an energy norm.

We begin by proving residual-type estimates in the maximum norm for standard Galerkin finite

element methods without stabilization. Such methods are not necessarily practically relevant in the

convection-dominated regime, but will allow us to establish a suitable theoretical framework before

adding stabilization terms. Next, in order to obtain a reliable and efficient estimator, we add an

elementwise-weighted measure of the convective derivative of the error to our error notion. This

seminorm of the convective error has a similar purpose to the one defined for the energy norm

in Tobiska & Verfürth (2015), and is similarly independent of the stabilization terms. However, in

contrast to that work, our seminorm is mesh-dependent and is adapted to the particular case of the

maximum norm. A precise definition is given below, but this seminorm behaves similarly to the quantity

‖min{1, �hε
−1h2

T} a · ∇(u − uh)‖L∞(Ω) under sufficiently restrictive assumptions. Here, uh is the finite

element solution, �h is a logarithmic factor, depending on ε and the minimum mesh diameter, and hT

is the local mesh size. This quantity typically dominates the original target error notion ‖u − uh‖L∞(Ω)

when hT > ε, but becomes relatively negligible when hT 	 ε. This error structure is similar to that

observed in the energy norm case. After considering unstabilized finite element methods, we consider

the effects of several stabilization schemes on our a posteriori estimates, also following the similar

analysis for energy norms outlined in Tobiska & Verfürth (2015).

As in recent works on maximum-norm a posteriori error estimation (Demlow & Georgoulis, 2012;

Demlow & Kopteva, 2016), we shall rely on the continuous Green’s function for the adjoint problem to

(1.1) in order to represent the error. Estimates for the Green’s function in various norms are essential to

proving sharp a posteriori estimates. The estimates that we need have been established under relatively

restrictive assumptions on Ω and the streamline direction a in Franz & Kopteva (2012). Extension to

more general cases appears to be technically quite challenging, so we shall prove our results under the

assumption that the Green’s function behaves as in Franz & Kopteva (2012), without giving a complete

theoretical picture of the situations for which this assumption is valid.

Finally, we are not aware of previous works on pointwise or maximum-norm a posteriori

error estimation for finite element methods for convection-dominated convection–diffusion equations.

Maximum-norm a posteriori estimates for finite difference methods for one-dimensional convection–

diffusion scalar problems and systems are contained in Kopteva (2001); Linss (2009, 2010). Well-known

a priori maximum-norm analyses of streamline diffusion finite element methods are given in Johnson

et al. (1987); Niijima (1990) for regions away from layers. There is also a considerable literature on
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 3

ε-uniform maximum-norm error bounds for finite difference methods on a-priori-chosen layer-adapted

meshes; see, e.g., Kopteva & O’Riordan (2010), (Roos et al., 2008, §III.2) and the references therein.

Thus, there is longstanding interest in controlling pointwise errors in the presence of layer phenomena.

An outline of the paper is as follows. In Section 2, we give preliminaries, including the definition

of the unstabilized finite element method and discussion of Green’s functions. In Section 3, we prove

a posteriori error estimates that are reliable and efficient for the sum of the maximum norm, and an

appropriate mesh-dependent seminorm of the error in the convective derivative, up to a data oscillation

term. In Section 4, we consider a few different stabilization schemes and prove that our estimates remain

valid for them under suitable assumptions. Finally, in Section 5, we present numerical experiments that

illustrate the behavior and performance of our estimators in the context of uniform and adaptive mesh

refinement.

2. Preliminaries

In this section, we discuss the analytical framework for our results and also give some finite element

tools.

2.1 Notation

We write α 
 β when α � β and α � β, and α � β when α ≤ Cβ with a generic constant C,

depending on Ω , a, b and f , but not on ε or the diameters of mesh elements. For D ⊂ Ω , 1 ≤ p ≤ ∞
and k ≥ 0, let ‖ · ‖p ;D = ‖ · ‖Lp(D) and | · |k,p ;D = | · |Wk

p(D), where | · |Wk
p(D) is the standard Sobolev

seminorm with integrability index p and smoothness index k, while 〈·, ·〉 is the L2(Ω) inner product.

2.2 Green’s functions

As is standard in the literature on maximum-norm error bounds in FEM, we employ a Green’s function

in order to represent the error pointwise. Let G = G(x, ·) be the Green’s function associated with (1.1).

For each fixed x ∈ Ω , it satisfies

L∗G = −εΔG − a · ∇G + bG = δ(x − ·) in Ω , G = 0 on ∂Ω , (2.1)

where δ(·) is the n-dimensional Dirac δ-distribution.

Therefore, the unique solution u of (1.1) allows the representation

u(x) = 〈G(x, ·), f (·)〉. (2.2)

Similarly, any sufficiently smooth v allows the representation

v(x) = ε〈∇v, ∇G(x, ·) + 〈div(av) + bv, G(x, ·)〉. (2.3)

Setting v := uh in (2.3) and then subtracting (2.2), we immediately arrive at the error representation

(uh − u)(x) = ε〈∇uh, ∇G(x, ·)〉 + 〈div(auh) + buh − f , G(x, ·)〉. (2.4)

Similar to Demlow & Kopteva (2016), we shall rely on a number of bounds on the Green’s function

in which the dependence on the singular perturbation parameter ε is shown explicitly. It is worth noting
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4 A. DEMLOW ET AL.

Fig. 1. Typical anisotropic behaviour of the Green’s function G(x, y; ξ , η) for problem (1.1) in Ω = (0, 1)2 with a = [−1, 0],

b = 0, (x, y) = ( 1
3

, 1
2
) and ε = 10−3.

that Demlow & Kopteva (2016) addressed singularly perturbed equations of reaction–diffusion type, for

which the Green’s function in the unbounded domain is (almost) radially symmetric and exponentially

decaying away from the singular point. By contrast, the Green’s function for the convection–diffusion

problem (1.1) exhibits a much more complex anisotropic structure (see Fig. 1).

We shall require the following bounds on the Green’s function G from (2.1):

‖G(x, ·)‖1 ;Ω + ε1/2|G(x, ·)|1,1 ;Ω � 1, (2.5a)

|G(x, ·)|1,1 ;B(x,ρ)∩Ω � ε−1ρ, (2.5b)

|G(x, ·)|2,1 ;Ω\B(x,ρ) � ε−1
(

ln(2 + ε/ρ) + |ln ε|
)

, (2.5c)

as well as, occasionally,

‖a · ∇G(x, ·)‖1 ;Ω � 1 + |ln ε|. (2.6)

Here x ∈ Ω and ρ > 0 are arbitrary, while B(x, ρ) denotes the ball of radius ρ centered at x. Note that

(2.6) follows from (2.5). Indeed, ‖a · ∇G‖1 ;B(x,ε)∩Ω � 1 follows from (2.5b), while ‖a · ∇G‖1 ;Ω\B(x,ε)

is easily bounded using (2.5c) and (2.5a) combined with the differential equation from (2.1).

In order to gain additional insight into the scaling in the bounds given in (2.5) and (2.6), note that the

fundamental solution on R
3 with a = [−a1, 0, 0] is given by G

R3(x, ξ) = 1
4πε

exp( 1
2 a1(ξ1−x1−r)/ε)

r
, where

r =
√

(ξ1 − x1)
2 + (ξ2 − x2)

2 + (ξ3 − x3)
2. The scalings observed above may be directly computed

from this function. The free-space fundamental solution for convection-dominated problems in two
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 5

space dimensions may also be written down explicitly and scalings computed from it, but the expression

is more complex. Note also that the bounds (2.5) are isotropic, while a sharper bound for the convective

derivative is given in (2.6). This reflects the anisotropic nature of the Green’s function, which can be

explicitly seen in the above expression for G
R3 .

Note that, although the bounds (2.5) appear as an assumption for our results below, they were

rigourously proved in Franz & Kopteva (2011a, 2012, 2022), and are also shown to be sharp in Franz &

Kopteva (2011b) for a particular case of |a| = |a1| in rectangular and cubic domains. We hypothesize

that similar results would hold on more complicated domains such as those with reentrant corners,

since similar results hold for standard elliptic and singularly perturbed reaction–diffusion problems on

nonconvex as well as convex domains (Demlow & Kopteva, 2016). However, the proof techniques used

for convection–diffusion problems are different than in these other cases. Extension to more complex

domains would be technically challenging, and the form of the results is not completely clear. We also

comment on the assumption |a| > 0 made following (1.1). This condition is needed in the proofs of (2.5)

given in Franz & Kopteva (2011a, 2012, 2022). These proofs are substantially different than those given

for scaled Green’s function estimates for reaction–diffusion problems in Demlow & Kopteva (2016),

and it is not clear how to bridge the gap between these different techniques in order to approach the

case of a convection coefficient a which sometimes vanishes. However, the scaling obtained in (2.5)

for convection–diffusion problems is very similar to that observed for reaction–diffusion problems, so

it seems likely that (2.5) are also valid under a weaker assumption that |a| + b > 0.

2.3 Finite element space

Let T be a shape-regular and conforming simplicial partition of Ω , with E denoting the set of all interior

(n − 1)-dimensional element faces. Let the finite element space Sh ⊂ H1
0(Ω) be the set of functions that

are continuous on Ω , equal to 0 on ∂Ω and polynomials of degree at most r on each T ∈ T , where

r ≥ 1 is a fixed polynomial degree.

Similarly to Demlow & Georgoulis (2012); Demlow & Kopteva (2016), we shall employ the Scott–

Zhang interpolant, denoted Gh, of the Green’s function G(·) := G(x, ·) from (2.1) (where x ∈ Ω

remains fixed). We let Gh lie in the space of continuous piecewise-linear functions with respect to T .

Then Gh ∈ Sh for any r ≥ 1, and it satisfies the local stability and approximation property

|G − Gh|k,1 ;T � h
j−k
T |G|j,1 ;ωT

∀ T ∈ T , 0 ≤ k ≤ j ≤ 2, (2.7)

whenever the right-hand side of (2.7) is defined. Here, hT is the diameter of element T , while ωT denotes

the standard patch of elements in T touching T (including T).

3. A posteriori error estimation in the conforming case

3.1 Finite element method and error indicators

Introduce the standard bilinear form associated with (1.1):

B(u, v) := ε〈∇u, ∇v〉 + 〈div(au) + bu, v〉. (3.1)

The standard conforming finite element method is then given by:

Find uh ∈ Sh : B(uh, vh) = 〈f , vh〉 ∀ vh ∈ Sh. (3.2)
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6 A. DEMLOW ET AL.

We emphasize that this basic finite element method is not generally practical in the singularly perturbed

case ε 	 1 (as unstabilized finite element solutions typically exhibit non-physical oscillations unless

hT/ε is sufficiently small). We first study this unstabilized method mainly in order to understand the

structure of the error. Stabilized schemes that are more practically relevant for singularly perturbed

problems are considered below.

We shall use an a posteriori error indicator defined ∀ T ∈ T by

η∞(T) := αT

∥

∥εΔuh − div(auh) − buh + f
∥

∥

∞ ;T
+ βT

∥

∥�∇uh�
∥

∥

∞ ;∂T\∂Ω
, (3.3a)

αT := min{1, �hε
−1h2

T}, βT := min{ε1/2, �hhT} in T ∈ T , (3.3b)

where the definition of the logarithmic factor �h := 1 + ln(2 + εh−1) + |ln ε|, with h := minT∈T hT ,

is motivated by the logarithmic factors in (2.5). Here, we also use the standard notation �∇uh� :=
∇u+

h · n+ + ∇u−
h · n− on a face shared by two elements T+, T− ∈ T , with their respective outward

normal unit vectors n+ and n−.

Following the analytical techniques used in Demlow & Kopteva (2016) to prove similar maximum-

norm a posteriori error estimates for singularly perturbed reaction–diffusion problems, we shall derive

(see Lemma 1) an a posteriori upper bound of the form

‖u − uh‖∞ ;Ω � max
T∈T

η∞(T). (3.4)

In the reaction–diffusion case, it was also possible to prove the corresponding lower a posteriori

bounds (efficiency estimates) (Demlow & Kopteva, 2016). However, when the convection term div(au)

is present in the equation, one cannot expect to prove a standard lower a posteriori bound of the form

η∞(T) � ‖u − uh‖∞ ;ωT
+ osc, where osc is a data oscillation term. Numerical experiments outlined

below confirm that such a standard lower bound indeed does not hold. Instead, our efficiency analysis

below reveals that the error bound in (3.4) holds true for the error in a stronger norm, with a certain

seminorm of a ·∇(u−uh) added in the left-hand side. Furthermore, we shall show that the latter version

of (3.4), with the error measured in this new stronger norm, is efficient.

3.2 Reliability

Lemma 1 Under assumptions (2.5) on G, the error of the computed solution uh from (3.2) satisfies (3.4)

with the a posteriori error indicators η∞(T) as defined in (3.3).

Proof. To estimate the error at any fixed x ∈ Ω , with slight abuse of notation, let G(·) := G(x, ·) be the

Green’s function from (2.1). Recall the error representation (2.4) and subtract (3.2) with vh := Gh ∈ Sh.

Then, with the notation g := G − Gh, one gets

(uh − u)(x) = ε〈∇uh, ∇g〉 + 〈div(auh) + buh − f , g〉. (3.5)

Next, a standard integration by parts in each T ∈ T yields

(uh − u)(x) = 〈−εΔhuh + div(auh) + buh − f , g〉 + 1
2

∑

T∈T

∫

∂T\∂Ω

ε�∇uh�g. (3.6)
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 7

A comparison of (3.6) and the desired estimate (3.3), (3.4) shows that it suffices to prove that

I + II :=
∥

∥α−1
T g

∥

∥

1 ;Ω
+

∑

T∈T

εβ−1
T ‖g‖1 ;∂T � 1. (3.7)

When estimating I and II, we shall, to a degree, follow Demlow & Kopteva (2016, §3.2). A special

treatment will be required for the elements in T0 := {T ∈ T : ωT ∩ B(x, chT0
) �= ∅}, where T0 � x.

By shape regularity, we may choose c > 0 sufficiently small so that the number of these elements is

uniformly bounded, and thus, by shape regularity, hT 
 hT0
∀ T ∈ T0.

For I, by (3.3b), note that α−1
T 
 1 + �−1

h εh−2
T , while for g = G − Gh, in view of (2.7), one has

‖g‖1 ;T � min
{

‖G‖1 ;ωT
, hT‖∇G‖1 ;ωT

, h2
T |G|2,1 ;ωT

}

. Hence,

I =
∥

∥α−1
T g

∥

∥

1 ;Ω
� ‖G‖1 ;Ω + �−1

h ε

⎛

⎝|G|2,1 ;Ω\B(x,chT0
) +

∑

T∈T0

h−1
T ‖∇G‖1 ;ωT

⎞

⎠ � 1, (3.8)

where αT is understood as an elementwise-defined piecewise-constant weight. Here, we used the bound

(2.5a) for ‖G‖1 ;Ω , and then (2.5c) for |G|2,1 ;Ω\B(x,chT0
). For each T ∈ T0, we employed (2.5b) with the

ball B(x, C̄hT) ⊃ ωT , with a sufficiently large constant C̄ depending only on the shape regularity of T .

For II, we employ a scaled trace theorem in the form ‖g‖1 ;∂T � ‖∇g‖1 ;T + h−1
T ‖g‖1 ;T . Combining

this with (2.7) yields ‖g‖1 ;∂T � min{‖∇G‖1 ;ωT
, hT |G|2,1 ;ωT

}. Note also that β−1
T 
 ε−1/2 + �−1

h h−1
T ,

so εβ−1
T 
 ε1/2 + ε�−1

h h−1
T . Combining these observations, one gets

II � ε1/2‖∇G‖1 ;Ω + ε�−1
h

⎛

⎝|G|2,1 ;Ω\B(x,chT0
) +

∑

T∈T0

h−1
T ‖∇G‖1 ;ωT

⎞

⎠ � 1.

Compared with the above estimation of I, we additionally used ε1/2‖∇G‖1 ;Ω � 1, in view of (2.5a).

This completes the proof of (3.7). �

Remark 1 (Nonhomogeneous Dirichlet and Neumann boundary conditions). If u = g and uh = gh

on ∂Ω , then (3.4) holds with an additional term ‖g − gh‖L∞(∂Ω added to the right-hand side assuming

sufficient regularity of g. In particular, denoting e = u − uh, let e = eint + e∂ with e∂ = g − gh on ∂Ω ,

satisfying ε〈∇e∂ , ∇v〉+〈(div(ae∂)+b, v)〉 = 0, v ∈ H1
0(Ω). Then ‖e∂‖∞ ;Ω ≤ ‖g−gh‖∞ ;Ω by the weak

maximum principle, and one can show in a manner similar to above that ‖eint‖∞ ;Ω � maxT∈T η∞(T).

The case of Neumann boundary conditions is less clear. We are unaware of a posteriori maximum

norm bounds in the literature for Neumann boundary conditions even for symmetric or non-singularly

perturbed problems. Some initial groundwork for the present singularly perturbed convection–diffusion

case is contained in Franz & Kopteva (2022), where Green’s functions estimates are proved assuming

homogeneous Neumann conditions along the characteristic boundaries.

3.3 Efficiency of the volume residual

We start with the volume residual term in (3.3). The following notation will be used. In Ω , let e := u−uh,

and then define the residual

Rh := −εΔuh + div(auh) + buh − f in any T ∈ T . (3.9)
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8 A. DEMLOW ET AL.

Additionally, for any T ∈ T , let Rh,T be the L2 projection of Rh over T onto the space of polynomials

P
r−1(T) of degree r − 1. Also, using the barycentric coordinates {λi}n+1

i=1 associated with T , define a

standard bubble function bT :=
∏n+1

i=1 λ2
i .

Lemma 2 For any uh ∈ Sh in any T ∈ T , one has

αT‖Rh‖∞ ;T � �h‖e‖∞ ;T + αT sup
ψ∈Pr−1(T):‖ψ‖1 ;T=1

∣

∣

∣

∣

∫

T

bTψ a · ∇e

∣

∣

∣

∣

+ αT‖Rh − Rh,T‖∞ ;T . (3.10)

Proof. For the bubble function bT =
∏n+1

i=1 λ2
i , standard arguments show that ‖Rh,T‖∞ ;T‖Rh,T‖1 ;T �

‖Rh,T‖2
2 ;T �

∫

T
bTR2

h,T (Verfürth, 2013, §1.3.4). Next, for the function wT := bTRh,T‖Rh,T‖−1
1 ;T ∈

P
2n+r+1(T), note that both wT and ∇wT vanish on ∂T , while h2

T‖ΔwT‖1 ;T � ‖wT‖1 ;T � 1.

Additionally, one gets ‖Rh,T‖∞ ;T �
∫

T
wTRh,T , which yields

‖Rh‖∞ ;T �

∫

T

wTRh + ‖Rh − Rh,T‖∞ ;T . (3.11)

Here, Rh = εΔe − div(ae) − be in terms of e = u − uh, so integrating by parts twice the term with Δ,

one gets
∫

T

wTRh =
∫

T

wT(εΔe − div(ae) − be)

=
∫

T

(

εΔwT − (diva + b)wT

)

e −
∫

T

wTa · ∇e. (3.12)

Note that ‖εΔwT − (diva + b)wT‖1 ;T � εh−2
T + 1 � α−1

T �h. Also, with ψT := Rh,T/‖Rh,T‖1 ;T , one

has wT = bTψT in the final term of (3.12), where ψT ∈ P
r−1 and ‖ψT‖1 ;T = 1. It remains to combine

these two observations with (3.11) and (3.12), both multiplied by αT . �

Remark 2 Instead of arguing as in (3.12), one could integrate the convection term by parts in order

to obtain | −
∫

T
wTdiv(ae)| = |

∫

T
ea · ∇wT | � ‖∇wT‖1 ;T‖e‖∞ ;T � h−1

T ‖e‖∞ ;T . Note that h−1
T αT =

min{h−1
T , �hhTε−1}, which is not bounded by �h until hTε−1 ≤ 1. This argument does not yield a suitable

efficiency result, thus the need for the additional term in (3.10).

It is convenient to denote the seminorm of a · ∇e present in (3.10) by

|a · ∇e|∗ ;T := αT sup
ψ∈Pr−1(T):‖ψ‖1 ;T=1

∣

∣

∣

∣

∫

T

bTψ a · ∇e

∣

∣

∣

∣

∀ T ∈ T . (3.13)

Corollary 1 For any uh ∈ Sh in any T ∈ T , one has

αT‖Rh‖∞ ;T � �h‖e‖∞ ;T + |a · ∇e|∗ ;T + αT‖Rh − Rh,T‖∞ ;T , (3.14)

|a · ∇e|∗ ;T � �h‖e‖∞ ;T + αT‖Rh‖∞ ;T . (3.15)
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 9

Proof. The first assertion (3.14) is equivalent to (3.10). To prove the second, note that (3.12), as well

as most estimates in the proof of Lemma 2 that involve wT = bTψT , also hold true for a more general

wT := bTψ with an arbitrary ψ ∈ P
r−1(T) such that ‖ψ‖1 ;T = 1. The only exceptions are (3.11) and

the related bound ‖Rh,T‖∞ ;T �
∫

T
wTRh,T , which are no longer true. Instead, we shall now employ

|
∫

T
wTRh| � ‖Rh‖∞ ;T . Hence, from (3.12) with this more general wT , one gets the following version of

(3.10):

αT

∣

∣

∣

∣

∫

T

bTψ a · ∇e

∣

∣

∣

∣

� �h‖e‖∞ ;T + αT

∣

∣

∣

∣

∫

T

wTRh

∣

∣

∣

∣

,

and then the desired (3.15). �

Remark 3 One can extend the above Lemma 2 and Corollary 1 for a slightly simpler bubble function

bT =
∏n+1

i=1 λi (instead of bT =
∏n+1

i=1 λ2
i ). Note that in this case, (3.12) will additionally involve

∫

∂T
εe∇wh · n, so the proof will be slightly more involved.

3.4 Efficiency of the jump residual

Now we turn to the jump residual term in (3.3), for which following Demlow & Kopteva (2016), we

modify the standard edge residual efficiency proof by employing subscale mesh elements when hT does

not resolve
√

ε.

The following notation will be used. For an interior face E ∈ E , shared by T+ and T− in T ,

construct two, not necessarily shape-regular, sub-simplices T±
E ⊂ T± that share the entire face E and

satisfy

∣

∣T±
E

∣

∣ = ĥE|E|, ĥE := min
{

ε1/2, |T+||E|−1, |T−||E|−1
}


 min
{

ε1/2, hT±
}

.

To be more specific, unless T±
E = T±, one may impose that the vertex of T±

E opposite to E lies on

the corresponding median line in T±. The simplices T±
E do not necessarily satisfy either a minimum

or maximum angle condition, so it is necessary to take extra care in our arguments below at a couple

of points.

Next let {λ±
i }n+1

i=1 be the barycentric coordinates in T±
E . Assume that λ±

n+1|E ≡ 0 so that {λ±
i }n

i=1 are

the barycentric coordinates associated with the vertices of E. For the tangential gradient along E, we

have |∇Eλ±
i | � |diam E|−1 � ĥ−1

E , whereas in the direction perpendicular to E the height of the triangle

is 2ĥE and so |∂E⊥λ±
i | � ĥ−1

E with constant, depending on the shape regularity of T±. Finally, define a

standard face bubble bE :=
∏n

i=1(λ
±
i )2 on T±

E , and the seminorm

|a · ∇e|∗ ;E := sup
ϕ∈Pr−1(E):‖ϕ‖1 ;E=1

ĥ−1
E

∣

∣

∣

∣

∣

∫

T+
E ∪T−

E

αT bE ϕ a · ∇e

∣

∣

∣

∣

∣

. (3.16)

Here, inside the volume integral, ϕ ∈ P
r−1(E) is understood as extended to R

n such that it remains

constant in the direction normal to E.
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10 A. DEMLOW ET AL.

Lemma 3 Let uh ∈ Sh. For any interior face E = ∂T+ ∩ ∂T−, shared by T+ and T− in T , with

βE := min{ε1/2, �hhT+ , �hhT−} 
 βT± , one has

βE

∥

∥�∇uh�
∥

∥

∞ ;E
� �h‖e‖∞ ;T+∪T− + |a · ∇e|∗ ;E + ‖αTRh‖∞ ;T+∪T− . (3.17)

Proof. Set Jh := �∇uh� ∈ P
r−1(E), for which standard arguments show that ‖Jh‖∞ ;E‖Jh‖1 ;E �

‖Jh‖2
2 ;E �

∫

E
bEJ2

h (Verfürth, 2013, §1.3.4). So using the function wE := bEJh‖Jh‖−1
1 ;E ∈ P

2n+r−1(E),

one gets ‖Jh‖∞ ;E �
∫

E
JhwE. Note that Jh, as a polynomial function on E, can be extended to the entire

(n − 1)-dimensional plane that contains E. Next, extend it to R
n by letting Jh remain constant in the

direction normal to E. This extends wE to T+
E ∪ T−

E , with both wE and ∇wE vanishing on ∂T±
E \E. Note

also that (as elaborated in Remark 4 below)

ĥ2
E‖ΔwE‖1 ;T±

E
� ‖wE‖1 ;T±

E
� ĥE, ĥE

∥

∥�∇wE�
∥

∥

1 ;E
� 1. (3.18)

A version of (3.12) (taking into account, when carrying out the integration by parts twice, that wE and

∇wE do not vanish on E) yields
∫

T+
E ∪T−

E

wERh =
∫

T+
E ∪T−

E

(

εΔwE − (diva + b)wE

)

e −
∫

T+
E ∪T−

E

wEa · ∇e

−
∫

E

ε
(

Jh wE + �∇wE� e
)

, (3.19)

where we used �∇e� = −�∇uh� = −Jh on E. Next, recalling that ‖Jh‖∞ ;E �
∫

E
JhwE, and also (3.18),

one gets

ε‖Jh‖∞ ;E �
(

εĥ−1
E + ĥE

)

‖e‖∞ ;T+∪T− +
∣

∣

∣

∣

∣

∫

T+
E ∪T−

E

wE a · ∇e

∣

∣

∣

∣

∣

+ ĥE‖Rh‖∞ ;T+∪T− .

Multiply this by ε−1βE and note that, in view of ĥE ≤ ε1/2, one has εĥ−1
E + ĥE ≤ 2εĥ−1

E , so

ε−1βE(εĥ−1
E + ĥE) � βEĥ−1

E � �h. Also, for each T = T±, with αT = min{1, �hε
−1h2

T}, note that

βEĥE � min{ε, �hh2
T} = εαT yields ε−1βE � ĥ−1

E αT . So

βE‖Jh‖∞ ;E � �h‖e‖∞ ;T+∪T− + ĥ−1
E

∣

∣

∣

∣

∣

∫

T+
E ∪T−

E

αT wE a · ∇e

∣

∣

∣

∣

∣

+ ‖αTRh‖∞ ;T+∪T− .

It remains to note that wE = bEϕE, where ϕE := Jh‖Jh‖−1
1 ;E satisfies ‖ϕE‖1 ;E = 1. �

Corollary 2 Under the conditions of Lemma 3, one has

βE

∥

∥�∇uh�
∥

∥

∞ ;E
� �h‖e‖∞ ;T+∪T− + |a · ∇e|∗ ;E + ‖αTRh‖∞ ;T+∪T− , (3.20)

|a · ∇e|∗ ;E � �h‖e‖∞ ;T+∪T− + βE

∥

∥�∇uh�
∥

∥

∞ ;E
+ ‖αTRh‖∞ ;T+∪T− . (3.21)
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 11

Proof. The first assertion (3.20) is equivalent to (3.17). For the second (similarly to the proof of

Corollary 1), we note that (3.19), as well as most evaluations in the proof of Lemma 3, holds true

for a more general wE := bEϕ with an arbitrary ϕ ∈ P
r−1(E) subject to ‖ϕ‖1 ;E = 1. The main

exception is ‖Jh‖∞ ;E �
∫

E
JhwE, which is no longer true, and instead of which we now employ

|
∫

E
JhwE| � ‖Jh‖∞ ;E, which yields (3.21). �

Remark 4 ((3.18) on anisotropic elements). Consider a less standard (3.18) for T+
E (as T−

E is similar).

If ĥE = |T+||E|−1, then T+
E = T+ is shape-regular with ĥE 
 hT+ , so (3.18) is standard. Otherwise,

i.e., if ĥE < |T+||E|−1, set θ := ĥE/{|T+||E|−1} 
 ĥE/hT+ and define an affine transformation from

the shape-regular T+ to the anisotropic T+
E by

x̂ = x − (P0 − P̂0) λ0(x).

Here, P0 and P̂0 are the vertices in T+ and T+
E opposite to E, while λ0 is the barycentric coordinate

in T+ associated with P0. As |T+
E | = θ |T+|, the Jacobian determinant of this transformation equals θ .

Additionally, in the shape-regular T+, one has |∇λ0| 
 h−1
T+ and |P0 − P̂0| � hT+ , so all elements in the

transformation matrix are � 1. Now, by Cramer’s rule, all entries of the inverse transformation matrix

are � θ−1, so for a generic v, one gets |∇x̂v| � θ−1|∇xv|, which yields (3.18) after application of a

standard inverse inequality for shape-regular elements.

3.5 Seminorms of the convective derivative and overall efficiency result

Combining the definition of η∞(T) in (3.3) with (3.14) and (3.20) yields in summary that

η∞(T) � �h‖e‖∞ ;ωT
+ max

T ′⊂ωT

|a · ∇e|∗ ;T ′ + max
E⊂∂T

|a · ∇e|∗ ;E + osc(αTRh, ωT), (3.22)

where

osc(αTRh, ωT) := max
T ′⊂ωT

‖αT ′(Rh − Rh,T ′)‖∞ ;T ′ . (3.23)

Recall that here we used the elementwise seminorm definitions (3.13) and (3.16):

|a · ∇e|∗ ;T := αT sup
ψ∈Pr−1(T):‖ψ‖1 ;T=1

∣

∣

∣

∣

∫

T

bTψ a · ∇e

∣

∣

∣

∣

,

|a · ∇e|∗ ;E := sup
ϕ∈Pr−1(E):‖ϕ‖1 ;E=1

ĥ−1
E

∣

∣

∣

∣

∣

∫

T+
E ∪T−

E

αT bE ϕ a · ∇e

∣

∣

∣

∣

∣

.

These are seminorms because it is possible that a·∇e �= 0 is orthogonal to P
r+2n+1 � bTψ , bEϕ over the

relevant volumes. We now define the following related global seminorm of the convective derivative:

|a · ∇e|∗ := max
T⊂T

|a · ∇e|∗ ;T + max
E⊂E

|a · ∇e|∗ ;E. (3.24)
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12 A. DEMLOW ET AL.

From (3.22) and (3.23), one immediately gets the global estimate

max
T∈T

η∞(T) � �h‖e‖∞ ;Ω + |a · ∇e|∗ + osc(αTRh, Ω).

On the other hand, combining (3.4) with (3.15) and (3.21), one gets |a · ∇e|∗ � �h‖e‖∞ ;Ω +
maxT∈T η∞(T), and then

‖e‖∞ ;Ω + �−1
h |a · ∇e|∗ � max

T∈T
η∞(T).

Combining these relationships with osc(αTRh, T) ≤ η∞(T), we have proved the following for the

standard conforming finite element method.

Theorem 1 Under assumptions (2.5) on G, the error of the computed solution uh from (3.2) satisfies

‖u − uh‖∞ ;Ω + �−1
h |a · ∇(u − uh)|∗ + osc(αTRh, Ω) � max

T∈T
η∞(T)

� �h‖u − uh‖∞ ;Ω + |a · ∇(u − uh)|∗ + osc(αTRh, Ω). (3.25)

Thus, while our original intention was to bound ‖u − uh‖∞ ;Ω , the estimator that we have naturally

derived is not efficient for this norm. Deriving an upper bound for η∞ instead requires inclusion of the

|·|∗ seminorm. Recall also that a similar situation is observed when bounding energy norms in singularly

perturbed convection–diffusion problems, where a dual norm of the convective derivative plays a similar

role in the analysis (Tobiska & Verfürth, 2015). Our numerical experiments below also highlight the

importance of the | · |∗ seminorm in a posteriori analysis for convection–diffusion problems.

We finish this section with a further discussion of the | · |∗ seminorm, as its definition involves

multiple terms and its meaning may not be intuitively clear at first glance. Consider first the simpler

norm

|a · ∇e|∗∗ := ‖αT a · ∇e‖∞ ;Ω , (3.26)

of the convective derivative, where αT = min{1, �hε
−1h2

T} ≤ 1 is understood as an elementwise-

defined piecewise-constant weight. The above definitions easily yield that |a · ∇v|∗ � |a · ∇v|∗∗. Thus,

our estimator measures the error in a mesh-dependent norm that lies between ‖e‖∞ ;Ω and ‖e‖∞ ;Ω +
‖αT a · ∇e‖∞ ;Ω . The | · |∗∗ norm is still mesh-dependent, but gives a more transparent measure of the

convective derivative of the error. It is not generally true that |a · ∇v|∗∗ � |a · ∇v|∗. It is straightforward

to instead prove that αT‖Pr−1(a · ∇e)‖∞ ;T � |a · ∇e|∗ ;T and thus that

|a · ∇e|∗∗ � max
T∈T

|a · ∇e|∗ ;T + max
T∈T

αT‖a · ∇e − Pr−1(a · ∇e)‖∞ ;T , (3.27)

where Pr−1 is the L2 projection onto the elementwise polynomials of degree r−1. Thus, the ∗-seminorm

bounds the ∗∗-norm only up to an oscillation term. In fact, |a · ∇u|∗∗ and hence |a · ∇e|∗∗ may even

be unbounded in cases where |a · ∇u|∗ and |a · ∇e|∗ are finite. In particular, |a · ∇u|∗∗ < ∞ requires

a · ∇u ∈ L∞, whereas |a · ∇u|∗ < ∞ requires only a · ∇u ∈ L1. The latter is true, but not the former,

for example, when Ω is a nonconvex polygonal domain and thus ∇u is unbounded at reentrant corners.

In the latter case, a minor modification of | · |∗∗ by inclusion of an appropriate local bubble again results
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 13

in a finite quantity. It is also possible to define other norms between | · |∗ and | · |∗∗. In doing so, there

appears to be a tradeoff between simplicity and transparency on the one hand and fidelity to actual

estimator behavior on the other, with no obvious choice doing an outstanding job at both of these tasks.

In spite of its drawbacks, the ∗∗ norm is easily understood as an elementwise-weighted norm of the

error, tracks the ∗-seminorm closely in some situations and provides clear insight into the convergence

behavior of the ∗ seminorm. To illustrate the latter point, assume momentarily for simplicity that the

mesh is quasi-uniform with diameter h, ignore logarithmic factors and assume that h2 � ε. Then |a ·
∇e|∗∗ 
 h2

ε
‖a · ∇e‖∞ ;Ω . Now, as h → 0 and h � ε, we get |a · ∇e|∗∗ 	 h‖a · ∇e‖∞ ;Ω . Typically,

the maximum norm converges with one power of h faster than the W1
∞ norm, so we may roughly expect

|a ·∇e|∗∗ to be equivalent to ‖e‖∞ ;Ω when h 
 ε, and for the latter to dominate the former as h/ε → 0.

Alternatively, we may integrate by parts (3.13) and (3.16) to obtain

|a · ∇e|∗ � max
T∈T

(

αTh−1
T + αT min{ε1/2, hT}−1

)

‖e‖∞ ;T

� �hε
−1 max

T∈T

(

min{ε1/2, hT}
)

‖e‖∞ ;T . (3.28)

Here, we also used αT ≤ �hε
−1 min{ε, h2

T}. We thus see that up to log factors, |a · ∇e|∗ � ‖e‖∞ ;Ω

when hT ≤ ε (as the latter also implies hT ≤ ε1/2). In addition,
|a·∇e|∗
‖e‖∞ ;Ω

→ 0 as maxT∈T hT → 0. In

other words, the extended norm in (3.25) is dominated by the maximum norm over areas of Ω where

the local mesh size resolves ε. If the problem is not singularly perturbed (i.e., ε 
 1), then this heuristic

is valid on any mesh.

Both of the preceding analyses indicate that |a · ∇e|∗ may play an important role in understanding

the behavior of the maximum-norm error estimator maxT∈T η∞(T) when hT � ε, but diminishes in

importance relative to ‖u − uh‖∞ ;Ω and maxT∈T η∞(T) as hT resolves ε. We verify this behavior in

our numerical experiments below, and additionally provide a computational comparison between | · |∗
and | · |∗∗.

4. A posteriori error estimation for stabilized methods

In this section, we explore stabilization schemes and their effects on the above a posteriori error

estimates. Stabilized methods frequently have the form: find uh ∈ Sh such that

B(uh, vh) + ST (uh, vh) = 〈f , vh〉 ∀ vh ∈ Sh, (4.1)

where the stabilization term is described using ST : Sh × Sh → R.

In order to develop a posteriori error estimates for stabilized schemes of the form (4.1), we imitate

the proof of Lemma 1 and use the Green’s function G(·) := G(x, ·) and its interpolant Gh ∈ Sh. We

again recall the error representation (2.4) and subtract (4.1) with vh := Gh ∈ Sh. Then, with the notation

g := G − Gh, one gets

(uh − u)(x) = ε〈∇uh, ∇g〉 + 〈div(auh) + buh − f , g〉 − ST (uh, Gh),

i.e., compared with (3.5), we have an additional term ST (uh, Gh). Lemma 1 for this case then reads as

‖u − uh‖∞ ;Ω � max
T∈T

η∞(T) + sup
x∈Ω

|ST (uh, Gh)|. (4.2)
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14 A. DEMLOW ET AL.

Bounds for the last term depend on the stabilization method; we explore some options below. We also

note that there is a large literature on stabilization methods that we do not explore here. We shall

somewhat follow Tobiska & Verfürth (2015) in our presentation (where a similar analysis is carried

out for the energy norm) and refer to that work for more discussion. Hence, our exploration of this topic

is cursory and focused only on effects on maximum-norm a posteriori error estimation. In particular, we

establish that the a posteriori error estimation framework described above remains valid for a number

of stabilized methods.

4.1 Streamline diffusion method

The streamline diffusion method is a residual-based method introduced in Hughes & Brooks (1979) (see

also Roos et al., 2008, §III.3.2.1, and the references therein). Here the stabilization term has the form

ST (uh, vh) =
∑

T∈T

δT

∫

T

Rh a · ∇vh, (4.3)

where Rh = −εΔuh + div(auh) + buh − f is the elementwise residual from (3.9). Here, δT ≥ 0 is a

user-chosen parameter. Note one standard choice (Brooks & Hughes, 1982; John & Knobloch, 2007)

δT = hTa−1
T ξ

(

1
2
PeT

)

, ξ(s) := coth(s) − s−1 
 min{1, s}, aT := ‖a‖∞ ;T , (4.4)

where we used the local Péclet number PeT := ε−1aThT . Note also that the above δT , as well as many

other standard choices, satisfies the hypothesis of Corollary 3 below.

Lemma 4 Suppose G satisfies (2.5), and Gh ∈ Sh is its interpolant from (2.7). Then, for (4.3), one gets

|ST (uh, Gh)| � max
T∈T

{

γTδT‖Rh‖∞ ;T

}

, γT := min
{

aTh−1
T , �h(1 + aTε−1hT)

}

. (4.5)

Corollary 3 Suppose that uh satisfies (4.1), (4.3) with δT � hT min{a−1
T , ε−1hT} ∀ T ∈ T . Then,

under the conditions of Lemma 4, one has |ST (uh, Gh)| � maxT∈T η∞(T) for any x ∈ Ω , and, hence,

the error bound (3.4).

Proof. In view of (4.2), it suffices to establish the desired bound on ST (uh, Gh). For the latter, a

comparison of (4.5) with (3.3) shows that it suffices to prove that γTδT � αT = min{1, �hε
−1h2

T}.
From γT � aTh−1

T combined with δT � hTa−1
T , one immediately gets γTδT � 1, so it remains to

prove that we also have γTδT � �hε
−1h2

T . The latter follows by combining γT � �h(1 + aTε−1hT) 

�h max{1, aTε−1hT} with δT � hTa−1

T min{1, aTε−1hT} (in view of min{1, s} max{1, s} = s ∀ s). �

Proof of Lemma 4. A comparison of the desired bound (4.5) with (4.3) shows that it suffices to

prove that

I∗ :=
∑

T∈T

I∗
T :=

∑

T∈T

γ −1
T ‖a · ∇Gh‖1 ;T � 1.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
jn

a
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

a
n
u
m

/d
ra

d
0
0
1
/7

0
4
6
3
0
6
 b

y
 T

e
x
a
s
 A

&
M

 U
n
iv

e
rs

ity
 u

s
e
r o

n
 3

0
 A

u
g
u
s
t 2

0
2
3



POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 15

Note that here γ −1
T 
 hTa−1

T + �−1
h min{1, εh−1

T a−1
T }. Hence, a calculation using Gh = G − (G − Gh)

leads to

I∗
T � hT

∥

∥a−1
T a · ∇Gh

∥

∥

1 ;T
+ �−1

h ‖a · ∇G‖1 ;T + �−1
h εh−1

T

∥

∥a−1
T a · ∇(G − Gh)

∥

∥

1 ;T
.

Here |a−1
T a| ≤ 1. Additionally, for the first term, an inverse inequality applied elementwise yields

hT‖∇Gh‖1 ;T � ‖Gh‖1 ;T � ‖G‖1 ;ωT
, where we also used (2.7). For the final term, (2.7) implies ‖∇(G−

Gh)‖1 ;T � min
{

‖∇G‖1 ;ωT
, hT‖D2G‖1 ;ωT

}

. Combining these observations, one now gets

I∗ � ‖G‖1 ;� + �−1
h ‖a · ∇G‖1 ;� + �−1

h ε

⎛

⎝|G|2,1 ;�\B(x,chT0
) +

∑

T∈T0

h−1
T ‖∇G‖1 ;ωT

⎞

⎠ ,

where we again used T0 � x and T0 = {T ∈ T : ωT ∩ B(x, chT0
) �= ∅}. Most ingredients of the

right-hand side have been estimated in (3.8). The remaining �−1
h ‖a · ∇G‖1 ;Ω is estimated using (2.6),

which yields the desired bound I∗ � 1. (Note that (2.6) follows from (2.5).)

4.2 Continuous interior penalty stabilization

We next let uh satisfy (4.1) with the stabilizing term (Douglas & Dupont, 1976; Burman & Hansbo,

2004) (see also Roos et al., 2008, §III.3.3.2, Tobiska & Verfürth, 2015, §2.2.4 and the references therein)

ST (uh, vh) =
∑

E∈E

τE

∫

E

�a · ∇uh��a · ∇vh�. (4.6)

Here, we used the standard notation �·�, which, for a generic scalar function v, is defined by �v� := �vnE�
on any E ∈ E using any fixed normal unit vector nE to E. A user-chosen parameter τE typically satisfies

τE � h2
E. (4.7)

Following the analysis in Tobiska & Verfürth (2015, Lemma 2.6), we restrict our consideration to

the case of P1 elements and, thus, get the following result.

Lemma 5 Suppose that uh satisfies (4.1), (4.6), (4.7) with the space Sh of P1 elements, and that the

functions a, diva, b and f in (1.1) are continuous in Ω . Suppose also that G satisfies (2.5), and Gh ∈ Sh

is its interpolant from (2.7). Then, for (4.6), one gets |ST (uh, Gh)| � maxT∈T η∞(T) for any x ∈ Ω ,

and, hence, the error bound (3.4).

Proof. In view of (4.2), it suffices to establish the desired bound on ST (uh, Gh). As we consider

the case of P
1 elements, εΔuh = 0 elementwise for any uh ∈ Sh. Hence, the residual becomes

Rh = div(auh) + buh − f , while, in view of the continuity of a, diva, b and f , one then gets

�a · ∇uh� = �Rh�. Hence, (4.6) leads to

|ST (uh, Gh)| � I∗∗ max
T∈T

{

αT‖Rh‖∞ ;T

}

, I∗∗ :=
∑

T∈T

α−1
T h2

T

∥

∥�a · ∇Gh�
∥

∥

1 ;∂T
,
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16 A. DEMLOW ET AL.

where we also used that hE 
 hT for any shape-regular T sharing a face E. As αT‖Rh‖∞ ;T ≤ η∞(T)

(in view of (3.3)), it remains to show that I∗∗ � 1.

For the latter, first, note that an inverse inequality yields h2
T

∥

∥�∇Gh�
∥

∥

1 ;∂T
� h

j
T |Gh|j,1 ;ωT

for j = 0, 1,

while (2.7) implies |Gh|j,1 ;T � |G|j,1 ;ωT
. On the other hand, �∇Gh� = −�∇g�, where g = G − Gh, so a

standard scaled trace inequality yields
∥

∥�∇g�
∥

∥

1 ;∂T
� ‖D2g‖1 ;ωT

+ h−1
T ‖∇g‖1 ;ωT

, for which (2.7) gives

‖D2g‖1 ;T + h−1
T ‖∇g‖1 ;T � ‖G‖2,1 ;ωT

. Combining these observations, one gets

h2
T

∥

∥�a·∇Gh�
∥

∥

1 ;∂T
� min

{

‖G‖1 ;ω′
T
, hT |G|1,1 ;ω′

T
, h2

T |G|2,1 ;ω′
T

}

, (4.8)

where ω′
T denotes the patch of elements in T touching ωT (including those in ωT ). Finally, combining

the definition of I∗∗ with (4.8) and α−1
T 
 1 + �−1

h εh−2
T , one gets

I∗∗ � ‖G‖1 ;Ω + �−1
h ε

(

|G|2,1 ;Ω\B(x,chT0
) +

∑

T∈T ′
0

h−1
T ‖∇G‖1 ;ω′

T

)

,

where T ′
0 := {T ∈ T : ω′

T ∩ B(x, chT0
) �= ∅}, with T0 � x. Now, the desired bound I∗∗ � 1 is obtained

similarly to (3.8). �

4.3 Local projection stabilization

In this section, we shall discuss local projection stabilization methods (and, very briefly, somewhat

related subgrid-scale schemes). We shall see that for such methods one can choose the Green’s function

interpolant Gh ∈ Sh such that ST (uh, Gh) = 0 in (4.2), which immediately yields the a posteriori error

(3.4) and, hence, a more general (3.25).

We shall mainly focus on local projection stabilization methods of the form (4.1)—see, e.g. (Roos

et al., 2008, §III.3.3.1), (Tobiska & Verfürth, 2015, §2.2.2) for further details and the references

therein—with the stabilizing term

ST (uh, vh) =
∑

M∈M

δM

∫

M

κh(āM · ∇uh) κh(āM · ∇vh). (4.9)

This stabilizing term uses fluctuations of the convective derivatives computed using the fluctuation

operator κh := I − πh, where πh is a projection onto an appropriate discontinuous finite element space

related to an auxiliary partition M of Ω . The approximation āM of a is assumed constant in each

M ∈ M . A user-chosen parameter δM in (4.9) typically satisfies

δM 
 hM ‖a‖−1
∞ ;M .

Both M = T (one-level approach) and T generated by a single-level refinement of each element in

M (two-level approach) have been introduced in the literature (Becker & Braack, 2001, 2004; Matthies

et al., 2007). This can be implemented in various ways. To be more precise, it will be convenient to

denote by Sr
h the set of functions that are continuous on Ω , equal to 0 on ∂Ω , and polynomials of degree

at most r on each T ∈ T , where r ≥ 1 is a fixed polynomial degree. An analogous set of functions

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
jn

a
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

a
n
u
m

/d
ra

d
0
0
1
/7

0
4
6
3
0
6
 b

y
 T

e
x
a
s
 A

&
M

 U
n
iv

e
rs

ity
 u

s
e
r o

n
 3

0
 A

u
g
u
s
t 2

0
2
3



POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 17

relative to the partition M will be denoted Sr
H . With this notation, we assume that the finite element

space Sh and the fluctuation operator κh satisfy

S1
h ⊆ Sh ⊆ Sr

h for some r ≥ 1, κh(∇vH) = 0 ∀ vH ∈ S1
H . (4.10)

The above assumption on κh is satisfied if πhv in each M ∈ M is defined as the L2 projection of v onto

P
q(M) for some q ≥ 0. In the two-level case, one may set Sh := Sr

h and q := r − 1. In the one-level case

M = T , for some q ≥ 0, the space S
q+1
h can be enriched by appropriate bubble basis functions, so one

gets (4.10) with r := q + n + 1. For example, if q = 0, one may employ Sh = S1
h

⊕

span{bT : T ∈ T },
where bT =

∏n+1
i=1 λi∈ P

n+1(T) is the bubble function associated with T , so (4.10) is satisfied with

r = n + 1.

For both one-level and two-level approaches under the general assumption (4.10), we get the

following result.

Lemma 6 Suppose that uh satisfies (4.1), (4.9) under assumption (4.10). Then, under the conditions

(2.5) on G, the error of the computed solution uh satisfies (3.25), i.e., Theorem 1 remains valid for this

method.

Proof. In view of (4.10), one has uh ∈ Sr
h, so the efficiency results of §§3.3–3.4 apply immediately.

Hence, to establish (3.25), it suffices to prove (3.4).

Next, construct the interpolant Gh ∈ S1
H ⊆ S1

h of G exactly as described in §2.3, only relative to the

partition M . Then the bounds (2.7) hold true, only with ωT now denoting the patch of elements in M

touching M ⊇ T (which also includes this M). With this tweak in the notation, the estimates in §3.2

remain valid, so Lemma 1 for this case again reads as (4.2). Finally, Gh ∈ S1
H combined with (4.10)

yields ST (uh, Gh) = 0, which, combined with (4.2), gives the desired (3.4). �

Note that Lemma 6 also remains valid for a version of (4.9) with the fluctuations of the full gradient,

i.e., with κh(āM · ∇ · · · ) replaced by κh(∇ · · · ) (as in this case we again enjoy ST (uh, Gh) = 0 for

Gh ∈ S1
H).

In addition, the above argument may be applied to subgrid-scale methods, in which gradients

of fluctuations are used instead of fluctuations of gradients as in (4.9) for local projection methods

(Guermond, 1999, 2001); see also, e.g. (Matthies et al., 2007, §5), (Roos et al., 2008, §IV.4.5), (Tobiska

& Verfürth, 2015, §2.2.3). For example, one may replace the terms of type κh(āM · ∇ · · · ) in (4.9)

by aM · ∇(κ̃h · · · ) (or the full-gradient version ∇(κ̃h · · · )). A typical fluctuation operator κ̃h satisfies

ker κ̃h ⊇ S1
H (so κ̃hGh = 0), in which case we again get Lemma 6.

4.4 Concluding remarks on stabilized methods

Above, we have established that the introduction of a variety of stabilization techniques does not affect

the ability to bound ‖u − uh‖L∞(Ω) using our residual estimator, although the form of the proof depends

on the particular stabilization technique. The rest of our arguments concerning the seminorm |a · ∇e|∗
and efficiency of our estimators are generally not affected by the introduction of stabilization, since they

do not use Galerkin orthogonality in their proof. The only exception comes in the choice of r used to

define oscillation and | · |∗, which, as noted in the preceding subsection, may require a little bit of care

when employing projection methods with bubble functions in the definition of Sh. We summarize these

findings below.
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18 A. DEMLOW ET AL.

Theorem 2 Consider streamline diffusion stabilization under the assumptions of Corollary 3, contin-

uous interior penalty stabilization under the assumptions of Lemma 5, or local projection stabilization

under the assumptions of Lemma 6. Under these conditions and the assumptions of Theorem 1, the

conclusions of Theorem 1 remain valid. That is, the estimator maxT∈T η∞(T) is reliable and efficient

for the error notion ‖u − uh‖∞ ;Ω + |a · ∇(u − uh)|∗ + osc(αTRh, Ω) up to factors of �h.

5. Numerical experiments

In this section, we present numerical experiments that illustrate the practical behavior of the error

estimators and indicators defined above. All computations were carried out in MATLAB using suitably

modified routines from the adaptive finite element library iFEM Chen (2009).

In all cases, we took Ω to be the unit square (0, 1)× (0, 1) and the coefficients a = [0, 1] and b = 1.

We computed using affine Lagrange elements and either uniform or adaptive refinement. In the case of

adaptive refinement, we used a modified maximum strategy in the standard solve → estimate →
mark → refine loop. Let η∞ = maxT∈T η∞(T) be the overall error estimator, and fix a (small)

positive integer Kmax. An element T ∈ T is bisected Kmax times if η∞(T) ≥ 0.5η∞, Kmax − 1 times if

0.5η∞ > η∞(T) ≥ 0.25η∞, etc. Kmax can be varied based on the degree of singular perturbation, with

Kmax = 4 being used in the experiments below. This scheme helped to prevent too few elements being

refined at each iteration of the adaptive procedure, and thus too many iterations from occurring. It also

aided in more efficient resolution of boundary and interior layers since elements with large indicators

are subdivided multiple times in each adaptive step.

Unknown constants appear in our error estimators and must be fixed. In our experiments, we chose

the definition

η∞(T) = min

[

1, 0.0125�h

h2
T

ε

]

‖RT‖L∞(T)

+ min
[√

ε, 0.03�hhT

] ∥

∥�∇uh�
∥

∥

L∞(∂T)
.

Experiments were conducted using either an unstabilized scheme or streamline diffusion stabilization

with the parameter chosen as in (4.4).

5.1 Experiment 1: smooth solution

In this experiment, we consider a simple smooth solution

u1(x, y) = sin(πx) sin(πy).

No stabilization was used. Our goal here is to illustrate and compare the convergence orders of the

a posteriori error estimator maxT∈T η∞(T), the target error norm ‖u − uh‖L∞(Ω) and the convective

error |a · ∇(u − uh)|∗. We thus take a uniform series of mesh refinements, and carry out convergence

studies with ε = 3 × 10−3 and ε = 10−5. Results are displayed in Fig. 2. In both cases, we observe that

‖u − uh‖L∞(Ω) converges with order DOF−1 = O(h2), and with the same order of magnitude observed

in each case. When ε = 3 × 10−3, we observe a preasymptotic regime in which the error estimator and

convective error |a · ∇(u − uh)|∗ both converge with order DOF−3/2 = h3. As h sufficiently resolves

ε, the estimator instead tracks the error ‖u − uh‖L∞(Ω) with order DOF−1, while the convective error
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POINTWISE ESTIMATORS FOR CONVECTION DIFFUSION PROBLEMS 19

Fig. 2. Smooth solution u1 and uniform refinement, standard Galerkin method without stabilization, ε = 3 × 10−3 (left) and

ε = 10−5 (right).

measured in the ∗-seminorm continues to decrease with order DOF−3/2. In all regimes, this illustrates

that maxT∈T η∞(T) 
 ‖u−uh‖L∞(Ω)+|a·∇(u−uh)|∗ (up to data oscillation, which here is bounded by

the latter two terms). In addition, it highlights two different dominant convergence rates for the estimator.

A third initial regime of O(DOF−1/2) = O(h) convergence for the estimator and |a · ∇(u − uh)|∗ is

illustrated in the right plot in Fig. 2, where ε = 10−5.

Understanding these convergence regimes is easiest when considering the ∗∗-seminorm |a · ∇(u −
uh)|∗∗ = supT∈T min

(

1, 0.0125�h

h2
T

ε

)

‖a · ∇e‖∞ ;T , which closely tracks the ∗ seminorm in this case.

We may expect ‖a · ∇(u − uh)‖L∞(T) = O(h) = O(DOF−1/2). Initially, min(1, �h

h2
T

ε
) = 1, so |a · ∇(u −

uh)|∗∗ = O(h) also. When h2
T�h <

√
ε, then we have |a · ∇(u − uh)|∗∗ � h3�h

ε
, leading to the increased

rate of convergence observed in Fig. 2.

Remark 5 In Fig. 2, we observe that ‖u − uh‖L∞(Ω) converges with optimal rate O(DOF−1) from

essentially the first mesh refinement. This implies that oscillations often associated with unstabilized

solution of singularly perturbed problems are not present here. This was confirmed by viewing plots

of the discrete solution. Lack of instability in the discrete solution may be due to symmetries in the

test solution, which in 1D examples has been observed to lead to similar unexpectedly good results

for unstabilized methods (Kopteva, 1993, Chap. 4). Although numerical stability is uncharacteristically

good for this example, it is nonetheless useful as it allows for clear exposition of the properties of our

estimator relative to the target error notion ‖u − uh‖∞ ;Ω and seminorm |a · ∇(u − uh)|∗.

5.2 Experiment 2: outflow boundary layer

In this subsection, we consider the outflow boundary layer solution

u2(x, y) = x(1 − x)

[

y − e−(1−y)/ε − e−1/ε

1 − e−1/ε

]

.
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Fig. 3. Outflow boundary layer solution u2 with ε = 10−5 and streamline diffusion stabilization. Uniform and adaptive

refinement (left), and with oscillation displayed (right).

Fig. 4. Outflow boundary layer solution u2 with ε = 10−4 (left); interior layer solution u3 with ε = 10−5 (right), streamline

diffusion stabilization with adaptive refinement.

This solution exhibits a strong layer at y = 1 of width O(ε) and corresponding maximum solution

gradient size O(ε−1). In this experiment and in all of the displayed adaptive experiments involving

layers, we employed streamline diffusion stabilization.

In the left plot in Fig. 3, we illustrate the advantage of adaptive versus uniform refinement with

ε = 10−5. Uniform refinement leads to essentially no decrease in the target norm ‖u − uh‖L∞(Ω), but

some decrease in the ∗-seminorm and estimator. Adaptive refinement yields little initial decrease in the

maximum error, but optimal O(DOF−1) decrease begins with a little over 105 degrees of freedom. The

∗-seminorm and estimator decrease with order DOF−1 for most of the convergence history.
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In the right plot of Fig. 3, we include data oscillation in the plot in order to illustrate that the | · |∗-

seminorm is an essential part of the error notion measured by maxT∈T η∞(T). In particular, we see that

maxT∈T η∞(T) 
 |a·∇e|∗ � ‖u−uh‖∞ ;Ω +maxT∈Th
αT‖Rh−Rh,T‖∞ ;T for much of the convergence

history, confirming that the estimator is reliable, but not efficient when measuring only the sum of the

maximum error and data oscillation.

5.3 Experiment 3: interior layer, | · |∗ versus | · |∗∗ error measure

Here, in addition to the outflow boundary layer problem considered above, we also consider the simple

interior layer solution (Ern & Stephansen, 2008)

u3(x, y) = 2x(1 − x)y(1 − y)
(

1 − tanh[(.5 − x)/
√

ε]
)

.

Note that the interior layer solution possesses milder layer behavior than does the outflow layer.

We shall now use these two tests—see Fig. 4—not only to illustrate the performance of our estimator,

but to also follow up on the theoretical comparison of | · |∗ versus | · |∗∗ in Section 3.5. Recall the

definitions (3.24) and (3.26) of the ∗ and ∗∗-(semi)norms, and that the ∗-seminorm accurately reflects

estimator behavior, but may not be intuitive while the ∗∗ norm has a more concrete form, but may

overestimate the ∗-seminorm. In some cases of interest, the ∗ and ∗∗ (semi) norms of the convective

error are nonetheless very close in size. To illustrate this fact and the inequality (3.27), we compare

behavior of the outflow boundary layer problem and the simple interior layer solution. In the left plot in

Fig. 4, we take ε = 10−4 in the outflow boundary layer problem. This yields |a · ∇(u − uh)|∗∗ ∼ ε−1,

while |a · ∇(u − uh)|∗ is much smaller. We see that the quantity maxT∈T αT‖P0(a · ∇)‖∞ ;T closely

tracks |a · ∇e|∗, while maxT∈T αT‖a · ∇e − P0(a · ∇e)‖∞ ;T closely tracks |a · ∇e|∗∗; cf. (3.27). Also,

heavy refinement is required before oscillation in ∇(u − uh) is resolved, and the ∗ and ∗∗ quantities

become more or less equivalent. In the right plot, we consider the interior layer problem with ε =
10−5. Here, the ∗ and ∗∗ (semi)norms of the convective error are essentially equivalent throughout the

convergence history. These experiments confirm that, while the ∗∗ seminorm lends some intuition to

the error behavior, the ∗ norm most accurately captures the error dynamics.

We also emphasize that in all of our experiments, the estimator maxT∈T η∞(T) in fact closely

tracked the total error ‖u − uh‖L∞(Ω) + |a · ∇(u − uh)|∗ as predicted. Elementwise, oscillation of the

residual Rh appeared not to dominate the other terms in the total error in all cases.
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