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Abstract

We investigate statistical properties of a likelihood approach to nonparametric estimation of
a singular distribution using deep generative models. More specically, a deep generative
model is used to model high-dimensional data that are assumed to concentrate around some
low-dimensional structure. Estimating the distribution supported on this low-dimensional
structure, such as a low-dimensional manifold, is challenging due to its singularity with
respect to the Lebesgue measure in the ambient space. In the considered model, a usual
likelihood approach can fail to estimate the target distribution consistently due to the
singularity. We prove that a novel and eective solution exists by perturbing the data with
an instance noise, which leads to consistent estimation of the underlying distribution with
desirable convergence rates. We also characterize the class of distributions that can be
eciently estimated via deep generative models. This class is suciently general to contain
various structured distributions such as product distributions, classically smooth
distributions and distributions supported on a low-dimensional manifold. Our analysis
provides some insights on how deep generative models can avoid the curse of dimensionality
for nonparametric distribution estimation. We conduct a thorough simulation study and
real data analysis to empirically demonstrate that the proposed data perturbation technique
improves the estimation performance signicantly.
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1. Introduction

random vector X following the distribution P. Without any structural assumption, the
problem of estimating P or related quantities (e.g. density, support, etc.) with large dimen-
sion D is prohibitively dicult, which is widely known as the curse of dimensionality. To
avoid the curse of dimensionality, it is natural to assume that the data locate around some
lower-dimensional structure which can be captured by the model X = Y + , where Y isa
random vector possessing a specic low-dimensional structure and is a full-dimensional noise
vector with small variance. As an example of low-dimensional structures, one may assume
that there exists a low-dimensional manifold on which the probability mass of Y s
concentrated. For this model, our primary interests are in estimating Q; the distribution of
Y; or related quantities. There is a large literature on estimating the support of Q, i.e.,
manifold estimation, see, e.g., Ozakin and Gray (2009); Puchkin and Spokoiny (2022);
Genovese et al. (2012b,a) and references therein. The problem of estimating Q on the other
hand is much less studied and in general a more challenging problem due to the singularity of
Q with respect to the Lebesgue measure in the ambient space. Berenfeld and Homann (2019)
and Ozakin and Gray (2009) considered kernel density estimators for estimating the
(Hausdor) density of Q when the data are assumed to be supported on the image of a
submanifold embedded in a higher dimensional space, thus no noise is considered.

In this paper, we consider a special form of X = Y +, so-called a probabilistic generative
model, which models the observation as X = f(Z) + , where Z and are independent
random vectors which are not directly observable. The latent variable Z is a d-dimensional
random vector drawn from some known distribution Pz, such as the standard normal or
uniform distributions supported on Z, an open subset of R4, andf :Z ! RP is an unknown
function which is often called the generator or generating function. The noise vector is
assumed to follow the normal distribution N (Op;2lp), where Op and Ip denote the D-
dimensional zero vector and identity matrix, respectively. We consider the case of d < D,
in which the distribution of f(Z) is singular with respect to the Lebesgue measure on RP:

The model X = f(Z) + has been investigated in statistical literature with the name
of a nonlinear factor model (Yalcin and Amemiya, 2001). In this paper, we model f using
deep neural networks (DNNs), which are known to enjoy universal approximations results
(Cybenko, 1989; Hornik et al., 1989, 1990). Accordingly, we adopt the terminology of a
deep generative model. In a deep generative model, instead of directly estimating P or Q,
one may rst construct an estimator f ‘and the resulting distribution of f (Z) will serve as
an estimator of Q. Although this approach does not provide an explicit estimator of Q, it
is easy to draw samples from the estimated distribution.

In recent years, deep generative models have achieved tremendous success for modeling
high-dimensional data such as images and videos. Two popular approaches are used in prac-
tice to construct an estimator’¥. The rst one is likelihood-based. Variational approaches
(Kingma and Welling, 2014; Rezende et al., 2014) and EM-based algorithms (Burda et al.,
2016; Kim et al., 2020) are two most representative learning methods in this class. The
second approach uses the integral probability metrics (IPM; Mauller, 1997), often called the
adversarial losses in deep learning communities, and constructs an estimator by minimiz-ing
these metrics. This approach is widely known as the generative adversarial networks
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(GAN), originally developed by Goodfellow et al. (2014) and then generalized in Mroueh
et al. (2017); Li et al. (2017) and Arjovsky et al. (2017), to name a few.

In this work, we focus on the likelihood-based approach and study statistical proper-
ties of a sieve maximum likelihood estimator (MLE) of deep generative models under the
assumption that P is the distribution of X = f(Z) + for some function f: Z ! RP and
N (0; 2lp), where 0. The primary goal is to estimate Q, the distribution of f(Z) induced
from the distribution of Z via the true generator f. We obtain several important results for
this model.

Firstly, we derive a convergence rate of Q = QA to Q = Qj in terms of the Wasserstein
metric (Villani, 2003), where f/is a sieve MLE of f and Qs denotes the distribution of f (Z),
cf. Corollary 4 and Theorem 7. The convergence rate depends on the noise level , intrinsic
dimension and smoothness of f; see Section 3 for the denition. More interestingly, Corollary 4
and Theorem 7 do not guarantee the consistency of a sieve MLE for very small. To resolve
this issue and improve the convergence rate, we propose a novel method to
perturb the data. That is, we obtain a sieve MLE of f based on the perturbed observation
®; = X; + g where ; é& an articial noise vector following the distribution N (Op; eZlp).
The perturbation level e will be chosen carefully to provide a desirable convergence rate.
Note that X; always possesses a Lebesgue density p even when = 0: Under general
conditions, we derive the convergence rate of a sieve MLE for estimating g with respect
to the Hellinger metric, cf. Theorem 3 and Corollary 6. Then, we derive a Wasserstein
convergence rate of a sieve MLE of Q based on perturbed observations, cf. Theorem 9.
Specically, we attain the convergence rate e + e up to a logarithmic factor, where és the
Hellinger convergence rate of the sieve MLE of e, and e = + e. Note that alecreases as
e increases because g becomes smoother while e increases. Hence, the degree of "
perturbation e can be determined by minimizing e + e.

Recently, successful cases of data perturbation for'learning deep generative models have
been reported in Song and Ermon (2019); Meng et al. (2021). However, theoretical un-
derstanding of the data perturbation is still lacking. Our results in this paper can provide a
theoretical justication for the success of various data perturbation procedures for deep
generative models. Note that most existing theories on deep generative models consider
GAN, for which additional noise does not help.

Main results concerning the convergence rates are stated non-asymptotically in the sense
that for any xed n 1, we provide sucient conditions under which certain probabilistic
inequalities hold. Besides the convergence rate of a sieve MLE, we characterize a class of
distributions that can be represented by f(Z) for some f. The class is large enough to
include various distributions such as product distributions, classically smooth distributions
and distributions supported on a low-dimensional manifold. As an illustrating example, a
class of product distributions has the intrinsic dimension 1, and corresponds to the general-
ized additive model in the regression setting. This kind of structure has not been studied in an
unsupervised learning framework. The regularity theory of the optimal transport plays an
important role for this characterization.

There are a lot of recent articles studying the statistical properties of the GAN estimator;
see Section 1.1 for review. It is a critical limitation of most theoretical studies that they
assumed the existence of the smooth Lebesgue density p of the underlying distribution
P. They view the GAN in a nonparametric density estimation framework; the convergence
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rate directly depends on D and the smoothness level of p. Consequently, these results only
guarantee that GAN performs as good as classical nonparametric density estimators, and
cannot explain why and how it outperforms other methods. Some recent articles reviewed in
Section 1.1 go beyond the density estimation framework, but their theories are not
exhaustive and possess certain limitations. In this sense, our results about the convergence
rates of a sieve MLE with perturbed data are new and important contributions for deep
generative models. In contrast, the idea of using perturbed data with the GAN estimator
has been shown to be ineective through numerical studies in Section 5, as demonstrated by
Figures 10 and 11.

Our convergence rate depends on not only the intrinsic dimension of the manifold f(2),
which is much smaller than D, but also the degree of smoothness of f: Moreover, if f has a
low-dimensional composite structure considered as in Horowitz and Mammen (2007), Ju-
ditsky et al. (2009), the convergence rate becomes faster. For supervised learning, many
studies have shown that DNN can avoid curse of dimensionality when the true regres-sion
function has a low-dimensional composite structure (Schmidt-Hieber, 2020; Bauer and
Kohler, 2019; Kohler and Langer, 2021) or the support of input variables or covariates
concentrate on a low-dimensional manifold (Chen et al., 2019a,b; Schmidt-Hieber, 2019;
Nakada and Imaizumi, 2020). Our results are among the rst that have demonstrated that
these ne properties of DNN for supervised learning are also valid for unsupervised learning,
which is an important advantage of using deep generative models compared to the ones that
estimate Q or P directly.

The remainder of this paper is organized as follows. In Section 1.1, we review recently
developed theoretical results for GAN. Section 2 introduces a deep generative model. Our
main results concerning the convergence rate of a sieve MLE and data perturbation are
given in Section 3. Section 4 considers a class of true distributions that can be represented as
a true generator. Experimental results and concluding remarks follow in Sections 5 and 6,
respectively.

1.1 Related Work

Most works for statistical properties for deep generative models focus on GAN type esti-
mators, which are briey reviewed in this subsection. In a GAN framework, Arora et al.
(2017) rstly considered a neural network distance, a special case of IPMs, to measure the
discrepancy of an estimator from the true distribution. They noticed that a neural network
distance might be so weak that GAN may not consistently estimate the true distribution.
Further studies have been conducted by Zhang et al. (2018) and Bai et al. (2019), who pro-
vide sucient conditions for a neural network distance to induce the same topology as the
Wasserstein metric and KL divergence. In particular, Zhang et al. (2018) obtained conver-
gence rates of GAN estimators with respect to the bounded Lipschitz metric, which however
seem to be much slower than the optimal rate. A similar, but slightly dierent approach in
studying a neural network distance is given in Liu et al. (2017). This work employs topolog-
ical properties of neural network distances, hence important structural assumptions such as
the smoothness of densities were not considered. Biau et al. (2020) studied asymptotic prop-
erties of the original GAN developed by Goodfellow et al. (2014). Rather than considering a
neural network distance, they investigated how the approximation of the discriminator can
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aect the estimation performance with respect to the Jensen{Shannon divergence. How-
ever, their analysis is based on the parametric assumption, that is, the number of network
parameters is xed as the sample size tends to innity.

There is a dierent line of works that study asymptotic properties of GAN from a
nonparametric density estimation point of view. For densities in a Sobolev space, Singh et
al. (2018); Liang (2021) derived minimax convergence rates with respect to the Sobolev
IPMs which include metrics used in Sobolev (Mroueh et al., 2017), MMD (maximum mean
discrepancy; Li et al., 2017) and Wasserstein (Arjovsky et al., 2017) GANs. These results are
generalized in Uppal et al. (2019) using Besov IPMs. We would also like to mention Chen et al.
(2020), who derived convergence rates with respect to the Helder IPMs. Although their
convergence rate is strictly slower than the minimax rate in Uppal et al. (2019), their results
are directly applicable to GANs whose generator and discriminator network architectures
are explicitly given. However, all these works are limited to the classical paradigm where the
true distribution possesses a smooth Lebesgue density p and the convergence rate depends
on the data dimension D, suering from the curse of dimensionality.

There are some recent articles considering the convergence rate of GAN beyond the
density estimation framework. To the best of our knowledge, the set-up given in Luise et al.
(2020) is the closest to ours. In particular, they assumed that there exists a true generator as
in our paper and there is no noise, that is, P = Q = Qs for some smooth function f. Under
this set-up they obtained a convergence rate of GAN for estimating Q with respect to the
Sinkhorn divergence (Feydy et al., 2019). Note that although the Sinkhorn divergence metrizes
the weak convergence, it is not a standard metric for evaluating the performance of
distribution estimation and not comparable with the Wasserstein distance considered in
our paper. In particular, their convergence rate directly depends on the regularization
parameter dening the Sinkhorn divergence ( in their notation), which makes it unclear how
tight their convergence rate is. Furthermore, their theory does not incorporate deep neural
network structures, hence cannot explain the benet of deep generative models which adapt to
various structures such as the composite one. Also, the theory holds only when the
smoothness of the true generator exceeds a certain threshold proportional to d. For these
reasons, the theory in Luise et al. (2020) has certain limitations.

Schreuder et al. (2021) obtained convergence rates of GAN-based estimators under the
assumption that the data-generating distribution is the convolution of Q = Qf and a
general noise distribution, where f : R4 | RD is a smooth function; hence the data are
concentrated around a small neighborhood of a manifold whose dimension is at most d.
Rather than assuming the existence of a true generator, Huang et al. (2021) assumed that
the support of P is a certain low-dimensional set in RP and studied the convergence rate of
GAN. In both papers, the convergence rates depend on the intrinsic dimension of the true
distribution rather than on the dimension D of the observations. The proofs in these papers
rely on the adaptive property of the empirical measure to specic low-dimensional structures,
studied in Weed and Bach (2019) and Schreuder (2021). It should be noted that the intrinsic
dimension considered in our paper can be smaller compared to the dimensions considered in
Schreuder et al. (2021) and Huang et al. (2021).

The analysis of the vanilla GAN in Biau et al. (2020) has been extended to the Wasser-
stein GAN in Biau et al. (2021). In particular, they considered DNN architectures for
both the generator and discriminator classes and proved that the corresponding WGAN
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estimator can be arbitrarily close to the true distribution in Wasserstein distance with high
probability; see Theorem 21 therein. However, their results do not provide specic conver-
gence rate and do not incorporate approximation error of the generator class for specic
distribution families.

Finally, we would also like to mention the work by Tang and Yang (2022) who considered
the minimax convergence rate for nonparametric distribution estimation under the manifold
assumption. Although the structural assumption considered in Tang and Yang (2022) is
dierent from ours, they derived the minimax convergence rate for estimating a distribution
supported on a submanifold of RP with smooth density with respect to the Hausdor
measure. In particular, they used a mixture of GAN estimators to achieve the minimax
convergence rate. However, it should be emphasized that GAN-based estimators considered in
this subsection, including the one in Tang and Yang (2022), is computationally much more
intractable than sieve MLEs considered in the present paper.

1.2 Notations and Denitions

For two real numbers a and b, let a” b and a _ b be the minimum and maximum of a and
b, respectively. [a] is the largest integer less than or equal to a. The inequality a. b means
that ais less than b up to a constant multiplication. Also, denotea bifa. bandb. a. For a
vector x, the ‘’-norm, 1 p 1, and the number of nonzero elements are represented as jxj,
and jxjo, respectively. Let B(x) be the Euclidean open ball of radius centered at x. For a
vector-valued function f, let jfj, be the map x ! jf(x)jo. The LP-norm of a function is
denoted k kp, where the domain of a function and dominating measure will be clear in the
context. The equality ¢ = c(Aq1;:::; Ax) means that c depends only on Ag;:::;A¢. The
uppercase letters, such as P and P, refer to the probaBility measures corresponding to the
densities denoted by the lowercase letters p and g, respectively, and vice versa. A positive
real-valued function f is said to be bounded from above and below if there exist positive
constants ¢; and c; such that ¢; f(x) c, for every x.

For two probability densities p and q, let dy(p; q) and K(p;q) = R log(p=q)dP be the
Hellinger distance and KL divergence, respectively. The Wasserstein distance of order
r 2 [1;1) between P and Q is denoted W,(P; Q) (Villani, 2003). For a function space F,
N(; F; d) and Nyj(; F; d) denote the covering and bracketing numbers with respect to the
(pseudo)-metric d. For > 0, let H,, (A) be the class of every -Helder functionf : Al R with -

Helder norm bounded by M > 0. Let H(A) = [m>oH (A) beMthe class of every -Helder
function. If there is no confusion, we simply denote them as H and H. For a vector-valued
function, f 2 H refers that each component of f belongs to H. We refer ¥ Gine and Nickl
(2016); van der Vaart and Wellner (1996) for details about these denitions.

2. Deep Generative Models

In this section, we formally dene the model X = f(Z)+ using a DNN. Let Z be an open
subset of RY and x ! .4(x) be the density of d-fold product measure of the univariate
normal distribution N (0;2). We often denote .4 as if there is no confusion. Let P¢. be the
distribution of f(Z)+, where Z and are independent random vectors distributed as P; and
N (Op; 2lp), respectively. Standard uniform or Gaussian distribution is a common
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choice for Pz, and some general sub-Gaussian distributions are considered in Luise et al.
(2020). For a class F of functions from Z to RP and two positive numbers min < max, We

consider a class of probability distributions
o

n

P = Pf; :f2F; 2 [min;max] (2-1)

Recall that Qs is the distribution of f(Z), which is often called the pushforward measure of
Pz bythemapf:Z ! RP. If > 0, P¢, has the Lebesgue density

pi)= £ x  f(2)dPz(z)= % (x  u)dQe(u): (2.2)

The function class F is modeled via a DNN. We adopt the denitions and notations in
Schmidt-Hieber (2020). Let (x) = x _ 0 be the ReLU activation function. For a vectorv =

(vi;:::;ve)T 2 R7, dene y : RT ! RT as (z) = ((z1 vi); i (2 vi))T forz =
(z1;:::;2z:)7. A neural network with network architecture (L; p) is any function of the form
f : RPo | Rp“l; z ! f(Z) = WLVLWL 1v, 1 W1V1WOZ; (23)

where W; 2 RPi+1Pi v; 2 RPi and p = (po;:::;pr+1) 2 NY*2. We will consider model (2.1)
with the class F = F(L; p;s; K), where F(L; p;s; K) is the collection f of the form (2.3)
satisfying
XL

~max jWjja _jvjj1 1; IWijjo + jvjjo s; kifjiki K;

j=0;:::; L i=1
po = dand pi+1 = D. Here, jWjj1 and jWjjo denote the maximum-entry norm and the
number of nonzero elements of the matrix W;, respectively.

The statements of main theorems and corollaries in Section 3 are non-asymptotic; they
hold for any xed n 1. However, it would be convenient to regard quantities (min; L; p; s) as
sequences depending on the sample size n, while (mmayx; K) remain as xed constants. In this
sense, it would be precise to denote (min; L; p; s) and (F; P) as (min;n; Ln; Pn; Sn) @and (Fn; Pn),
respectively. For simplicity, we suppress the subscript when the dependency on n is obvious
contextually. Throughout this paper, the model (2.1) with F = F(L; p; s; K) will be called a
deep generative model with ReLU activation function.

From another viewpoint, the density of the form (2.2) is a mixture of normal distribu-
tions. Note that mixtures of normal densities are frequently used in nonparametric statistics to
model smooth densities. In particular, an arbitrary smooth density can be approximated by
normal mixtures as shown in Ghosal and van der Vaart (2007); Shen et al. (2013). Based on
this, it can be shown that a Bayes estimator with a Dirichlet process prior and a sieve MLE
achieve the minimax optimal convergence rate up to a logarithmic factor when the true
density belongs to a Helder class. However, the model complexity of normal mixtures
required to approximate an arbitrary smooth density, often expressed through the metric
entropy, grows rapidly as the dimension D increases which results in slow convergence rates.
This large complexity is mainly because the mixing distribution can be of any form. Hence,
such a large class of normal mixtures might not be useful for analyzing high-dimensional
data. Note that model (2.1) is parametrized by the generator f rather than a mixing dis-
tribution. Consequently, the complexity of the model (2.1) can be expressed through the
metric entropy of the generator class F, which is detailed in Lemma 1.
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3. Convergence Rate of a Sieve MLE

Our main theoretical results are given in this section. We rst present assumptions on the
data-generating distribution P. Then, we derive the convergence rate of a sieve MLE for p
with respect to the Hellinger distance in the deep generative model. We next obtain the
convergence rate of the corresponding sieve MLE of Q under the Wasserstein distance. Our
strategy of deriving the convergence rate is as follows. We rst derive a convergence rate of a
sieve MLE p of p, the Lebesgue density of P; and then recover the corresponding convergence
rate of Q to Q. Howaver, this strategy only works when is not too small. If is very small,
technical diculty arises because the density p peaks around a small neighborhood of f(2),
the likelihood therefore becomes picky and unstable, and a sieve MLE is expected to
behave badly. For this case, we propose a novel data perturbation technique to derive the
convergence rates for Q under this small regimes.
As mentioned earlier, our main theorems are non-asymptotic in the sense that they hold
for any xed n 1. More specically, Theorem 9 is stated with the form of
P Wl(QAQ)> n on; nl (3.1)

for some sequences , and , with , . The interpretation of this statement is clear: for any
xed n 1, once , and , are small enough, the Wasserstein distance between Q and Q will b
small with high probability. Furthermore, since Q and Q. are supfPorted on a bounded set,
the probabilistic statement (3.1) implies that EW1(Q; Q) . . _ n forevery n 1. Similar
interpretations also hold for assumptions of the Theorems on the noise , that is, for every
sample size, there is a sucient condition on the noise for which the probabilistic bound (3.1)
holds. Given the non-asymptotic nature of our results, the true data-generating distribution
can be interpreted in similar fashions. For any given sample size n 1, the true data-
generating distribution is given by a true P induced from the true generator f and some true
noise level 2 [min; max] With some appropriate assumptions on min and max. The assumptions
oN min and max May vary with the sample size n.

Note that such non-asymptotic statements and interpretation can be frequently found in
modern statistical theory. For example, in a high-dimensional linear regression set-up, the
assumption on the dimension and/or the magnitude of the regression coecients may change
with the sample size (Bahlmann and van de Geer, 2011; Wainwright, 2019). When the
sample size is large, for example, the absolute value of the rst component of may be
assumed to be large. For any xed n 1, however, there is one true data-generating
distribution with the true parameter satisfying the appropriate assumption. In this set-up,
many statistical theories take the form P(k Ak > ) n, which is quite similar to (3.1).

3.1 Assumption on the True Distribution

Since we consider a deep generative model (2.1), it is natural to assume that P = Py, for
some true generator f and 0, or more precisely, P is the convolution of Q = Qs and
N (Op; lp). In particular, we assume that f is a structured function that can be eciently
approximated by DNN functions (Yarotsky, 2017; Telgarsky, 2016; Petersen and
Voigtlaender, 2018; Ohn and Kim, 2019; Imaizumi and Fukumizu, 2019; Nakada and
Imaizumi, 2020). For example, f can belong to a certain class F of smooth composite



A likelihood approach to deep generative models

functions. In Section 4, we will show that the corresponding distribution class fQs : f 2 Fg is
large enough to include the classical class of nonparametric smooth densities and densities
supported on a lower-dimensional smooth manifolds as special cases.

Note that the generator f is not identiable in general. For example, even for a linear
factor model where f(Z) = AZ foraDd matrix A, f(2) = A Z has the same distribution as
f(Z): However, the mixing distribution Q is identiable under mild assumptions, e.g. Bruni
and Koch (1985).

3.2 A Sieve MLE

Since the parameter space specifying the model (2.1) depends on the sample size n, the
model can be regarded as a sieve approximating the true distribution. Then, an estima-
tor can be obtained via a maximum likelihood principle. The corresponding estimator
il§ often called a sieve MLE (Geman and Hwang, 1982). To be specic, let ‘1(f;) = ;_;

log ps.(X;) be the log-likelihood function. For a given sequence , # 0, a sieve MLE
is any estimator (f;2) 2 F [min; max] satisfying

‘W(fsr) sup W(f;) (3.2) £2F; 2[min;max]

and let g = Pp.A- We do not abbreviate the subscript n for the rate sequence such as , and ,,.
The sequence,'1 allows that strict maximization, which is infeasible in most applications of deep
learning, is not necessary. It would be more desirable to consider an estimator which is
obtained by a specic algorithm such as the gradient decent method. Unfortunately, it is
challenging to study statistical properties of an algorithm-specic estimator in deep learning. To
the best of our knowledge, the convergence rate of an algorithm-specic estimator have not
been studied in deep learning contexts. We also do not consider algorithmic issues in this
paper, and assume that a sieve MLE satisfying (3.2) is available. There are various
computational algorithms targeting a sieve MLE in deep generative models, e.g. Burda et al.
(2016); Kim et al. (2020).

3.3 Hellinger Convergence Rate of a Sieve MLE of p

Under general conditions, convergence rates of sieve MLEs with respect to the Hellinger
metric are well established in Wong and Shen (1995). The key technique to derive con-
vergence rates is to bound the Hellinger bracketing number of the density space for which
many techniques are known for various classes of regular functions, see van der Vaart and
Wellner (1996). Roughly, the convergence rate , can be achieved if log N;j(; P;dy) . n2.
Metric entropies of deep neural networks are also well-known in recent articles, see Lemma 5
of Schmidt-Hieber (2020). The following lemma provides a relation between the Hellinger
bracketing number of P and the metric entropy of F ; which plays a crucial role in deriving the
convergence rate of a sieve MLE p: Below, we do not try to optimize constants which are not
essential for deriving convergence rates.

Lemma 1 Let F be a class of functions from Z to RP such that kjfjik; K for everyf
2F. Let P = fP¢; : f 2 F; 2 [min; max]g With min 1. Then, there exist constants
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c= ¢(D;K; max); €® = c%(D; K; max) and = (D) such that log

NG P5dn) logN cryn® Fiki jaka + log @
vz, (3.3)
min

for every 2 (0;].

Remark 2 Note that for a class of general normal location mixtures R (x z)dP (z)
parametrized by the mixing distribution P and scale parameter , the bracketing entropy
scales as a polynomial orderin 1as ! 0. Specically, Corollary B1 of Shen et al. (2013) gives
an upper bound for the -bracketing entropy of the class fx ! (x z)dP(z) :P([
K; K]1P) = 1g, which is at least of order O(( ! _log 1)P). This bound would give a nearly
parametric convergence rate of a sieve MLE provided that the model is well-specied and min
is bounded away from zero. However, the entropy bound of Shen et al. (2013) grows rapidly
as min ! 0; which is problematic since we are interested in the case that min converges to 0.
In contrast, the right hand side of (3.3) depends on min only through a logarithmic function.
Hence, the entropy bound (3.3) is much smaller than that of Shen et al. (2013) when min is
small, provided that N(; F; kj ji1 k1) is of a polynomial orderin . If F = F(L; p;s; 1) with
kpki = O(n?®) for some constant a> 0 and L = O(logn), for example, logN(; F; kj ji1k1)
is bounded by a multiple of sf(log n)2 + log g, as shown in Lemma 5 of Schmidt-Hieber
(2020). Consequently, logN(j(; P; dy) is of order sf(logn)?+ log 1+ log ,.8:

Utilizing Lemma 1, the hext theorem provides convergence rates of a sieve MLE of p
with respect to the Hellinger metric in terms of the entropy bound and approximation error
app Of the sieve F.

Theorem 3 Let F; P and = (D) be given as in Lemma 1, and n 1. Suppose that log

N(;F;kj jik1) sfA+ 1_log 1gfor every > 0. Assume also that there exists f 2 F such

that kjf fjiki app. Furthermore, suppose that s 1, A 1, min 1,app 1 and 2 [min; max].
Then, a sieve MLE p dened through (3.2) satises that
C

Pdy(p;p) > 5Se C1n 4 72 (3.4)

n

p
provided that , 2=6 and 2, where

;
sfA + log(n=min)g  app
- -

Cs

S

C, is an absolute constant, C, = C>(D) and C3 = C3(D; K; max)-

Using Theorem 3, we can derive the convergence rate of a sieve MLE of deep generative
models for various f: As an illustrative example, suppose that f 2 H ‘ (0;1)4  for some
positive constants and K. Since a smooth function can be eciently approximated by DNN,
one can obtain a convergence rate as in the following corollary. We omit the proof because it
is a special case of Corollary 6 with q= 0and d = dp = to:

10



A likelihood approach to deep generative models

Corollary 4 Suppose that f2 H (0;1)9, = n and min= n for some ;K > Oand 0
Then, there exists a network archiftecture F = F(L; p;s; K) (depending only on (n; d;; K))
such that a sieve MLE g satises
C
Pdy(p;p) > 5e G’ 4 2

n

n

n
p

provided that , 2=6 and 2, where C1, C; = C;(D); = (D) are constantsin Theorem 3

and , = Cn ( 9=(2+d)(Jog n)3=2 with C = C(;;; d; D; K; max)-

The statement of Corollary 4 is overly simplied to illustrate the role of the dimension,
smoothness and noise level in the convergence rate. In particular, the rate gets faster as the
noise level increases. This seemingly paradoxical phenomenon occurs because p gets
smoother as increases. On the other hand, for a very small value of , for consistent
estimation of p it is necessary to have very accurate approximation of f. For this purpose, it
is inevitable to increase the number of nonzero network parameters, which leads to an
increase in the estimation error. In the set-up of Corollary 4, the number of nonzero network
parameters s needed for a suitable degree of approximation is of order nd(2+1)=(2+d) yp to a
logarithmic factor. Note that the condition > dis equivalent to that d(2+1)=(2+d) is strictly
smaller than 1. That is, when d, too many nonzero coecients are needed to ensure that the
approximation error is suciently small. Consequently, Theorem 3 does not even guarantee the
consistency. The case for a very small will be handled in Section 3.5 with a novel data
perturbation technique. Before that, we assume that is not too small.

When f has a low-dimensional structure, the convergence rate in Corollary 4 can be
signicantly improved. We consider the composition structure with low-dimensional smooth
component functions as described in Section 3 of Schmidt-Hieber (2020). Specically, we
consider a function f of the form

f=28q8 1 8180 (3.5)

with gi : (ai;; bi)4 ! (@j+1;bis1)4*1. Here, do = d and dgq+1 = D. Denote by g; =

(q; d; t;; K) as constants. Let

Y ¢ . tj
P (lAl), ] = argmax — :J; e t = tJ'
l=j+1 j2f0;:::08 6§
We call t andeas the intrinsic dimension and smoothness of f (or of the function class
G(q; d; t;; K)), respectively.

Any function f in G(q; d; t;; K) can be eciently approximated by a DNN as detailed in
Lemma 5. The proof can be easily deduced from the proof of Theorem 1 in Schmidt-Hieber
(2020). Then, Corollary 6 provides the convergence rates of # when f has the composition
structure.

11
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Lemma 5 Suppose that f 2 G(q;d;t;; K). Then, for every 2 (0;1), there exists a network
F = F(L;p;s; K _1)withlL cilog 1, jpj1 ¢ ¥, s c3 ¥log lsatisfying kjif fjik1
for some f 2 F, where ¢; = c¢j(q;d; t;; K) forj 2 f1;2;3g.

Corollary 6 Suppose that f 2 G(q;d;t;;K), 2 [min; max), min 1 and

def 22+t PP

= n 1:

let F = F(L;p;s;K _ 1) with L = [c1log,pdl, po = = pre1 = [Coapp |, S = [C3app
log ,ppl + 1, where ¢; = c¢j(q;d;t;;K), j 3, are constants in Lemma 5. Dene = (D) and
as in Theorem 3 with A = c4(logn) , where ¢4 = c4(q; d; t; ; K) as specied in the proof. If ,
2=6 and n P2, asieve MLE p satises (3.4).

n n

In Corollary 6, the approximation error 4pp is chosen so that

r_
app

s

n

up to a logarithmic factor. More precisely, if = n and min = n  for some 0, we have
= Cn 2wrtogn)®™;

where C = C(q; d; t;; K; D; max; ;). As one can see, the dimension d in the convergence rate of
Corollary 4 is replaced by the intrinsic dimension t. If t is much smaller than d, the
improvement from the structural assumption would be signicant.

3.4 Wasserstein Convergence Rate of a Sieve MLE of Q

Since we are primarily interested in estimating Q = Qy, in this section we consider the
problem of estimating Q and utilize the L 1-Wasserstein metric as an evaluation metric.
Given a sieve MLE (3.2), an estimator can be easily constructed as @ = Q/\f. Note that
obtaining an upper bound of W1(@; Q) from dy(p; P) is a kind of deconvolution problem. A
sharp bound for this problem is established in Section 2.3 of Nguyen (2013) when and
are bounded away from zero. For example, with the LZ-Wasserstein metric, a sharp bound
w?(Q;Q). f * log dy(p; P)g 1 is achievable, see Theorem 2 of Nguyen (2013).
Hence, even when dy(p; p) decays with a polynomial rate, one can only expect a very slow
convergence rate for W,(Q; Q); see*also Fan (1991) and Meister (2009) for a more formal
statistical theory for the deconvolution. Such a logarithmic minimax rate can also be found
in a slightly dierent but closely related problem. More specically, Genovese et al. (2012a)
considered the problem of estimating the support of the singular distribution Q and obtained
a lower bound (log n) ! for the minimax optimal rate under the Hausdor distance, see
Theorem 8 therein. The slow minimax rates in the deconvolution and manifold estimation
problems are closely related to the super-smoothness of the normal density. Here, a super-
smoothness density roughly means that the tail of the Fourier transform of the
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density decays faster than any inverse polynomial, see Theorem 2 of Nguyen (2013). For a
small value of , however, a much faster convergence rate is achievable because is no longer
smooth.

Before studying Rhe convergence rate, it would be worth addressing the identiability
issue. Since p(x) = (x u)dQ(u), Q can be understood as a mixing distribution for the
data distribution P with the normal kernel. In this case, Q is identiable under very mild
conditions, see Bruni and Koch (1985). However, the identiability does not guarantee an
ecient estimation of Q. In some identiable mixture models, the minimax convergence rate for
estimating the mixing distribution can be very slow, see Wei and Nguyen (2022). A stronger
identiability condition is often necessary for obtaining a fast convergence rate of the mixing
distribution.

In this subsection, we impose a strong identiability condition through the reach of a
manifold, which is introduced by Federer (1959) and frequently used in manifold estimation
contexts. For aset M RP andr > 0, let M" = M B,(0p) be the r-enlargement of M,
where stands for the Minkowski sum. The reach of a closed set M, denoted as reach(M),
is dened as the supremum of r with the property that any point in M"™ has a unique
Euclidean projection onto M.

In forthcoming Theorem 7, we assume that reach(M) is bounded below by a positive
number, where M is the closure of f(Z). This is one of the most important assumption in
manifold estimation literature (Aamari and Levrard, 2019; Divol, 2021; Puchkin and
Spokoiny, 2022; Tang and Yang, 2022). Note that even consistent estimation of Q may not
be possible if reach(M) = 0, as shown in Berenfeld and Homann (2019).

Theorem 7 Let M be the closure of f(Z). Suppose that kjfj;k; K for a constant K.

Also, assume that M does not have an interior point in RP?, and reach(M) = r for some
constant r > 0. Then, dy(ps;;p) 1 and kjfji1ky K imply that W1(Qf; Q) C( +

P og 1), where C = C(D;K;r).

Theorem 7 guarantees that W.( Q) . du(p;p) + up to a logarithmic factor. Since
we have already obtained a rate for dy(p;p), it is possible to obtain a Wasserstein

convergence rate for estimating Q. For example, when f 2 H (0;1)¢ ; Corollary 4
together with Theorem 7 implies that there exists a sieve of deep generative models with
which the convergence rate of W1(@; Q) is O, n ( #=(2+d)(jogn)3=2 _  |ognP.——

Remark 8 Note that Theorem 7 does not require f(Z) to be a topological or smooth man-
ifold. For example, f(Z) can be a union of two manifolds with dierent dimensions.

3.5 Data Perturbation

When is too small, the convergence rates of dy(p; p) obtained in Corollaries 4 and 6 do not
even converge to 0 as the sample size increases: in Corollary 6, for example, when n =%, with
< t. Under these regimes, p peaks around a small neighborhood of f(Z) and the singularity
exacerbates, thus a sieve MLE does not behave well. In anextreme case where = 0; P itself
is a singular measure and likelihood approaches cannot be justied via minimizing the
Kullback{Leibler (KL) divergence.
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To overcome these diculties, we consider the perturbed observations X; =€X; + ;, where

MLE based on the perturbed observation X1;:::; X,. Also, dene@per = nge' Aoer and Qper

£ Q; " accordingly. * :
pe p o
Once we use Qper as an estimator for Q, we have W1(Q3er; Q). e+,e log en1
by Theorem 7, where e, = du(Pper; B ). As e increases, note that e, decreases while e
increases. Thus, the convergence rate for W1(CGper; Q) can be optimized by choosing e
accordingly, which is summarized in the following theorem.

Theorem 9 Let n 1, f2 G(q;d;t;;K), 2 [min;max), = n and min = n for some 0.
Assume that Q(M) = 1 and reach(M) r, wherer > 0 and M is the closure of f(Z). Then,
there exists a network architecture F = F(L; p;s; K) (de-pending only on (n;q;d;t;;K))

such that sieve MLEs Pper and Qper based on the perturbed observation X; = X; + ;, with ;
N (0p;n =*8Ip), satisgs

e
b_ — C
PWi(Qph;Q)> C3 + —fog= Se G+ T (3.6)
n
where
(
Can 7t (logn)32 if < =f2(+ t)g,

" Csn 2t+togn)37? otherwise;

C, is an absolute constant, C; = C,(D), C3 = C3(D;K;r), C4 and Cs depend only on
(a;d;t;;K; D5 max; 5 ).

To the best of our knowledge, our main result (Theorem 9) is the rst theory considering the
Wasserstein convergence of Q in"a deep generative model with the intrinsic dimension and
smoothness of f. Most existing theories consider GAN type estimators and have derived
convergence rates that depend on either the intrinsic dimension alone or D.

If < =f2(+ t)g, we have | so P ~Tog,, in the left hand side of (3.6) is
the dominating term. Therefore, regardless of < =f2( + t)g, we conclude that

- e . __
W1(@per; Q). n 2@ (Iog N>~ + log'n (3.7)

with high probability. Since Wl(dper;Q) is a bounded random variable, its expectation
can also be easily bounded by a multiple of the right hand side of (3.7).

It can be easily deduced from the proof that the data perturbation improves the con-
vergence rate only when . n =2(*t) Note that the level of perturbation and the network
architecture in Theorem 9 depend on the unknown quantities (;t;). In other words, our
results are non-adaptive to the unknown structure. Hence, the network architec-tures and e
are tuning parameters that should be carefully chosen. To obtain an estimator adaptive to
the unknown structure, two approaches are known in the literature for the deep supervised
learning. The rst one is a penalized likelihood approach such as the lasso and non-convex
penalties as considered in Ohn and Kim (2022). Alternatively, Bayesian ap-proaches can
be utilized to obtain an adaptive estimator, see Polson and Rockova(2018);
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Ohn and Lin (2021). Although these papers studied nonparametric regression, it would be
possible to extend their approaches to deep generative models to obtain an adaptive
estimator. In practice, there are several heuristic methods to select network architectures
(Salimans et al., 2016; Arjovsky et al., 2017; Radford et al., 2016b). The variance e of the
additional noise is 1-dimensional, hence it can also be tuned based on the validation error
without much diculty; see Section 5 for details.

After the original version of this article was drafted, the rst author investigated the
lower bound for the minimax optimal convergence rate with the structural assumption
considered in Theorem 9, which is now available in Chae (2022). Specically, he obtained a
lower bound n =(2*t 2) 4+ = n of tH: Tinimax optimal rate. In particular, he provided
some rationale for that the rst term n =(2*t 2) js sharp. Furthermore, he constructed a GAN
type estimator, which achieves the rate n =(2*t) + | Therefore, the rate given in Theorem 9 is
not optimal. Nonetheless, the dierence is not signicant. Also, the estimator in Chae (2022)
is devised for theoretical purposes, and it is not clear to us how to compute it in practice.
We would like to emphasize that although likelihood-based approaches are not theoretically
optimal, they are popularly used in practice because their computation is much easier than
that of GAN.

It would also be important to study lower bounds specically for likelihood approaches
considered in this paper. More specically, one may try to obtain a sharp lower bound for
supq EW1(Qe; Q), where Qd'is a sieve MLE based on the perturbed data X; =eX; + ; withy;
N (Opge Ip), and @ ranges over structured distributions considered in Theorem 9. Ideally, we
hope

inf supEW1(de; Q) & n 200 4
e0

matching with the upper bound given in Theorem 9. To achieve this goal, we would need
two arguments. Each of them is challenging and of independent interest. Firstly, we would
need a sharp lower bound for the approximation error of deep neural networks. This would be
related to Park et al. (2021), but a far more thorough study is necessary. Another one is
regarding the identiability issue; we would need kf fk . W1(Qs ;Qf) or a similar
inequality, the reverse of W1(Qs; Qs) . kf fk. Obtaining such a reverse inequality is
known to be challenging; see Nguyen (2013); Wei and Nguyen (2022). Due to these
diculties, we do not consider this problem in this paper and leave it as future work.

3.6 Eect of into the Convergence Rate

It is worthwhile to discuss the eect of the noise level into the convergence rate (3.7). Firstly,
suppose that is a xed positive constant. Then, the rate (3.7) does not give useful
information because the right hand side is not small enough. In fact, estimating Q under an
additive noise is known as a deconvolution problem, for which extensive studies have been
done in the literature (Fan, 1991; Meister, 2009; Nguyen, 2013). The minimax optimal rate
for the Gaussian deconvolution with a xed is very slow, e.g. (log n) 1, implying the
intrinsic diculty of the estimation problem. Such an intrinsic diculty has also been observed
in Genovese et al. (2012a) who considered a slightly dierent problem. Specically, they
obtained the minimax optimal rate for estimating the support of Q under the Hausdor
distance, see Theorem 8 therein. They assumed that Q is supported on a
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low-dimensional manifold, but the intrinsic slow rate (log n) ! was unavoidable. Although
their manifold estimation problem is slightly dierent from the deconvolution, they are
closely related to each other as discussed in Section 1.1 of Genovese et al. (2012a). Given the
inherent challenges of the deconvolution problem, it does not seem possible to achieve a fast
convergence rate in estimating Q under xed variance Gaussian noise. In this sense, the
constant variance set-up would not be appropriate for studying the amazing performance of
deep generative models theoretically.

The rate (3.7) gives meaningful results when is small enough in the sense that
converges to zero with a suitable rate as the sample size increases. In this case, data are
concentrated in a small neighborhood of a certain low-dimensional structure; hence one

may utilize the structural benet to estimate Q eciently. Note that although the set-upis
not exactly the same as ours and dierent estimation problems (such as the manifold or
regression function) are considered, there are many recent theoretical articles adopting the
regime in which data are concentrated around a very small neighborhood of a manifold
(Aamari and Levrard, 2018, 2019; Divol, 2021; Jiao et al., 2021; Puchkin and Spokoiny,
2022; Berenfeld et al., 2022); see also Remark 4 of Tang and Yang (2022). In these papers,
small neighborhoods depend on the sample size and shrink to a low-dimensional manifold.
Despite the above observation, we wish to emphasize that our results or the proba-
bility bounds are again non-asymptotic in nature. That is, for every n, our results hold
simultaneously for a range of ’s with 2 [imin; max]-

4. Class of True Distributions

Asymptotic properties of a sieve MLE are investigated in the previous sections under the
assumption that P = Pf, for some f and , that is, P is the convolution of Qs and
N (Op; Ip). 1A this section we characterize the class of probability distributions of the form
Qs . In particular, we will show that the class fQs : f 2 Fg is quite general to include
various structured distributions when f ranges over a certain class F of structured functions.
Specically, we will show that various distributions can be represented as Qs for some
function f. Throughout this section, we assume that Z P; and Y is a random vector whose
distribution Q satises that Q(Y) = 1 forY RP. A primary goalistondamapf:Z | RP
satisfying Q = Qs. Lu and Lu (2020) considered a similar topic, but they did not consider
structures of f such as the smoothness, which are important for obtaining a fast convergence
rate.

4.1 Case D = d= 1: 1-dimensional Distributions or Smooth Densities

Suppose that both Y and Z are absolutely continuous real-valued random variables with
the cumulative distribution functions Fy and Fz, respectively. Then, it is well-known that F
1(Fz(Z)) is distributed as Q, where FY 1(u) = inffy 2 R : Fy (y) > ug is the generalized
inverse of Fy . Thatis, Q= Qgf, wheref = F_ 1F;. Furthermore, it is known that the map f
is the unique optimal transport from P; to Q with respect to the quadratic cost function, see
Section 2.2 of Villani (2003). If Z follows Uniform(0; 1), for example, the smoothness of f is
determined by the smoothness of F 1. Ir\}formally, if the pdf g is -smooth and strictly positive
onZ, thenF lis (+1)-smooth, see Lemma 10 for a formal statement. Note that a smooth
1-dimensional function f can be approximated by DNN eciently. Roughly, if
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f 2 H, then for any > 0, there exists f™ 2 F(L; p;s;1) withL log 1, jpji1 ' ands
=log 1suchthatkjf f""jik; , see Theorem 5 of Schmidt-Hieber (2020).

4.2 Product Distributions

Assume that D = dand Y = (Yy;:::;Yp)", where Yy;:::;Yp are independent random

eachgj 2 H foreveryj, onecannd f™2 F(L; p;s; 1) withL log %, jpji1 ¥ands *log ?

such that kjf f""jiks . That is, we only need to approximate D many 1-dimensional
smooth functions.

4.3 Classical Smooth Densities

Suppose that D = d and Q has the Lebesgue density g. An open set
R™ is said to be uniformly convex if there exists a twice continuously dierentiable function
h : RT ! R and a constant > 0 such that

= fx 2 R" :h(x) < Ogand r2h(x) |, is positive denite for every x 2 RY, where r2h(x)
is the Hessian matrix. Note that a uniformly convex set is automatically bounded. The
following lemma is a special case of Theorem 12.50 in Villani (2008), originally proven by
Caarelli (1990) and Urbas (1988). As mentioned in Villani (2003), techniques involved in
Lemma 10 are really intricate. We refer to page 139 of Villani (2003) for more references about
this topic.

Lemma 10 Suppose that (i) Z and Y are uniformly convex, (ii) pz and g are bounded from
above and below on Z and Y, respectively, and (iii) g2 H(Y) and pz 2 H(Z) for > 0.Then,
there exists a function f = (f1;:::;fq):Z ! Y suchthat Q= Qf and f 2 H*1,

The map f in Lemma 10 is the unique optimal transport from P; to Q with respect to the
qguadratic cost function. For statistical purpose, a map f needs not to be an optimal
transport, therefore, conditions on Pz and Q can be relaxed. For example, note that the
uniform distribution on the unit ball B(04) has a density which is bounded from above and
below, and B(04) is uniformly convex. Hence, if Q satises the condition in Lemma 10 and
there existsamap h : Z ! B(0gq) such that h(Z) Uniform(B(04)), Lemma 10 guarantees
the existence of f satisfying Q = Qs. If Pz is the uniform distribution on the unit cube
(0;1)4, which is a popular choice in practice, such h can be chosen as a smooth function,
see Harman and Lacko (2010). Conditions on Q, such as the uniform convexity of Y, can be
relaxed in a similar way. Finally, we note that if f 2 H*1, there exists f™ 2 F(L; p;s; 1)
withL log 1, jpj1  9=0*1) and s 9=(+1)|og 1 such that kjf frnjikq

4.4 Distributions on a Manifold

We consider the case where Y RP is a topological manifold with dimension d d. We start
with the case that Y can be covered by a single chart, that is, there exists a
homeomorphism * : B1(04) ! Y. We further assume that” 2 H*! for > 0 as a map
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from B1(0g4) to R, and that inf,,p © jl/(x)]j is bounded below by a positive constant,
where

. - @l @l
jl(x)j det Ox' Ox

is the Jacobian determinant of . Note that a coordinate chart in a smooth manifold is
automatically smooth by the denition of a smooth map between manifolds, cf. Lee (2013).
Therefore, the ordinary dierentiability ° 2 H*! is an additional condition. This kind of
condition is frequently used in literature, see Schmidt-Hieber (2019); Nakada and Imaizumi
(2020).

Furthermore, we impose some smooth conditions on the distribution Q. Note that if D
is strictly larger than d, the distribution Q cannot possess a Lebesgue density because Y
is a null set. We instead consider a density with respect to the Hausdor measure. Let Hq be
the d-dimensional Hausdor measure in R , whih is normalized so that it is the same as the
Lebesgue measure if D = d. Suppose that Q allows the Radon{Nikodym derivative q with
respect to Hqy. We further assume that q is bounded from above and below, and that g * 2
H . Then, by the change of variable formula, the Lebesgue density of Q, the distributgon of
*1(Y), is given as

®(x) = q "(x)jd (x)j:

Since jJ-(x)j = 0and’ 2 H*1, itis not dicult to see that jJ-(x)j is bounded from above and
below, and the map x ! jJ/(x)j belongs to H. Hence, @ is bounded from above and below,
and belongs to H(B1(0Og4 )). By Lemma 10, under mild assumptions on Pz, there exists g 2
H*1(Z) such that Q= Qg. This, we have Q = Qs, wheref="g 2 H*! is amap from Z to
RD. As in Section 4.3, one can choose f™ 2 F(L; p;s; 1) withL log 1,jpji 9=(*1) ands
d=(+1) Jog 1 such that kjf frnjikq

Now, we illustrate the case of multiple charts. Suppose that a distribution Q is supported
on a d-dimensional manifold M that can be covered by J charts (U;;";);j = 1:::;J,
where J > 1. Here, U; Y are open sets, with homeomorphism " : B1(0Og ) ! Uj. As
before, we further assume that ’; 2 H*!, inf,,; © yJd7, (x)j is bounded below by a
positive constant, Q possesses a Hausdor density that is bounded from above and below, and
that g " 2 H. Let Qj() = Q()=Q(U;) be the normalized measure of Q over U; and
denote its corresponding Hausdor density as g;. Note that for y 2 U; \ Uj, one has
gi(y)Q(Ui) = gj(y)Q(Uj) = q(y) because Q(Ui)Qi() and Q(U;)Q;() agree with Q onU;\ U;.

Next we will show that Q can be patched together from Q; via a partition of unity.
Note that a partition of unity of a topological space Y is a set of continuous functions
fj :j 2 ) gfromY to the unit interval [0;1] such that for every point, y 2 Y, there is a
neighborhood U of y where all but B nite number of the functions are 0, and the sum of all the
function values at y is 1, i.e., j21 i(y) = 1. A compact manifold M always admits a
nite partition of unity fj : j = 1;:::;Jg, () : M ' [0;1] such that P ?=1 ily) = 1
Furthermore, one can construct f; : j = 1;:::;Jg so that each j is sucientfy smooth and
jly) = 0fory 2 Uj, see Lemma 3 of Schmidt-Hieber (2019).
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Since q(y) = Q(Uj)q;(y) for each jRand y 2 Uj, one has q(y) = PJJ_1 Q(Uj)jly)ajly).
Let qaj(yll_)— cjj(y)aj(y), wherec; = [ j(y)dQ;(y)] !is the normalizing constant. Then, q(y)
= i=1 i® {y), where j = Q(Uj)=cj. That is, q is a mixture of g’s. Since ¢ is
suciently smooth, one can construct fj :& ! eY such that Q; isethe distribution of f;(Z)easén
the single chart case, where Z is @ uniformly convex subset of RY and Z f&lows the
uniform distribution on Z. let Z = (0;1) Z and€; be the product distribution
of Uniform(0; 1) and the distribution of 2. Let | 4;:::;1, be disjoint conlgecutlve B\tervals
with lengths 1;:::;, partitioning (0; 1), thatis, 11 = (0;1) and I = [ ’I 11., | 1)
forj = 2;:::;J. Let hj be the indicator function for the interval I;. Then, for a random
variable Z following Uniform(0; 1), we havePPz(hj(Z) =1)=1 Pz(hj(Z)=0)=j.Forz

(z1;z2) 2 RY*1, dene f(z) = J4=1 hj(z1)%(z2). Then, it is not dicult to see
that Q = Q. Note that each fj canebe eciently approximated by ReLU network functions
as the single chart case. Also, 1-dimensional indicator functions hq;:::;h; can be
approximated by piecewise linear functions. Therefore, it is easy to approximate them by
shallow ReLU network functions. Finally, the multiplication of h; and f; caa also be well-
approximated by ReLU networks.

Remark 11 Strictly speaking, the regularity of the map f;€is not guaranteed because j is not
bounded from below. From the construction of ; in Schmidt-Hieber (2019), however, it can be
seen that ; vanishes only at the boundary of U;j (relative to M). Hence, one may
construct a suciently regular fj &uch that Q;e Q; . A more rigorous treatment of this

topic would be very technical, and we leave it as future work.

5. Numerical Experiments

In this section, we empirically demonstrate that the data perturbation method proposedin
Section 3.4 plays an important role to improve the performance of a sieve MLE of deep
generative models. In addition, we illustrate that deep generative models can detect low-
dimensional structures well. Numerical studies are carried out by analyzing various
synthetic and real data sets and comparisons are made between our estimators and others
such as the MLE of a linear factor model, GAN and Wasserstein GAN.

5.1 Synthetic and Real Data Sets
5.1.1 Synthetic Data

For simulation study, we rstly consider distributions on 1-dimensional manifolds. Speci-cally,
we generate data from the model X = f(Z)+ with D = 2 and = 0, where Z is a univariate
random variable following Uniform(0; 1). For the true generator f = (f1; f,), we consider the
following three functions:

Case 1.f1(z) = 6(z  0:5); fo(z) = 0:5(z  2)z(z + 2)

Case 2.f1(z) = 2cos(2z); fa(z) = 2sin(2z) (5.1)
f1(z) = 2cos(2z) + 1; fo(z) = 2sin(2z)+ 0:4 if z> 0:5f1(z) )

Case 3. _ 2 cos(2z) 1; fo(z) = 2sin(22) 0:4 otherwise.
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Figure 1: Supports of Q for the three synthetic data sets in (5.1).

The supports of Q for the three cases are depicted in Figure 1. The generator of Case 2
leads the uniform distribution on a circle. Note that a circle cannot be covered by a single
chart. Also, for Case 3, the true generator is discontinuous. In this case, the support of Qs
the union of two disjoint 1-dimensional manifolds.

We next consider two more distributions, a distribution on the Swiss roll (Marsland,
2015) and the uniform distribution on the sphere, which are supported on 2-dimensional
manifolds with the ambient space R3. The distribution on the Swiss roll is the distribution
of f(Z), where Z follows the uniform distribution on (0;1)? and the true generator f =
(f1;f2;f3) 1 (0;1)2 1 R3 is dened as

t1 = 1:5(1 + 2z,); ty, = 21zy;

f1(z1;z2) = tacos(t1);  fa(z1;z2) = to;  f3(z1;z2) = tasin(ty):

Similar to the circle, the sphere cannot be covered by a single chart. In all the experiments,
the sample sizes of validation and test data are set to be 3,000, while the training sample size
varies.

5.1.2 Big Five Personality Traits Data Set

The big ve personality traits data set (Big-ve; Goldberg (1990)) consists of answers for 50
questions, with the ve-level Likert scale (1 to 5) from 1,015,342 respondents. This data set has
been frequently analyzed in literature with linear factor models, see Ohn and Kim (2021) and
references therein. We only use the data of the 874,434 respondents who answer to all
qguestions completely. Each variable is rescaled to take values from 1 to 1. We randomly
draw 20,000 samples from the entire data, 10,000 of which are used as validation data and the
others as test data. The remains are used as training data.

5.1.3 MNIST and Omniglot Data Sets

We analyze two well-known image data sets, MNIST and Omniglot. MNIST data set
(LeCun et al., 1998) contains handwritten digit images of 28 28 pixel sizes and has a
training data set consisting of 60,000 images and a test data set of 10,000 images. We
randomly sample 10,000 images from the training data set and use them as validation data.
Omniglot (Lake et al., 2015) data set consists of various character images of 28 28 pixel
sizes taken from 50 dierent alphabets. It has 24,345 training samples and 8,070 test
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samples. As before, we split the training data set into two subsets, each of which has 20,000
and 4,345 samples, respectively, and use one for training data and the other for validation
data.

5.2 Learning Algorithm to Obtain the MLE

Assume that the generator f = f is parametrized by . With a slight abuse of notation, let p;
= ps, thatis, 7

p:(x) = (x f(z)) dPz(z):

Mostly, the log-likelihood is computationally intractable. Alternatively, one can maximize a
lower bound of the log-likelihood by use of a family of variational distributions using
methods of variational inference (Jordan et al., 1999). The most well-known algorithm is
the variational autoencoder (VAE; Kingma and Welling, 2014; Rezende et al., 2014) and the
lower bound used in VAE is often called the ELBO (evidence lower bound).

Various alternative lower bounds of the log-likelihood that are tighter than the ELBO
but still computationally tractable, have been proposed afterwards, see Burda et al. (2016);
Cremer et al. (2017); Kingma et al. (2016); Rezende and Mohamed (2015); Salimans et al.
(2015); Snderby et al. (2016). Among these, the importance weighted autoencoders (IWAE,
Burda et al., 2016) is an important variant of the VAE. Recently, it is shown that IWAE can
be understood as an EM algorithm to obtain the MLE, see Dieng and Paisley (2019); Kim
et al. (2020). Thus, we use the IWAE algorithm to obtain a sieve MLE. Specically, let z !
q(z jx) be a variational density parametrized by . A popular choice for q( j x) is the density of
N ((x); (x)), wherex ! (x) and x ! (x) are DNN functions with network parameters . For

|
) im 1% p;(x;Zk) K
;5 %) :=lo )
. azax

k=1

I:\IWAE(

where p.(x;z) = pz(z)(x f(z)) and K is a given positive integer. Then, IWAE
simultaneously estimates ; and by maximizing i"=1 PWAE(- - - Xi): We set K = 10
throughout our experiments.

5.3 Implementation Details
5.3.1 Data Perturbation

The model is trained after perturbing the training data by an articial noise N:(Op; e2Ip). For
each data set, we consider various values of e.

5.3.2 Architectures

For analyzing ve synthetic and Big-ve data sets, we consider DNN architectures with the
leaky ReLU activation function (Xu et al., 2015). For the variational distribution q( j x), we
use the multivariate normal distribution N ((x); (x)), where (x) is a diagonal matrix. Both
the mean and variance are modelled by DNNs. For synthetic data,wesetL = 2,d= 10, p
= (d; 200;200;D) for f, and L = 2, p = (D; 200; 200; d) for
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and . For the Big-ve data set, weset L = 3,d= 5, p = (d;200;200;200; D) for f, and L =
3, p = (D;200;200;200; d) for and .

For analyzing two image data, we use a deep convolutional neural network (Radford
et al., 2016a) with L = 6 and the ReLU activation function for modeling f. Also, convo-
lutional neural networks with L = 6 and the leaky ReLU activation function are used to
build model architectures for and . For the both data sets, we set d = 40.

5.3.3 Optimization

We train deep generative models using the Adam optimization algorithm (Kingma and Ba,
2015) with a mini-batch size of 100. The learning rate is xed as 10 3 for synthetic and Big-
ve data, and 3 10 # for two image data.

5.3.4 Sparse Learning Framework

For learning sparse generative models, we adopt the pruning algorithm proposed by Han et
al. (2015). Firstly, a non-sparse model is trained with a pre-specied maximum number of
training epochs, 200 in our experiments, and then the number of training epochs which
minimizes the IWAE loss on the validation data is chosen. Next, the model is pruned by
zeroing out small weights. Specically, 25% of small weights are replaced by zero. We then re-
train the model keeping the zero weights unchanged. This procedure is repeated one more
time to make 50% of the total weights become zero in the nal model.

5.4 Performance Comparisons

The performance of a given estimator € is evaluated by the Wasserstein distance W+(Q; Q)
estimated on test data as follows. Let G be the empirical measure based on the M i.i.d.
samples from Q. Note that it is easy to generate samples from @ via the estimated generator.
Similarly, let Qm be the empirical measure based on the M observations in test data. Then,
W1(A; Q) can be estimated by W1(QM; Qm). In general, W1(Qn'; Qm) can be computed via
a linear programming. We use a more stable algorithm developed by Cuturi (2013). We call
W1(Qm;®m) the estimated W1 distance.

5.4.1 Results for Synthetic Data

For the three 1-dimensional synthetic data sets, various training sample sizes ranging from
100 to 50,000 are considered . For each case, we obtain a sieve MLE for three times with
random initialization and report the average based on the three sieve MLEs. Firstly, we
trace the estimated variance A2: Figure 2 draws the values of j*  ej=e as the sample size
increases, where e2 = 2+ e2 = e2, |t seems that j* ej=e ! 0 as n increases regardless of
the value of e2, which suggests that sieve MLEs perform reasonably well.

The estimated W, distances for various training sample sizes are shown in Figure 3. It
is interesting to see that the estimated W; distance of a sieve MLE does not converge to 0
when e? is either too small or too large, which well corresponds to Theorem 7. Figure 4
provides the curves of the estimated W; distances over the degree of perturbation (i.e. e)
with the training sample size being xed at n = 50;000: As can be seen, the estimated W1
distance is minimized at an intermediate value of e in all three cases, which again conrms
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Figure 2: Values of j* ej=e for various e and n for the three 1-dimensional synthetic
data sets.
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Figure 3: The estimated W3 distance over the sample size with various values of e for the
three 1-dimensional synthetic data sets.

the validity of our theoretical results. Figure 5 presents generated samples from C estimated
with n = 50;000 and the optimal choice of e that minimizes the estimated W; distance.

Similar phenomena can be found for the Swiss roll and sphere models. That is, the
estimated W distance is minimized at an intermediate value of e. Generated samples from Q
With n = 50;000 and the optimal choice of e are plotted over the support of Q in Figure 6.
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Figure 4. The estimated W3 distance over e with the training sample size being xed atn
= 50; 000 for the three 1-dimensional synthetic data sets .
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Figure 5: Generated samples from @ for the three 1-dimensional synthetic data sets.

Figure 6: Generated samples from @ for the two 2-dimensional synthetic data sets.
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Figure 7: The estimated W; distance over e for Big-ve (left), MNIST (middle) and Om-
niglot (right) data.
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Figure 8: The estimated W, distance over the sample size for MNIST (lefg) and Omniglot
(right) data. An optimal e is chosen for sieve MLEs based on the validation errir,
and no data perturbation is applied for GAN and WGAN.

5.4.2 Results for Big-five Data Set

The Big-ve data set is trained with various values of e; and the estimated W; distances over
various values of e are depicted in the left panel of Figure 7. Again, it is clear that the
estimated W, distance is minimized at an intermediate value of e: In addition, we provide
the results of the MLE of a sparse linear factor model for comparison, which has been
considered in literature for analysing the Big-ve data set, see Ohn and Kim (2021). A deep
generative model is signicantly better than a sparse linear factor model, which indicates
that nonlinear factor models are necessary for practical data analysis.

5.4.3 Results for MNIST and Omniglot Data Sets

The results about the estimated W, distance for various e are shown in the middle and
right panels of Figure 7. Again, we observe that the estimated W3 distance is minimized at
an intermediate value of e: On the other hand, the data perturbation does not work at all
for GAN and Wasserstein GAN. Moreover, a sieve MLE with proper data perturbation
outperforms GAN and Wasserstein GAN for the both image data sets, as detailed in Figure 8.
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Figure 9: Randomly generated images from a sieve MLE & for MNIST (upper) and Om-
niglot (lower). We considered three values of e, 0.0, 2.0 and 4.0 from left to
right.

Figure 9 presents randomly generated images from sieve MLEs & for MNIST and Om-
niglot data sets with three values of e, 0.0, 2.0 and 4.0. It is obvious that e = 2:0 gives the best
results for the both data, which implies that the estimated W; distance is positively related
to the cleanness of corresponding synthetic images. Randomly generated images of GAN and
Wasserstein GAN learned with data perturbation for MNIST and Omniglot are given in
Figures 10 and 11, respectively, which again conrms that data perturbation is not helpful for
GAN and Wasserstien GAN to generate synthetic images.

5.5 Meta-learning for Low-dimensional Composite Structures

In Section 3.2, we have proved that a sieve MLE of deep generative models can capture a
low-dimensional composition structure well. Using this exibility of a sieve MLE, we can
learn a low-dimensional composite structure from a sieve MLE as follows. For example,
suppose that f possesses a generalized additive model (GAM) structure such as

fi(z) = gj1(z1) + + gja(za)

for j = 1;:::;D: Then, we can estimate the component functions gj;| = 1;:::;d by
minimizing

N fi(zi)  gi(zin) + + gjalzid)

=1 "
under certain regularity conditions, where z;’s are independently generated samples from
Pz:
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Figure 10: Randomly generated images by GAN (upper) and WGAN (lower) estimators for
MNIST. We consider three values of e, 0.0, 2.0 and 4.0 from left to right.
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Figure 11: Randomly generated images by GAN (upper) and WGAN (lower) estimators for
Omniglot. We consider three values of e, 0.0, 2.0 and 4.0 from left to right.
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We investigate the above meta-modeling approach by simulation. We generate data of
size 50,000 from the following two generative models:

Model 1: GAM
z = (z1;22;23) N(0O;13)
1
f = 23+ + 0:322
1(2) 0:7 + exp(0:3 2z1) %2 fa(z)
= 0:9+ 0:82; 0:1z3 + log(z3 + 1:5) 0:423
3:5
fa(z) = 1:8+ 0:2 exp(z
3(z) 2%+ 2,+ 4 p(z3)

2
fs(z) = 1:2z;  0:125 + 0:052%

fs(z) = 3+ 0:5log(2:5+ exp(z1)) 0:2 exp(z3 + 0:2)

Model 2: Non-additive model
z = (z1;22;23) N(0;13)

f (Z) _ 5z3
V7 3.7+ exp( 221 + 0:42,)

fo(z) = 0:9  0:1z; 0:2z1(zz 0:1)? + 0:152123
f3(z) = log(2 + (z1 z5)?)  0:2z1exp(0:2 z3)
fa(z) = 1:5  0:3z] + 0:07212,23

321 1:2 2 2.2
f = —— "~ 4 0:5log(1+ 0:1)° +
5(2) 2%+ 2z, + 3:3 og(l+ (1 )7+ 2323

We estimated the components of the GAM from a sieve MLE of the deep generative
model by the proposed meta-modeling and compare the estimated W3 distances of the orig-
inal sieve MLE and the estimated GAM in Figure 12. The orginal sieve MLE outperforms
the GAM for the two simulation models but the dierence of the estimated W; distances is
smaller for the rst model where the true model is a GAM than the second model, which
indicates that the sieve MLE captures the underlying low-dimensional composite structure
well.

For the Big-ve data set, the upper left panel of Figure 13 compares the estimated W;
distances of three estimates, (sieve) MLEs of the linear and deep generative models and the
estimated GAM obtained by the meta-learning. The GAM improves over the linear model
but is slightly inferior to the deep generative model. The ve estimated component functions
for f14; a randdmly selected coordinate, are drawn in Figure 13. Some of them clearly show
non-linearity, which partly explains why the performance of the deep generative model is much
better than the linear factor model.

6. Discussion

In this work, we consider the estimation of a distribution of high-dimensional data based
on a deep generative model which includes the estimation of classical smooth densities and
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Figure 12: Estimated W; distances of a sieve MLE and the estimated GAM for Model 1
(left) and Model 2 (right)
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Figure 13: The estimated W, distances of (sieve) MLEs of the linear model, deep generative
model and the estimated GAM (upper left) and the ve estimated component
functions of a randomly selected corrdinate (i.e. f4) of the GAM for the Big-ve
data set
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Manifold Noise level Upper bound Lower bound
G1 | c2 jj1 . 1 n 2=(2+d) n 2=(2+d) (Iog
G2 | c? N(Op; Ip) (logn) =2 n) !
P | C2 ij1 . n =G n 270 (2=n)2=(d* T (2=n)2=(0+2]
A C n 1=qjj1 T n ¢ =d_ n :d_ (=n):(d+)n 2=d
D [ C2 PE

Table 1: Convergence rates of the manifold estimators with respect to the Hausdor dis-
tance from existing papers: Genovese et al. (2012b) (G1), Genovese et al. (2012a)
(G2), Puchkin and Spokoiny (2022) (P), Aamari and Levrard (2019) (A), Divol
(2021) (D). C in the second column refers that M is a dierentiable manifold of
order . For Genovese et al. (2012b) and Aamari and Levrard (2019), it is
assumed that is perpendicular to the manifold, see Genovese et al. (2012b) for
details.

distributions supported on lower-dimensional manifolds as special cases. The case when Q. is
supported on a smooth manifold M with dim(M) = d, is the most interesting and
challenging case. For this model, one may be interested in estimating the manifold or the
support of M itself. One can easily construct an estimator for M by M £ f(2) based on an
estimator f. The performance of M "might be evaluated through a convergence rate with
respect to the Hausdor metric. Some existing results on convergence rates are summarized in
Table 1 with assumptions on the underlying manifold and noise level. All these papers
assume that the reach of the underlying manifold is bounded below by a positive constant.
Technical assumptions from dierent papers may vary, but none of these papers explicitly
consider the regularity of g, the density with respect to the volume measure. In particular,
Genovese et al. (2012b) assumed that the error vector is perpendicular to the manifold
which is somewhat a strong condition. In Genovese et al. (2012a), the perpendicular error is
replaced by standard Gaussian error leading to a slow convergence rate. This slow rate is
standard in a deconvolution problem with a supersmooth Gaussian kernel. The other three
papers considered bounded errors which decay to zero with suitable rates. If the noise level is
suciently small and M 2 C2, the minimax convergence rate would be n 279, It would be
interesting to investigate whether an estimator M aconstructed from a deep generative
model can achieve this rate. More generally, it would be worthwhile to study the manifold
estimation problem through the lens of deep generative models.

We have some interesting observations from the results of analysis of the two image
data sets in Section 5. While GAN and WGAN generate clearer images than a sieve MLE,
the performance of a sieve MLE in terms of the evaluation metric W1(Qmm; Qm) is better
than both, if a suitable degree of perturbation is applied. Surprisingly, opposite results are
obtained if FID (Frechet Inception distance; Heusel et al. (2017)) is used as a measure of
performance. Note that FID is an approximation of L2-Wasserstein distance in the feature
space of Inception model (Szegedy et al., 2016), and it is one of the most popularly used
performance measures in image generation problems. The obtained FID values are 2.76,
4.19 and 9.58 for GAN, WGAN and sieve MLE with the optimal e, respectively. That is,
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both GAN and WGAN are signicantly better than a sieve MLE in terms of FID. At this
point, we are not aware of any reason why two performance measures, W1{Qu; Qm) and
FID, yield opposite results, which we leave as a future work.
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Appendix A. Proofs

A.1 Proof of Lemma 1

For fi;f, 2 F with kjf; f>ji1ki 1, we have that

Z
prox) P = (x fa(z)1 (X(X:Z((ZZ))))C'PZ(Z)=
ya ! ya
ix f1 j?jx f, j°
(x  faz)1 exp 0 @ e
P 2 J2 X 0 Jagg (g
@ 5z ®
Z
f %) f ») T f f
- (x f1(2))J 2(2)j5 J1(Z)Jz2 fx (f2(2) 1(2))sz(z)
z KDq + pD'x'
(x f1(z)) T PIM21gp, (),

where the last inequality holds because jj}‘l(z)j2 jfz(z)jzj 2KD and jxT (f1(z) f2(2))j
Djxj21. Since jxj2 jx f(z)ji2+jf(z)ja 1+jx, fZ)2+ DK and jxj?(x)=(22)
(22) P=2=¢, the last display is further bounded by

P —

z 2KD+pD pD' f()'2'
X Z
Lox o fa(2) o+ 0T by (e)
1 2 +
2 e
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Also, for 1;2 2 [min; max] With j1 2j 2, it holds that j 2 1 5] 2 2{1 +22)2 and
jlog(2=1)j 2=(1 " 2). Hence
Pf;4 (X) Pf;, (X) "
Z 5 5 #
ix  f(z2)j 1 1
= L(x f(z)) 1 Jj exp —y Z R dP;(z)
Z
i f@iy 1 1 )
(x, f(z)) S 2 Dlog "dP (z)2 (A.2)
Z
+ 2)jx f(2)j3 D
5 1(X f(Z)) (1 2).] — ( )Jz + . sz(Z)
2 1 2 1 2
2 24 P=2 1t 2 + D

Let > 0 be given. Let ffy;:::;fy,g8 and f1;:::; n,8 be 1-covering of F and ;-
covering of [min; max), respectively. By (A.1) and (A.2), there exist constants ¢; =
c1(D;K) and c; = ¢(D) suchthat;=c; DP*2and,=c; D+l implies that fpy; :i=

. min . min -
1;:::;N1;j= 1;:::;Nog forms an =2-covering of P with respect to k k;. For each (i;]),
dene I;; and ujj as

lij (x) = maxfpg, (x) =2;0g and ujj(x) = minfpg;;(x) + =2; H(x)g;

where H(x) = supg,p p(x) is an envelop function of P. Note that

. .2
= X
H(x) 2° ?mj sup exp J%
jyjiK 2 fax
, ij, 2R D 2 . D 3
2? ?nir? exp JxJZ_ __Z 2 =20 T e"*0=2p_ 2 max(X);
max min

there the second inequality holds because ij yj22 jxj2=g jvi? !'xj2=2 5 K2D. Since
ixj1>t (x)dx De t2=(2%) e have that H(x)dx , where

jxj1>B
1=2
K D
B = 2maxlog + D log . +max logD + 5 +og D
It follows that
Z VA Z
fuij(x)  lij(x)gdx dx + H(x)dx (2B)°+1 = &
jxj1B jxj1>B
Since dﬁ(uij; Iij) kuij |ijk1, we have that
NG Psdu) Np(%Pik ki) NgNp ™ "N (1; F;kj jaki):

Since (log 1)P=2 p for every small enough , once is smalf enough, say forsome = (D), it
holds that c3*flog(max=min)g ©, where c3 = c¢3(D; K; max). Hence,

3
C1C3m|i3n 4

minflog(max=min)gP

32



A likelihood approach to deep generative models

Since min 1, minflog(max=min)gP is bounded by a constant which depends only on mayx and
D, so 1 is bounded below by c4 D+34, where ¢4 = c4(D; K; max). A similar
lower bound can be obtained for ;, which compr]etes the proof

A.2 Proof of Theorem 3

We will apply Theorem 4 of Wong and Shen (1995) with = 0+. Choose four absolute
constants cq;:::;cs as in their Theorem 1. These constants can be chosen so that ¢c; = 1=3

and c3 > 2. Dene c and & as in the statement of Lemma 1.
For every 2 (0;cs],

log Njj(=c3; P;du) 4(s+ 1)log *+ sA+ (D + 3)(s+ 1)log ,;, + cis

by Lemma 1, where ¢s = cs(c; c%; c3). Hence,

z°v,

Iog N[](:Cg,' P; dH) d
2) 8
q r

p 58
p2 sA+ (D + 3)(s+ 1)log .+ css+ 2 4(s+ 1) Iogg—

for every I:)2 C3=p2. For = , = c6p_n 1sfA™+ log(M=minJg with a large enough constant
6 = Cs(ca; cs; D), the last display is bounded by csn’=2? for every n, so Eq. (3.1) of Wong
and Shen (1995) is satised. Note that Eq. (3.1) of Wong and Shen (1995) still holds if cg is
replaced by any constant larger than cg.

It is well-known (see Example B.12 of Ghosal and van der Vaart (2017)) that

Z
K(pipr) KN (25N £(2);2dP2(2) _ 2 jf(a)

f(Z)Jde (2) Bpa_ def

7 2 2 2 "
Also, it is easy to see that
z Zlog . T z .
(x) (x y)  jyi+ 4ixTyj? iz X2 gl
x)dx= i (x)dx 42 +—Y—¢l—}2 (x-)-elix.

Combining this with Example B.12, (B.17) and Exercise B.8 of Ghosal and van der Vaart
(2017), we have that

Z
log f( ;(3 ——"dP(x)
ZZ £ 2
|og("(xf((zz)))) (x  f(z))dxdPy(z) + 4K(p; ps.)
z _
D4ap%z w0 J (X)é%_l{. 2Dapp C7app 2_2 0 22 def

33



Chae, Kim, Kim and Lin

where c; = c7(D). (Note that both , and ,, need not depend on n. We use the notations,, and
n for the notational consistency with Theorem 4 of Wong and Shen (1995)). Let, = , _
12,,. Then, Theorem 4 of Wong and Shen (1995) implies that
2 2 2 .
Pdy(p;p) > 5e 2" + "2 SE Mgk = 5e " +JID By re—dennmg 2_(:%

n n
n
n

constants, the proof is complete.

A.3 Proof of Corollary 6
By Lemma 5 of Schmidt-Hieber (2020), we have

logN(;F; kj ji1k1) sfca(logn)?+ log g

for every > 0, where c4 = c4(q;d; t;;K). By applying Lemma 5 and Theorem 3 with A
= c4(log n)2, we have the conclusion.

A.4 Proof of Theorem 7

For any constant co = co(D; K;r), if + p_IF Co, the assertion of Theorem 7 holds
trivially by taking a large enough constant C = C(D; K; r). Therefore, it suces to prove the
assertion of Theorem 7 when and log * are suciently small.
For given 2 (0;1], suppose that dy(ps;; p) and kjfjiks K. Throughout this proof,
P¢. and Qs will be denoted as P and Q, respectively. Let Y;Y;; beindependent random
vectors, with the underlying probability suchthatY Q,Y Q, N(Op;?2lp), N(Op;?2lIp).
Since

z 4

(x)dx o (x)dx De t2=(20%) ;0 o
jxji>t= D

R.
for any t > 0, we have ¥ * (x)dx with t = (2D?log(D=))'=?. Hence,1 P M

= Y + 2tM (jji2 > t) : .

Since jP(B) P(B)j du(P;P) for every Borel set B, see Eq. (8) of Gibbs and Su
(2002), we have that P (M?') 1 2.

We will next prove that 2t, which is the main part of the proof. For this, we assume
on the contrary that > 2t which we will show lead to a contraction. Firstly, if > r=2, then 1

P([ K t;K+ t]P) is bounded below by a constant that depends on

K; D and r, which contradictsto P (M ) 1 2 provided that t and are smaller than a
certain threshold depending only on K; D and r. (Note that t and are suciently small as
assumed at the beginning of the proof.) If 2 [2t;r=2], then we claim that for every x 2 RP,
there exists y 2 RP such that jx yj, and B_y(y)\ Mt = ;. Let(x; M) = inffjx x
jao:x 2 Mg. The pro%f of tche claim is divided into three cases.

(Case 1) (x; M) : Obviously, one can choose y = x.

(Case 2) (x; M) 2 (0;): Let xp be the unique Euclidean projection of x onto M, and x; =
Xg+t(x Xg). Dene two continuous functions dg(t) = jxt Xgj2 and d(t) = (x¢; M).
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Note that dg(t) = d(t) for all t 2 [0; 1]. Otherwise, jx¢ zj> < jX¢ Xgj2 for some t 2 [0; 1]
and z 2 Mnxg. Since x¢ lies in the line segment with end points x and xg,

JX Xoj2 = JX  Xej2 + jX¢  Xoj2 > X Xej2 + jX¢  Zj2 X Zj2;

and thus, xg cannot be the unique projection of x onto M. Note also that d(t) = dg(t) for
all t 2 [1;1+ =jx Xxgjo]. Otherwise, ft 2 [1;1+ =jx Xgj2] : d(t) < dg(t)g is a non-empty
set with the inmum tg, and it is not dicult to see that x:° has at least two Euclidean
projection onto M. Let y = Xj.-jx x j - Then, we have jy xj2 = and(y; M) = jy

Xoj2 = jX Xpj2 + . Since t =2, we have Boo(y)\M = t
(Case 3) (x; M) = 0: Since B(x) is not contained in M for any > 0, one can choose x° 2
B(x)nM. If is small enough, by Case 2, there exists y® such that jx° y%j> and

B_,(y°)\ Mt = ;. Note that jx yOiz jx x%,+ jx° y%, + . One can takey asany
limit point of y as ¢ 0.
By the claim, we have
Y+ 2M jY
= X 2 Boolly  x)

for every x 2 RP. Since jy xj» , the right hand side is bounded below by a positive
constant, say c, that depends only on D. It follows thatP (Mt = (Y + 2 M ) & ¢, which
contradicts P (M ) 1 +2 for small enough . This completes the proof of 2t. Note that the
‘1-diameter of [ K; K]P is 2KD, W1 W, and Wj is bounded by a multiple of the total
variation, see Theorem 4 of Gibbs and Su (2002). Also, it is easy to

see that W,(P; Q) and W,(P; Q) . Hence,
W1(Q; Q) WL(Q;P)+ W.(P;P)+ W,(P;Q) + KDkp pky + :
Since kp pki 2dy(p; p) and 2t, the proof is complete.

A.5 Proof of Theorem 9

let B = pre, where e = + n =f2(+tle Also, let e = log e=logn, that is,
e = n e, Then, by Corollary 6, (3.4) holds with

¢ 3=2
n = Cn 2+t (logn)>™%;

where C = C(q; d; t;; K; D; max; )-
Firstly, suppose that < =f2( + t)g. In this case, < e 2, so

log 2
log n

Hence, , can be re-written as

Con 2+cthogn)®™2

with an adjusted constant C° = CO(q; d; t;; K; D; max; ;) satisfying 2 t=(2*tic c0< C.
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Similarly, if =f2( + t)g, we have

log 2 2(+
t) log n € 2(+t)

Hence can be re-written as

’n

= C®n 2r(iog n)32

with Cyy = C%(q; d; t;; K; D; max; 5 )-
Finally, Theorem 7 gives the desired result with re-dened constants.
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