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ABSTRACT

The arctic is warming at three times the rate of the global aver-

age, affecting the habitat and lifecycles of migratory species that

reproduce there, like birds and caribou. Ecoacoustic monitoring

can help efficiently track changes in animal phenology and behav-

ior over large areas so that the impacts of climate change on these

species can be better understood and potentially mitigated. We

introduce here the Ecoacoustic Dataset from Arctic North Slope

Alaska (EDANSA-2019), a dataset collected by a network of 100

autonomous recording units covering an area of 9000 square miles

over the course of the 2019 summer season on the North Slope of

Alaska and neighboring regions. We labeled over 27 hours of this

dataset according to 28 tags with enough instances of 9 important

environmental classes to train baseline convolutional recognizers.

We are releasing this dataset and the corresponding baseline to the

community to accelerate the recognition of these sounds and facili-

tate automated analyses of large-scale ecoacoustic databases.

Index Terms— Ecoacoustics, audio dataset, labeled data, base-

line, biophony, anthrophony, geophony, convolutional network

1. INTRODUCTION

The Arctic Coastal Plain is an ecosystem in northern Alaska and

Canada that hosts over 180 migratory bird species from nearly every

continent on the planet. The health of this ecosystem is inextricably

linked to other habitats across the globe [1] and is undergoing rapid

change due to global warming [2, 3] and land-use change [4]. This

region has rich oil and gas resources; extraction and transportation

of these fossil fuels increase the usage of machinery and vehicles.

As a result, anthrophony from industrial activity or aircraft over-

flights may change the acoustic environment in the area. Aircraft

overflights associated with this activity have been a community con-

cern in the region. One village on the Coastal Plain, Nuiqsut, ex-

periences air traffic equivalent to a city 95 times its size [5]. Past

acoustic monitoring studies in Alaska have been smaller in geo-

graphic scope and utilized coarse acoustic indices or manual label-

ing [6, 7]. While some of this research has addressed anthrophony

[7], our dataset is the first to account for both developed and unde-

veloped regions across the Arctic Coastal Plain. Such recordings

are valuable for understanding the natural state of the Arctic acous-

tic environment, how development changes that state, and how that

change affects wildlife.

Passive acoustic monitoring is an effective tool to monitor this

system—and many others—because acoustic data can tell us about

changes in wildlife populations, including phenology [8], biodiver-

sity [9], community structure [10], and distribution [11]. Because

Figure 1: Audio recording device locations.

the volume of data produced by acoustic studies makes manual data

processing prohibitively expensive, researchers have recently em-

ployed convolutional neural networks (CNN) to label the contents

of large ecoacoustic datasets [12, 13, 14]. To train a CNN in a super-

vised fashion, researchers must label a small subset of data to train

the model, and that labeled data is what we have provided in this pa-

per. We used an earlier version of this dataset (batch-1, described in

Subsection 2.3) in our research to understand the advantages of self-

supervised learning and data valuation for audio classification [15].

We are providing the best performing model from that work as the

baseline in this paper, which utilizes data augmentation [16, 17, 18]

and global temporal pooling [19].

2. CORPUS

2.1. Monitoring sites

Samples were taken at latitudes between 64◦ and 70◦ N, and lon-

gitudes between 139◦ to 150◦ W, covering predominately the Arc-

tic Coastal Plain but also spanning tundra, shrub, and boreal forest

ecosystems on the north and south of the Brooks Mountain Range

in northern Alaska. A map of the recording sites is shown in Fig-

ure 1. We used 40 recording devices to cover the Prudhoe Bay oil-

fields and the 1002 portions of the Arctic National Wildlife Refuge

(ANWR) in a grid separating locations by 20 km with a random
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tened to random 10-second clips and observed that a clipping pro-

portion less than 0.1% is almost unnoticeable to a listener. We there-

fore removed samples with more than 0.1% clipping before labeling

in batch-2, batch-3, and batch-4 of our dataset. Figure 4 shows for

10,000 randomly selected clips, how many had clipping less than

a given percentage. In a similar fashion, for batch-1, the expert la-

beler checked the recordings’ spectrogram and only labeled those

without any visible clipping artifacts. 80% of these samples from

batch-1 have a clipping percentage lower than the 0.1% threshold.

3. BASELINE

Our initial labeling included examples of 28 unique categories in all

levels of the hierarchy, out of 41 we thought we might encounter. Of

these, only 9 had more than 100 examples in batch-1 and were used

to train our baseline model: “biophony”, “bird”, “songbird”, “wa-

terfowl”, “upland bird”, “insect”, “athrophony”, and “silence”.

As a baseline system1, we provide the best system described in

[15]. Our baseline system employs the Ecoacoustic Dataset from

Arctic North Slope Alaska (EDANSA-2019)2 and uses convolu-

tional neural networks (CNNs) together with global temporal pool-

ing and data augmentation. We share our code with MIT and our

dataset under Creative Commons 4.0 licenses, which are highly per-

missive. We decided to use CNNs with hyperparameters inherited

from AlexNet [21] due to their common success in sound event de-

tection experiments [22]. Each sample is a 10-second clip, pre-

processed and turned into a mel-spectrogram with a hop size of

23 ms, a window size of 42 ms, and 128 mel-frequency bins. We

use a stack of 4 convolutional layers where all kernels are 5×5, fol-

lowed by two fully connected layers. We train our model for 1600

epochs and keep the one with the highest mean AUC score over all

labels on the validation set. Table 2 shows the AUC per label of the

baseline model on the validation and test sets.

4. PREVIOUS WORK

There are a number of open-source datasets, similar to ours, shared

along with their research findings. The CityNet dataset, which is

collected from London, has diverse anthropogenic classes but the

biophony classes are limited to only general labels like “bird”, “in-

sect”, “vegetation”, and “wing beats” [23]. Another soundscape

dataset consists of 5 hours of recordings collected from Sonoma

County, California, USA and samples are labeled with “anthro-

pophony”, “biophony”, “geophony”, “quiet”, and “interference”

[14]. The main difference between these datasets and ours is that

ours is recorded in remote locations and over a much larger area.

Our dataset consists of 29 hours of labeled data, compared to 19

hours in CityNet and 5 hours from Sonoma County.

There are large datasets focusing on bird calls, which are chal-

lenging to model and of high scientific interest. BIRDCLEF is a

family of such datasets focusing on short targeted recordings as

opposed to long-term continuous recordings. It consists of sound

recordings collected by the Xeno-canto community and new ver-

sions with different purposes have been released every year since

2014. The latest, 2022 version, consists of 15k recordings, total-

ing over 190 hours covering 152 species from Hawaii, specially de-

signed for modeling calls of rare and endangered bird species with

1https://github.com/speechLabBcCuny/EDANSA-2019
2https://zenodo.org/record/6824272

Label Validation Test

Biophony 0.95 0.96
Bird 0.96 0.98

Songbird 0.90 0.96
Waterfowl 0.87 0.90
Upland bird 0.87 0.93

Insect 0.90 0.83
Anthrophony 0.88 0.88

Aircraft 0.96 0.88
Silence 0.96 0.93

Average 0.92 0.92

Table 2: AUC per label of the baseline on validation and test sets.

small amounts of training data [24]. Another dataset with 385 min-

utes of dawn chorus recordings was collected from Eastern North

America, including 48 species and 16,052 annotations [25]. Some

of the other datasets with bird calls are BirdVox [26], Nips4Bplus

[27], Freefield1010 [28], Warblrb10k and PolandNFC [29].

Larger general-purpose datasets have been extracted from

YouTube such as Audio Set [30] and VGGSOUND [31] and in-

clude bioacoustic classes as a small part of their corpus. There

are also continuously recorded open-source sound datasets without

bioacoustic labels, such as SONYC-UST-V2, which is the output

of an urban noise monitoring project and it is a multi-labeled [32].

This dataset is ∼51 hours long in total and labeled with 8 main tags

that are common in city environments, such as engine, music, and

the human voice.

5. CONCLUDING REMARKS

This paper presented the Ecoacoustic Dataset from Arctic North

Slope Alaska (EDANSA-2019), collected by autonomous recording

units during the summer of 2019, and its corresponding baseline.

We provided detail on the recordings and the sampling and label-

ing methods used to generate the four batches of our dataset. This

work should help facilitate the analysis of large-scale ecoacoustic

recordings made in arctic conditions, and it would be interesting to

examine the extent to which models trained on this data can gener-

alize to data collected in other environments and ecosystems.
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Pérez, S. K. Sweet, L. Gough, J. C. Wingfield, and N. T. Boel-

man, “Eavesdropping on the Arctic: Automated bioacoustics

reveal dynamics in songbird breeding phenology,” Sci Adv,

vol. 4, no. 6, p. eaaq1084, 06 2018.

[9] D. Proppe, C. Sturdy, and C. St. Clair, “Anthropogenic noise

decreases urban songbird diversity and may contribute to ho-

mogenization,” Glob. Ch. Bio., vol. 19, pp. 1075–84, 04 2013.

[10] C. D. Francis, C. P. Ortega, and A. Cruz, “Noise pollution fil-

ters bird communities based on vocal frequency,” PLOS ONE,

vol. 6, no. 11, pp. 1–8, 11 2011.

[11] N. J. Kleist, R. P. Guralnick, A. Cruz, and C. D. Francis,

“Sound settlement: noise surpasses land cover in explaining

breeding habitat selection of secondary cavity-nesting birds,”

Ecol Appl, vol. 27, no. 1, pp. 260–273, 01 2017.

[12] S. S. Sethi, N. S. Jones, B. D. Fulcher, L. Picinali, D. J. Clink,

H. Klinck, C. D. L. Orme, P. H. Wrege, and R. M. Ewers,

“Characterizing soundscapes across diverse ecosystems using

a universal acoustic feature set,” PNAS, vol. 117, no. 29, pp.

17 049–17 055, 2020.

[13] J. LeBien, M. Zhong, M. Campos-Cerqueira, J. P. Velev,

R. Dodhia, J. L. Ferres, and T. M. Aide, “A pipeline for identi-

fication of bird and frog species in tropical soundscape record-

ings using a convolutional neural network,” Ecological Infor-

matics, vol. 59, p. 101113, 2020.

[14] C. A. Quinn, P. Burns, G. Gill, S. Baligar, R. L. Snyder,

L. Salas, S. J. Goetz, and M. L. Clark, “Soundscape classi-

fication with convolutional neural networks reveals temporal

and geographic patterns in ecoacoustic data,” Ecological Indi-

cators, vol. 138, p. 108831, 2022.

[15] E. B. Çoban, A. R. Syed, D. Pir, and M. I. Mandel, “Towards

large scale ecoacoustic monitoring with small amounts of la-

beled data,” in Proc. WASPAA, 2021, pp. 181–185.

[16] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio aug-

mentation for speech recognition,” in Proc. INTERSPEECH,

2015, pp. 3586–3589.

[17] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,

“mixup: Beyond empirical risk minimization,” arXiv preprint

arXiv:1710.09412, 2017.

[18] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.

Cubuk, and Q. V. Le, “Specaugment: A simple data aug-

mentation method for automatic speech recognition,” arXiv

preprint arXiv:1904.08779, 2019.

[19] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D.

Plumbley, “Panns: Large-scale pretrained audio neural net-

works for audio pattern recognition,” Tr. ASLP, vol. 28, pp.

2880–2894, 2020.

[20] A. Team, 2019. [Online]. Available: https://www.

audacityteam.org

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet clas-

sification with deep convolutional neural networks,” NeurIPS,

vol. 25, pp. 1097–1105, 2012.

[22] K. Choi, G. Fazekas, and M. B. Sandler, “Automatic tagging

using deep convolutional neural networks,” in ISMIR, 2016.

[23] A. J. Fairbrass, M. Firman, C. Williams, G. J. Brostow,

H. Titheridge, and K. E. Jones, “Citynet—deep learning tools

for urban ecoacoustic assessment,” Methods in Ecology and

Evolution, vol. 10, no. 2, pp. 186–197, 2019.

[24] S. Kahl, A. Navine, T. Denton, H. Klinck, P. Hart, H. Glotin,
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