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ABSTRACT

The arctic is warming at three times the rate of the global aver-
age, affecting the habitat and lifecycles of migratory species that
reproduce there, like birds and caribou. Ecoacoustic monitoring
can help efficiently track changes in animal phenology and behav-
ior over large areas so that the impacts of climate change on these
species can be better understood and potentially mitigated. We
introduce here the Ecoacoustic Dataset from Arctic North Slope
Alaska (EDANSA-2019), a dataset collected by a network of 100
autonomous recording units covering an area of 9000 square miles
over the course of the 2019 summer season on the North Slope of
Alaska and neighboring regions. We labeled over 27 hours of this
dataset according to 28 tags with enough instances of 9 important
environmental classes to train baseline convolutional recognizers.
We are releasing this dataset and the corresponding baseline to the
community to accelerate the recognition of these sounds and facili-
tate automated analyses of large-scale ecoacoustic databases.

Index Terms— Ecoacoustics, audio dataset, labeled data, base-
line, biophony, anthrophony, geophony, convolutional network

1. INTRODUCTION

The Arctic Coastal Plain is an ecosystem in northern Alaska and
Canada that hosts over 180 migratory bird species from nearly every
continent on the planet. The health of this ecosystem is inextricably
linked to other habitats across the globe [1] and is undergoing rapid
change due to global warming [2, 3] and land-use change [4]. This
region has rich oil and gas resources; extraction and transportation
of these fossil fuels increase the usage of machinery and vehicles.
As a result, anthrophony from industrial activity or aircraft over-
flights may change the acoustic environment in the area. Aircraft
overflights associated with this activity have been a community con-
cern in the region. One village on the Coastal Plain, Nuigsut, ex-
periences air traffic equivalent to a city 95 times its size [5]. Past
acoustic monitoring studies in Alaska have been smaller in geo-
graphic scope and utilized coarse acoustic indices or manual label-
ing [6, 7]. While some of this research has addressed anthrophony
[7], our dataset is the first to account for both developed and unde-
veloped regions across the Arctic Coastal Plain. Such recordings
are valuable for understanding the natural state of the Arctic acous-
tic environment, how development changes that state, and how that
change affects wildlife.

Passive acoustic monitoring is an effective tool to monitor this
system—and many others—because acoustic data can tell us about
changes in wildlife populations, including phenology [8], biodiver-
sity [9], community structure [10], and distribution [11]. Because
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Figure 1: Audio recording device locations.

the volume of data produced by acoustic studies makes manual data
processing prohibitively expensive, researchers have recently em-
ployed convolutional neural networks (CNN) to label the contents
of large ecoacoustic datasets [12, 13, 14]. To train a CNN in a super-
vised fashion, researchers must label a small subset of data to train
the model, and that labeled data is what we have provided in this pa-
per. We used an earlier version of this dataset (batch-1, described in
Subsection 2.3) in our research to understand the advantages of self-
supervised learning and data valuation for audio classification [15].
We are providing the best performing model from that work as the
baseline in this paper, which utilizes data augmentation [16, 17, 18]
and global temporal pooling [19].

2. CORPUS

2.1. Monitoring sites

Samples were taken at latitudes between 64° and 70° N, and lon-
gitudes between 139° to 150° W, covering predominately the Arc-
tic Coastal Plain but also spanning tundra, shrub, and boreal forest
ecosystems on the north and south of the Brooks Mountain Range
in northern Alaska. A map of the recording sites is shown in Fig-
ure 1. We used 40 recording devices to cover the Prudhoe Bay oil-
fields and the 1002 portions of the Arctic National Wildlife Refuge
(ANWR) in a grid separating locations by 20 km with a random
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Figure 2: Audio recording times for monitors in each region. The
top row displays the number of daylight hours for each correspond-
ing month shown below it on the second row. The colored cells
show the months where recordings were made for each region.

offset. We also had 20 recording devices at sites along the length of
the Dempster and Dalton Highways (10 devices each) in the Yukon
Territories and Alaska, respectively, and an additional 10 recording
devices placed at existing wildlife monitoring sites throughout Iv-
vavik National Park in the Yukon. Devices are deployed over 3-5
days in each region, starting from the 16th and 23rd of March, 2nd,
3rd, and 4th of May, respectively, in Dalton, Dempster, Ivvavik,
Prudhoe, and Anwr. Recordings are saved locally on the device and
collected manually. The acoustic recording units (ARUs) were SM4
wildlife recorders from Wildlife Acoustics, sampling at a rate of 48
kHz with gains set to 16 dB. ARUs recorded 150 minutes of audio
at a time, with rotating breaks of 120 to 150 minutes in order to
cycle through every hour of the day within a 4-day period. In total,
devices recorded 2,161 days of audio data throughout 2019.
Recording periods for each region are shown in Figure 2.
Recordings from the Prudhoe Bay Oilfields, ANWR, and Ivvavik
were able to capture wildlife activity on the Arctic Coastal Plain
and in the foothills of the Brooks Range, which serve as the pri-
mary breeding grounds for a majority of migratory species in the
area. Sites along the Dempster and Dalton Highway captured the
arrival and departure of those migratory birds that use the major
north-south flyways that converge on the Coastal Plain.

2.2. Taxonomy

Labels of our dataset are members of three taxonomic ranks: coarse,
medium, and fine. The coarse rank is the highest rank of the
taxonomic tree and contains the four most general labels: “an-
throphony”, “biophony”, “geophony”, and “silence”. A higher
rank contains more general labels compared to the lower ranks. The
medium rank contains more specific labels for each of the coarse

rank labels and includes “bird”, “insect”, and “aircraft”. The fine
rank consists of the most specific labels, each belonging to one of
the medium rank categories and includes “songbird”, “waterfowl”

(which in our dataset includes ducks, geese, and swans), and “up-
land bird” (including grouse and ptarmigan). Labels used in our
baseline system are shown on the leftmost column of Table 1.

For example, a sample that contains a birdsong event is anno-
tated with the “biophony”, “bird”, and “songbird” tags represent-
ing labels from the coarse, medium, and fine ranks, respectively.
Annotating a sample with a child label will automatically annotate
it with the parent label, however, it is possible for a sample to be an-
notated only with a parent label. Our annotators could assign nearly
all samples a designation from the coarse labels. Fine labels under

3—4 November 2022, Nancy, France

Label b-1 b-2 b-3 b-4 Total
Biophony 4107 500 776 886 6269
Bird 3821 493 78 52 4444
Songbird 2210 238 5 6 2459
Waterfowl 573 126 2 3 704
Upland Bird 386 44 2 2 434
Insect 372 36 734 846 1988
Anthrophony 328 217 1367 1165 3077
Aircraft 100 93 731 769 1693
Silence 1146 325 32 19 1522
Total 5566 1045 2133 2038 10782

Table 1: Number of samples per label in each of the four batches,
batch-1 (b-1) through batch-4 (b-4). The last row shows the total
number of samples in each batch.

the bird category were not uncommon, but fine labels under other
categories were relatively rare or absent.

2.3. Sampling and labeling

Our dataset is composed of four batches differentiated by the sam-
pling and labeling methods used, which are described below. We
initially labeled data with broad coverage of time and space in our
dataset so as to capture as many sound classes as possible without
bias. We pulled our initial batch, batch-1, of random samples from
each site within the Arctic National Wildlife Refuge and the adja-
cent Qilfields (sites 11-50). We selected a random 150-minute con-
tiguous recording within each site, visually examined each record-
ing’s spectrogram in Audacity [20], and labeled all visually iden-
tified sounds present in that recording via listening. We excluded
sound recordings that were inaudible due to wind-related clipping.
We describe the details of four examples in Subsection 2.4.

The same expert labeler labeled sound clips in all batches based
on the taxonomy described in Subsection 2.2 In almost all cases,
sounds could be identified at the coarsest scale (e.g., “anthrophony”
or “biophony”), and more specific labels were added as they could
be identified. This generated 3083 separately labeled sounds that
ranged in length from a few seconds to a few minutes. To gen-
erate equal-length samples, they were then split into 5566 non-
overlapping, 10-second clips. However, not all clips’ lengths were
divisible by 10, generating clips less than 10 seconds. Clips less
than 2 seconds were discarded, and clips between 2 and 10 seconds
were zero-padded to the full 10 seconds.

We divided the whole set of samples into training, validation,
and test sets so that all samples from a given site were confined to
one of these three sets rather than split between them. To determine
which site went to which set, we used a multiple knapsack problem
detailed in [15]. This split ensured that we were measuring gener-
alization across sites, and thus to future recordings.

In order to increase the number of examples in the rare class
“anthrophony”, we labeled more samples that we expected to be
relevant from sites where this class was more common using pre-
dictions of a model trained on the training set of batch-1. At those
sites, we pulled 500 10-second clips not tied to model confidence
and 500 clips where model confidence for anthrophony was 0.75 or
higher. We split the season into 12 weekly periods starting on May
7 and pulled ~80 samples from each weekly period, 40 of which
were not tied to model confidence and were just the first 40 sam-
ples from that week, and the other 40 of which were tied to model
confidence and tended to be distributed more throughout the week.
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Figure 3: The depictions in this figure highlight the visual charac-
teristics of spectrograms from four examples produced in Audacity.
From left to right, these represent a truck driving on a road, a bird
singing, and a loon singing near an acoustic recording unit (in sites
26, 50, and 11, respectively).

For each week, we randomly chose one of the training sites (30,
29, 25, 24, 22, 21, 19, 16, 13, 49, 48, 44, 41, 40, 38, 37, 33) to
pull samples from. The proportion of all 1000 samples taken from
each training site depended on the proportion of anthrophony that
was identified at that site in batch-1. So if 30% of all anthrophony
in batch-1 had come from one site, 30% of our samples for batch-
2 were also pulled from that site. This meant that, in some cases,
we had to use multiple sites to fill our quota of samples for a given
week. This process created a second batch of clips, batch-2. All of
the clips from this 1000-sample set were labeled by trained under-
graduate students, and then their labels were reviewed and corrected
by an expert labeler before being finalized.

To ensure the accuracy of our original samples, plus the addi-
tional anthrophony samples, we built a user interface (UI) in Python
that allowed users to quickly listen to a sample, view its spectro-
gram, and label it. The expert labeler checked or unchecked boxes
next to each possible label to validate the original labels associated
with a sample. All 6616 10-second clips that we had previously
labeled were reviewed using this process. Note that all numbers
provided in Table 1 are after this relabeling.

The UI made it considerably more efficient to review clips, al-
lowing us to label additional samples from the “aircraft” sound
class by selecting high-confidence predictions from the baseline
model trained on batches 1 and 2. This created our third batch,
batch-3. Note that batch-3 is only used for training, so we are less
concerned that this selection process might bias the labels. Using
this process, we were able to label an additional 2133 clips.

Performance was still below what we had hoped for the sound
classes “insect”, “anthrophony” and “aircraft”, so we decided to
collect a final batch of data, batch-4. In this batch, we labeled sam-
ples for the validation and test sets. Since selecting samples to label
using a single model’s confidence scores could lead to choosing
only the type of samples that are successfully recognized by this
model, we used an ensemble of 7 different iterations of our sound
labeling model, including architectural and training variants, devel-
oped with earlier versions of the dataset. We normalized the confi-
dence scores of each model across time to be between 0 and 1. Then
assigned the maximum confidence across models to each label on
each clip. Again, we pulled clips where this combined confidence
was high, though this differed for each sound class as follows: 0.7
for anthrophony, 0.25 for aircraft, and 0.99 for the insect. The ex-
pert labeler used the Ul to review these clips and was able to identify
an additional 1,874 instances of labels so that the final set of label-
clip associations was over 10,000. Table 1 displays the number of
samples per label in each of the four batches of our dataset.
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Figure 4: Number of clips out of 10,000 randomly sampled that
have at most a particular clipping percentage (percentage of samples
at maximum or minimum value).

2.4. Labeling examples

When labeling batch-1, we viewed the 150-minute contiguous
recordings as spectrograms in Audacity so we could locate sounds
visually. The spectrogram was shown up to 24 kHz so that all pos-
sible sounds were visible. While the harmonics of birdsong could
extend to 10-12 kHz, a majority of the visible signal on the spec-
trogram was at 9 kHz or below. The presence of anthrophony was
generally indicated by lower frequency, uniform partials that tend to
have a consistent pitch and long duration. The presence of biophony
presents as harmonic signals with clear partials that have a wide
frequency range and short duration, though they are often part of a
larger temporal pattern, or song. Rain was the most common form
of geophony and was clearly indicated by extremely brief, nonhar-
monic signals on the spectrogram that look similar to ‘clicks’, i.e.,
they have a vertical, broadband form that does not follow an inten-
tional temporal pattern.

Figure 3 displays depictions that highlight the visual character-
istics of spectrograms from three examples produced in Audacity.
From left to right, the first depiction, labeled “anthrophony”, repre-
sents a truck driving on a road, near an acoustic recording unit (site
26) in the oilfields. The lines highlight the visible, flat partials at
the lower frequencies that are characteristic of anthrophony sounds.
The second depiction represents a bird singing near an acoustic
recording unit (site 50) in the Arctic National Wildlife Refuge and
is labeled “songbird”. The patterns highlight the signals created
by the birdsong, which show a complex pattern of partials that ex-
tends from low to high frequencies; this complex song is repeated
multiple times to produce a ‘singing bout’. The third depiction rep-
resents a loon singing near an acoustic recording unit (site 11) in the
oilfields and is labeled “waterfowl”. The patterns highlight partials
of the loon call, which show a definitive temporal pattern.

2.5. Clipping

Clipping is distortion caused by loud sounds. Recorders have a high
and low limit for the amplitude of the sounds they can process; if
these thresholds are passed, the data gets corrupted. We count the
proportion of sample values in a 10-second interval that are at the
maximum or minimum observed levels in a given recording.

An acceptable clipping percentage depends on the specific ap-
plication. To pick a threshold of acceptable clipping level, we lis-
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tened to random 10-second clips and observed that a clipping pro-
portion less than 0.1% is almost unnoticeable to a listener. We there-
fore removed samples with more than 0.1% clipping before labeling
in batch-2, batch-3, and batch-4 of our dataset. Figure 4 shows for
10,000 randomly selected clips, how many had clipping less than
a given percentage. In a similar fashion, for batch-1, the expert la-
beler checked the recordings’ spectrogram and only labeled those
without any visible clipping artifacts. 80% of these samples from
batch-1 have a clipping percentage lower than the 0.1% threshold.

3. BASELINE

Our initial labeling included examples of 28 unique categories in all
levels of the hierarchy, out of 41 we thought we might encounter. Of
these, only 9 had more than 100 examples in batch-1 and were used
to train our baseline model: “biophony”, “bird”, “songbird”, “wa-
terfowl”, “upland bird”, “insect”, “athrophony”, and “silence”.

As a baseline system', we provide the best system described in
[15]. Our baseline system employs the Ecoacoustic Dataset from
Arctic North Slope Alaska (EDANSA-2019)2 and uses convolu-
tional neural networks (CNNs) together with global temporal pool-
ing and data augmentation. We share our code with MIT and our
dataset under Creative Commons 4.0 licenses, which are highly per-
missive. We decided to use CNNs with hyperparameters inherited
from AlexNet [21] due to their common success in sound event de-
tection experiments [22]. Each sample is a 10-second clip, pre-
processed and turned into a mel-spectrogram with a hop size of
23 ms, a window size of 42 ms, and 128 mel-frequency bins. We
use a stack of 4 convolutional layers where all kernels are 5 x 5, fol-
lowed by two fully connected layers. We train our model for 1600
epochs and keep the one with the highest mean AUC score over all
labels on the validation set. Table 2 shows the AUC per label of the
baseline model on the validation and test sets.

4. PREVIOUS WORK

There are a number of open-source datasets, similar to ours, shared
along with their research findings. The CityNet dataset, which is
collected from London, has diverse anthropogenic classes but the
biophony classes are limited to only general labels like “bird”, “in-
sect”, “vegetation”, and “wing beats” [23]. Another soundscape
dataset consists of 5 hours of recordings collected from Sonoma
County, California, USA and samples are labeled with “anthro-
pophony”, “biophony”, “geophony”, “quiet”, and “interference”
[14]. The main difference between these datasets and ours is that
ours is recorded in remote locations and over a much larger area.
Our dataset consists of 29 hours of labeled data, compared to 19
hours in CityNet and 5 hours from Sonoma County.

There are large datasets focusing on bird calls, which are chal-
lenging to model and of high scientific interest. BIRDCLEF is a
family of such datasets focusing on short targeted recordings as
opposed to long-term continuous recordings. It consists of sound
recordings collected by the Xeno-canto community and new ver-
sions with different purposes have been released every year since
2014. The latest, 2022 version, consists of 15k recordings, total-
ing over 190 hours covering 152 species from Hawaii, specially de-
signed for modeling calls of rare and endangered bird species with

Uhttps://github.com/speechLabBcCuny/EDANSA-2019
Zhttps://zenodo.org/record/6824272
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Label Validation  Test
Biophony 0.95 0.96
Bird 0.96 0.98
Songbird 0.90 0.96
Waterfowl 0.87 0.90
Upland bird 0.87 0.93
Insect 0.90 0.83
Anthrophony 0.88 0.88
Aircraft 0.96 0.88
Silence 0.96 0.93
Average 0.92 0.92

Table 2: AUC per label of the baseline on validation and test sets.

small amounts of training data [24]. Another dataset with 385 min-
utes of dawn chorus recordings was collected from Eastern North
America, including 48 species and 16,052 annotations [25]. Some
of the other datasets with bird calls are BirdVox [26], Nips4Bplus
[27], Freefield1010 [28], Warblrb10k and PolandNFC [29].

Larger general-purpose datasets have been extracted from
YouTube such as Audio Set [30] and VGGSOUND [31] and in-
clude bioacoustic classes as a small part of their corpus. There
are also continuously recorded open-source sound datasets without
bioacoustic labels, such as SONYC-UST-V2, which is the output
of an urban noise monitoring project and it is a multi-labeled [32].
This dataset is ~51 hours long in total and labeled with 8 main tags
that are common in city environments, such as engine, music, and
the human voice.

5. CONCLUDING REMARKS

This paper presented the Ecoacoustic Dataset from Arctic North
Slope Alaska (EDANSA-2019), collected by autonomous recording
units during the summer of 2019, and its corresponding baseline.
We provided detail on the recordings and the sampling and label-
ing methods used to generate the four batches of our dataset. This
work should help facilitate the analysis of large-scale ecoacoustic
recordings made in arctic conditions, and it would be interesting to
examine the extent to which models trained on this data can gener-
alize to data collected in other environments and ecosystems.
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