Using Bayesian Networks for Structured Learning from
Post-Windstorm Building Performance

David B. Roueche!, Jordan Nakayama®

T Auburn University, Auburn, AL, USA, dbr0011(@auburn.edu
2Auburn University, Auburn, AL, USA, jon0003@auburn.edu

SUMMARY:

Recent advances in post-windstorm reconnaissance have accelerated the amounts of perishable building
performance data being collected after extreme windstorms, necessitating better frameworks for knowledge
discovery from the data. One particularly promising approach to this need is Bayesian Networks (BN), which have
grown in their application in natural hazards research due to their ability to explicitly model causal factors. In this
study, a Naive Bayes Network (NBN) was first developed to observe the influence of wind speed ratio, roof shape,
number of stories, roof cover, and pre/post-IBC (2002) on the damage class of a structure and predict the probability
of each damage class given a specified scenario. This initial model was derived solely from empirical data and the
parameters of influence are modelled with conditional independence, and limiting the model’s use. An illustrative
hybrid Bayesian Network is also proposed which combines empirical data, known wind engineering theory, and
expert opinion to formulate a more holistic model of structural performance in windstorms better suited for
parameter inference and building performance predictions.
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1. INTRODUCTION:

Post-event reconnaissance has long played a role in natural hazards engineering, directly
advancing science, policy, and practice. As new data collection techniques and equipment become
available, there is an increase in accessible post-event data that researchers and professionals can
learn from. An approach that is growing in its implementation in natural hazards research is
Bayesian statistics. Bayesian Networks allow for explicitly modeling causal factors by combining
the use of prior knowledge and theory, making predictions with incomplete data, and utilizing both
subjective and objective data, making them a powerful tool for risk assessment (Fenton and Neil
2018). Specifically, Bayesian Networks have been used to model and learn from wildfires,
landslides, and debris flow events (Zheng et al. 2021). The objective of this study is to (1) present
a Naive Bayes Network derived solely from empirical data, (2) propose a Bayesian Network
modeling the interdependencies between influence parameters, and (3) postulate the benefits of a
Bayesian Network approach, integrating theory and data, for enhancing knowledge discovery from
windstorm performance datasets.

2. BAYESIAN NETWORKS:

Bayesian networks (BN) define a joint probability over a set of variables and the corresponding
local distributions (Scutari and Denis 2014). BNs are made of two parts, (1) the directed acyclic
graph (DAG) and (2) the conditional probability tables (CPT). The DAG depicts the
interdependency between variables, or nodes, with arrows connecting the nodes. There are two
main types of nodes, the parent nodes, and the child nodes. The child nodes (where the arrow ends)
are built from the conditional probability of being in a specific state, given the state of its parent
nodes. When a node has no parent, the CPT is the prior probability distribution (Frayer et al. 2014).
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Using the DAG and the parameters of influence (0), the joint distribution of all the variables can
be factorized into a product of conditional distributions (Scutari and Denis 2014):

k
P(xIDAG,0) = | [p(XilXpao)
i=1
where X; is the node which edges are directed to and Xp ;) is the parent set of nodes.

3. WINDSTORM BUILDING PERFORMANCE DATA

To facilitate learning from windstorm data, the WindStorm Performance Dataset (WiSPD) was
used for this analysis (Roueche et al. n.d.). The WiSPD defines the windstorm performance of
4,483 residential structures from four hurricanes and 4 tornadoes. Features of this combined dataset
include the record location, building attributes such as year built and number of stories,
component-level damage, and design and event-based wind speed estimates for 4,483 records. The
illustrative features used in this analysis were the wind speed ratio (ratio of estimated wind speed
and design wind speed), roof shape, number of stories, roof cover, and year built (Table 1). The
response variable was taken as a damage state, defined as progressive levels of damage (Table 2).

Table 1: Discretized states for the parameters of influence.

Wind S.peed Roof Shape Numb?r of Roof Cover Year Built
Ratio Stories
(0.5, 0.7] Gable 1 Standing Seam Before IBC (<2002)
(0.7, 0.9] Hip 1.5 Corrugated After IBC (<=2002)
(0.9, 1.1] Combo — Hip & Gable 2 Tile
(1.1, 1.5] Complex 3 3-Tab
(1.5, 2.0] Other Laminated
Other
Table 2: Description of damage states for the response node.
Damage State Description
No damage 0% component damage
Envelope damage >0% roof or wall cover damage
Structural damage >0% roof or wall structure damage
Significant structural damage >25% roof structure damage & >0% wall structure damage

4. CASE STUDY: A NAIVE BAYES NETWORK

Using the WiSPD, a naive Bayes network (NBN) was created to observe the effect of the input
features on a structure’s probability of being in a given damage state. In an NBN the parent nodes
are independent of each other as are the marginal probabilities, as shown in the DAG of prior
probabilities in Figure 1. An initial sensitivity analysis of the influence parameters showed that the
wind speed ratio was the most influential parameter in increasing the probability of exceeding the
limit. Using the empirical data and the results of the sensitivity analysis, 5 scenarios (Table 3) were
created to observe the changes in the posterior probabilities (Table 4) for a design level wind event.



Table 3: Description of each scenario used for the predictions.

Scenario Wind Speed Ratio Roof Shape | Number of Stories Roof Cover Pre/Post IBC
1 09-1.1 Hip 1 Laminated Before IBC
2 09-1.1 Gable 1 Laminated Before IBC
3 09-1.1 Hip 2 3-Tab Before IBC
4 09-1.1 Gable 2 3-Tab Before IBC
5 09-1.1 Combo 1 Laminated After IBC

[D] Roof Shape [D] Number of Stories [D] Roof Cover
Hip 27.261% 1 74.556% 3-Tah 25.007%
Gahle 44.072% Laminated 48.572%
Combo 15.045% 15 }2'445% Standing Seam :| 11.204%
Complex 10.472% 5 21 gas% Corugated ]1 601%
Flat ]1.168% Tils ]4.63%
other || 1.082% 31103% otner {0 & 306%
(D] Wind Speed Ratio [D] Year Buitt
0.5 ]1 817%
07 :l 28 256% ] Damage Class After IBC 33.276%
No Damage :| 25.962%
0.9 ‘40 4%
11 27.261% ‘_‘H_ﬁ' Envelope Damage 53.202% ﬂ_f_fl Before IBC 66.724%
1.5 ]1 926%
Structural Damage ] 10.433%
Significant Structural Damage ] 10.403%

Figure 1: Naive Bayes Network prior probabilities from the WiSPD data.

Table 4: Posterior probabilities for the tested scenarios (ND = No damage, ED = Envelope damage, SD = Structural damage,
SSD = Significant structural damage).

Scenario P(DS = ND) P(DS = ED) P(DS = SD) P(DS = SSD)
1 0.268 0.538 0.100 0.094
2 0.250 0.544 0.088 0.118
3 0.046 0.580 0.206 0.168
4 0.072 0.700 0.078 0.150
5 0.370 0.610 0.012 0.008

5. AN ILLUSTRATIVE BAYESIAN NETWORK

While in the NBN, input features are assumed to be conditionally independent, the actual
performance of buildings during a windstorm is driven by a complex interaction between hazard
conditions, local site conditions and climatology, building aerodynamics, interactions with
adjacent structures, past storms, the local regulatory environment, and even socio-economic
factors. These complexities can be better modeled with a Bayesian Network, which allows known
relationships and theory, such as the Davenport Wind Loading Chain (Davenport 2011), to be
explicitly modeled in the network in tandem with data-driven and judgement-based causal
relationships to holistically model wind performance. Figure 2 illustrates a hybrid Bayesian
network (HBN) observing a response variable of roof cover damage, but incorporating calculation
nodes, continuous nodes, and discrete nodes, and their interdependent relationships.
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Figure 2: A Bayesian Network with a response variable of roof cover damage where the gray nodes represent
calculation nodes.

6. CONCLUSIONS:

The initial naive network presented in this study was modeled directly from empirical data
provided in the WiSPD. However, the parameters chosen for the Naive Bayes network are not the
only parameters that influence the damage class. By incorporating theory and the principles
established in the Davenport Wind Loading Chain, the network becomes more complex and
requires more information than that provided in the WiSPD. However, using a Bayesian approach
to understand structural performance in windstorms allows for a combination of empirical data,
theory, and expert opinion to be used to formulate a more holistic understanding.
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