Image Processing and Machine Learning)
Methods Applied to Additive oo
Manufactured Composites for Defect

Detection and Toolpath Reconstruction

Guan Lin Chen and Nikhil Gupta

1 Introduction

Additive manufacturing (AM) plays a crucial role in the fields such as aeronautical,
automotive, and medical [1, 2], providing possibilities for low cost parts, highly
customizable designs and small production runs [3, 4]. AM relies on a variety of
software tools and cloud resources to make it a cyber-physical system [5, 6]. For
AM, a wide spectrum of feed materials is available across the entire material usage
of polymers, metals, ceramics and composites [7-9]. Parts made of glass and carbon
fiber filled polymer matrix composites (PMCs) are now being 3D printed as [10,
11]. Tt is reported that the parts printed by different tool paths can have different
properties because of directionality in material orientation and defects [12]. In case
of composite materials, the 3D printing toolpath can be used as a method to orient the
fibers in a certain direction and obtain a customized part [13]. AM technologies have
improved significantly in recent years; however, there still exist numerous challenges
in obtaining high quality, resolution and surface finish required for many applica-
tions [14-16]. For example, in powder bed fusion, uniformity in the packing of bed
from one layer to the other is important for optimizing the processing parameters,
which controls the porosity of the powder bed so that the final part has uniform and
maximum density [9]. During fabrication of a complex shaped object using material
extrusion methods, which is one of the most commonly used by AM methods [17],
an outline is printed first to more precisely define the shapes and then an infill pattern
is used to deposit material within the contour’s shape [18]. This kind of space filling
mechanism leads to gaps at the end of the deposited lines and causes porosity if the
process is not well optimized, which affects the mechanical properties of the printed
part [19]. Additionally, CAD models are widely used in the AM to demonstrate a

G. L. Chen - N. Gupta (X))

Composite Materials and Mechanics Laboratory, Mechanical and Aerospace Engineering
Department, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
e-mail: ngupta@nyu.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 19
V. Kushvaha et al. (eds.), Machine Learning Applied to Composite Materials,
Composites Science and Technology, https://doi.org/10.1007/978-981-19-6278-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-6278-3_2&domain=pdf
mailto:ngupta@nyu.edu
https://doi.org/10.1007/978-981-19-6278-3_2

20 G. L. Chen and N. Gupta

digital model and also used for G-code transformation for 3D printers to manufacture
the part [20]. However, the curvatures present in the CAD models are often reformed
with linear segments in file formats such as STL and can result in the loss of dimen-
sional accuracy in the printed part [5, 21]. These effects cannot be avoided when using
material extrusion methods, leading to porosity and micron-sized voids near curva-
tures, especially in parts of complex geometry and curvatures. The imperfections can
be visualized using both destructive and non-destructive imaging methods.

A variety of methods, such as manual or computer assisted non-destructive inspec-
tion methods are used to perform quality assessment, which is quiet challenging in
the AM domain [22], whether during the process or post-processing to maintain
high quality as well as the high manufacturing throughput [23, 24]. In AM, parts are
printed in several hundred layers, which can not only be used for locating defects but
also can be used to hide specific information within layers [25-27]. The layup process
of composite manufacturing is somewhat similar to the layer by layer manufacturing
of AM and the machine learning (ML) trained model can be applied to composite
quality assessment [13, 28]. Artificial Neural Network, which is inspired by biolog-
ical neural networks, showing efficiency in dealing with intricate nonlinear behavior
and has a strong physical foundation for use in the materials science field [29]. ANN
has been used in prediction and optimization of material properties [30], especially
in the AM domain, which has a strong process-structure—property relationship [31].
ML methods are now being applied to a variety of problems in materials science,
including fields such as development of battery materials and testing of composite
materials [32, 33] where enormous amounts of raw data are generated on a daily
basis that can be used to train the ML models for effective decision-making [34].
ANN is a computational ML method inspired by the architecture of biological neural
networks [35] that has been applied in many problems related to composite materials
[36-39] and other materials for defect detection [40, 41].

Micro-CT (wCT) scan, which has been used in the medical field for decades,
provides a large image database and is finding increasing applications in the charac-
terization of AM parts. Such large image sets are a limitation for manual inspection
methods, but an asset for training of ML methods [42—45]. It is beneficial to pre-
process the meaningful features that are used for prediction to reduce the training
effort and increase the accuracy of the designed ML algorithm. The location and
orientation of the reinforcing fibers govern the mechanical response of composite
materials, which can be detected by ML methods [46]. ML methods have also been
used on optical images to identify and classify two-dimensional materials [47]. The
use of ML methods on large image databases sometimes requires significant signal
processing effort for making the search faster for implementation in the real time
defect detection systems.

In this work, describes in detail the steps required for image processing, ANN
model training and validation, and defect detection using a database of images
obtained on a 3D printed composite material specimen. A glass fiber reinforced
PMC filament is used to fabricate specimens by a commercial material extrusion
3D printer. The specimens are imaged using a pCT scanner. The image dataset
is used to train a ML algorithm. Previous studies revealed that 2D images with

Image Processing and Machine Learning Methods Applied ... 21

irregular outlines increase the difficulty in analyzing the microstructure features of
composite materials such as the fiber orientation identification [13, 47], such limita-
tions are overcome by cropping the training images in circular shape during training.
Application of image processing methods to reduce the size of the dataset helps in
making the training significantly faster. In addition, two kinds of ANNSs, namely
Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), with
three different architectures—one-dimensional and two-dimensional algorithms in
CNN, and Long-Short-Term-Memory cell in RNN and its related Python codes are
presented, and the implementations of the three trained model and the resulting tests
are presented in this work.

2 Methods

2.1 Sample Preparation

The samples are designed using SolidWorks 2017 (Waltham, MA) and saved in
STL format. The shape of the sample is a cube with 6 mm side. ABS-GF10 glass
fiber reinforced acrylonitrile butadiene styrene (ABS) filament of 1.75 mm diam-
eter, manufactured by 3DXTECH, Grand Rapids Michigan, USA, is used for 3D
printing. ReplicatorG software is used for preparing the sliced model and gener-
ating the G-code. The printing parameters included 100% solid infill, feed rate of
41 mm/s, extrusion temperature of 220 °C, and build platform temperature of 120 °C.
A FlashForge-Creator Pro Dual Extruder printer is used for printing the specimens.

2.2 pCT Scan Image

A Skyscan 1127 (Bruker, Belgium) wCT scan system is used at source voltage of
44 kV, current of 222 L A and the camera pixel size of 9.5 wm with a rotation step of
0.6° per scan, for 360° rotation. Normal scanning time is about 40 min with lowest
resolution. However, larger specimens can take 6-8 h in one scan based on the image
resolution. Each scan generates thousands of images, which are usually saved in tiff
format.

The images acquired from wCT scan were reconstructed using NRecon software.
In this step, the image can be tuned with function such as “smooth”, which can
improve the clarity of the image slice, “contrast”, which can reduce the noise and
“rotation”, which is used to rotate at a fixed angle to output the reconstructed images
with desired angle as Fig. 1 shown. Since, the sample was randomly mounted on the
specimen plate and the scanning process involved rotation, the printing direction of
the output images was random with respect to the scanning direction. It is important
to designate a reference angle so that all the images can be interpreted with respect

22 G. L. Chen and N. Gupta

950 um | LS0um

(a) (b)

Fig. 1 An example of a wCT scan output image with a random angle and b after rotation to 0°

to the same reference framework. Since fibers are included in the feed material and
the fibers provide high contrast, they are used for identification of the direction. In
this work, 0° is defined as horizontal reference. Therefore, the reconstructed images
are rotated using the “rotation” function in NRecon software to output the images
to be the reference images of 0°. Once the images are rotated, they can be directly
compared. The present work is exploratory for developing the image processing and
ML model training methods; hence, the geometry of the 3D printed part is kept
simple.

The square shape of the specimen having four sharp corners is a consideration in
this work. The sharp corners would inevitably affect the accuracy for ML because
any sharp angles in the image may cause bias while training the model, resulting
in inaccurate predictions. To increase the accuracy of the trained model, the data
selection and features extraction are the key steps. Therefore, it is better to sub-
segment each WCT scan image slice into smaller images and use circular shape
sub-images. Rotation of circular sub-images will preserve the features in the circular
area without any interference at the edges. The model trained with a circular image
dataset is still capable of predicting a square image. However, if the model is trained
on a square image dataset, it will not be able to predict a circle image with accuracy.

2.3 Circular Image Dataset Preparation for ML Model
Training

Two prediction purposes are introduced. One is to build a ML model capable of
predicting the printing direction and its angular information in each layer of the

Image Processing and Machine Learning Methods Applied ... 23

sample, which can then provide the information of the printing angles used in the 3D
printer. Another purpose is to predict the movement of the print head in each layer,
which can then be used to analyze the printing signature throughout the printed
sample.

There are two different methods to obtain the required dataset. The first method
uses image reconstruction after the wCT Scan and the second method uses a Matlab
code. Both of the methods will be discussed thoroughly in the following section.

2.4 Dataset for Orientation Prediction in Each Layer

In this section, the prediction of the overall printing orientation in each layer of
the sample is developed. Circular sub-images are first extracted from each image
slice as shown in Fig. 2. The function of “region of interest” is used during the
image reconstruction with NRecon software to capture a certain area of the scanned
image. Figure 2a shows an image where glass fibers seem to be oriented in the
horizontal direction. Figure 2b, ¢ show two sub-images that contain fibers oriented
in multiple directions. These features appear from two different slices because the
scan resolution is much finer than the deposited layer thickness and the specimen
shows some warpage due to thermal contraction upon cooling. Such intermixing of
features may also take place due to mismatch between the printing plane and CT
scanning plane.

Depending on the resolution setup for the WCT scan and the specimen size, the
total numbers of images will be different in each dataset. For the specific sample
used in this work, there are 663 images obtained after the wCT scan.

Next, a reference angle needs to be decided. In this work, images with horizontal
glass fiber are designated as 0°. For training the ML algorithm, a sufficiently large
database is necessary. Moreover, to distinguish the fiber angle, the model needs to
be able to predict fibers along any angle in the entire 360°. However, it actually only
needs to predict 180° to indicate the whole 360°, since 10° can represent 190° and

Fig. 2 Sub-images extracted from a wCT scan image slice

24 G. L. Chen and N. Gupta

0° is the same as 180°. Therefore, in order to train the model, images with clear
visibility of 0° fiber angle are synthetically rotated counterclockwise at intervals of
1° each from 0° to 180° using a Python code shown as Fig. 3 to get the images
database to train the model for predicting various rotation angles. The rotation of
the images can be conducted at smaller steps but the discontinuous short fibers in
the present case are not oriented exactly in the same direction. Some local variations
exist within one extruded line as well as some fibers are bent. Such conditions will
provide false positives. Hence, the rotation step is kept at a higher angle. The process
allows creating a dataset with controlled orientation of the glass fiber to train a model
for printing orientation prediction in each layer.

A few nCT images showing overlapping printing directions in Fig. 2b, c are mostly
at the boundary of two deposited layers due to the slight slope that can be either in the
printing or in the specimen positioning on the wCT stage. These images are removed
from the dataset in the present case because there is enough information available
from other slices that are cleaner. In order to have a defined/labeled angle, a set of
207 images that show clear orientation of fibers is identified and rotated so that the
fiber orientation is horizontal. These images are labeled as 0° fiber orientations. All
the images are cropped with a region of interest to decrease the number of pixels and
remove bias caused by the sharp angles in four corners for machine learning training.
The cropped images, shown in Fig. 2, have a pixel size of 536 x 536. Individual
fibers in each image show some variation in their direction. However, the algorithm
takes the global signature as the features for the 0° and disregards the individual fiber
orientation. Each of these images are then rotated counterclockwise from 0° to 180°
at 1° interval using a Python code. This procedure allows creating a large training
database with controlled fiber orientation and trains the model to identify any angle.
This procedure resulted in 37,467 images. The process of synthetically rotating the
images and cropping them with built-in function during image reconstruction with

1. # Rotate the Images and save to different dir

2. from PIL import Image

3. import matplotlib.pyplot as plt

4. import os

5. dimport shutil

6. path = 'C:/Users/User/Desktop/Guanlin_CNN1D/CNN1D/2D book 207 testing' # The path of @
deg reference images

7. for deg in range(181): # Save rotated image into folder named ©, 1, 2, 3,...,180

8. out_put ='C:/Users/User/Desktop/Guanlin_CNN1D/CNN1D/0@_180 book testng/'+str(deg)
9. print(out_put)

10. for image in os.listdir(path):

11. img = Image.open(path+'/'+image)

12. img.rotate(deg).save(image)

Fig. 3 Python code for rotating image form 0° to 180° at 1° interval and save to folders named as
1,2,3...180

Image Processing and Machine Learning Methods Applied ... 25

NRecon software used to generate training data is known as image augmentation.
This process is helpful in training the ANN model to be robust.

2.4.1 Dataset for Toolpath Prediction in Each Layer

In this section, training dataset preparation is slightly different compared to the
previous section. Here, the purpose is to determine the printing path, or toolpath,
of each layer of the sample with specific image features for the model training.
Moreover, the algorithm used for this dataset is 1D and RNN, which needs to transfer
the features contained in a 2D image into a meaningful dataset with 1 dimensional
format. Therefore, the training dataset should contain meaningful features, which
represent the movements of the print head. Thus, one layer of image with clear
fiber orientation is used to conduct the feature extraction for model training dataset
preparation. Here, instead of using region of interest to extract the features from a
certain area, for toolpath prediction, the whole image slice is preferable since the
toolpath of the whole layer and the whole sample need to be predicted to completely
recreate the toolpath of the sample.

Each pCT image slice represents a variety of fiber directions based on the space
filling algorithm used for determining the print head movement. The ML model
tuning dataset needs to identify these features, Hence, each image is sliced in circular
sub-images of 100 x 100 pixels. The sub-sampling process and the resulting images
are shown as Fig. 4. This process results in 961 cropped circular images for each
WCT image slice. The circular shape helps in reducing the error caused by irregular
outline of the specimen. In this work, 150 images with clear visibility of 0° fiber
angle are selected and then the images are synthetically rotated counterclockwise at
intervals of 1° each from 0 to 180° using a Python code shown as Fig. 3. Similar to
the previous section, this cropped circular images for each WCT image slice help in
reducing the error caused by irregular outline of the specimen. Then, 5 images are
randomly selected to be the test image set, 115 images are randomly chosen to be
the training data and the rest 30 images are used to be the validation images. Three
of them are then rotated with Python code to create the training, validation, and test
dataset with total images of 27,150 images for model training and testing. A special
image lossless-processing algorithm called BSIF then used to convert the 2D images
into a 1D numerical dataset for reducing the computing power and increasing the
processing speed. The detail of the BSIF process are discussed in the next section.

2.4.2 Binarized Statistical Image Features (BSIF) Algorithm

Binarized Statistical Image Features (BSIF) algorithm is used to convert an image
into a binary image format without losing valuable features [48]. Figure 5 shows an
example of the image produced by the BSIF algorithm. The images processed through
BSIF algorithm are used for training, validation and testing the ML algorithm. The
output image is a binary code for each pixel in the image and is stored in a format

26 G. L. Chen and N. Gupta

150 images

Y
+ Rotated with python coding

Y
27,150 images

Fig. 4 The image dataset (27,150 segmented images) obtained from CT scan after removing
overlapping images and being labeled as 0° to 180° for ML

Image Processing and Machine Learning Methods Applied ... 27

Fig. 5 BSIF representation of the glass fiber orientation image with 100 x 100 pixels. a The
original circular cropped 2D image and b the 2D image converted by BSIF

of 1D numerical array, which makes it convenient to handle large amounts of data.
Although the visual representation of features in Fig. 5 is not well resolved, such
images are proven to perform well in ML. Use of BSIF code reduced each image
to 1 x 256 numerical data as shown in Table 1, which exponentially reduces the
computational expense involved in running the ML algorithm. Since 27,150 images
are used, the resulting data was saved as a csv file with 27,150 rows of features, which
is extremely helpful for ML. This procedure uses a large dataset but the training time
for the ANN is significantly reduced without losing the accuracy for interpreting the
features present in the image [48]. The 2D images are converted into 1D numerical
data with one row and 256 columns and since the more meaningful features represent
an output the higher accuracy of the model can be obtained.

In this work, only the dataset for toolpath prediction in each layer (introduced in
Sect. 2.4.1) needs to be converted with BSIF since the 2D CNN needs original 2D
images as its input data.

2.5 Machine Learning

Two kinds of ANN architectures are used to build models using Python with Tensor-
flow: RNN and CNN. Both neural networks can deal with sequences with variable
lengths. The RNN uses memory-state to process the input data on each neuron. In this
work, an RNN architecture with 5 layers and 64 Long Short-Term Memory (LSTM)
cells is used to train the model. A CNN model is trained with total 5 layers and kernel
sizes 5 and filter size 80 in the first layer and the second layer to iterate through the
data to train the model.

G. L. Chen and N. Gupta

28

suwn[o) 96z X Moy |

¢sS00°0

061000

611000

8011000

8000 7

95¥00°0

CI1000

8¢S100°0

06£00°0

(42140

594

124

£5¢

(44

Ei

.

€

C

I

0

$s9001d 4TS 191JE BIEP [EOLISWINU JO MOI | OJUI PALISAUOD Bjep 95ewl] | d[qe],

Image Processing and Machine Learning Methods Applied ... 29

The original images are used for 2D CNN algorithm because it has its own image
conversion process built in the algorithm. On the other hand, for 1D CNN and RNN,
the images converted with BSIF are loaded and rearranged in the form of an array
as (20,815, 1, 256) for training feature. This implies that this training set has 20,815
data representing the true angle label, with time-step as 1, and 256 features points.
The same process applies to validation dataset, which results in an array of (5430,
1,256) and the test dataset has the numpy shape of (905, 1, 256) for RNN algorithm
and (20,815, 256, 1), (5430, 256, 1), (905, 256, 1) for training, validation and testing,
respectively, in 1D CNN algorithm. The loss function depends on the desired result
parameter such as the fiber angle. Hence, the mean square error (MSE) was used in
both RNN and 1D CNN as the loss function in the model. The predicted values and
the actual value of the angle are used to calculate MSE.

In summary, this work uses three different ML algorithms. 1D and 2D CNN and
RNN are compared for their accuracy. Each of them target different dataset and
loss function, the computer language used is python platform with Tensorflow in
Windows 10 environment.

2.6 The Architectures of the Machine Learning Algorithms

2.6.1 2-Dimensional Convolutional Neural Network (2D CNN)

The 2D CNN ML algorithm uses Python platform, with Tensorflow, CNN (Convolu-
tional Neural Network). CNN works well for identifying simple patterns within the
data, which are then used to form more complex patterns within higher layers. CNN
is very effective in deriving interesting features from shorter (fixed-length) segments
of the overall data set and where the location of the feature within the segment is not
of high relevance.

In 2D CNN algorithm, the input is the original image data and the ML algorithm
convert the image features in its own system. The loss function in 2D CNN is “sparse
categorical cross entropy”’, which is used to distinguish different categories. In 2D
CNN, the model can be used to predict the printing orientation in each layer as a
classifier. Hence the predicted values represent the orientation of each layer, and can
iterated through whole sample to provide the information of the printed direction.
However, it is not capable of identifying the toolpath in each layer. Also, since it
uses the original images as the input, the processing needs a huge computing power.
Additionally, when increasing the number of categories, the training time increases
substantially. Since the process uses original images and the in-built image processor
provides a lossless conversion procedure, the accuracy can reach almost 99% with
proper setup parameters. Thus, the 2D CNN is good at image analysis, especially if
high performance computing facilities are required. In this section, a 2D CNN model
and the process steps will be presented in detail.

The dataset for orientation prediction in each layer (Sect. 2.4), which contains
207 clear views of 0° orientation images is used to create the input data. The images

30 G. L. Chen and N. Gupta

need to be saved in folders according to the angle they represent, which means each
classification category is saved in corresponding folder. The 0° reference images are
split into 3 subsets of images, one for training, one for validation and one for testing.
Here, 7 images are chosen to be the test data, and the ratio of training and validation
data s set as 8:2. Thus, the rest of the 200 images are split into 166 images for training
and 34 images for validation. With the help of python code, as Fig. 3 shows, the split
images are rotated from 0° to 180° with 0° interval and saved to folders named as
1, 2, 3...180 for training, and the same process is conducted to create validation
dataset and test dataset. By doing so, the training dataset with 30,046 images and
the validation dataset with 6154 images and the test dataset with 1267 images are
obtained and each angle of images is saved to the corresponding folder.

Once the training, validation and test dataset are prepared, they are fed into the
2D CNN algorithm for model building. The image dataset needs to be re-sized from
536 x 536 to 100 x 100 pixel to reduce the needed computing power and then create
the training and validation datasets. Last, the training and validation datasets need
to be appended to corresponding features and labels, which are then converted into
numpy arrays with the shape of (30,046, 100, 100, 1) for training dataset, (6154, 100,
100, 1) for validation dataset in order to fit the 2D CNN model training algorithm.
The first number represents the number of images, the second and the third numbers
represent the pixel size in x and y directions, and the fourth number represents the
number of images in each sequence. The Python code used for the 2D CNN image
processing is shown as Fig. 6.

The architecture of the 2D CNN algorithm is shown as Fig. 7, which has 5 layers.
The filter size used is 80, and the kernel size in layer 1 is (5, 5) and (3, 3) in layer
2. The Maxpooling size is (2, 2) in layer 1 and 2. The hidden layer Dense is 200.
The output layer has 181 categories, so output Dense is set as 181. The activation is
selected as “softmax”. Batch size iterated is 100, and the epochs is set as 50. Also,
a Dropout function of 0.1 is used to intentionally drop 10% of the training data in
each training epoch to prevent the overfitting.

The setup parameters used in this 2D CNN algorithm are obtained by trial-and-
error and the parameters are extremely data-dependent. Therefore, different numbers
of image, different pixel size of image, and even different shapes of the image used for
training will need to find the suitable parameters accordingly. A checkpoint function
is used to monitor the accuracy during each epoch, and save the best model throughout
the whole training process. The total time for the training is 24 h.

3 2D CNN Result

When the training process is completed, first thing is to check the fitting status
during the training process, whether it is overfitting or underfitting. To do that, a
recall function in Python is used and the training and validation histories are plotted
as Fig. 8. The result in this training process shows no overfitting or underfitting, since
the validation result and the training result have the same trend and do not show large

Image Processing and Machine Learning Methods Applied ...

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.
38.

39.
40.
41.

Fig. 6

Resize the image to speed up the process

Img_!

Size

100

Training_dataset preparation

training_data = []

def create_training_data():

for category in CATEGORIES:

path = os.path.join(DATADIR, category)

class_num = CATEGORIES.index(category)

for img in os.listdir(path):

img_array = cv2.imread(os.path.join(path,img), cv2.IMREAD_GRAYSCALE)
new_array = cv2.resize(img_array, (Img_Size, Img_Size))

training_data.append([new_array, class_num])

create_training_data()

Validating_dataset preparation

validating_data = []

def create_validating_data():

for category in CATEGORIES:

path = os.path.join(DATA_valid, category)

class_num = CATEGORIES.index(category)

for img in os.listdir(path):

img_array = cv2.imread(os.path.join(path,img), cv2.IMREAD_GRAYSCALE)
new_array = cv2.resize(img_array, (Img_Size, Img_Size))

validating_data.append([new_array, class_num])

create_validating_data()

Re-shape the Training dataset

X=[]
y =

for

X

y

[1

features, label in training_data:

X.append(features)

y.append(label)

np.array(X).reshape(-1, Img_Size, Img_Size, 1)

np.array(y).reshape(-1, Img_Size, Img_Size, 1)

print('X shape :'+str(X.shape))

Re-shape the Validating dataset

X_valid =

y_valid =

[1
[1

for features, label in validating_data:

X_valid.append(features)

y_valid.append(label)

X_valid =

y_valid =

np.array(X_valid).reshape(-1, Img_Size, Img_Size, 1)

np.array(X_valid).reshape(-1, Img_Size, Img_Size, 1)

31

The python code used for resizing images and dataset preparation in 2D CNN algorithm

32 G. L. Chen and N. Gupta

1. # 2D Convoultional Neural Network architecture
2. X =X/255

3. X_valid = X_valid/255

4. model = Sequential()

5. # Layer 1

6. model.add(Conv2D(80, (5,5), input_shape = X.shape[1l:] , padding ='SAME'))
7. model.add(Activation("relu"))

8. model.add(MaxPooling2D(pool_size=(2,2)))

9. # Layer 2

10. model.add(Conv2D(80,(3,3), padding ='SAME"))
11. model.add(Activation("relu"))

12. model.add(MaxPooling2D(pool_size=(2,2)))

13. # Layer 3

14. model.add(Dropout(0.1))

15. model.add(Flatten())
16. # Hidden Layer

17. model.add(Dense(200))

18. model.add(Activation('relu'))

19. # Output Layer

20. model.add(Dense(181, activation='softmax'))

21. model.compile(loss="'sparse_categorical_crossentropy',optimizer="adam",metrics=["accuracy']
)

22. filepath = 'C:/Users/User/Desktop/2D CNN model-{epoch:02d}-{val_acc:.3f}.model"

23. checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=2, save_best_only=True,
mode="auto")

24. model.summary ()

25. history = model.fit(X, y, batch_size = 100, epochs=50, verbose=1,

26. validation_data = (X_valid, y_valid), callbacks=[checkpoint])

Fig. 7 2D CNN architecture for the classification model

variation. If the graph shows a large gap between the two lines, it indicates that the
model is not trained properly and the setup parameters need to be further tuned. The
acceptability of the result also depends on the desired accuracy. Typically, in 2D
CNN machine learning, the accuracy of training is often higher than the accuracy of
validation, which is also observed from the resulting plot shown in Fig. 8.

To test the accuracy of the trained model, the test dataset is needed, which has been
separately prepared with 1267 data using the same preparation process as the training
dataset. An array shape of (1267, 100, 100, 1) is required to be compatible with the
training dataset. In this 2D CNN training, the shape used for training is (30,046, 100,
100, 1). Therefore, the test dataset must have the same pixel size of 100 x 100. Then
the folders with images are loaded in the Python code, and the output categories,
which contains 0° to 180°, are created. A function “model.evaluate” is used to check

Image Processing and Machine Learning Methods Applied ... 33

Fig. 8 Training and H — =
validation history in each Y ol i
epoch for 2D CNN model 084
i
- 06 '|| —— Training
[$) 7
g || Validating
8 044 |
< Y I|
I|
0.2
|
|
0+ -
0 10 20 30 40 50

Epoch

the model accuracy. By doing so, the trained model with the accuracy of 0.9684 is
achieved, which can be used in a practical situation.

Next, the prediction accuracy of the trained model is determined by using a set
of images of unknown angular information. Here, another 3D printed specimen
of a similar type is imaged by wCT Scan and 500 images with unknown angular
information are obtained. The images are then renamed according to its layer height
from the bottom of the sample to its top with the name of “Layer 17, “Layer 2”, etc.
These 500 images are then saved in a folder and then loaded into Python code. Next,
the images are used to create a test dataset and converted into a numpy array with the
shape of (500, 100, 100, 1). The names of the images are appended to the “Layer”
column, and the converted images’ features are used for prediction. The results are
appended to the “Predicted Angle” column. Last, the outcome is saved in the tabular
form and the predicted angle distribution for each layer is plotted, as shown as Fig. 9,
which can reveal the printing orientation of the tested sample for each layer. Here,
the predicted angles are located around 90° and 0° showing that the sample is printed
with these two angles repetitively. One major benefit is that the prediction process is
very fast. The dataset has 500 images and the time taken for prediction is less than
a second. Therefore, even though it takes 24 h to train the model, the time required

for prediction is extremely short.

3.1 I1-Dimensional Convolutional Neural Network (1D CNN)

In this section, a 1-D ML algorithm is introduced. The 1D CNN, which means
the input data is 1-Dimensional. Therefore, 2D images must go through the BSIF
algorithm to be converted into 1D data. In the 1D CNN algorithm, a loss function,
Mean Square Error (MSE) is used. Each image features are converted with the BSIF
lossless-process into a numerical data with 1 row and 256 columns, then in order
to easily extract the needed features and to designate the angle/label, a column,
named “Image Angle” is added as the first column to designate the angle/label and

34 G. L. Chen and N. Gupta

180

Fig. 9 Angular distribution
of the tested sample in 500 160 4
layers 1404
120 4
100 1

80 4

Angle

604 Ik
401 |1 | |

20 4

0 4t - | i A 5 B |
0 50 100 150 200 250 300 350 400 450 500
Layer

“Feature_1", “Feature_2”, all the way to “Feature_256" are add at the top of each
feature. Thus, all the information representing each image in a fixed-length and its
angle/label and features are saved as a CSV file.

The 1D CNN algorithm is capable of predicting the printing orientation in each
layer. It is also capable of predicting the toolpath of the sample in each layer. The
database containing 27,150 images needs to be divided into training, validation, and
test datasets. Since 150 images with clear view of 0° fiber orientation are selected
as described previously, the images are used to rotate 1° interval counterclockwise
from 0° to 180° to represent 180 angles. Moreover, in order to avoid bias during the
model training, 115 images are picked to use as the training dataset for each angle,
which total to be 20,815 sub-images. Then 20 images from each angle are added to
the validation dataset, which sums up to 5430 sub-images. Finally, 905 sub-images
are used in the test dataset. By feeding the dataset with evenly distributed weights,
the ANN will have the least bias when the training is completed. In 1D CNN, the loss
function is “Mean Square Error”, and the output is a value representing the predicted
angle. The CSV files for training data, validation data and test data are loaded using
the “panda” function in Python to train the model.

The dataset needs to be prepared to form a correct format after being loaded in
order to feed into CNN algorithm. The Python code used is shown as Fig. 10, where
“data.values” function is used to capture the features within the data. The first colon
in the bracket means the function iterates through every row’s data, and the number
after the comma represents the data in each number of the column. Here, “2:” means
obtaining the data from the second column all the way to the last column and then
the value is used as training features. Then, the output labels need to be defined. “[:,
177 is used to obtain the data in the first column for every row and the value is defined
as training labels. The same process is used for the validation dataset to obtain the
validation features and labels.

After the process of iterating through every row and column of the CSV file, a
re-shape function is used, which creates a dataset with a shape of (20,815, 256, 1)
for training feature dataset, (5430, 256, 1) for validation feature dataset and (905,
256, 1) for testing feature dataset. Here, the first number represents the number of the

Image Processing and Machine Learning Methods Applied ... 35

1. # Training and Validating Features and Labels Designation

2. X_train = data.values[:, 2:]

3. Y_train = data.values[:, 1]

4. X_valid = val_data.values[:, 2:]

5. Y_valid = val_data.values[:, 1]

6. # Reshape the nparray to fit the training and testing model

7. X_train = np.array(X_train, dtype=np.float).reshape(X_train.shape[@],X_train.shape[1],1)
8. Y_train= np.array(Y_train, dtype=np.float).reshape(Y_train.shape[0],1)

9. X_valid = np.array(X_valid, dtype=np.float).reshape(X_valid.shape[@],X_valid.shape[1],1)
10. Y_valid= np.array(Y_valid, dtype=np.float).reshape(Y_valid.shape[0],1)

Fig. 10 Python code used to prepare the training and validation dataset in 1D CNN

data/images, the second number represents the features each data has, and the third
number represents the number of images for each process. As for training, validation
and test label datasets, the shape of the array is (20,815, 1), (5430, 1) and (905, 1)
respectively. The first number represents the number of label data, and the second
number represents the number of images for each process.

For the output of an angle prediction, it would be easier to understand when
the output is a value that represents the predicted angle. Hence, the loss function
“Mean Square Error” (MSE) is used. The model can output a number value to be the
representation of an angle for the input feature.

The architecture of the 1D CNN is shown as Fig. 11. Similar to 2D CNN architec-
ture, the checkpoint function is used to capture the model with the lowest MSE value
throughout the training process. There are 5 layers used in the 1D CNN architecture.
The filter size for layer 1 and 2 is 256, which means the whole 256 features are
considered, the kernel size is 1, which means 1 full image features are processed at
each time. Padding used is “same”, the activation used in each layer is “relu”, the
hidden layer has Dense of 200 and the loss function is “Mean Square Error”, the
optimizer is Adam, which provides a learning rate of 0.001, the batch size is set as
128, and total 10,000 epochs is used. The verbose in checkpoint is set as 2, which
means the process will just mention the number of epochs, and in “model_m.fit” the
verbose is set as 1, which will show an animated progress bar for the user to observe
if the model is properly trained. The parameter setup in this training is also extremely
data-dependent, therefore, with different datasets, the parameters need to be tuned
again.

3.2 1D CNN Result

After completion of the model training, the first thing is to check the training history
to make sure it has no overfitting, which shows the validation curve to be much lower
than the training curve or underfitting, which shows the training curve to be much

36 G. L. Chen and N. Gupta

1. # 1D CNN Convolutional neural network architecture

2. model_m = Sequential()

3. # Layer 1

4. model_m.add(ConvliD(256, (1), activation='relu',

5. input_shape=(X_valid.shape[1],X_valid.shape[2]), padding = 'same'))

6. # Layer 2

7. model_m.add(ConvlD(256, (1), activation='relu', padding = 'same'))

8. # Layer 3

9. model_m.add(Flatten())

10. # Layer 4

11. model_m.add(Dense(200, activation='relu'))

12. # Layer 5

13. model_m.add(Dense(1, activation='relu'))

14.. model_m.summary ()

15. filepath = 'C:/Users/User/Desktop/models/1D CNN book-{epoch:02d}-{val_loss:.3f}.model’

16. checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=2,
save_best_only=True, mode='auto"')

17. model_m.compile(loss= 'mean_squared_error' , optimizer= 'adam' , metrics=[‘'mse'])

18. history = model_m.fit(X_train, Y_train, batch_size=128, epochs = 1000, verbose=1,

19. validation_data = (X_valid, Y_valid), callbacks=[checkpoint])

Fig. 11 The ML architecture with 5 layer in the 1D CNN algorithm

lower than the validation curve. The training and validation histories are plotted as
Fig. 12. The graph shows no sign of overfitting or underfitting. Then, the function
“model.evaluate” is used to test the accuracy of the model. Since the MSE loss
function is used, the output of the evaluation is the MSE of the prediction. A MSE
of 0.9651 is obtained showing a promising result for the CNN implementation.
The model trained in this section is used to predict the toolpath of the composite
material specimen image set obtained from pLCT scan. In this work, the sample used

Fig. 12 The training and 3500

validation MSE of each 3000
epoch in 1D CNN model ——Training
2500

——Validating
w1 2000

1500

1000

500 \&\w

0 —

0 200 400 600 800 1000
Epoch

Image Processing and Machine Learning Methods Applied ... 37

for toolpath prediction is a square cube with 1 cm length on each side. To predict
the toolpath of the whole sample, a WCT scan needs to be conducted to obtain the
sliced images. The wCT scan image used to perform the toolpath prediction has pixel
size of 2657 x 2689. Next, similar to all training dataset preparation, the images are
cropped as circles using a Matlab code and after the cropping process, 676 images
with pixel size of 100 x 100 are obtained. These 676 images are then converted with
BSIF and become 676 data. Each data has 256 numerical features and are saved as
a CSV file. Thus, a shape of (676, 256, 1) numpy data array is ready for toolpath
prediction.

In order to clearly view the toolpath in each layer, a direction indicator is used. The
idea is to impose each small cropped circular image with a direction indicator corre-
sponding to its prediction and then combine all the direction indicators to reconstruct
the whole image to represent the layer showing the toolpath. Hence, the predicted
result needs to be recorded and saved as a CSV file, which has a column showing
the region the cropped image belongs to and a column for prediction result of that
region. The direction indicator images showing the angle from 0 to 180° are saved
with a file name with respect to its angle. Then, according to the prediction result, a
Python code “if and else” is used to match the prediction result and the corresponding
image name of the direction indicator. For example, an image representing region
10 is predicted as 44°, then the Python code will match the prediction result 44° to
the direction indicator, which is named as 44 and the direction indicator is saved to
represent the region 10. After the process iterates through all predictions, a collection
of all 676 direction indicator images is saved. Finally, a 26 x 26 grid is created to
display all 676 predicted direction indicators are shown as Fig. 13.

Fig. 13 Imposed toolpath reconstruction with 1D CNN model

38 G. L. Chen and N. Gupta
3.2.1 Recurrent Neural Network (RNN)

Recurrent neural network (RNN) is a supervised ML algorithm, which is designed
to model sequential data. The order is very important in sequential data. There are
different forms of sequence modeling algorithms but the one used here is the many-to-
one sequence model, which implies that the input data is a sequence but the output
is not a sequence, rather a fixed-size vector. In RNN, the hidden layer has inputs
from both the input layer and the hidden layer from the previous step. The flow of
information in an RNN from one time-step to another introduces memory of past
inputs into the network [49].

The algorithm used here is a multilayer RNN, which is used to predict the direction
of fibers in a wCT scan image. The input is the pCT-scan image features obtained after
the BSIF process and the output is the fiber orientation angle. At any time instance
the model uses the information from the past and input to predict the output. Since
AM follows a sequential process of printing, the fiber orientation at each layer can be
helpful to predict the orientation of fiber of the next layer. Typically, a backpropaga-
tion through time (BPTT) algorithm is used to train an RNN, which sometimes has a
problem of vanishing gradient. RNN model faces difficulty in learning the long-term
dependencies because it is trained with sequential data, which implies that the model
will not be able to relate the images which are captured several time steps apart.
To address these issues, the RNN architecture with LSTM network is used [50].
RNN with hidden layers containing LSTM cells takes information from the input
and from the previous hidden layers and calculates the output through a set of equa-
tions and then sends the information to the next layer in the model and to the hidden
layer, namely, another LSTM cell in the next time step. LSTM cells are designed
to handle the problem of vanishing gradients. These cells have inbuilt default units
programmed to remember the updates from the previous time steps without loss of
information over long time steps, making them suitable for large image datasets.

As mentioned previously, the BSIF process has converted features of each image
into 1 row and 256 columns. A column named “Image Angle” is added to the file as
the first column to designate the angle/label. Thus, all the information to represent
each image is available in a single row. Any change to the input data affects the
algorithm and the setup parameters need to be tuned. In RNN, the dataset for toolpath
prediction in each layer is used, which means a model capable of predicting the
toolpath can be acquired. Here, the same training, validation and test data of CSV
files as 1D convolutional neural network is used. The Python code used for reshaping
is similar as the one used in 1D CNN algorithm, where the only difference is in array
arrangement. In RNN architecture, the shape of the training data is (20,815, 1, 256),
the validation data is (5430, 1, 256), and the test data is (905, 1, 256). The first number
represents the number of dataset the CSV file has, the second number represents the
amount of data being iterated in each time step, in this case, 1 image is used in a
time step. The architecture of the RNN Python code used is shown in Fig. 14. There
are 5 layers in the algorithm. The number of LSTM cells used in first 2 layers is 64,
the hidden layer has “Dense” of 128 with only 1 output value, the loss function is
“MSE”, the optimizer is Adam, which has a learning rate of 0.001 and the batch size

Image Processing and Machine Learning Methods Applied ... 39

1. # RNN Recurrent Neural Network architecture

2. model = Sequential()

3. # Layer 1

4. model.add(LSTM(64, input_shape=(X_train.shape[1l:]), return_sequences=True))

5. model.add(BatchNormalization())

6. # Layer 2

7. model.add(LSTM(64, return_sequences=True))

8. model.add(BatchNormalization())

9. # Layer 3

10. model.add(LSTM(64,))

11. model.add(BatchNormalization())

12. # Hidden Layer

13. model.add(Dense(128, activation='relu'))

14. # Output layer

15. model.add(Dense(1))

16. model.summary()

17. # learning rate 0.001

18. model.compile(loss="mse', optimizer='Adam' , metrics=['mse'])

19. filepath = 'C:/Users/User/Desktop/models/RNN book-{epoch:02d}-{val_loss:.3f}.model’

20. checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=2,
save_best_only=True, mode='auto"')

21. history = model.fit(X_train, Y_train, batch_size = 128, epochs=10000, verbose=1,

22. validation_data = (X_valid, Y_valid), callbacks=[checkpoint])

Fig. 14 The architecture of the RNN machine learning of python coding

is 128, and epochs are 10,000. Similarly, a checkpoint function is used to capture
the best model. Since the model is trained repeatedly, and the accuracy of the last
trained model does not guarantee to be the best one. Most of the times, the model
reaches its peak performance, but would be overwritten by the next trained model.
The callbacks function can monitor the validation loss of each epoch and then save
the model that is more accurate than the previous trained model.

3.2.2 RNN Result

A similar testing procedure as the 1D CNN are applied here for RNN model accuracy
checking. The recorded training and validation histories are plotted and shown as
Fig. 15, which shows no sign of overfitting or underfitting. The deviation of RNN
is relatively greater than the CNN method, and this is why a checkpoint function is
necessary in RNN method for capturing the best trained model. The test MSE in this
training is 0.059, which indicates the performance of the model is good to predict
the toolpath of the sample’s layer.

40 G. L. Chen and N. Gupta

Fig. 15 MSE history of 6000 1
training and testing for each
h in RNN model 50001
epoch 1n mode Training
4000 1 _Validating
IEIQJ 3000 -
=
2000 -
4000 6000 8000 10000

Epoch

To implement the model, the data prepared for 1D CNN are used. 676 cropped
circular images converted with BSIF process, which become 676 rows with 256
features for each image, are saved as CSV files. Then, the CSV file is loaded into
Python with the “panda” function. Since the purpose is to predict the angular infor-
mation for each cropped circular image, 256 features are used as input data and
undergo a similar data preparation as the one used for the training dataset, except,
there is no output label in these 676 images. After the prediction, a set of values
representing the angular information is extracted and saved as a CSV file.

The same method of imposing a direction indicator on the detected fiber direction
is used for toolpath reconstruction, shown as Fig. 16. These imposed images are a
good local toolpath representation of the tested sample in each sub-sectioned image.
It clearly outlines the movement of the printing process, which can be applied to
predict the hidden information in a 3D printed sample. Although, only 1 layer is
used to demonstrate the toolpath reconstruction, the process can be repeated on the
whole sample image stack to acquire the toolpath information of the entire sample.
The result can be used as a blueprint for 3D printing reverse engineering or an 3D
printing in-situ signature inspection.

4 Summary

The machine learning methods are now widely used in materials design. The oppor-
tunities presented by these methods have enabled design of materials with novel
properties and reduced time to design complex composite materials for the require-
ments of specific applications. The present work shows the approaches that can be
used for effectively processing the image datasets from materials with the example
of amicro-CT scan image dataset processed by three different ML methods. A model
composite material specimen is used and the ML approach is used to identify the tool-
path used in 3D printing of this specimen. While these methods are useful for a variety
of materials related problems such as design of new materials, processing parameter
optimization and also defect detection in the microstructure, the ML methods also

Image Processing and Machine Learning Methods Applied ... 41

/
O i

1

Fig. 16 a The to-be-test CT scan image showing the printing direction by glass fibers and b the
collection of direction indicators with the trained model showing the toolpath of the certain layer

present challenges that they make the reverse engineering of the products easier.
Although the size and geometry of a component can be 3D scanned very easily using
available scanners and imaging tools, the quality of a component largely depends
on the microstructure. The reverse engineering of microstructure by recovering the
toolpath presents a vulnerability that can make reverse engineered products of high
quality. The present work shows the need for developing new toolpath methodologies
that are difficult to process through ML algorithms.

Acknowledgements National Science Foundation SaTC-EDU grant # 1931724 is acknowledged
for supporting this work. The authors thank NYU Tandon School of Engineering Makerspace for
the facilities provided for micro-CT scan.

References

1. Kaschel FR, Vijayaraghavan RK, Shmeliov A, McCarthy EK, Canavan M, McNally PJ,
Dowling DP, Nicolosi V, Celikin M (2020) Mechanism of stress relaxation and phase trans-
formation in additively manufactured Ti-6Al-4V via in situ high temperature XRD and TEM
analyses. Acta Mater 188:720-732

2. Spowart JE, Gupta N, Lehmhus D (2018) Additive manufacturing of composites and complex
materials. JOM 70(3):272-274

3. Palmero EM, Casaleiz D, de Vicente J, Herndndez-Vicen J, Lopez-Vidal S, Ramiro E, Bollero
A (2019) Composites based on metallic particles and tuned filling factor for 3D-printing by
fused deposition modeling. Compos Part A Appl Sci Manuf 124:105497

4. LiuZ,LiM, Weng Y, Qian Y, Wong TN, Tan MJ (2020) Modelling and parameter optimization
for filament deformation in 3D cementitious material printing using support vector machine.
Compos B Eng 193:108018

42

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

G. L. Chen and N. Gupta

Chen F, Mac G, Gupta N (2017) Security features embedded in computer aided design (CAD)
solid models for additive manufacturing. Mater Des 128:182-194

Gupta N, Tiwari A, Bukkapatnam STS, Karri R (2020) Additive manufacturing cyber-physical
system: supply chain cybersecurity and risks. IEEE Access 8:47322-47333

Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D
printing): areview of materials, methods, applications and challenges. Compos B Eng 143:172—
196

Justo J, Tavara L, Garcia-Guzmaén L, Paris F (2018) Characterization of 3D printed long fibre
reinforced composites. Compos Struct 185:537-548

Averardi A, Cola C, Zeltmann SE, Gupta N (2020) Effect of particle size distribution on the
packing of powder beds: a critical discussion relevant to additive manufacturing. Mater Today
Commun 24:100964

Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a
review and prospective. Compos B Eng 110:442-458

. Heidari-Rarani M, Rafiee-Afarani M, Zahedi AM (2019) Mechanical characterization of FDM

3D printing of continuous carbon fiber reinforced PLA composites. Compos B Eng 175:107147

. Zeltmann SE, Gupta N, Tsoutsos NG, Maniatakos M, Rajendran J, Karri R (2016) Manufac-

turing and security challenges in 3D printing. JOM 68(7):1872-1881

. Yanamandra K, Chen GL, Xu X, Mac G, Gupta N (2020) Reverse engineering of additive

manufactured composite part by toolpath reconstruction using imaging and machine learning.
Compos Sci Technol 198:108318

Bartlett JL, Jarama A, Jones J, Li X (2020) Prediction of microstructural defects in additive
manufacturing from powder bed quality using digital image correlation. Mater Sci Eng A
794:140002

Huang Z, Dantan J-Y, Etienne A, Rivette M, Bonnet N (2018) Geometrical deviation identifica-
tion and prediction method for additive manufacturing. Rapid Prototyping J 24(9):1524-1538
Kyogoku H, Ikeshoji T-T (2020) A review of metal additive manufacturing technologies: mech-
anism of defects formation and simulation of melting and solidification phenomena in laser
powder bed fusion process. Mech Eng Rev 7(1):19-00182-19-00182

Kim C, Espalin D, Cuaron A, Perez MA, MacDonald E, Wicker RB (2018) Unobtrusive in situ
diagnostics of filament-fed material extrusion additive manufacturing. IEEE Trans Compon
Packag Manuf Technol 8(8):1469-1476

Kuipers T, Doubrovski EL, Wu J, Wang CCL (2020) A framework for adaptive width control of
dense contour-parallel toolpaths in fused deposition modeling. Comput Aided Des 128:102907
du Plessis A, Yadroitsava I, Yadroitsev I (2020) Effects of defects on mechanical properties
in metal additive manufacturing: a review focusing on X-ray tomography insights. Mater Des
187:108385

Li W, Mac G, Tsoutsos NG, Gupta N, Karri R (2020) Computer aided design (CAD) model
search and retrieval using frequency domain file conversion. Addit Manuf 36:101554
Comminal R, Serdeczny MP, Pedersen DB, Spangenberg J (2019) Motion planning and numer-
ical simulation of material deposition at corners in extrusion additive manufacturing. Addit
Manuf 29:100753

Honarvar F, Varvani-Farahani A (2020) A review of ultrasonic testing applications in additive
manufacturing: defect evaluation, material characterization, and process control. Ultrasonics
108:106227

Deshpande AM, Minai AA, Kumar M (2020) One-shot recognition of manufacturing defects
in steel surfaces. Procedia Manuf 48:1064-1071

Caggiano A, Zhang J, Alfieri V, Caiazzo F, Gao R, Teti R (2019) Machine learning-based image
processing for on-line defect recognition in additive manufacturing. CIRP Ann 68(1):451-454
Chen F, Yu JH, Gupta N (2019) Obfuscation of embedded codes in additive manufactured
components for product authentication. Adv Eng Mater 21(8):1900146

Chen F, Luo Y, Tsoutsos NG, Maniatakos M, Shahin K, Gupta N (2019) Embedding tracking
codes in additive manufactured parts for product authentication. Adv Eng Mater 21(4):1800495

Image Processing and Machine Learning Methods Applied ... 43

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Chen F, Zabalza J, Murray P, Marshall S, Yu J, Gupta N (2020) Embedded product authenti-
cation codes in additive manufactured parts: imaging and image processing for improved scan
ability. Addit Manuf 35:101319

Sacco C, Baz Radwan A, Anderson A, Harik R, Gregory E (2020) Machine learning in compos-
ites manufacturing: a case study of automated fiber placement inspection. Compos Struct
250:112514

Xu X, Gupta N (2019) Application of radial basis neural network to transform viscoelastic to
elastic properties for materials with multiple thermal transitions. J Mater Sci 54(11):8401-8413
Xu X, Gupta N (2019) Artificial neural network approach to determine elastic modulus of
carbon fiber-reinforced laminates. JOM 71(11):4015-4023

Meng L, McWilliams B, Jarosinski W, Park H-Y, Jung Y-G, Lee J, Zhang J (2020) Machine
learning in additive manufacturing: a review. JOM 72(6):2363-2377

Liu Y, Guo B, Zou X, Li Y, Shi S (2020) Machine learning assisted materials design and
discovery for rechargeable batteries. Energ Storage Mater 31:434-450

Khan A, Ko D-K, Lim SC, Kim HS (2019) Structural vibration-based classification and predic-
tion of delamination in smart composite laminates using deep learning neural network. Compos
B Eng 161:586-594

Dogan A, Birant D (2021) Machine learning and data mining in manufacturing. Expert Syst
Appl 166:114060

Do DTT, Lee D, Lee J (2019) Material optimization of functionally graded plates using deep
neural network and modified symbiotic organisms search for eigenvalue problems. Compos B
Eng 159:300-326

Xu X, Gupta N (2019) Artificial neural network approach to predict the elastic modulus from
dynamic mechanical analysis results. Adv Theor Simul 2(4):1800131

El Kadi H (2006) Modeling the mechanical behavior of fiber-reinforced polymeric composite
materials using artificial neural networks—a review. Compos Struct 73(1):1-23

Sharma A, Kushvaha V (2020) Predictive modelling of fracture behaviour in silica-filled
polymer composite subjected to impact with varying loading rates using artificial neural
network. Eng Fract Mech 239:107328

Kwon O, Kim HG, Ham MJ, Kim W, Kim G-H, Cho J-H, Kim NI, Kim K (2020) A deep
neural network for classification of melt-pool images in metal additive manufacturing. J Intell
Manuf 31(2):375-386

Tian L, Fan Y, Li L, Mousseau N (2020) Identifying flow defects in amorphous alloys using
machine learning outlier detection methods. Scripta Mater 186:185-189

Ko H, Witherell P, Lu Y, Kim S, Rosen DW (2020) Machine learning and knowledge graph
based design rule construction for additive manufacturing. Addit Manuf 101620

Wang P, Fan E, Wang P (2020) Comparative analysis of image classification algorithms based
on traditional machine learning and deep learning. Pattern Recogn Lett. https://doi.org/10.
1016/j.patrec.2020.07.042

Xu X, Gupta N (2018) Determining elastic modulus from dynamic mechanical analysis: a
general model based on loss modulus data. Materialia 4:221-226

Xu X (2020) Machine learning approach to characterize elastic, viscoelastic, relaxation and
creep behavior of materials. New York University Tandon School of Engineering, Ann Arbor,
p 107

Xu X, Elgamal M, Doddamani M, Gupta N (2020) Tailoring composite materials for nonlinear
viscoelastic properties using artificial neural networks. J Compos Mater 0021998320973744
Sabiston T, Inal K, Lee-Sullivan P (2020) Application of artificial neural networks to predict
fibre orientation in long fibre compression moulded composite materials. Compos Sci Technol.
http://doi.org/10.1016/j.compscitech.2020.108034

Yang J, Yao H (2020) Automated identification and characterization of two-dimensional mate-
rials via machine learning-based processing of optical microscope images. Extreme Mech Lett
39:100771

KannalaJ, Rahtu E (2012) BSIF: binarized statistical image features. In: Proceedings of the 21 st
international conference on pattern recognition (ICPR2012). Tsukuba International Congress
Center Tsukuba Science City, Japan

https://doi.org/10.1016/j.patrec.2020.07.042
https://doi.org/10.1016/j.patrec.2020.07.042
http://doi.org/10.1016/j.compscitech.2020.108034

44 G. L. Chen and N. Gupta

49. Raschka S, Mirjalili V (2017) Python machine learning. Packt Publishing Ltd., UK
50. Sak H, Senior AW, Beaufays F (2014) Long short-term memory recurrent neural network
architectures for large scale acoustic modeling

	 Image Processing and Machine Learning Methods Applied to Additive Manufactured Composites for Defect Detection and Toolpath Reconstruction
	1 Introduction
	2 Methods
	2.1 Sample Preparation
	2.2 μCT Scan Image
	2.3 Circular Image Dataset Preparation for ML Model Training
	2.4 Dataset for Orientation Prediction in Each Layer
	2.5 Machine Learning
	2.6 The Architectures of the Machine Learning Algorithms

	3 2D CNN Result
	3.1 1-Dimensional Convolutional Neural Network (1D CNN)
	3.2 1D CNN Result

	4 Summary
	References

