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1 Introduction 

Additive manufacturing (AM) plays a crucial role in the fields such as aeronautical, 
automotive, and medical [1, 2], providing possibilities for low cost parts, highly 
customizable designs and small production runs [3, 4]. AM relies on a variety of 
software tools and cloud resources to make it a cyber-physical system [5, 6]. For 
AM, a wide spectrum of feed materials is available across the entire material usage 
of polymers, metals, ceramics and composites [7–9]. Parts made of glass and carbon 
fiber filled polymer matrix composites (PMCs) are now being 3D printed as [10, 
11]. It is reported that the parts printed by different tool paths can have different 
properties because of directionality in material orientation and defects [12]. In case 
of composite materials, the 3D printing toolpath can be used as a method to orient the 
fibers in a certain direction and obtain a customized part [13]. AM technologies have 
improved significantly in recent years; however, there still exist numerous challenges 
in obtaining high quality, resolution and surface finish required for many applica-
tions [14–16]. For example, in powder bed fusion, uniformity in the packing of bed 
from one layer to the other is important for optimizing the processing parameters, 
which controls the porosity of the powder bed so that the final part has uniform and 
maximum density [9]. During fabrication of a complex shaped object using material 
extrusion methods, which is one of the most commonly used by AM methods [17], 
an outline is printed first to more precisely define the shapes and then an infill pattern 
is used to deposit material within the contour’s shape [18]. This kind of space filling 
mechanism leads to gaps at the end of the deposited lines and causes porosity if the 
process is not well optimized, which affects the mechanical properties of the printed 
part [19]. Additionally, CAD models are widely used in the AM to demonstrate a
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digital model and also used for G-code transformation for 3D printers to manufacture 
the part [20]. However, the curvatures present in the CAD models are often reformed 
with linear segments in file formats such as STL and can result in the loss of dimen-
sional accuracy in the printed part [5, 21]. These effects cannot be avoided when using 
material extrusion methods, leading to porosity and micron-sized voids near curva-
tures, especially in parts of complex geometry and curvatures. The imperfections can 
be visualized using both destructive and non-destructive imaging methods. 

A variety of methods, such as manual or computer assisted non-destructive inspec-
tion methods are used to perform quality assessment, which is quiet challenging in 
the AM domain [22], whether during the process or post-processing to maintain 
high quality as well as the high manufacturing throughput [23, 24]. In AM, parts are 
printed in several hundred layers, which can not only be used for locating defects but 
also can be used to hide specific information within layers [25–27]. The layup process 
of composite manufacturing is somewhat similar to the layer by layer manufacturing 
of AM and the machine learning (ML) trained model can be applied to composite 
quality assessment [13, 28]. Artificial Neural Network, which is inspired by biolog-
ical neural networks, showing efficiency in dealing with intricate nonlinear behavior 
and has a strong physical foundation for use in the materials science field [29]. ANN 
has been used in prediction and optimization of material properties [30], especially 
in the AM domain, which has a strong process-structure–property relationship [31]. 
ML methods are now being applied to a variety of problems in materials science, 
including fields such as development of battery materials and testing of composite 
materials [32, 33] where enormous amounts of raw data are generated on a daily 
basis that can be used to train the ML models for effective decision-making [34]. 
ANN is a computational ML method inspired by the architecture of biological neural 
networks [35] that has been applied in many problems related to composite materials 
[36–39] and other materials for defect detection [40, 41]. 

Micro-CT (µCT) scan, which has been used in the medical field for decades, 
provides a large image database and is finding increasing applications in the charac-
terization of AM parts. Such large image sets are a limitation for manual inspection 
methods, but an asset for training of ML methods [42–45]. It is beneficial to pre-
process the meaningful features that are used for prediction to reduce the training 
effort and increase the accuracy of the designed ML algorithm. The location and 
orientation of the reinforcing fibers govern the mechanical response of composite 
materials, which can be detected by ML methods [46]. ML methods have also been 
used on optical images to identify and classify two-dimensional materials [47]. The 
use of ML methods on large image databases sometimes requires significant signal 
processing effort for making the search faster for implementation in the real time 
defect detection systems. 

In this work, describes in detail the steps required for image processing, ANN 
model training and validation, and defect detection using a database of images 
obtained on a 3D printed composite material specimen. A glass fiber reinforced 
PMC filament is used to fabricate specimens by a commercial material extrusion 
3D printer. The specimens are imaged using a µCT scanner. The image dataset 
is used to train a ML algorithm. Previous studies revealed that 2D images with
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irregular outlines increase the difficulty in analyzing the microstructure features of 
composite materials such as the fiber orientation identification [13, 47], such limita-
tions are overcome by cropping the training images in circular shape during training. 
Application of image processing methods to reduce the size of the dataset helps in 
making the training significantly faster. In addition, two kinds of ANNs, namely 
Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), with 
three different architectures—one-dimensional and two-dimensional algorithms in 
CNN, and Long-Short-Term-Memory cell in RNN and its related Python codes are 
presented, and the implementations of the three trained model and the resulting tests 
are presented in this work. 

2 Methods 

2.1 Sample Preparation 

The samples are designed using SolidWorks 2017 (Waltham, MA) and saved in 
STL format. The shape of the sample is a cube with 6 mm side. ABS-GF10 glass 
fiber reinforced acrylonitrile butadiene styrene (ABS) filament of 1.75 mm diam-
eter, manufactured by 3DXTECH, Grand Rapids Michigan, USA, is used for 3D 
printing. ReplicatorG software is used for preparing the sliced model and gener-
ating the G-code. The printing parameters included 100% solid infill, feed rate of 
41 mm/s, extrusion temperature of 220 °C, and build platform temperature of 120 °C. 
A FlashForge-Creator Pro Dual Extruder printer is used for printing the specimens. 

2.2 µCT Scan Image 

A Skyscan 1127 (Bruker, Belgium) µCT scan system is used at source voltage of 
44 kV, current of 222 µA and the camera pixel size of 9.5 µm with a rotation step of 
0.6° per scan, for 360° rotation. Normal scanning time is about 40 min with lowest 
resolution. However, larger specimens can take 6–8 h in one scan based on the image 
resolution. Each scan generates thousands of images, which are usually saved in tiff 
format. 

The images acquired from µCT scan were reconstructed using NRecon software. 
In this step, the image can be tuned with function such as “smooth”, which can 
improve the clarity of the image slice, “contrast”, which can reduce the noise and 
“rotation”, which is used to rotate at a fixed angle to output the reconstructed images 
with desired angle as Fig. 1 shown. Since, the sample was randomly mounted on the 
specimen plate and the scanning process involved rotation, the printing direction of 
the output images was random with respect to the scanning direction. It is important 
to designate a reference angle so that all the images can be interpreted with respect
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Fig. 1 An example of a µCT scan output image with a random angle and b after rotation to 0° 

to the same reference framework. Since fibers are included in the feed material and 
the fibers provide high contrast, they are used for identification of the direction. In 
this work, 0° is defined as horizontal reference. Therefore, the reconstructed images 
are rotated using the “rotation” function in NRecon software to output the images 
to be the reference images of 0°. Once the images are rotated, they can be directly 
compared. The present work is exploratory for developing the image processing and 
ML model training methods; hence, the geometry of the 3D printed part is kept 
simple. 

The square shape of the specimen having four sharp corners is a consideration in 
this work. The sharp corners would inevitably affect the accuracy for ML because 
any sharp angles in the image may cause bias while training the model, resulting 
in inaccurate predictions. To increase the accuracy of the trained model, the data 
selection and features extraction are the key steps. Therefore, it is better to sub-
segment each µCT scan image slice into smaller images and use circular shape 
sub-images. Rotation of circular sub-images will preserve the features in the circular 
area without any interference at the edges. The model trained with a circular image 
dataset is still capable of predicting a square image. However, if the model is trained 
on a square image dataset, it will not be able to predict a circle image with accuracy. 

2.3 Circular Image Dataset Preparation for ML Model 
Training 

Two prediction purposes are introduced. One is to build a ML model capable of 
predicting the printing direction and its angular information in each layer of the



Image Processing and Machine Learning Methods Applied … 23

sample, which can then provide the information of the printing angles used in the 3D 
printer. Another purpose is to predict the movement of the print head in each layer, 
which can then be used to analyze the printing signature throughout the printed 
sample. 

There are two different methods to obtain the required dataset. The first method 
uses image reconstruction after the µCT Scan and the second method uses a Matlab 
code. Both of the methods will be discussed thoroughly in the following section. 

2.4 Dataset for Orientation Prediction in Each Layer 

In this section, the prediction of the overall printing orientation in each layer of 
the sample is developed. Circular sub-images are first extracted from each image 
slice as shown in Fig. 2. The function of “region of interest” is used during the 
image reconstruction with NRecon software to capture a certain area of the scanned 
image. Figure 2a shows an image where glass fibers seem to be oriented in the 
horizontal direction. Figure 2b, c show two sub-images that contain fibers oriented 
in multiple directions. These features appear from two different slices because the 
scan resolution is much finer than the deposited layer thickness and the specimen 
shows some warpage due to thermal contraction upon cooling. Such intermixing of 
features may also take place due to mismatch between the printing plane and CT 
scanning plane. 

Depending on the resolution setup for the µCT scan and the specimen size, the 
total numbers of images will be different in each dataset. For the specific sample 
used in this work, there are 663 images obtained after the µCT scan. 

Next, a reference angle needs to be decided. In this work, images with horizontal 
glass fiber are designated as 0°. For training the ML algorithm, a sufficiently large 
database is necessary. Moreover, to distinguish the fiber angle, the model needs to 
be able to predict fibers along any angle in the entire 360°. However, it actually only 
needs to predict 180° to indicate the whole 360°, since 10° can represent 190° and

Fig. 2 Sub-images extracted from a µCT scan image slice 
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0° is the same as 180°. Therefore, in order to train the model, images with clear 
visibility of 0° fiber angle are synthetically rotated counterclockwise at intervals of 
1° each from 0° to 180° using a Python code shown as Fig. 3 to get the images 
database to train the model for predicting various rotation angles. The rotation of 
the images can be conducted at smaller steps but the discontinuous short fibers in 
the present case are not oriented exactly in the same direction. Some local variations 
exist within one extruded line as well as some fibers are bent. Such conditions will 
provide false positives. Hence, the rotation step is kept at a higher angle. The process 
allows creating a dataset with controlled orientation of the glass fiber to train a model 
for printing orientation prediction in each layer. 

A few  µCT images showing overlapping printing directions in Fig. 2b, c are mostly 
at the boundary of two deposited layers due to the slight slope that can be either in the 
printing or in the specimen positioning on the µCT stage. These images are removed 
from the dataset in the present case because there is enough information available 
from other slices that are cleaner. In order to have a defined/labeled angle, a set of 
207 images that show clear orientation of fibers is identified and rotated so that the 
fiber orientation is horizontal. These images are labeled as 0° fiber orientations. All 
the images are cropped with a region of interest to decrease the number of pixels and 
remove bias caused by the sharp angles in four corners for machine learning training. 
The cropped images, shown in Fig. 2, have a pixel size of 536 × 536. Individual 
fibers in each image show some variation in their direction. However, the algorithm 
takes the global signature as the features for the 0° and disregards the individual fiber 
orientation. Each of these images are then rotated counterclockwise from 0° to 180° 
at 1° interval using a Python code. This procedure allows creating a large training 
database with controlled fiber orientation and trains the model to identify any angle. 
This procedure resulted in 37,467 images. The process of synthetically rotating the 
images and cropping them with built-in function during image reconstruction with

Fig. 3 Python code for rotating image form 0° to 180° at 1° interval and save to folders named as 
1, 2, 3…180 
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NRecon software used to generate training data is known as image augmentation. 
This process is helpful in training the ANN model to be robust. 

2.4.1 Dataset for Toolpath Prediction in Each Layer 

In this section, training dataset preparation is slightly different compared to the 
previous section. Here, the purpose is to determine the printing path, or toolpath, 
of each layer of the sample with specific image features for the model training. 
Moreover, the algorithm used for this dataset is 1D and RNN, which needs to transfer 
the features contained in a 2D image into a meaningful dataset with 1 dimensional 
format. Therefore, the training dataset should contain meaningful features, which 
represent the movements of the print head. Thus, one layer of image with clear 
fiber orientation is used to conduct the feature extraction for model training dataset 
preparation. Here, instead of using region of interest to extract the features from a 
certain area, for toolpath prediction, the whole image slice is preferable since the 
toolpath of the whole layer and the whole sample need to be predicted to completely 
recreate the toolpath of the sample. 

Each µCT image slice represents a variety of fiber directions based on the space 
filling algorithm used for determining the print head movement. The ML model 
tuning dataset needs to identify these features, Hence, each image is sliced in circular 
sub-images of 100 × 100 pixels. The sub-sampling process and the resulting images 
are shown as Fig. 4. This process results in 961 cropped circular images for each 
µCT image slice. The circular shape helps in reducing the error caused by irregular 
outline of the specimen. In this work, 150 images with clear visibility of 0° fiber 
angle are selected and then the images are synthetically rotated counterclockwise at 
intervals of 1° each from 0 to 180° using a Python code shown as Fig. 3. Similar to 
the previous section, this cropped circular images for each µCT image slice help in 
reducing the error caused by irregular outline of the specimen. Then, 5 images are 
randomly selected to be the test image set, 115 images are randomly chosen to be 
the training data and the rest 30 images are used to be the validation images. Three 
of them are then rotated with Python code to create the training, validation, and test 
dataset with total images of 27,150 images for model training and testing. A special 
image lossless-processing algorithm called BSIF then used to convert the 2D images 
into a 1D numerical dataset for reducing the computing power and increasing the 
processing speed. The detail of the BSIF process are discussed in the next section.

2.4.2 Binarized Statistical Image Features (BSIF) Algorithm 

Binarized Statistical Image Features (BSIF) algorithm is used to convert an image 
into a binary image format without losing valuable features [48]. Figure 5 shows an 
example of the image produced by the BSIF algorithm. The images processed through 
BSIF algorithm are used for training, validation and testing the ML algorithm. The 
output image is a binary code for each pixel in the image and is stored in a format
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Fig. 4 The image dataset (27,150 segmented images) obtained from µCT scan after removing 
overlapping images and being labeled as 0° to 180° for ML
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Fig. 5 BSIF representation of the glass fiber orientation image with 100 × 100 pixels. a The 
original circular cropped 2D image and b the 2D image converted by BSIF

of 1D numerical array, which makes it convenient to handle large amounts of data. 
Although the visual representation of features in Fig. 5 is not well resolved, such 
images are proven to perform well in ML. Use of BSIF code reduced each image 
to 1 × 256 numerical data as shown in Table 1, which exponentially reduces the 
computational expense involved in running the ML algorithm. Since 27,150 images 
are used, the resulting data was saved as a csv file with 27,150 rows of features, which 
is extremely helpful for ML. This procedure uses a large dataset but the training time 
for the ANN is significantly reduced without losing the accuracy for interpreting the 
features present in the image [48]. The 2D images are converted into 1D numerical 
data with one row and 256 columns and since the more meaningful features represent 
an output the higher accuracy of the model can be obtained. 

In this work, only the dataset for toolpath prediction in each layer (introduced in 
Sect. 2.4.1) needs to be converted with BSIF since the 2D CNN needs original 2D 
images as its input data. 

2.5 Machine Learning 

Two kinds of ANN architectures are used to build models using Python with Tensor-
flow: RNN and CNN. Both neural networks can deal with sequences with variable 
lengths. The RNN uses memory-state to process the input data on each neuron. In this 
work, an RNN architecture with 5 layers and 64 Long Short-Term Memory (LSTM) 
cells is used to train the model. A CNN model is trained with total 5 layers and kernel 
sizes 5 and filter size 80 in the first layer and the second layer to iterate through the 
data to train the model.
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The original images are used for 2D CNN algorithm because it has its own image 
conversion process built in the algorithm. On the other hand, for 1D CNN and RNN, 
the images converted with BSIF are loaded and rearranged in the form of an array 
as (20,815, 1, 256) for training feature. This implies that this training set has 20,815 
data representing the true angle label, with time-step as 1, and 256 features points. 
The same process applies to validation dataset, which results in an array of (5430, 
1, 256) and the test dataset has the numpy shape of (905, 1, 256) for RNN algorithm 
and (20,815, 256, 1), (5430, 256, 1), (905, 256, 1) for training, validation and testing, 
respectively, in 1D CNN algorithm. The loss function depends on the desired result 
parameter such as the fiber angle. Hence, the mean square error (MSE) was used in 
both RNN and 1D CNN as the loss function in the model. The predicted values and 
the actual value of the angle are used to calculate MSE. 

In summary, this work uses three different ML algorithms. 1D and 2D CNN and 
RNN are compared for their accuracy. Each of them target different dataset and 
loss function, the computer language used is python platform with Tensorflow in 
Windows 10 environment. 

2.6 The Architectures of the Machine Learning Algorithms 

2.6.1 2-Dimensional Convolutional Neural Network (2D CNN) 

The 2D CNN ML algorithm uses Python platform, with Tensorflow, CNN (Convolu-
tional Neural Network). CNN works well for identifying simple patterns within the 
data, which are then used to form more complex patterns within higher layers. CNN 
is very effective in deriving interesting features from shorter (fixed-length) segments 
of the overall data set and where the location of the feature within the segment is not 
of high relevance. 

In 2D CNN algorithm, the input is the original image data and the ML algorithm 
convert the image features in its own system. The loss function in 2D CNN is “sparse 
categorical cross entropy”, which is used to distinguish different categories. In 2D 
CNN, the model can be used to predict the printing orientation in each layer as a 
classifier. Hence the predicted values represent the orientation of each layer, and can 
iterated through whole sample to provide the information of the printed direction. 
However, it is not capable of identifying the toolpath in each layer. Also, since it 
uses the original images as the input, the processing needs a huge computing power. 
Additionally, when increasing the number of categories, the training time increases 
substantially. Since the process uses original images and the in-built image processor 
provides a lossless conversion procedure, the accuracy can reach almost 99% with 
proper setup parameters. Thus, the 2D CNN is good at image analysis, especially if 
high performance computing facilities are required. In this section, a 2D CNN model 
and the process steps will be presented in detail. 

The dataset for orientation prediction in each layer (Sect. 2.4), which contains 
207 clear views of 0° orientation images is used to create the input data. The images
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need to be saved in folders according to the angle they represent, which means each 
classification category is saved in corresponding folder. The 0° reference images are 
split into 3 subsets of images, one for training, one for validation and one for testing. 
Here, 7 images are chosen to be the test data, and the ratio of training and validation 
data is set as 8:2. Thus, the rest of the 200 images are split into 166 images for training 
and 34 images for validation. With the help of python code, as Fig. 3 shows, the split 
images are rotated from 0° to 180° with 0° interval and saved to folders named as 
1, 2, 3…180 for training, and the same process is conducted to create validation 
dataset and test dataset. By doing so, the training dataset with 30,046 images and 
the validation dataset with 6154 images and the test dataset with 1267 images are 
obtained and each angle of images is saved to the corresponding folder. 

Once the training, validation and test dataset are prepared, they are fed into the 
2D CNN algorithm for model building. The image dataset needs to be re-sized from 
536 × 536 to 100 × 100 pixel to reduce the needed computing power and then create 
the training and validation datasets. Last, the training and validation datasets need 
to be appended to corresponding features and labels, which are then converted into 
numpy arrays with the shape of (30,046, 100, 100, 1) for training dataset, (6154, 100, 
100, 1) for validation dataset in order to fit the 2D CNN model training algorithm. 
The first number represents the number of images, the second and the third numbers 
represent the pixel size in x and y directions, and the fourth number represents the 
number of images in each sequence. The Python code used for the 2D CNN image 
processing is shown as Fig. 6.

The architecture of the 2D CNN algorithm is shown as Fig. 7, which has 5 layers. 
The filter size used is 80, and the kernel size in layer 1 is (5, 5) and (3, 3) in layer 
2. The Maxpooling size is (2, 2) in layer 1 and 2. The hidden layer Dense is 200. 
The output layer has 181 categories, so output Dense is set as 181. The activation is 
selected as “softmax”. Batch size iterated is 100, and the epochs is set as 50. Also, 
a Dropout function of 0.1 is used to intentionally drop 10% of the training data in 
each training epoch to prevent the overfitting.

The setup parameters used in this 2D CNN algorithm are obtained by trial-and-
error and the parameters are extremely data-dependent. Therefore, different numbers 
of image, different pixel size of image, and even different shapes of the image used for 
training will need to find the suitable parameters accordingly. A checkpoint function 
is used to monitor the accuracy during each epoch, and save the best model throughout 
the whole training process. The total time for the training is 24 h. 

3 2D CNN Result 

When the training process is completed, first thing is to check the fitting status 
during the training process, whether it is overfitting or underfitting. To do that, a 
recall function in Python is used and the training and validation histories are plotted 
as Fig. 8. The result in this training process shows no overfitting or underfitting, since 
the validation result and the training result have the same trend and do not show large



Image Processing and Machine Learning Methods Applied … 31

Fig. 6 The python code used for resizing images and dataset preparation in 2D CNN algorithm
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Fig. 7 2D CNN architecture for the classification model

variation. If the graph shows a large gap between the two lines, it indicates that the 
model is not trained properly and the setup parameters need to be further tuned. The 
acceptability of the result also depends on the desired accuracy. Typically, in 2D 
CNN machine learning, the accuracy of training is often higher than the accuracy of 
validation, which is also observed from the resulting plot shown in Fig. 8.

To test the accuracy of the trained model, the test dataset is needed, which has been 
separately prepared with 1267 data using the same preparation process as the training 
dataset. An array shape of (1267, 100, 100, 1) is required to be compatible with the 
training dataset. In this 2D CNN training, the shape used for training is (30,046, 100, 
100, 1). Therefore, the test dataset must have the same pixel size of 100 × 100. Then 
the folders with images are loaded in the Python code, and the output categories, 
which contains 0° to 180°, are created. A function “model.evaluate” is used to check



Image Processing and Machine Learning Methods Applied … 33

Fig. 8 Training and 
validation history in each 
epoch for 2D CNN model
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the model accuracy. By doing so, the trained model with the accuracy of 0.9684 is 
achieved, which can be used in a practical situation. 

Next, the prediction accuracy of the trained model is determined by using a set 
of images of unknown angular information. Here, another 3D printed specimen 
of a similar type is imaged by µCT Scan and 500 images with unknown angular 
information are obtained. The images are then renamed according to its layer height 
from the bottom of the sample to its top with the name of “Layer 1”, “Layer 2”, etc. 
These 500 images are then saved in a folder and then loaded into Python code. Next, 
the images are used to create a test dataset and converted into a numpy array with the 
shape of (500, 100, 100, 1). The names of the images are appended to the “Layer” 
column, and the converted images’ features are used for prediction. The results are 
appended to the “Predicted Angle” column. Last, the outcome is saved in the tabular 
form and the predicted angle distribution for each layer is plotted, as shown as Fig. 9, 
which can reveal the printing orientation of the tested sample for each layer. Here, 
the predicted angles are located around 90° and 0° showing that the sample is printed 
with these two angles repetitively. One major benefit is that the prediction process is 
very fast. The dataset has 500 images and the time taken for prediction is less than 
a second. Therefore, even though it takes 24 h to train the model, the time required 
for prediction is extremely short.

3.1 1-Dimensional Convolutional Neural Network (1D CNN) 

In this section, a 1-D ML algorithm is introduced. The 1D CNN, which means 
the input data is 1-Dimensional. Therefore, 2D images must go through the BSIF 
algorithm to be converted into 1D data. In the 1D CNN algorithm, a loss function, 
Mean Square Error (MSE) is used. Each image features are converted with the BSIF 
lossless-process into a numerical data with 1 row and 256 columns, then in order 
to easily extract the needed features and to designate the angle/label, a column, 
named “Image Angle” is added as the first column to designate the angle/label and
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Fig. 9 Angular distribution 
of the tested sample in 500 
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“Feature_1”, “Feature_2”, all the way to “Feature_256” are add at the top of each 
feature. Thus, all the information representing each image in a fixed-length and its 
angle/label and features are saved as a CSV file. 

The 1D CNN algorithm is capable of predicting the printing orientation in each 
layer. It is also capable of predicting the toolpath of the sample in each layer. The 
database containing 27,150 images needs to be divided into training, validation, and 
test datasets. Since 150 images with clear view of 0° fiber orientation are selected 
as described previously, the images are used to rotate 1° interval counterclockwise 
from 0° to 180° to represent 180 angles. Moreover, in order to avoid bias during the 
model training, 115 images are picked to use as the training dataset for each angle, 
which total to be 20,815 sub-images. Then 20 images from each angle are added to 
the validation dataset, which sums up to 5430 sub-images. Finally, 905 sub-images 
are used in the test dataset. By feeding the dataset with evenly distributed weights, 
the ANN will have the least bias when the training is completed. In 1D CNN, the loss 
function is “Mean Square Error”, and the output is a value representing the predicted 
angle. The CSV files for training data, validation data and test data are loaded using 
the “panda” function in Python to train the model. 

The dataset needs to be prepared to form a correct format after being loaded in 
order to feed into CNN algorithm. The Python code used is shown as Fig. 10, where 
“data.values” function is used to capture the features within the data. The first colon 
in the bracket means the function iterates through every row’s data, and the number 
after the comma represents the data in each number of the column. Here, “2:” means 
obtaining the data from the second column all the way to the last column and then 
the value is used as training features. Then, the output labels need to be defined. “[:, 
1]” is used to obtain the data in the first column for every row and the value is defined 
as training labels. The same process is used for the validation dataset to obtain the 
validation features and labels.

After the process of iterating through every row and column of the CSV file, a 
re-shape function is used, which creates a dataset with a shape of (20,815, 256, 1) 
for training feature dataset, (5430, 256, 1) for validation feature dataset and (905, 
256, 1) for testing feature dataset. Here, the first number represents the number of the
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Fig. 10 Python code used to prepare the training and validation dataset in 1D CNN

data/images, the second number represents the features each data has, and the third 
number represents the number of images for each process. As for training, validation 
and test label datasets, the shape of the array is (20,815, 1), (5430, 1) and (905, 1) 
respectively. The first number represents the number of label data, and the second 
number represents the number of images for each process. 

For the output of an angle prediction, it would be easier to understand when 
the output is a value that represents the predicted angle. Hence, the loss function 
“Mean Square Error” (MSE) is used. The model can output a number value to be the 
representation of an angle for the input feature. 

The architecture of the 1D CNN is shown as Fig. 11. Similar to 2D CNN architec-
ture, the checkpoint function is used to capture the model with the lowest MSE value 
throughout the training process. There are 5 layers used in the 1D CNN architecture. 
The filter size for layer 1 and 2 is 256, which means the whole 256 features are 
considered, the kernel size is 1, which means 1 full image features are processed at 
each time. Padding used is “same”, the activation used in each layer is “relu”, the 
hidden layer has Dense of 200 and the loss function is “Mean Square Error”, the 
optimizer is Adam, which provides a learning rate of 0.001, the batch size is set as 
128, and total 10,000 epochs is used. The verbose in checkpoint is set as 2, which 
means the process will just mention the number of epochs, and in “model_m.fit” the 
verbose is set as 1, which will show an animated progress bar for the user to observe 
if the model is properly trained. The parameter setup in this training is also extremely 
data-dependent, therefore, with different datasets, the parameters need to be tuned 
again.

3.2 1D CNN Result 

After completion of the model training, the first thing is to check the training history 
to make sure it has no overfitting, which shows the validation curve to be much lower 
than the training curve or underfitting, which shows the training curve to be much
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Fig. 11 The ML architecture with 5 layer in the 1D CNN algorithm

lower than the validation curve. The training and validation histories are plotted as 
Fig. 12. The graph shows no sign of overfitting or underfitting. Then, the function 
“model.evaluate” is used to test the accuracy of the model. Since the MSE loss 
function is used, the output of the evaluation is the MSE of the prediction. A MSE 
of 0.9651 is obtained showing a promising result for the CNN implementation. 

The model trained in this section is used to predict the toolpath of the composite 
material specimen image set obtained from µCT scan. In this work, the sample used

Fig. 12 The training and 
validation MSE of each 
epoch in 1D CNN model 
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for toolpath prediction is a square cube with 1 cm length on each side. To predict 
the toolpath of the whole sample, a µCT scan needs to be conducted to obtain the 
sliced images. The µCT scan image used to perform the toolpath prediction has pixel 
size of 2657 × 2689. Next, similar to all training dataset preparation, the images are 
cropped as circles using a Matlab code and after the cropping process, 676 images 
with pixel size of 100 × 100 are obtained. These 676 images are then converted with 
BSIF and become 676 data. Each data has 256 numerical features and are saved as 
a CSV file. Thus, a shape of (676, 256, 1) numpy data array is ready for toolpath 
prediction. 

In order to clearly view the toolpath in each layer, a direction indicator is used. The 
idea is to impose each small cropped circular image with a direction indicator corre-
sponding to its prediction and then combine all the direction indicators to reconstruct 
the whole image to represent the layer showing the toolpath. Hence, the predicted 
result needs to be recorded and saved as a CSV file, which has a column showing 
the region the cropped image belongs to and a column for prediction result of that 
region. The direction indicator images showing the angle from 0 to 180° are saved 
with a file name with respect to its angle. Then, according to the prediction result, a 
Python code “if and else” is used to match the prediction result and the corresponding 
image name of the direction indicator. For example, an image representing region 
10 is predicted as 44°, then the Python code will match the prediction result 44° to 
the direction indicator, which is named as 44 and the direction indicator is saved to 
represent the region 10. After the process iterates through all predictions, a collection 
of all 676 direction indicator images is saved. Finally, a 26 × 26 grid is created to 
display all 676 predicted direction indicators are shown as Fig. 13. 

Fig. 13 Imposed toolpath reconstruction with 1D CNN model
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3.2.1 Recurrent Neural Network (RNN) 

Recurrent neural network (RNN) is a supervised ML algorithm, which is designed 
to model sequential data. The order is very important in sequential data. There are 
different forms of sequence modeling algorithms but the one used here is the many-to-
one sequence model, which implies that the input data is a sequence but the output 
is not a sequence, rather a fixed-size vector. In RNN, the hidden layer has inputs 
from both the input layer and the hidden layer from the previous step. The flow of 
information in an RNN from one time-step to another introduces memory of past 
inputs into the network [49]. 

The algorithm used here is a multilayer RNN, which is used to predict the direction 
of fibers in a µCT scan image. The input is the µCT-scan image features obtained after 
the BSIF process and the output is the fiber orientation angle. At any time instance 
the model uses the information from the past and input to predict the output. Since 
AM follows a sequential process of printing, the fiber orientation at each layer can be 
helpful to predict the orientation of fiber of the next layer. Typically, a backpropaga-
tion through time (BPTT) algorithm is used to train an RNN, which sometimes has a 
problem of vanishing gradient. RNN model faces difficulty in learning the long-term 
dependencies because it is trained with sequential data, which implies that the model 
will not be able to relate the images which are captured several time steps apart. 
To address these issues, the RNN architecture with LSTM network is used [50]. 
RNN with hidden layers containing LSTM cells takes information from the input 
and from the previous hidden layers and calculates the output through a set of equa-
tions and then sends the information to the next layer in the model and to the hidden 
layer, namely, another LSTM cell in the next time step. LSTM cells are designed 
to handle the problem of vanishing gradients. These cells have inbuilt default units 
programmed to remember the updates from the previous time steps without loss of 
information over long time steps, making them suitable for large image datasets. 

As mentioned previously, the BSIF process has converted features of each image 
into 1 row and 256 columns. A column named “Image Angle” is added to the file as 
the first column to designate the angle/label. Thus, all the information to represent 
each image is available in a single row. Any change to the input data affects the 
algorithm and the setup parameters need to be tuned. In RNN, the dataset for toolpath 
prediction in each layer is used, which means a model capable of predicting the 
toolpath can be acquired. Here, the same training, validation and test data of CSV 
files as 1D convolutional neural network is used. The Python code used for reshaping 
is similar as the one used in 1D CNN algorithm, where the only difference is in array 
arrangement. In RNN architecture, the shape of the training data is (20,815, 1, 256), 
the validation data is (5430, 1, 256), and the test data is (905, 1, 256). The first number 
represents the number of dataset the CSV file has, the second number represents the 
amount of data being iterated in each time step, in this case, 1 image is used in a 
time step. The architecture of the RNN Python code used is shown in Fig. 14. There 
are 5 layers in the algorithm. The number of LSTM cells used in first 2 layers is 64, 
the hidden layer has “Dense” of 128 with only 1 output value, the loss function is 
“MSE”, the optimizer is Adam, which has a learning rate of 0.001 and the batch size
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Fig. 14 The architecture of the RNN machine learning of python coding 

is 128, and epochs are 10,000. Similarly, a checkpoint function is used to capture 
the best model. Since the model is trained repeatedly, and the accuracy of the last 
trained model does not guarantee to be the best one. Most of the times, the model 
reaches its peak performance, but would be overwritten by the next trained model. 
The callbacks function can monitor the validation loss of each epoch and then save 
the model that is more accurate than the previous trained model. 

3.2.2 RNN Result 

A similar testing procedure as the 1D CNN are applied here for RNN model accuracy 
checking. The recorded training and validation histories are plotted and shown as 
Fig. 15, which shows no sign of overfitting or underfitting. The deviation of RNN 
is relatively greater than the CNN method, and this is why a checkpoint function is 
necessary in RNN method for capturing the best trained model. The test MSE in this 
training is 0.059, which indicates the performance of the model is good to predict 
the toolpath of the sample’s layer.
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Fig. 15 MSE history of 
training and testing for each 
epoch in RNN model 
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To implement the model, the data prepared for 1D CNN are used. 676 cropped 
circular images converted with BSIF process, which become 676 rows with 256 
features for each image, are saved as CSV files. Then, the CSV file is loaded into 
Python with the “panda” function. Since the purpose is to predict the angular infor-
mation for each cropped circular image, 256 features are used as input data and 
undergo a similar data preparation as the one used for the training dataset, except, 
there is no output label in these 676 images. After the prediction, a set of values 
representing the angular information is extracted and saved as a CSV file. 

The same method of imposing a direction indicator on the detected fiber direction 
is used for toolpath reconstruction, shown as Fig. 16. These imposed images are a 
good local toolpath representation of the tested sample in each sub-sectioned image. 
It clearly outlines the movement of the printing process, which can be applied to 
predict the hidden information in a 3D printed sample. Although, only 1 layer is 
used to demonstrate the toolpath reconstruction, the process can be repeated on the 
whole sample image stack to acquire the toolpath information of the entire sample. 
The result can be used as a blueprint for 3D printing reverse engineering or an 3D 
printing in-situ signature inspection.

4 Summary 

The machine learning methods are now widely used in materials design. The oppor-
tunities presented by these methods have enabled design of materials with novel 
properties and reduced time to design complex composite materials for the require-
ments of specific applications. The present work shows the approaches that can be 
used for effectively processing the image datasets from materials with the example 
of a micro-CT scan image dataset processed by three different ML methods. A model 
composite material specimen is used and the ML approach is used to identify the tool-
path used in 3D printing of this specimen. While these methods are useful for a variety 
of materials related problems such as design of new materials, processing parameter 
optimization and also defect detection in the microstructure, the ML methods also
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Fig. 16 a The to-be-test CT scan image showing the printing direction by glass fibers and b the 
collection of direction indicators with the trained model showing the toolpath of the certain layer

present challenges that they make the reverse engineering of the products easier. 
Although the size and geometry of a component can be 3D scanned very easily using 
available scanners and imaging tools, the quality of a component largely depends 
on the microstructure. The reverse engineering of microstructure by recovering the 
toolpath presents a vulnerability that can make reverse engineered products of high 
quality. The present work shows the need for developing new toolpath methodologies 
that are difficult to process through ML algorithms. 
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