Carbon 204 (2023) 484-494

Contents lists available at ScienceDirect

Carbain

Carbon

o %

ELSEVIER journal homepage: www.elsevier.com/locate/carbon

materiastoday

Check for

Integrating structure annotation and machine learning approaches to e
develop graphene toxicity models

Tong Wang *', Daniel P. Russo %1 Dimitrios Bitounis ™, Philip Demokritou ¢, Xuelian Jia?,
Heng Huang‘, Hao Zhu™"

& Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, USA

Y Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave,
Boston, MA, 02115, USA

¢ Nanoscience and Advanced Materials Center, Environmental Occupational Health Sciences Institute, School of Public Health, Rutgers University, Piscataway, NJ,
08854, USA

4 Department of Electrical and Computer Engineering, Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Boulevard, Pittsburgh, PA, USA

ARTICLE INFO ABSTRACT

Keywords: Modern nanotechnology provides efficient and cost-effective nanomaterials (NMs). The increasing usage of NMs
Nanotoxicity brings great concerns regarding nanotoxicity in humans. Traditional animal testing of nanotoxicity is expensive
Graphenes . and time-consuming. Modeling studies using machine learning (ML) approaches are promising alternatives to
Ezzzzz:ccrti;irinnomnon direct evaluation of nanotoxicity based on nanostructure features. However, NMs, including two-dimensional

nanomaterials (2DNMs) such as graphenes, have complex structures making them difficult to annotate and
quantify the nanostructures for modeling purposes. To address this issue, we constructed a virtual graphenes
library using nanostructure annotation techniques. The irregular graphene structures were generated by modi-
fying virtual nanosheets. The nanostructures were digitalized from the annotated graphenes. Based on the an-
notated nanostructures, geometrical nanodescriptors were computed using Delaunay tessellation and used for ML
modeling. Partial least squares regression (PLSR) models for the graphenes were built and validated using a
leave-one-out cross-validation (LOOCV) procedure. The resulted models showed good predictivity in four
toxicity-related endpoints with the coefficient of determination (R%) ranging from 0.558 to 0.822. This study
provides a novel nanostructure annotation strategy that can be applied to generate high-quality nanodescriptors
for ML model developments, which can be widely applied to nanoinformatics studies of graphenes and other
NMs.

Machine learning

evaluate NM toxicity, which often use large numbers of animals, are
expensive and time-consuming. With the development of Machine
Learning (ML) approaches, computational modeling is emerging as an
alternative for predicting the behavior of NMs in biological environ-

1. Introduction

Modern nanotechnology is a critical technology for sustainable
nanomaterial (NM) developments in both basic research and commer-

cial applications [1-3]. The global nanotechnology market is expected
to exceed $125 billion by 2024 [4]. Due to their diversity in structures,
properties, and bioactivities, NMs have gained prominence in fields such
as food security and safety processing [5-8], precision agriculture
[9-111], clean energy [12], and clinical medicine [13,14]. However, the
increasing use of NM is coupled with concerns for nanotoxicity [15-21].
There is an urgent need for comprehensive risk assessments of both
emerging and existing NMs. Traditional experimental methods to
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ments [22] and evaluating their nanotoxicity [23,24]. Quantitative
Nanostructure Activity Relationship (QNAR) modeling using ML ap-
proaches reveals the relationships between NMs’ structural features and
biological activities such as toxicity in a quantitative manner [25]. In the
Organization for Economic Co-operation and Development (OECD)
2022 report on risk assessment for NMs, ML-based modeling study was
highlighted as a promising strategy for rapid toxicity screening of NMs
[26].
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ML has been successfully utilized in modeling studies of physico-
chemical properties and bioactivity for small molecules [27-31]. How-
ever, ML applications in computational nanotoxicology are limited
because of lacking nanotoxicity data and the difficulties of nano-
structure annotations [32]. Based on the EU-US Nanoinformatics
Roadmap 2030 guidance for ML model development, the performance of
predictive nanotoxicity models relies heavily on the well-defined de-
scriptors that tie nanostructures and physicochemical properties to the
bioactivities of NMs [33]. Nanodescriptors represent NMs’ chemical and
physical identities, intrinsic properties and extrinsic properties, which
can be classified as experimental, empirical, and geometrical [34].
Experimental results of NMs’ morphological properties and physico-
chemical properties such as size [35], magnetic properties [36], and zeta
potentials [37], can be used as descriptors for modeling purposes.
However, these measured nanodescriptors vary significantly with
different experimental conditions and may not be reliable without prior
references. Empirical descriptors have been developed using molecular
simulations and quantum chemistry [38-40], however, these de-
scriptors need expertise for selecting appropriate force fields and
calculation methods to generate descriptors. Geometrical descriptors
provide more detailed information on nanostructures by annotating the
important structural features such as molecular structures, mechanical
properties, and electrical properties [23]. In our previous studies, novel
geometrical nanodescriptors were developed by employing Delaunay
tessellation and atomic properties. The nanodescriptors quantified
nanostructures by simulating the surface chemistry and were used to
develop ML models for NMs such as metallic nanoparticles [41,42].
However, for more complex NMs, such as two-dimensional nano-
materials (2DNMs) like graphenes, nanostructure annotations and sim-
ulations were not previously successful due to complex nanostructures.

As 2DNMs, graphenes are carbon-based NMs consisting of single- or
few-layer atoms arranged in a planar honeycomb structure and are being
widely applied in biomedicines, biosensors, and solar cells [43,44].
Graphenes usually present planar structures with irregular edges, which
is a key factor influencing their effects on cellular uptake and cytotox-
icity [45-47]. Lateral size has long been shown to modulate the path-
ogenicity of graphenes [48,49], but subtle surface modifications can also
influence their bioactivity [46,47,50]. For example, primary endothelial
cells develop more cytoplasmic protrusions and are more prone to losing
their barrier function when exposed to increasingly oxidized graphene
sheets [51]. The type of surfactant necessary to disperse the more hy-
drophobic graphenes and its concentration may also affect their cyto-
toxicity [52]. As graphene derivatives, graphene oxides have carbon
frames oxidized with oxygen-containing functional groups on their
edges and basal plane. The diverse graphene structures, especially the
irregular edges, are difficult to annotate precisely through simulating
experimental conditions, which prohibits the use of geometrical nano-
descriptors in ML modeling.

In this study, we developed a novel structure annotation strategy by
(1) simulating the nanostructures of synthesized graphenes; (2) devel-
oping geometrical nanodescriptors to characterize the structure features
of graphenes; and (3) using the calculated nanodescriptors to develop
ML models for various toxicity endpoints of graphenes. In a previous
study, we synthesized and assessed the toxicities of graphenes and
graphene-like inorganic 2DNMs [53], which generated a high-quality
dataset for graphene toxicity modeling. The irregular structures of the
graphenes and inorganic 2DNMs were constructed by modifying the
number of vertices and edges on virtual nanosheets. For graphene ox-
ides, functional groups including hydroxyl, epoxy, and carboxyl groups
were added on the graphene surface to reach the carbon/oxygen (C:0)
ratio experimentally measured. The annotated nanostructures were
saved as Protein Data Bank (PDB) files. Novel geometrical nano-
descriptors were computed from the annotated nanostructures using
Pauling electronegativity and Delaunay tessellation. Partial least
squares regression (PLSR) models were developed for various nano-
toxicity endpoints including LDH release, cell viability, oxidative stress,
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and apoptosis. This structure annotation strategy shows great potential
in developing ML models for nanotoxicity predictions of NMs with
complex nanostructures.

2. Material and methods
2.1. 2DNMs dataset

The 11 2DNMs used for ML modeling were synthesized and char-
acterized in our previous study [53]. Graphene oxides were synthesized
according to a modified Hummers’ method [54]. Reduced and partially
reduced graphene oxides were synthesized by controlled reduction
using r-ascorbic acid and size-sorted graphene oxide as the starting
material. Graphene and inorganic 2DNMs were synthesized by
liquid-phase exfoliation in the presence of sodium cholate hydrate (NaC)
or Pluronic® F-108 (PF108). The toxicities of all the 2DNMs were
investigated in a triculture model of small intestinal epithelium. LDH
release, cell viability, and oxidative stress were tested after treating with
1 pg ml~! and 5 pg ml~! 2DNMs and apoptosis was tested after treating
with 5 pg ml~! 2DNMs. LDH release (plasma membrane damage) was
calculated as % of LDH in lysed control. Cell viability (mitochondrial
enzymatic activity) was expressed as % of activity (fluorescence)
measured in cells treated with control fasting food model (FFM) digesta.
Caspase 3/7 activity (apoptosis) was expressed as fold changes relative
to that in cells exposed to FFM digesta. Oxidative stress (ROS genera-
tion) was expressed as fold changes relative to that in cells exposed to
FFM digesta. The Pearson correlation analysis was implemented using
the Python package SciPy 1.6.2 to test for results associations between
two doses of 2DNMs in LDH release, cell viability, and oxidative stress.

2.2. Virtual 2DNMs library construction

The in-house Virtual Nanostructure Simulations (ViNAS) toolbox
was developed to construct virtual nanostructures and their corre-
sponding descriptors calculation. The construction of virtual 2DNMs
(v2DNMs) was performed by the new graphenes generation module
(coded in Python 3.8) of ViNAS, which took the target lateral size and C:
O ratio as the input parameters. Briefly, a 2DNM sheet was first created
with a lateral size larger than the target lateral size. Then, the irregular
2DNM was generated by scaling down the initial lateral size to the target
and modifying the number of vertices and edges on the sheet. For GOs,
rGOs, and prGO, the functional groups such as hydroxyl, epoxy, and
carboxyl groups were randomly placed on the irregular graphene frame
until the C:O ratio reached the target value. The structure information of
annotated 2DNMs was then saved as PDB files. To avoid potential
inconsistency of calculated nanodescriptor results due to different
irregular shapes and randomly distributed functional groups, total 30
v2DNMs were generated for each 2DNMs in the dataset.

2.3. Nanodescriptor generation

Based on the generated v2DNMs, nanodescriptors were calculated
using the new descriptor calculation module of ViNAS (coded in Java
1.8.0_301). There are eight types of atoms in these v2DNMs: C (carbon),
O (oxygen), H (hydrogen), N (nitrogen), S (sulfur), B (boron), Mo
(molybdenum) and W (tungsten). Every four nearest atoms (e.g., CCCC,
CCHO, etc.) that can form a trigonal planar, quadrangulation, or tetra-
hedron were identified from the v2DNM structures using the Delaunay
tessellation approach. In 3D space, atoms within a distance cutoff of 2.0
A and 2.5 A played a key role in the physicochemical properties of GRMs
and graphene-like inorganic 2DNMs, respectively [55-58]. Accordingly,
the distance between any two atoms in a formed 3D tetrahedron frag-
ment was set to within 2.0 A in GRMs and within 2.5 A in inorganic
2DNMs. In 2D planar, atoms within a distance cutoff of 2.5 A were
important for the 2D features of 2DNMs, the distance between any two
atoms in a formed 2D trigonal planar or quadrangulation fragment was



T. Wang et al.

set to within 2.5 A in all 2DNMs [59,60]. The geometrical nano-
descriptors were calculated without considering the atom order within a
quadrangulation or tetrahedron (e.g., CCCO was the same as COCC). As
described in our previous study [41], the procedure of geometrical
nanodescriptors calculation can be summarized as follows: (1) the value
of each quadrangulation or tetrahedron was the sum of the electroneg-
ativity of four atoms in this quadrangulation or tetrahedron. (2) The
descriptor value in each v2DNM was computed as the value of the
relevant quadrangulation or tetrahedron multiplied by its occurrences.
(3) The final descriptor values of a 2DNM were averaged from results
obtained from 30 v2DNMs. In this study, additional surfactant de-
scriptors to describe the surfactants for experimental testing were also
used.

2.4. Machine learning modeling

ML models were developed using the PLSR algorithm. PLSR is a
method that combines principal component analysis and multiple
regression [61]. PLSR performs a descriptor dimension reduction pro-
cedure and constructs a set of components that accounts for as much as
possible of the total descriptors variance in the dataset, which can avoid
multicollinearity and model overfitting [62,63]. It is suitable for the
modeling of small training sets using large sets of descriptors [64-66]. In
this study, the generated geometrical nanodescriptors and surfactant
descriptors were used to develop PLSR models for 2DNMs’ toxicities.
The PLSR algorithm was implemented using scikit-learn 0.24.1 [67].
The original dataset was split into training and test sets with the ratio of
9:2 for cell viability, LDH release, and oxidative stress and 8:1 for
apoptosis. The training sets were used to build models and relevant test
sets were used for the prediction purpose. The leave-one-out cross--
validation (LOOCV) procedure was performed to find the optimal
number of components for modeling using the training set. Briefly, a
single 2DNM was excluded from the training set and the remaining
2DNMs were used for model development. Then the developed models
were used to predict the excluded 2DNM. This procedure was repeated
until every 2DNM in the training set was used for prediction purpose one
time. In the LOOCV procedure, the root mean square error (RMSE) and
coefficient of determination (R%) were used as the parameters to identify
the optimal number of components and the best PLSR model for each
toxicity endpoint as follows:

S (Yerep — Yexe)
Y

R=1-Z— €))
Z(YEXP - YMEAN)Z
Y
11 2
RMSE =, |=>  (Yprep — Y, 2
S HZ( PRED EXP) ( )

where Ygxp was the experimental results, Yprep was the predicted re-
sults, Yypany was the mean value of the experimental results, n was the
number of samples. Then, the external test set was used to evaluate the
performance of selected PLSR models.

3. Results and discussion
3.1. 2DNM:s dataset overview

The information of the original 2DNMs dataset is summarized in
Table 1. The dataset consisted of two types of 2DNMs: (1) eight
graphene-related materials (GRMs) including two graphenes, three
graphene oxides (GO), two reduced graphene oxides (rGO), and one
partially reduced graphene oxide (prGO); (2) three graphene-like inor-
ganic 2DNMs including one hexagonal boron nitride (h-BN), one mo-
lybdenum disulfide (MoSy), and one tungsten disulfide (WSy).
Amphiphilic GOs were dispersed in water and the remaining 2DNMs,
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Table 1
Key physicochemical properties of the 2DNMs used in this study.
2DNM Lateral size C:0 Surfactant
(nm + SD) ratio
Graphene- Small-sized graphene in 184 + 23 N/A Na-
related NaC (G-NaC) Cholate

Small-sized graphene in 206 + 51 N/A PF108
PF108 (G-PF108)
Small-sized graphene 271 + 34 64:35 Water
oxide (GO-S)
Medium-sized graphene 462 + 114 61:39 Water
oxide (GO-M)
Large-sized graphene 1560 + 750 61:38 Water
oxide (GO-L)
Small-sized reduced 411 £ 79 78:22 Na-
graphene oxide (rGO-S) Cholate
Large-sized reduced 2015 + 674 78:22 Na-
graphene oxide (rGO-L) Cholate
Partially reduced 357 + 42 72:28 Na-
graphene oxide (prGO) Cholate

Inorganic Hexagonal boron nitride 149 + 12 N/A Na-
(h-BN) Cholate
Molybdenum disulphide 428 + 103 N/A Na-
(MoS5) Cholate
Tungsten disulphide 323 +28 N/A PF108
(WS2)

which are hydrophobic NMs, were dispersed in NaC or PF108 solutions
for experimental testing. The toxicity data of the 2DNMs were summa-
rized in Table S1. After treatment with 1 pg ml~! 2DNMs, the values for
LDH release, cell viability, and oxidative stress range from 1.61% to
6.63%, 95.95%-113.88%, and 0.81 to 2.23 (fold change) respectively.
After treatment with 5 pg ml~! 2DNMs, the toxicity results of LDH
release, cell viability, oxidative stress, and apoptosis range from —1.08%
to 16.40%, 76.03%-119.96%, 0.80 to 2.15 (fold change), and —2.50 to
0.55 (fold change) respectively. Pearson correlation analysis between
the experimental results of 1 pg ml~! and 5 pg ml~! 2DNMs were shown
in Fig. S1. The resulted Pearson correlation coefficient r and two-tailed
p-value showed that two doses 2DNMs have good correlation in oxida-
tive results while they were not correlated in LDH release and cell
viability results.

3.2. Annotating 2DNM:s by constructing virtual 2DNMs

The new graphenes generation module of ViINAS was used to
construct all v2DNMs in this study with specified lateral size and C:0
ratio as the input parameters. The key structure features of GRMs were
shown in Fig. 1A-D. Pristine graphene represented a carbon frame ar-
ranged in a hexagonal lattice (Fig. 1A). Based on the Lerf-Klinowski-type
structural models [68], hydroxyl groups were added randomly on the
carbon frame (Fig. 1B); epoxy groups were placed on two adjacent
connected carbon atoms (Fig. 1C); and carboxyl groups were placed on
the carbons at the frame edges (Fig. 1D) to form GO, rGO and prGO
respectively. Each carbon atom on the graphene frame can be modified
by adding one functional group and the functional groups can be added
either above or below the carbon frame layer. The vGRMs generation
procedure has three steps. First, a graphene sheet was created. The
actual sheet’s lateral size, which was based on the experimental results,
was marked as p3p4 on the diagonal line pI1p2 (Fig. 1E). The virtual
graphene sheet was generated by randomly forming other vertices with
their distances to the sheet center o no larger than half of the target
lateral size. Then these vertices were connected to form a polygon with
an irregular shape, and the remaining sheet outside the polygon was
deleted (Fig. 1F). To generate GO, rGO, and prGO, the functional groups
were randomly added on the surface of the graphene to reach the target
C:O ratio. For three inorganic 2DNMs in the dataset, the constructions of
corresponding v2DNMs followed the same procedure except using
different atoms and associated residues to generate the initial sheet. For
example, h-BN had a lattice with B and N atoms in a hexagonal
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Fig. 1. Schematic workflow of v2DNMs development. The three-dimensional (3D) structures of graphene hexagonal lattice (A), hydroxyl group (B), epoxy group (C),
and carboxyl group (D) are visualized by CPK drawing method in VMD. The v2DNMs generated in the workflow (E-G) are also shown by CPK drawing method in
VMD. The construction of irregular graphene with 10 nm lateral size and five edges (F) is based on a 12 x 12 nm? graphene sheet (E). Then, a graphene oxide with C:
O ratio of 64:35 (G) is constructed based on the generated irregular graphene. The C, O, and H atoms are represented in black, red, and blue. (A colour version of this
figure can be viewed online.)
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Fig. 2. Visualization of the v2DNMs library. The 2DNMs of the dataset vary in shapes, lateral sizes, atom types, and surface groups. The 3D structures of the v2DNMs
are rendered by VDW drawing method in VMD. The C, O, H, N, B, S, Mo, and W atoms are represented in black, red, blue, green, pink, yellow, cyan, and purple. (A
colour version of this figure can be viewed online.)
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formation (Fig. 2). MoS; and WS, showed similar atom arrangements in
which S and Mo or W atoms were connected by covalent bonds as
S-Mo-S and S-W-S respectively (Fig. 2). In the end, the constructed
v2DNMs were saved as individual PDB files. All 11 2DNMs’ PDB files
and bioactivity data are downloadable from in-house nanoinformatics
portal (http://vinas-toolbox.com/explore_group/2DNMs).

3.3. Nanostructure visualizations

Using the PDB files consisting of annotated 2DNMs, the nano-
structures in the dataset can be rendered by visual molecular dynamics
(VMD) [69] using van der Waals (VDW) method. All the GRMs and
inorganic 2DNMs have irregular polygon structures that varied in sizes,
edge numbers, atom types, and surface groups (Fig. 2). Specifically,
G-NaC and G-PF108 are graphenes with different lateral sizes, which
were constructed only with carbon atoms. GOs, rGOs, and prGO are
GRMs oxidized with hydroxyl, epoxy, and carboxyl groups with C:0
ratios ranging from 61:39 to 78:22. h-BN has a structure similar to
graphene, where B and N atoms alternately constructed hexagonal lat-
tices instead of carbons. MoS,; and WS, showed a sandwich-like struc-
ture with two hexagonal planes of S atoms and a hexagonal plane of Mo
or W atoms in the middle. All the annotated 2DNM structures were used
to calculate nanodescriptors for modeling purposes.

3.4. Nanodescriptors generations

To account for the uncertainty of experimental synthesis of 2DNMs,
30 v2DNMs were constructed for every 2DNM to mimic the diverse
irregular structures of corresponding 2DNM [53]. The average lateral
sizes of generated v2DNMs for each 2DNM are consistent to experi-
mental conditions and were shown in Table 1. The designed nano-
descriptors should be able to describe the diverse 2DNM and but not be
sensitive to changes of irregular shapes of 2DNM due to the synthesis
uncertainty. Based on the Delaunay tessellation approach, quad-
rangulations or tetrahedrons were generated for each four nearest
neighboring atoms on v2DNM structure as nanodescriptors. The iden-
tified quadrangulations or tetrahedrons can describe v2DNM structure
features on the surface, which account for their properties, activities and
toxicities. The value for each identified quadrangulation or tetrahedron
was the sum of electronegativity values of the four atoms within this
trigonal planar, quadrangulation or tetrahedron. For example, the value
of CCCC was 10, obtained from the sum of four carbon electronegativity
values (2.5 x 4). The atomic electronegativity values of all atoms were
summarized in Table 2. Furthermore, a nanodescriptor value for a
v2DNM was calculated as the value of each trigonal planar, quad-
rangulation, or tetrahedron electronegativity multiplied by its occur-
rences in this v2DNM. As mentioned above, 30 v2DNMs were
constructed for every 2DNM. Thus, the nanodescriptors for a 2DNM
were calculated by averaging descriptor values of 30 v2DNMs. Since
surfactants can influence 2DNMs’ stability and surface chemistry
[70-72], additional categorical descriptors were introduced to account
for the effects of different surfactants on 2DNMs’ properties. Based on
the surfactants used in the experimental testing (Table 1), the surfactant
descriptors of the corresponding 2DNM were binary descriptors with “0”
representing the absence and “1” representing the presence of the
associated surfactant. Binary descriptor is widely used in ML modeling
for drug discovery, such as MACCS keys fingerprints and PubChem
fingerprints [73-76]. The results of calculated nanodescriptors for all
2DNMs were provided in Supporting Information Excel file E1. The
standardized nanodescriptor values in each 2DNM were shown in Fig. 3.

Table 2

Atomic electronegativity values used in the calculation of nanodescriptors.
Atoms C o H N S B Mo w
Electronegativity value 2.5 3.5 2.2 3.1 2.4 2.0 2.2 2.4
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Some geometrical nanodescriptors have relatively high values for spe-
cific 2DNMs. Since the structures of G-NaC and G-PF108 were con-
structed with carbon atoms, the values of CCCC descriptor were higher
than the other 2DNMs. In graphene lattice, six carbons located at the
hexagon apexes with two sublattices, A and B. The carbon atom of one
sublattice forms trigonal planar with three nearest neighbors of the
other sublattice, which is one of the important features influencing
graphene’s activity [59,60]. As shown in Fig. S2, CCCC descriptors in
graphene were developed using the trigonal planar geometry based on
the relationship of sublattice A and B, which can reflect the structure
feature of armchair edges (a and b)/zigzag (c), dangling atoms (d and
e), and general atoms (f and g) in the plane. It can also extract the
features of convex corner. For future explorations, descriptors reflecting
2DNMs’ frame structures can be divided into different subtypes. For
example, CCCC descriptors reflecting the edge effect features can be
separated from the general CCCC, and different weights can be given to
these subtype descriptors for modeling purposes. Besides the CCCC
descriptor, surfactant descriptors NaC and PF108 showed high values in
G-NaC and G-PF108, respectively (Fig. 3). These two surfactant de-
scriptors were also used to further differentiate G-NaC and G-PF108. For
GOs, rGOs and prGO, hydroxyl, epoxy and carboxyl groups were added
on the graphene frame, so the values of nanodescriptors consisting of C,
H, and O atoms were larger than the other nanodescriptors. h-BN, MoS,,
and WS, structures were constructed with inorganic atoms, so the
nanodescriptors containing B, N, Mo, W, and S atoms showed higher
values than others.

The calculated nanodescriptors can be used to show the chemical
space of 2DNMs through principal component analysis (PCA). Both the
top two and top three principal components were used to represent the
distribution of all 2DNMs, which accounted for 73% and 81% of the total
descriptor variance, respectively. As shown in Fig. 4 and Fig. S3, the
2DNMs in the dataset were structurally diverse due to various shapes,
lateral sizes, atom types, surface chemistry, and surfactant types. The
three GRMs, prGO, rGO-S, and G-NaC, are close to each other in both 2D
and 3D chemical space, which was mainly due to their similar lateral
size and same surfactant. Although h-BN and MoS; share similar 2D
chemical space, they locate differently in 3D chemical space. 3D
chemical space retains more information of the original chemical space,
which can better differentiate h-BN and MoS,. Compared to other GRMs,
GO-L is a structure outlier mainly due to the large number of hydroxyl
groups on its surface, which significantly increases the value of
descriptor HHHH. To better analyze this type of GRMs, more graphene
oxides with different sizes should be included in future studies.

3.5. Computational modeling

Four nanotoxicity models were developed using the calculated
nanodescriptors and PLSR approach for the 2DNMs in the dataset. When
data in two doses (1 pg ml~! and 5 pug ml~1) were available for LDH
release and cell viability, both dose results were used in the model
development (Table S1), so this effort resulted in models for low/high
doses of these toxicity endpoints. Two medium-sized graphenes in the
dataset, prGO and GO-M, were selected as a test set, and the remaining
nine 2DNMs were used as the training set for model development. For
the apoptosis dataset, which consists of nine 2DNMs total (Table S1),
one medium-sized graphene (prGO) was selected for test purposes, and
the remaining eight 2DNMs were used as training set for model devel-
opment. The LOOCV procedure was used to evaluate the performance of
developed nanotoxicity models within training sets.

The correlations between experimental values and predicted values
of the resulted four nanotoxicity models were shown in Fig. 5. The
optimal number of components for developing the best PLSR model in
the training set was obtained from the LOOCV procedure. The training
set R2 values using the obtained optimal number of components ranged
from 0.558 to 0.822 in corresponding PLSR models (Table 3). The RMSE
values of training (test) set were 1.371 (0.916), 5.882 (7.361), 0.250


http://vinas-toolbox.com/explore_group/2DNMs

T. Wang et al.

Carbon 204 (2023) 484-494

GO-M GO-L ‘
PF1084 | PF108 4 | ‘descrg;Ft%g
Nac | NacC l Nac
Water - | Water | ool
wwww o | wwww 4 |
swww+ | swwwd | SWWWW
e [ : sswwq | SSWW
sssw+ | : ssswo | el
ssssq | : ssssq | 5338
Mosss 4 | : Mosss 4 | s
MoMoMos { | : MoMoMos { | MoMohos
BNNN 4 | : BNNN | BNNN
BEBN o | : BBBN | BBEN
00004 e ! 0000 H_T_Hee 0000
HoOO4 e ! Hoood T -+ ee HO0O
HHOO 4 b : HHOOH M1 1 @ HHOO
HHHO4 b WO H_T - @ HHHO
HHHH A b HHHH T _J—e o HHHH
coooo (ke ! cooo] H T+ ee €000
cHooq e i | cHood H_T_H e« CHOO
cio{ b | cHHo{ H_T_H ®e CHHO
CHHH A b i CHHHY H_ T+ @ CHHH
ccoo HLH e ccood HTI}—e ccoo
ccHo o i ceHo W e CcCHO
CCHH 1 o CCHHY WL _H we CCHH
cccot b cccod M- ee cceo
cccHA b ccCHd T ee CCCH
cccc B ccccd (I ccee
20 2 4 6 8 202 4 6 8
h-BN MosS, WS,
PF1084 | prios | PF108 |
NaC | NaC | Nac o |
water{ | water - | water | |
w4 | wwww o | wwww - HINe
swww | swww | swww HIhe
sswwo | ssww+ | ssww 4 HIhe
sssw | sssw+ | SSSW HIhe
sssso | sssso | 5555 HIhe
Mosss+ | MoSSS 11— Mosss 4 |
MoMoMos o | MomMoMos { =T MoMoMoS 4 |
BNNN - HI— BNNNH | BNNN A |
88BN - HIH e BBBN- | BBBN |
00004 | 00004 | 00004 |
HooO - | HooO - | Hooo{ |
HHOO 4 | HHOO 4 | HHOO - |
HHHO | HHHO A | HHHO+ |
HHHH A | HHHH A | HHHH A |
cooo | cooo- | cooo |
cHood | cHoOH | cHOO 4 |
cHHoH | CHHO A | cHHO o |
CHHHA | CHHHA | CHHHA |
ccood | ccoo4 | ccood |
ccHo | ccHoo | ccHod |
cowiq | CCHHA | ccHHA |
cccod | cccoo | cccod |
ceeHo | cceHo | cceH4 |
cceeq | cecec | ccecd |

Fig. 3. Standardized nanodescriptors for 11 in-house 2DNMs in the dataset. (A colour version of this figure can be viewed online.)
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Fig. 4. Principal component analysis (PCA) of v2DNMs based on the nano-
descriptors. Every 2DNMs is visualized in 3D chemical space. The projections of
all 2DNMs on three planes (cyan, green, and pink) are also shown. (A colour
version of this figure can be viewed online.)
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(0.164), and 0.447 (0.591) for the models of LDH release (%), cell
viability (%), oxidative stress (fold change), and apoptosis respectively
(fold change) (Table 3). The RMSE values between the training and test
set of all four models are similar, indicating that the resulted nano-
toxicity models are reliable for prediction purposes. Although most
2DNMs were correctly predicted, prediction errors still exist. For
example, G-PF108 has relatively large prediction errors in the models of
LDH release, oxidative stress, and apoptosis (Fig. 5 A, C and D). This
issue was mainly due to the lack of other GRMs tested by using PF108 as
the surfactant in the dataset. Compared to the other GRMs dispersed in
NaC, G-PF108 was the only GRM dispersed in PF108. PF108 is a non-
ionic surfactant while NaC is an ionic surfactant, which can influence
the toxicity of 2DNMs [77,78]. For the model of cell viability, 5 pg ml~}
rGO-S has a larger prediction error than others (Fig. 5 B and D). For the
model of cell viability and apoptosis, 5 pg ml~} rGO-S has a larger
prediction error than others (Fig. 5 B and 5D). The reason for prediction
errors of rGO-S was similar to G-PF108. rGO-S has its structural nearest
neighbor as prGO. However, 5 pg ml™! rGO-S and prGO have cell
viability testing results as 76.03% and 87.88% respectively, and
apoptosis testing results as —2.22 and —2.26 respectively. The issues are
similar to the “activity cliff” of QSAR modeling studies [79]. There are
only two types of rGO in the dataset, and the lateral size of rGO-L is at
least 5 times larger than rGO-S. The training data used in this study are
not sufficient to cover the structure diversity of rGO, so the model
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Fig. 5. Correlations between experimental (Exp.) and predicted (Pred.) values for developed PLSR models in (A) LDH release, (B) cell viability, (C) oxidative stress,
and (D) apoptosis. Red, blue, green, and purple dots are 1 pg ml~! 2DNMs in the training set, 5 g ml~! 2DNMs in the training set, 1 pg ml~' 2DNMs in the test set and
5 pg ml~! 2DNMs in the test set, respectively. The coefficient of determination (R?) from the modeling results is also shown. (A colour version of this figure can be

viewed online.)

Table 3
The optimal number of components, the coefficient of determination (R?) and
root mean square error (RMSE) of PLSR models for four toxicity endpoints.

Toxicity The optimal number ~ R? RMSE for the RMSE for

endpoint of components training set the test set

LDH release (%) 3 0.822  1.371 0.916

Cell viability (%) 3 0.612 5.882 7.361

Oxidative stress 2 0.760  0.250 0.164
(fold change)

Apoptosis (fold 2 0.861  0.447 0.591
change)

performance can be improved when new rGO with different lateral sizes
are added into the training sets.
3.6. Mechanism analysis of 2DNMs-induced toxicities

Analysis of the developed ML models allowed for identification of
nanostructure features responsible for nanotoxicity, which can be used
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to illustrate potential mechanisms of 2DNMs-induced toxicity and guide
future 2DNMs design. The top ranked nanodescriptors were obtained
from accepted PLSR models (Fig. 6). The high coefficient value of a
descriptor indicates its critical contribution to the final models. The
ranking was calculated based on the descriptors’ contributions to the
models of 2DNMs. Descriptors with contributions greater than 4% of the
total descriptor contributions were shown in Fig. 6. In a resulted ML
model, the high frequency of a nanodescriptor utilization indicates its
critical contribution to the associated nanotoxicity [41,80].

To explore the mechanism of 2DNMs-induced toxicity, several de-
scriptors were found to be critical for various toxicities of 2DNMs.
Specifically, the descriptor CCCC was important for LDH release ob-
tained by low concentration 2DNMs (1 pg ml~1) (Fig. 6 A), which mainly
reflects the geometries of GRMs (Fig. S4 A). This result implies that
geometries influence GRMs’ toxicities, which had been reported in
previous studies [45,81,82]. Descriptors containing functional groups
were also found to be important for 2DNMs’ toxicity in developed
models (Fig. 6 A and G). For example, CCCO descriptor mainly reflects
the neighbor relationship between a carboxyl group and a hydroxyl
group (Fig. S4 B). This substructure can make GRMs interact with
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(G) apoptosis. The descriptors contribution for both 1 pg ml~! and 5 pg ml~! 2DNMs are shown from the model results. The percentage contributions of descriptors in

all four models are harmonized.

biomolecules by hydrogen bonding thus influencing GRMSs’ toxicity [83,
84]. 0000 descriptor represents four oxygen atoms from neighbor
hydroxyl groups (Fig. S4 C), which describes an oxidized region of
GRM:s. Intra- or intermolecular hydrogen bonds can be formed with this
substructure, which areimportant for GRMs’ bioactivity and toxicity
[85,86]. Descriptors, such as SSSS, SSSW, and WWWW, were found to be
important for WS,-mediated toxicity in developed models (Fig. 6 A, B, E,
F, and G). SSSS/WWWW descriptors capture structure features on sul-
fur/tungsten layers, and SSSW reflected the sublattice of WSy (Fig. S4
D-F). Although the toxicity of WS; is still under investigation, tungstate
ion has been identified as a potentially toxicant against guppies and
shows tumorigenicity and genotoxicity in vitro [87-89], which partially
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validate the importance of this descriptor. MoSs-related and h-BN-re-
lated descriptors, such as MoMoMoS, MoSSS, BBBN, and BNNN, showed
positive contribution in cell viability models, which may reflect the low
toxicity of MoSy and h-BN (Fig. 6 D). Surfactant descriptors (i.e. PF108,
Water and NaC) were also found to be important to nanotoxicity models,
which increased the 2DNMs’ dispersibility and stabilized their disper-
sion under different mechanisms [77,78].

3.7. Pitfalls and perspectives

In this study, nanodescriptors calculated from annotated 2DNMs
structures afford the predictive modeling of 2DNM toxicity. Some
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pitfalls still exist due to limited data. For example, G-PF108 is a struc-
tural outlier and more similar 2DNMs need to be tested to cover the
relevant structure diversity. Furthermore, besides lateral size and sur-
face chemistry, which are critical features influencing 2DNMSs’ toxicity,
thickness should also be considered as a potential feature in the
modeling process, as investigated in previous studies [90]. Although the
above issues exist, the current results showed the feasibility of using the
current nanostructure annotation and modeling strategy to predict
nanotoxicity in the future study.

4. Conclusions

In this study, novel structure annotation strategy and machine
learning approach were integrated for computational modeling of
nanotoxicities of 2DNMs with irregular shapes, which characterized the
complex nanostructure features and enable the toxicity prediction of
2DNMs. A new computational approach was designed to construct vir-
tual 2DNMs, which simulated 2DNMs’ irregular geometries and diverse
functional modifications. The annotated 2DNMs structures were saved
as PDB files and were further used for geometrical nanodescriptors
calculations. Additional surfactant descriptors were also added. To
prove the applicability of the nanostructure annotation and nano-
descriptors calculation, a dataset containing diverse 2DNMs with
different atom types, lateral sizes and surface chemistry was used to
develop various nanotoxicity models. Good predictivities were shown in
the resulted models for all available endpoints including LDH release,
cell viability, oxidative stress, and apoptosis. This novel structure
annotation strategy shows great potential to generate high-quality
nanodescriptors for ML modeling purposes. Integration of structure
annotation and machine learning approaches paves a road for the future
development of NMs with complex structures.
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