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A B S T R A C T   

Modern nanotechnology provides efficient and cost-effective nanomaterials (NMs). The increasing usage of NMs 
brings great concerns regarding nanotoxicity in humans. Traditional animal testing of nanotoxicity is expensive 
and time-consuming. Modeling studies using machine learning (ML) approaches are promising alternatives to 
direct evaluation of nanotoxicity based on nanostructure features. However, NMs, including two-dimensional 
nanomaterials (2DNMs) such as graphenes, have complex structures making them difficult to annotate and 
quantify the nanostructures for modeling purposes. To address this issue, we constructed a virtual graphenes 
library using nanostructure annotation techniques. The irregular graphene structures were generated by modi
fying virtual nanosheets. The nanostructures were digitalized from the annotated graphenes. Based on the an
notated nanostructures, geometrical nanodescriptors were computed using Delaunay tessellation and used for ML 
modeling. Partial least squares regression (PLSR) models for the graphenes were built and validated using a 
leave-one-out cross-validation (LOOCV) procedure. The resulted models showed good predictivity in four 
toxicity-related endpoints with the coefficient of determination (R2) ranging from 0.558 to 0.822. This study 
provides a novel nanostructure annotation strategy that can be applied to generate high-quality nanodescriptors 
for ML model developments, which can be widely applied to nanoinformatics studies of graphenes and other 
NMs.   

1. Introduction 

Modern nanotechnology is a critical technology for sustainable 
nanomaterial (NM) developments in both basic research and commer
cial applications [1–3]. The global nanotechnology market is expected 
to exceed $125 billion by 2024 [4]. Due to their diversity in structures, 
properties, and bioactivities, NMs have gained prominence in fields such 
as food security and safety processing [5–8], precision agriculture 
[9–11], clean energy [12], and clinical medicine [13,14]. However, the 
increasing use of NM is coupled with concerns for nanotoxicity [15–21]. 
There is an urgent need for comprehensive risk assessments of both 
emerging and existing NMs. Traditional experimental methods to 

evaluate NM toxicity, which often use large numbers of animals, are 
expensive and time-consuming. With the development of Machine 
Learning (ML) approaches, computational modeling is emerging as an 
alternative for predicting the behavior of NMs in biological environ
ments [22] and evaluating their nanotoxicity [23,24]. Quantitative 
Nanostructure Activity Relationship (QNAR) modeling using ML ap
proaches reveals the relationships between NMs’ structural features and 
biological activities such as toxicity in a quantitative manner [25]. In the 
Organization for Economic Co-operation and Development (OECD) 
2022 report on risk assessment for NMs, ML-based modeling study was 
highlighted as a promising strategy for rapid toxicity screening of NMs 
[26]. 
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ML has been successfully utilized in modeling studies of physico
chemical properties and bioactivity for small molecules [27–31]. How
ever, ML applications in computational nanotoxicology are limited 
because of lacking nanotoxicity data and the difficulties of nano
structure annotations [32]. Based on the EU-US Nanoinformatics 
Roadmap 2030 guidance for ML model development, the performance of 
predictive nanotoxicity models relies heavily on the well-defined de
scriptors that tie nanostructures and physicochemical properties to the 
bioactivities of NMs [33]. Nanodescriptors represent NMs’ chemical and 
physical identities, intrinsic properties and extrinsic properties, which 
can be classified as experimental, empirical, and geometrical [34]. 
Experimental results of NMs’ morphological properties and physico
chemical properties such as size [35], magnetic properties [36], and zeta 
potentials [37], can be used as descriptors for modeling purposes. 
However, these measured nanodescriptors vary significantly with 
different experimental conditions and may not be reliable without prior 
references. Empirical descriptors have been developed using molecular 
simulations and quantum chemistry [38–40], however, these de
scriptors need expertise for selecting appropriate force fields and 
calculation methods to generate descriptors. Geometrical descriptors 
provide more detailed information on nanostructures by annotating the 
important structural features such as molecular structures, mechanical 
properties, and electrical properties [23]. In our previous studies, novel 
geometrical nanodescriptors were developed by employing Delaunay 
tessellation and atomic properties. The nanodescriptors quantified 
nanostructures by simulating the surface chemistry and were used to 
develop ML models for NMs such as metallic nanoparticles [41,42]. 
However, for more complex NMs, such as two-dimensional nano
materials (2DNMs) like graphenes, nanostructure annotations and sim
ulations were not previously successful due to complex nanostructures. 

As 2DNMs, graphenes are carbon-based NMs consisting of single- or 
few-layer atoms arranged in a planar honeycomb structure and are being 
widely applied in biomedicines, biosensors, and solar cells [43,44]. 
Graphenes usually present planar structures with irregular edges, which 
is a key factor influencing their effects on cellular uptake and cytotox
icity [45–47]. Lateral size has long been shown to modulate the path
ogenicity of graphenes [48,49], but subtle surface modifications can also 
influence their bioactivity [46,47,50]. For example, primary endothelial 
cells develop more cytoplasmic protrusions and are more prone to losing 
their barrier function when exposed to increasingly oxidized graphene 
sheets [51]. The type of surfactant necessary to disperse the more hy
drophobic graphenes and its concentration may also affect their cyto
toxicity [52]. As graphene derivatives, graphene oxides have carbon 
frames oxidized with oxygen-containing functional groups on their 
edges and basal plane. The diverse graphene structures, especially the 
irregular edges, are difficult to annotate precisely through simulating 
experimental conditions, which prohibits the use of geometrical nano
descriptors in ML modeling. 

In this study, we developed a novel structure annotation strategy by 
(1) simulating the nanostructures of synthesized graphenes; (2) devel
oping geometrical nanodescriptors to characterize the structure features 
of graphenes; and (3) using the calculated nanodescriptors to develop 
ML models for various toxicity endpoints of graphenes. In a previous 
study, we synthesized and assessed the toxicities of graphenes and 
graphene-like inorganic 2DNMs [53], which generated a high-quality 
dataset for graphene toxicity modeling. The irregular structures of the 
graphenes and inorganic 2DNMs were constructed by modifying the 
number of vertices and edges on virtual nanosheets. For graphene ox
ides, functional groups including hydroxyl, epoxy, and carboxyl groups 
were added on the graphene surface to reach the carbon/oxygen (C:O) 
ratio experimentally measured. The annotated nanostructures were 
saved as Protein Data Bank (PDB) files. Novel geometrical nano
descriptors were computed from the annotated nanostructures using 
Pauling electronegativity and Delaunay tessellation. Partial least 
squares regression (PLSR) models were developed for various nano
toxicity endpoints including LDH release, cell viability, oxidative stress, 

and apoptosis. This structure annotation strategy shows great potential 
in developing ML models for nanotoxicity predictions of NMs with 
complex nanostructures. 

2. Material and methods 

2.1. 2DNMs dataset 

The 11 2DNMs used for ML modeling were synthesized and char
acterized in our previous study [53]. Graphene oxides were synthesized 
according to a modified Hummers’ method [54]. Reduced and partially 
reduced graphene oxides were synthesized by controlled reduction 
using L-ascorbic acid and size-sorted graphene oxide as the starting 
material. Graphene and inorganic 2DNMs were synthesized by 
liquid-phase exfoliation in the presence of sodium cholate hydrate (NaC) 
or Pluronic® F-108 (PF108). The toxicities of all the 2DNMs were 
investigated in a triculture model of small intestinal epithelium. LDH 
release, cell viability, and oxidative stress were tested after treating with 
1 μg ml−1 and 5 μg ml−1 2DNMs and apoptosis was tested after treating 
with 5 μg ml−1 2DNMs. LDH release (plasma membrane damage) was 
calculated as % of LDH in lysed control. Cell viability (mitochondrial 
enzymatic activity) was expressed as % of activity (fluorescence) 
measured in cells treated with control fasting food model (FFM) digesta. 
Caspase 3/7 activity (apoptosis) was expressed as fold changes relative 
to that in cells exposed to FFM digesta. Oxidative stress (ROS genera
tion) was expressed as fold changes relative to that in cells exposed to 
FFM digesta. The Pearson correlation analysis was implemented using 
the Python package SciPy 1.6.2 to test for results associations between 
two doses of 2DNMs in LDH release, cell viability, and oxidative stress. 

2.2. Virtual 2DNMs library construction 

The in-house Virtual Nanostructure Simulations (ViNAS) toolbox 
was developed to construct virtual nanostructures and their corre
sponding descriptors calculation. The construction of virtual 2DNMs 
(v2DNMs) was performed by the new graphenes generation module 
(coded in Python 3.8) of ViNAS, which took the target lateral size and C: 
O ratio as the input parameters. Briefly, a 2DNM sheet was first created 
with a lateral size larger than the target lateral size. Then, the irregular 
2DNM was generated by scaling down the initial lateral size to the target 
and modifying the number of vertices and edges on the sheet. For GOs, 
rGOs, and prGO, the functional groups such as hydroxyl, epoxy, and 
carboxyl groups were randomly placed on the irregular graphene frame 
until the C:O ratio reached the target value. The structure information of 
annotated 2DNMs was then saved as PDB files. To avoid potential 
inconsistency of calculated nanodescriptor results due to different 
irregular shapes and randomly distributed functional groups, total 30 
v2DNMs were generated for each 2DNMs in the dataset. 

2.3. Nanodescriptor generation 

Based on the generated v2DNMs, nanodescriptors were calculated 
using the new descriptor calculation module of ViNAS (coded in Java 
1.8.0_301). There are eight types of atoms in these v2DNMs: C (carbon), 
O (oxygen), H (hydrogen), N (nitrogen), S (sulfur), B (boron), Mo 
(molybdenum) and W (tungsten). Every four nearest atoms (e.g., CCCC, 
CCHO, etc.) that can form a trigonal planar, quadrangulation, or tetra
hedron were identified from the v2DNM structures using the Delaunay 
tessellation approach. In 3D space, atoms within a distance cutoff of 2.0 
Å and 2.5 Å played a key role in the physicochemical properties of GRMs 
and graphene-like inorganic 2DNMs, respectively [55–58]. Accordingly, 
the distance between any two atoms in a formed 3D tetrahedron frag
ment was set to within 2.0 Å in GRMs and within 2.5 Å in inorganic 
2DNMs. In 2D planar, atoms within a distance cutoff of 2.5 Å were 
important for the 2D features of 2DNMs, the distance between any two 
atoms in a formed 2D trigonal planar or quadrangulation fragment was 
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set to within 2.5 Å in all 2DNMs [59,60]. The geometrical nano
descriptors were calculated without considering the atom order within a 
quadrangulation or tetrahedron (e.g., CCCO was the same as COCC). As 
described in our previous study [41], the procedure of geometrical 
nanodescriptors calculation can be summarized as follows: (1) the value 
of each quadrangulation or tetrahedron was the sum of the electroneg
ativity of four atoms in this quadrangulation or tetrahedron. (2) The 
descriptor value in each v2DNM was computed as the value of the 
relevant quadrangulation or tetrahedron multiplied by its occurrences. 
(3) The final descriptor values of a 2DNM were averaged from results 
obtained from 30 v2DNMs. In this study, additional surfactant de
scriptors to describe the surfactants for experimental testing were also 
used. 

2.4. Machine learning modeling 

ML models were developed using the PLSR algorithm. PLSR is a 
method that combines principal component analysis and multiple 
regression [61]. PLSR performs a descriptor dimension reduction pro
cedure and constructs a set of components that accounts for as much as 
possible of the total descriptors variance in the dataset, which can avoid 
multicollinearity and model overfitting [62,63]. It is suitable for the 
modeling of small training sets using large sets of descriptors [64–66]. In 
this study, the generated geometrical nanodescriptors and surfactant 
descriptors were used to develop PLSR models for 2DNMs’ toxicities. 
The PLSR algorithm was implemented using scikit-learn 0.24.1 [67]. 
The original dataset was split into training and test sets with the ratio of 
9:2 for cell viability, LDH release, and oxidative stress and 8:1 for 
apoptosis. The training sets were used to build models and relevant test 
sets were used for the prediction purpose. The leave-one-out cross-
validation (LOOCV) procedure was performed to find the optimal 
number of components for modeling using the training set. Briefly, a 
single 2DNM was excluded from the training set and the remaining 
2DNMs were used for model development. Then the developed models 
were used to predict the excluded 2DNM. This procedure was repeated 
until every 2DNM in the training set was used for prediction purpose one 
time. In the LOOCV procedure, the root mean square error (RMSE) and 
coefficient of determination (R2) were used as the parameters to identify 
the optimal number of components and the best PLSR model for each 
toxicity endpoint as follows: 

R2 = 1 −

∑

Y
(YPRED − YEXP)

2

∑

Y
(YEXP − YMEAN)

2 (1)  
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̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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n

∑

Y
(YPRED − YEXP)

2

√

(2)  

where YEXP was the experimental results, YPRED was the predicted re
sults, YMEAN was the mean value of the experimental results, n was the 
number of samples. Then, the external test set was used to evaluate the 
performance of selected PLSR models. 

3. Results and discussion 

3.1. 2DNMs dataset overview 

The information of the original 2DNMs dataset is summarized in 
Table 1. The dataset consisted of two types of 2DNMs: (1) eight 
graphene-related materials (GRMs) including two graphenes, three 
graphene oxides (GO), two reduced graphene oxides (rGO), and one 
partially reduced graphene oxide (prGO); (2) three graphene-like inor
ganic 2DNMs including one hexagonal boron nitride (h-BN), one mo
lybdenum disulfide (MoS2), and one tungsten disulfide (WS2). 
Amphiphilic GOs were dispersed in water and the remaining 2DNMs, 

which are hydrophobic NMs, were dispersed in NaC or PF108 solutions 
for experimental testing. The toxicity data of the 2DNMs were summa
rized in Table S1. After treatment with 1 μg ml−1 2DNMs, the values for 
LDH release, cell viability, and oxidative stress range from 1.61% to 
6.63%, 95.95%–113.88%, and 0.81 to 2.23 (fold change) respectively. 
After treatment with 5 μg ml−1 2DNMs, the toxicity results of LDH 
release, cell viability, oxidative stress, and apoptosis range from −1.08% 
to 16.40%, 76.03%–119.96%, 0.80 to 2.15 (fold change), and −2.50 to 
0.55 (fold change) respectively. Pearson correlation analysis between 
the experimental results of 1 μg ml−1 and 5 μg ml−1 2DNMs were shown 
in Fig. S1. The resulted Pearson correlation coefficient r and two-tailed 
p-value showed that two doses 2DNMs have good correlation in oxida
tive results while they were not correlated in LDH release and cell 
viability results. 

3.2. Annotating 2DNMs by constructing virtual 2DNMs 

The new graphenes generation module of ViNAS was used to 
construct all v2DNMs in this study with specified lateral size and C:O 
ratio as the input parameters. The key structure features of GRMs were 
shown in Fig. 1A–D. Pristine graphene represented a carbon frame ar
ranged in a hexagonal lattice (Fig. 1A). Based on the Lerf-Klinowski-type 
structural models [68], hydroxyl groups were added randomly on the 
carbon frame (Fig. 1B); epoxy groups were placed on two adjacent 
connected carbon atoms (Fig. 1C); and carboxyl groups were placed on 
the carbons at the frame edges (Fig. 1D) to form GO, rGO and prGO 
respectively. Each carbon atom on the graphene frame can be modified 
by adding one functional group and the functional groups can be added 
either above or below the carbon frame layer. The vGRMs generation 
procedure has three steps. First, a graphene sheet was created. The 
actual sheet’s lateral size, which was based on the experimental results, 
was marked as p3p4 on the diagonal line p1p2 (Fig. 1E). The virtual 
graphene sheet was generated by randomly forming other vertices with 
their distances to the sheet center o no larger than half of the target 
lateral size. Then these vertices were connected to form a polygon with 
an irregular shape, and the remaining sheet outside the polygon was 
deleted (Fig. 1F). To generate GO, rGO, and prGO, the functional groups 
were randomly added on the surface of the graphene to reach the target 
C:O ratio. For three inorganic 2DNMs in the dataset, the constructions of 
corresponding v2DNMs followed the same procedure except using 
different atoms and associated residues to generate the initial sheet. For 
example, h-BN had a lattice with B and N atoms in a hexagonal 

Table 1 
Key physicochemical properties of the 2DNMs used in this study.   

2DNM Lateral size 
(nm ± SD) 

C:O 
ratio 

Surfactant 

Graphene- 
related 

Small-sized graphene in 
NaC (G-NaC) 

184 ± 23 N/A Na- 
Cholate 

Small-sized graphene in 
PF108 (G-PF108) 

206 ± 51 N/A PF108 

Small-sized graphene 
oxide (GO-S) 

271 ± 34 64:35 Water 

Medium-sized graphene 
oxide (GO-M) 

462 ± 114 61:39 Water 

Large-sized graphene 
oxide (GO-L) 

1560 ± 750 61:38 Water 

Small-sized reduced 
graphene oxide (rGO-S) 

411 ± 79 78:22 Na- 
Cholate 

Large-sized reduced 
graphene oxide (rGO-L) 

2015 ± 674 78:22 Na- 
Cholate 

Partially reduced 
graphene oxide (prGO) 

357 ± 42 72:28 Na- 
Cholate 

Inorganic Hexagonal boron nitride 
(h-BN) 

149 ± 12 N/A Na- 
Cholate 

Molybdenum disulphide 
(MoS2) 

428 ± 103 N/A Na- 
Cholate 

Tungsten disulphide 
(WS2) 

323 ± 28 N/A PF108  
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Fig. 1. Schematic workflow of v2DNMs development. The three-dimensional (3D) structures of graphene hexagonal lattice (A), hydroxyl group (B), epoxy group (C), 
and carboxyl group (D) are visualized by CPK drawing method in VMD. The v2DNMs generated in the workflow (E–G) are also shown by CPK drawing method in 
VMD. The construction of irregular graphene with 10 nm lateral size and five edges (F) is based on a 12 × 12 nm2 graphene sheet (E). Then, a graphene oxide with C: 
O ratio of 64:35 (G) is constructed based on the generated irregular graphene. The C, O, and H atoms are represented in black, red, and blue. (A colour version of this 
figure can be viewed online.) 

Fig. 2. Visualization of the v2DNMs library. The 2DNMs of the dataset vary in shapes, lateral sizes, atom types, and surface groups. The 3D structures of the v2DNMs 
are rendered by VDW drawing method in VMD. The C, O, H, N, B, S, Mo, and W atoms are represented in black, red, blue, green, pink, yellow, cyan, and purple. (A 
colour version of this figure can be viewed online.) 
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formation (Fig. 2). MoS2 and WS2 showed similar atom arrangements in 
which S and Mo or W atoms were connected by covalent bonds as 
S–Mo–S and S–W–S respectively (Fig. 2). In the end, the constructed 
v2DNMs were saved as individual PDB files. All 11 2DNMs’ PDB files 
and bioactivity data are downloadable from in-house nanoinformatics 
portal (http://vinas-toolbox.com/explore_group/2DNMs). 

3.3. Nanostructure visualizations 

Using the PDB files consisting of annotated 2DNMs, the nano
structures in the dataset can be rendered by visual molecular dynamics 
(VMD) [69] using van der Waals (VDW) method. All the GRMs and 
inorganic 2DNMs have irregular polygon structures that varied in sizes, 
edge numbers, atom types, and surface groups (Fig. 2). Specifically, 
G-NaC and G-PF108 are graphenes with different lateral sizes, which 
were constructed only with carbon atoms. GOs, rGOs, and prGO are 
GRMs oxidized with hydroxyl, epoxy, and carboxyl groups with C:O 
ratios ranging from 61:39 to 78:22. h-BN has a structure similar to 
graphene, where B and N atoms alternately constructed hexagonal lat
tices instead of carbons. MoS2 and WS2 showed a sandwich-like struc
ture with two hexagonal planes of S atoms and a hexagonal plane of Mo 
or W atoms in the middle. All the annotated 2DNM structures were used 
to calculate nanodescriptors for modeling purposes. 

3.4. Nanodescriptors generations 

To account for the uncertainty of experimental synthesis of 2DNMs, 
30 v2DNMs were constructed for every 2DNM to mimic the diverse 
irregular structures of corresponding 2DNM [53]. The average lateral 
sizes of generated v2DNMs for each 2DNM are consistent to experi
mental conditions and were shown in Table 1. The designed nano
descriptors should be able to describe the diverse 2DNM and but not be 
sensitive to changes of irregular shapes of 2DNM due to the synthesis 
uncertainty. Based on the Delaunay tessellation approach, quad
rangulations or tetrahedrons were generated for each four nearest 
neighboring atoms on v2DNM structure as nanodescriptors. The iden
tified quadrangulations or tetrahedrons can describe v2DNM structure 
features on the surface, which account for their properties, activities and 
toxicities. The value for each identified quadrangulation or tetrahedron 
was the sum of electronegativity values of the four atoms within this 
trigonal planar, quadrangulation or tetrahedron. For example, the value 
of CCCC was 10, obtained from the sum of four carbon electronegativity 
values (2.5 × 4). The atomic electronegativity values of all atoms were 
summarized in Table 2. Furthermore, a nanodescriptor value for a 
v2DNM was calculated as the value of each trigonal planar, quad
rangulation, or tetrahedron electronegativity multiplied by its occur
rences in this v2DNM. As mentioned above, 30 v2DNMs were 
constructed for every 2DNM. Thus, the nanodescriptors for a 2DNM 
were calculated by averaging descriptor values of 30 v2DNMs. Since 
surfactants can influence 2DNMs’ stability and surface chemistry 
[70–72], additional categorical descriptors were introduced to account 
for the effects of different surfactants on 2DNMs’ properties. Based on 
the surfactants used in the experimental testing (Table 1), the surfactant 
descriptors of the corresponding 2DNM were binary descriptors with “0” 
representing the absence and “1” representing the presence of the 
associated surfactant. Binary descriptor is widely used in ML modeling 
for drug discovery, such as MACCS keys fingerprints and PubChem 
fingerprints [73–76]. The results of calculated nanodescriptors for all 
2DNMs were provided in Supporting Information Excel file E1. The 
standardized nanodescriptor values in each 2DNM were shown in Fig. 3. 

Some geometrical nanodescriptors have relatively high values for spe
cific 2DNMs. Since the structures of G-NaC and G-PF108 were con
structed with carbon atoms, the values of CCCC descriptor were higher 
than the other 2DNMs. In graphene lattice, six carbons located at the 
hexagon apexes with two sublattices, A and B. The carbon atom of one 
sublattice forms trigonal planar with three nearest neighbors of the 
other sublattice, which is one of the important features influencing 
graphene’s activity [59,60]. As shown in Fig. S2, CCCC descriptors in 
graphene were developed using the trigonal planar geometry based on 
the relationship of sublattice A and B, which can reflect the structure 
feature of armchair edges (a and b)/zigzag (c), dangling atoms (d and 
e), and general atoms (f and g) in the plane. It can also extract the 
features of convex corner. For future explorations, descriptors reflecting 
2DNMs’ frame structures can be divided into different subtypes. For 
example, CCCC descriptors reflecting the edge effect features can be 
separated from the general CCCC, and different weights can be given to 
these subtype descriptors for modeling purposes. Besides the CCCC 
descriptor, surfactant descriptors NaC and PF108 showed high values in 
G-NaC and G-PF108, respectively (Fig. 3). These two surfactant de
scriptors were also used to further differentiate G-NaC and G-PF108. For 
GOs, rGOs and prGO, hydroxyl, epoxy and carboxyl groups were added 
on the graphene frame, so the values of nanodescriptors consisting of C, 
H, and O atoms were larger than the other nanodescriptors. h-BN, MoS2, 
and WS2 structures were constructed with inorganic atoms, so the 
nanodescriptors containing B, N, Mo, W, and S atoms showed higher 
values than others. 

The calculated nanodescriptors can be used to show the chemical 
space of 2DNMs through principal component analysis (PCA). Both the 
top two and top three principal components were used to represent the 
distribution of all 2DNMs, which accounted for 73% and 81% of the total 
descriptor variance, respectively. As shown in Fig. 4 and Fig. S3, the 
2DNMs in the dataset were structurally diverse due to various shapes, 
lateral sizes, atom types, surface chemistry, and surfactant types. The 
three GRMs, prGO, rGO-S, and G-NaC, are close to each other in both 2D 
and 3D chemical space, which was mainly due to their similar lateral 
size and same surfactant. Although h-BN and MoS2 share similar 2D 
chemical space, they locate differently in 3D chemical space. 3D 
chemical space retains more information of the original chemical space, 
which can better differentiate h-BN and MoS2. Compared to other GRMs, 
GO-L is a structure outlier mainly due to the large number of hydroxyl 
groups on its surface, which significantly increases the value of 
descriptor HHHH. To better analyze this type of GRMs, more graphene 
oxides with different sizes should be included in future studies. 

3.5. Computational modeling 

Four nanotoxicity models were developed using the calculated 
nanodescriptors and PLSR approach for the 2DNMs in the dataset. When 
data in two doses (1 μg ml−1 and 5 μg ml−1) were available for LDH 
release and cell viability, both dose results were used in the model 
development (Table S1), so this effort resulted in models for low/high 
doses of these toxicity endpoints. Two medium-sized graphenes in the 
dataset, prGO and GO-M, were selected as a test set, and the remaining 
nine 2DNMs were used as the training set for model development. For 
the apoptosis dataset, which consists of nine 2DNMs total (Table S1), 
one medium-sized graphene (prGO) was selected for test purposes, and 
the remaining eight 2DNMs were used as training set for model devel
opment. The LOOCV procedure was used to evaluate the performance of 
developed nanotoxicity models within training sets. 

The correlations between experimental values and predicted values 
of the resulted four nanotoxicity models were shown in Fig. 5. The 
optimal number of components for developing the best PLSR model in 
the training set was obtained from the LOOCV procedure. The training 
set R2 values using the obtained optimal number of components ranged 
from 0.558 to 0.822 in corresponding PLSR models (Table 3). The RMSE 
values of training (test) set were 1.371 (0.916), 5.882 (7.361), 0.250 

Table 2 
Atomic electronegativity values used in the calculation of nanodescriptors.  

Atoms C O H N S B Mo W 

Electronegativity value 2.5 3.5 2.2 3.1 2.4 2.0 2.2 2.4  
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(0.164), and 0.447 (0.591) for the models of LDH release (%), cell 
viability (%), oxidative stress (fold change), and apoptosis respectively 
(fold change) (Table 3). The RMSE values between the training and test 
set of all four models are similar, indicating that the resulted nano
toxicity models are reliable for prediction purposes. Although most 
2DNMs were correctly predicted, prediction errors still exist. For 
example, G-PF108 has relatively large prediction errors in the models of 
LDH release, oxidative stress, and apoptosis (Fig. 5 A, C and D). This 
issue was mainly due to the lack of other GRMs tested by using PF108 as 
the surfactant in the dataset. Compared to the other GRMs dispersed in 
NaC, G-PF108 was the only GRM dispersed in PF108. PF108 is a non- 
ionic surfactant while NaC is an ionic surfactant, which can influence 
the toxicity of 2DNMs [77,78]. For the model of cell viability, 5 μg ml−1 

rGO-S has a larger prediction error than others (Fig. 5 B and D). For the 
model of cell viability and apoptosis, 5 μg ml−1 rGO-S has a larger 
prediction error than others (Fig. 5 B and 5D). The reason for prediction 
errors of rGO-S was similar to G-PF108. rGO-S has its structural nearest 
neighbor as prGO. However, 5 μg ml−1 rGO-S and prGO have cell 
viability testing results as 76.03% and 87.88% respectively, and 
apoptosis testing results as −2.22 and −2.26 respectively. The issues are 
similar to the “activity cliff” of QSAR modeling studies [79]. There are 
only two types of rGO in the dataset, and the lateral size of rGO-L is at 
least 5 times larger than rGO-S. The training data used in this study are 
not sufficient to cover the structure diversity of rGO, so the model 

Fig. 3. Standardized nanodescriptors for 11 in-house 2DNMs in the dataset. (A colour version of this figure can be viewed online.)  

Fig. 4. Principal component analysis (PCA) of v2DNMs based on the nano
descriptors. Every 2DNMs is visualized in 3D chemical space. The projections of 
all 2DNMs on three planes (cyan, green, and pink) are also shown. (A colour 
version of this figure can be viewed online.) 
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performance can be improved when new rGO with different lateral sizes 
are added into the training sets. 

3.6. Mechanism analysis of 2DNMs-induced toxicities 

Analysis of the developed ML models allowed for identification of 
nanostructure features responsible for nanotoxicity, which can be used 

to illustrate potential mechanisms of 2DNMs-induced toxicity and guide 
future 2DNMs design. The top ranked nanodescriptors were obtained 
from accepted PLSR models (Fig. 6). The high coefficient value of a 
descriptor indicates its critical contribution to the final models. The 
ranking was calculated based on the descriptors’ contributions to the 
models of 2DNMs. Descriptors with contributions greater than 4% of the 
total descriptor contributions were shown in Fig. 6. In a resulted ML 
model, the high frequency of a nanodescriptor utilization indicates its 
critical contribution to the associated nanotoxicity [41,80]. 

To explore the mechanism of 2DNMs-induced toxicity, several de
scriptors were found to be critical for various toxicities of 2DNMs. 
Specifically, the descriptor CCCC was important for LDH release ob
tained by low concentration 2DNMs (1 μg ml−1) (Fig. 6 A), which mainly 
reflects the geometries of GRMs (Fig. S4 A). This result implies that 
geometries influence GRMs’ toxicities, which had been reported in 
previous studies [45,81,82]. Descriptors containing functional groups 
were also found to be important for 2DNMs’ toxicity in developed 
models (Fig. 6 A and G). For example, CCCO descriptor mainly reflects 
the neighbor relationship between a carboxyl group and a hydroxyl 
group (Fig. S4 B). This substructure can make GRMs interact with 

Fig. 5. Correlations between experimental (Exp.) and predicted (Pred.) values for developed PLSR models in (A) LDH release, (B) cell viability, (C) oxidative stress, 
and (D) apoptosis. Red, blue, green, and purple dots are 1 μg ml−1 2DNMs in the training set, 5 μg ml−1 2DNMs in the training set, 1 μg ml−1 2DNMs in the test set and 
5 μg ml−1 2DNMs in the test set, respectively. The coefficient of determination (R2) from the modeling results is also shown. (A colour version of this figure can be 
viewed online.) 

Table 3 
The optimal number of components, the coefficient of determination (R2) and 
root mean square error (RMSE) of PLSR models for four toxicity endpoints.  

Toxicity 
endpoint 

The optimal number 
of components 

R2 RMSE for the 
training set 

RMSE for 
the test set 

LDH release (%) 3 0.822 1.371 0.916 
Cell viability (%) 3 0.612 5.882 7.361 
Oxidative stress 

(fold change) 
2 0.760 0.250 0.164 

Apoptosis (fold 
change) 

2 0.861 0.447 0.591  
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biomolecules by hydrogen bonding thus influencing GRMs’ toxicity [83, 
84]. OOOO descriptor represents four oxygen atoms from neighbor 
hydroxyl groups (Fig. S4 C), which describes an oxidized region of 
GRMs. Intra- or intermolecular hydrogen bonds can be formed with this 
substructure, which areimportant for GRMs’ bioactivity and toxicity 
[85,86]. Descriptors, such as SSSS, SSSW, and WWWW, were found to be 
important for WS2-mediated toxicity in developed models (Fig. 6 A, B, E, 
F, and G). SSSS/WWWW descriptors capture structure features on sul
fur/tungsten layers, and SSSW reflected the sublattice of WS2 (Fig. S4 
D-F). Although the toxicity of WS2 is still under investigation, tungstate 
ion has been identified as a potentially toxicant against guppies and 
shows tumorigenicity and genotoxicity in vitro [87–89], which partially 

validate the importance of this descriptor. MoS2-related and h-BN-re
lated descriptors, such as MoMoMoS, MoSSS, BBBN, and BNNN, showed 
positive contribution in cell viability models, which may reflect the low 
toxicity of MoS2 and h-BN (Fig. 6 D). Surfactant descriptors (i.e. PF108, 
Water and NaC) were also found to be important to nanotoxicity models, 
which increased the 2DNMs’ dispersibility and stabilized their disper
sion under different mechanisms [77,78]. 

3.7. Pitfalls and perspectives 

In this study, nanodescriptors calculated from annotated 2DNMs 
structures afford the predictive modeling of 2DNM toxicity. Some 

Fig. 6. Contributions of the top-k nanodescriptors from the PLSR modeling results in (A and B) LDH release, (C and D) cell viability, (E and F) oxidative stress, and 
(G) apoptosis. The descriptors contribution for both 1 μg ml−1 and 5 μg ml−1 2DNMs are shown from the model results. The percentage contributions of descriptors in 
all four models are harmonized. 
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pitfalls still exist due to limited data. For example, G-PF108 is a struc
tural outlier and more similar 2DNMs need to be tested to cover the 
relevant structure diversity. Furthermore, besides lateral size and sur
face chemistry, which are critical features influencing 2DNMs’ toxicity, 
thickness should also be considered as a potential feature in the 
modeling process, as investigated in previous studies [90]. Although the 
above issues exist, the current results showed the feasibility of using the 
current nanostructure annotation and modeling strategy to predict 
nanotoxicity in the future study. 

4. Conclusions 

In this study, novel structure annotation strategy and machine 
learning approach were integrated for computational modeling of 
nanotoxicities of 2DNMs with irregular shapes, which characterized the 
complex nanostructure features and enable the toxicity prediction of 
2DNMs. A new computational approach was designed to construct vir
tual 2DNMs, which simulated 2DNMs’ irregular geometries and diverse 
functional modifications. The annotated 2DNMs structures were saved 
as PDB files and were further used for geometrical nanodescriptors 
calculations. Additional surfactant descriptors were also added. To 
prove the applicability of the nanostructure annotation and nano
descriptors calculation, a dataset containing diverse 2DNMs with 
different atom types, lateral sizes and surface chemistry was used to 
develop various nanotoxicity models. Good predictivities were shown in 
the resulted models for all available endpoints including LDH release, 
cell viability, oxidative stress, and apoptosis. This novel structure 
annotation strategy shows great potential to generate high-quality 
nanodescriptors for ML modeling purposes. Integration of structure 
annotation and machine learning approaches paves a road for the future 
development of NMs with complex structures. 
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