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Abstract—The bag gain relates to a gain in security due to
spreading payload among multiple covers when the steganog-
rapher maintains a positive communication rate. This gain is
maximal for a certain optimal bag size, which depends on the
embedding method, payload spreading strategy, communication
rate, and the cover source. Originally discovered and analyzed
in the spatial domain, in this paper we study this phenomenon
for JPEG images across quality factors. Our experiments and
theoretical analysis indicate that the bag gain is more pronounced
for higher JPEG qualities, more aggressive batch senders, and
for senders maintaining a fixed payload per bag in terms of bits
per DCT rather than per non-zero AC DCT.

Index Terms—Batch steganography, pooled steganalysis,
JPEG, bag gain

I. INTRODUCTION

In batch steganography, the sender spreads the secret pay-

load among multiple cover images (a bag) to decrease the

chances of being detected by the Warden. The Warden pools

evidence from the same bag of images to detect the use

of steganography, a process known as pooled steganalysis.

This is achieved by fusing soft outputs of Warden’s Single-

Image Detector (SID) applied to each image in the bag. Batch

steganography and pooled steganalysis has been introduced

by Ker in 2006 [1] and has since been a subject of intense

research [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],

[13], [14].

With the introduction of content-adaptive steganography

researchers began studying payload spreading strategies that

allocate chunks of the secret payload based on how detectable

the embedding is in each image. The authors of [7] considered

an omniscient Warden pooling optimally using the likelihood

ratio test derived from a Gaussian model of Warden’s detector

output and three heuristic batch senders: the Image Merg-

ing Sender (IMS) and the Distortion / Detectability Limited

Senders (DiLS / DeLS). The paradigm of Gaussian embedding

with Gaussian pixel model has been extended to the IMS

and its improved version called Adaptive Batch size Image

Merging sender (AdaBIM) in [8], [13]. Detector-informed

spreading strategies called Minimum Deflection Sender (MDS)

and Shift Limited Sender (SLS) with an omniscient Warden

were studied in the spatial domain in [12]. The authors also

reported on a new phenomenon called the bag gain. Batch
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steganography in the JPEG domain for a Warden unaware of

the spreading strategy was studied in [11].

Figure 1 is an illustrative example of the bag gain showing

the accuracy of Warden’s pooled detector as a function of

number of images sent (the bag size B). The pooled detector’s

accuracy initially decreases with increasing B, then levels off,

and eventually increases as the square-root law [15] inevitably

engages since the sender maintains a positive communication

rate. The bag gain is the maximal drop in detectability. It

has been observed in the spatial domain for all batch senders

studied in [12], for many types of SIDs and pooled detectors,

and for differently informed Wardens. The bag gain was

analyzed and explained in [16] with a simple source model. In

particular, it was shown to robustly manifest for batch senders

that, loosely speaking, embed larger payloads in hard-to-

steganalyze images and small payloads in easy-to-steganalyze

images. Since the bag gain occurs for bag sizes that can be

used in practice, the steganographer can decrease the chances

of being caught simply by selecting a bag size that is neither

too big nor too small.

In general, the manifestation of the bag gain depends on

many factors, including the average communication rate, the

response of the SID used for pooling, the aggressiveness of

the batch sender to assign payloads, and the cover source. The

work of Zakaria et al. [11], for example, does not show the

bag gain because the results are reported over multiple batch

senders and rates that were too large. To the best of knowledge

of the authors, the bag gain has not been studied in the JPEG

domain, which is the main focus of this paper.

In the next section, we describe batch steganography and

pooled steganalysis in a more formal manner and introduce

all necessary concepts and terminology. Section III describes

the batch senders and Warden’s poolers studied in this paper.

The setup of our experiments and implementation details

appear in Section IV with the results of all experiments, their

interpretation, discussion, and analysis laid out in Section V.

The paper is concluded in Section VI.

II. BATCH STEGANOGRAPHY AND POOLED STEGANALYSIS

A cover bag of size B, X = (X
(1)
0 , . . . , X

(B)
0 ), is formed

by independently selecting B cover images X
(1)
0 , . . . , X

(B)
0

from a cover source of equally sized JPEG images, each

with a total of N DCT coefficients. We assume that the

steganographer maintains a fixed communication rate r in

terms of either bits per DCT coefficient (bpc) or bits per
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Figure 1. An illustrative example of the bag gain. Pooled detector’s accuracy
is shown as a function of bag size B. The steganographer can gain security
by spreading payload among BGain cover images.

non-zero AC DCT coefficient (bpnzac). This assumption is

reasonable as a steganographic channel is likely to be used

repetitively in practice. For a fixed positive rate r, the sender

will eventually be caught due to the square root law.

In this paper, the relative payload αi to be embedded in X
(i)
0

will always be measured in terms of bpc. A batch spreading

strategy is a mapping that assigns payload chunks αi bpc to

all images in X so that the payload constraint is satisfied.

Denoting the number of non-zero AC DCTs in X
(i)
0 as Ni ≤

N , the payload constraint is

B
∑

i=1

αi = r × c(X), (1)

where c(X) = B for rate r in bpc and c(X) =
∑B

i=1 Ni/N
for r in bpnzac. The steganographer produces the ith stego

image X
(i)
αi

by embedding X
(i)
0 with payload of length αi.

Given an intercepted bag of B images Y =
(Y (1), . . . , Y (B)), the Warden infers whether steganography is

being used by performing the following composite hypothesis

test:
H0 : r = 0

H1 : r > 0.
(2)

The Warden “pools” the evidence Y together by using a

pooled detector (or “pooler”). We assume the Warden’s de-

cision is solely informed by the collection of outputs of a

SID, which is a mapping d that assigns to each image a scalar

referred to as the soft output (or response) of the detector.

Formally, the Warden’s pooler is of the form π : RB → R,

and she infers whether the sender uses steganography by

computing d(Y (i)) for all i = 1, . . . , B and comparing

π(d(Y (1)), . . . , d(Y (B))) against a threshold determined by

some application-dependent requirements.

III. BATCH SENDERS AND POOLERS

We restrict our study to the IMS [7] and the MDS [12], [16].

The IMS is a well studied sender, which is a natural extension

of steganography from a single image to a bag. It considers the

entire bag as one large image and lets the embedding algorithm

allocate the payload. The MDS was included because it is the

most amenable to analysis within the context of a statistical

model of the SID [16] and also the appendix. The model will

help us understand, explain, and analyze trends observed in

experiments in Section V.

A. MDS

The MDS assumes the Warden’s hypothesis test has the

following form (2):

H0 : d(Y (i)) ∼ N (µi, σ
2) for all i

H1 : d(Y (i)) ∼ N (µi + si(αi), σ
2) for all i,

(3)

where Y (i) are the images from a bag under inspection by

the Warden and αi is the payload possibly residing in the

ith image. The distribution of Warden’s detector under H0

is over acquisitions of the same scene with the same camera

and settings. The Gaussianity is heuristically justified by the

independent heteroscedastic acquisition noise model [17] and

the fact that d can be linearized on a small neighborhood

of the noise-free scene. Furthermore, notice the additional

simplifying assumption in (3) that the variance does not

depend on i or αi.

Assuming the parameters of the distributions in this hy-

pothesis test are known to the Warden, the most powerful

pooled detector is the likelihood ratio test. The detectability of

steganography in a single bag is determined by the deflection

coefficient

∆2(X) =
B
∑

i=1

s2i (αi)

σ2
=

B
∑

i=1

(̺i(αi)− ̺i(0))
2

σ2
, (4)

where

̺i(α) = E[d(X(i)
α )|X

(i)
0 ] (5)

is the so-called response curve of ith cover image for detector

d, with the expectation taken over embedding X
(i)
0 with

random messages of length α and stego keys. Note that ̺i(α)
is assumed to be independent of the specific cover acquisition

X
(i)
0 .

Assuming that the sender uses the same SID d as the

Warden,1 the MDS minimizes the power of Warden’s most

powerful detector by selecting αi that minimize ∆2(X) sub-

ject to the payload constraint (1).

B. Poolers

In this paper, we use two types of SIDs: a binary classifier

trained on a random uniform mixture of payloads (in terms of

bpnzac) and a quantitative detector that returns an estimate of

the length of the hidden payload.

We have investigated many different types of poolers but

report only on their subset that performed the best. As the

1In reality and also in this paper, the detector used by the sender and the
Warden do not match, hence the MDS will not be guaranteed to be optimal
w.r.t. Warden’s detector.



simplest uninformed pooler, we consider the average of soft

SID outputs on analyzed images Y (i):

πAVG(Y) =
1

B

B
∑

i=1

d(Y (i)). (6)

For a Warden aware of the spreading strategy and rate r,

we also use the correlator

πCOR(Y) =

B
∑

i=1

d(Y (i))α̂i, (7)

where α̂i is the payload that might reside in ith image

estimated by the Warden from the images at hand. For the

IMS with J-UNIWARD [18], the payloads estimated from the

stego images are nearly identical to the payloads computed

from covers. This small estimation error has basically no effect

on the detection accuracy. For the detector-aware MDS, the

payloads need to be estimated from the response curves of

the sender’s detector. Since the Warden will generally not have

access to this detector, there will always be an estimation error.

Per our experiments, and in line with the findings reported

in [12], this estimation error has a negligible effect on the

detection accuracy. Hence, in all our experiments, we assume

the worst case scenario for the sender and set α̂i = αi.

We have also experimented with the max pooling strategy

πMAX(Y) = maxi d(Y
(i)) as well as machine learning

poolers trained as Gaussian support vector machines for each

bag size separately but do not report on them because the

max pooler performed very poorly, while the learned poolers

performed essentially the same as the average and the corre-

lator when adding the payloads to the feature vector formed

by outputs of the SID.

The implementation details of the MDS and both SIDs

appear in Section IV-A.

IV. EXPERIMENTAL SETUP

For compatibility with our previous work [12], all exper-

iments were executed on ALASKA II dataset with 75,000

images split into three parts (Split 1, 2, and 3), each containing

25,000 images further divided into 22k, 1k, and 2k images for

training, validation, and testing. The images were developed as

in [19] and then compressed with scipy.dct with a range

of quality factors. The splits are used to study the impact of

a mismatched training set for training Warden’s detector and

for training poolers. Alice uses the test set of Split 1 to send

her secret messages in bags of size B by sampling B images

without replacement. To conduct the evaluation, we utilize a

specific number of test bags for each bag size. We use 2000
test bags for bag sizes 1 to 10, 1000 test bags for bag sizes

15, 20, 30, and 250 test bags for bag sizes 60 and 120.

Our study includes JPEG qualities 98, 95, 90, 85, and

75 and two payload constraints to show how the bag gain

depends on the quality factor and the way an average payload

is maintained over time. Because of the sheer amount of

possible combinations of the steganographer’s detector, the

Warden’s detector, stego schemes, communication rates r,

bag sizes, and spreading / pooling strategies, we limit our

exposition to one content-adaptive steganographic scheme, the

J-UNIWARD [18]. The average communication rate r was

selected to best demonstrate the bag gain phenomenon and

avoid degenerate cases when the detection is too close to

random guessing or almost perfect.

A. Implementation details

For spreading, the MDS uses a single-image detector (SR-

Net1) trained on Split 1. Splits 2 and 3 are used by the

Warden who trains her SID as another instance of SRNet

(SRNet2) on Split 2. Both network detectors were pre-trained

on a binary task of steganalyzing J-UNIWARD [18] (JIN

pre-training [20]). The binary classifier SID was trained by

drawing stego images embedded with relative payloads in

terms of bpnzac selected uniformly at random from the set

P = 0.05, 0.1, 0.2, . . . , 0.9, 1. (8)

The quantitative detector, which we abbreviate qSID, is also

another instance of SRNet (SRNet2) pre-trained on a binary

task of steganalyzing J-UNIWARD [18]. However, the qSID

was trained using an L2 loss by generating stego images in a

similar manner to SID on a refined payload grid (minibatches

were formed by uniformly randomly sampling images with

payloads from Pfine ∪ {0})

Pfine = 0.01, 0.02, ..., 0.09, 0.1, 0.2, . . . , 0.9, 1. (9)

We use this form of the qSID rather than the previous state

of the art [21] since the end-to-end training and architecture

simplifies the computational cost of experiments. Since the

design of quantitative detectors is not the subject of our current

work, we refrain from including a more extensive comparison

between these two quantitative detectors. We do note that when

compared with the bucket estimator from [21] in the spatial

domain using the same settings as described in [21], our end-

to-end trained estimator achieved 10% better performance in

terms of MSE and MAE (mean absolute error) scores.

The IMS was implemented by considering a given bag of

B images each with N DCTs as a single large image into

which the total payload was embedded using an embedding

simulator. The costs were pre-computed from single images.

For MDS implementation, we employ a logistic model of

response curves exactly as described in the original publica-

tion [12]. Response curves were estimated from a fine fixed

grid of payloads in terms of bpnzac (9) (and thus variable

from image to image in terms of bpc). We also capped the

capacity of all images at 1 bpnzac because this payload is

very detectable in our cover source.

Since the maximal capacity of each image is 1 bpnzac, to

avoid problems with satisfying the payload constraint in bpc

for small bag sizes, we ensure all images in the bag have

a sufficient number of non-zero AC coefficients to meet the

desired rate. Images with not enough non-zero AC coefficients

are excluded from the bag formation process. Typically, this

eliminates less than 1% of images from the test set of Split 1.



V. RESULTS

In Figure 2, we show the pooler’s weighted Area Under

the Curve (wAUC) [19] on the test set as a function of the

bag size B for two quality factors, two senders, two payload

constraints, and two poolers with SID and qSID. In agreement

with the analysis in [16], the bag gain is larger for the larger

quality factor because higher-quality JPEGs are more likely

to have flatter response curves (and thus be able to hold large

payloads). The bag gain is also larger for the MDS because

it assigns payloads more aggressively than IMS. Interestingly,

maintaining a fixed bpc per bag leads to larger bag gain than

bpnzac. This effect is explained in the appendix from the same

bivariate model of response curves as in [16]. Furthermore,

we note that SID outperforms qSID in all configurations. We

attribute it to the fact that qSID lacks accuracy for smaller

payloads. Therefore, going forward we only employ poolers

equipped with the binary SID.

Figure 3 shows the bag gain as a function of JPEG quality

for the IMS and MDS for both payload constraints when

steganalyzed with the best pooler. The gain is generally smaller

for IMS than for MDS and significantly smaller for the payload

constraint in bpnzac. We explain this using a model in the

appendix. Additionally, we observed that the bag size where

the bag gain occurs is larger for MDS than for IMS for both

forms of the payload constraint.

The bag gain does not manifest for rates that are too large

(the detectability monotonically increases with B) or too small

as in this case the dip “drowns” in statistical fluctuations

because poolers perform as random guessers for small B.

In Figure 4, we show the bag gain for quality 95, the bpc

payload constraint, the MDS, and the best pooler to show the

dependence on the rate r. Similar trends can be observed for

other quality factors and the IMS.

It is difficult if possible to contrast the JPEG domain

with the spatial domain because the embedding algorithm is

different and so is the cover source. Relating to Figure 11

from [12], the bag gain for the MDS in the spatial domain

with HILL as the stego scheme is significantly larger than for

the IMS. In contrast, the difference between IMS and MDS

is much smaller in the JPEG domain. This is because the

IMS with J-UNIWARD is comparable in its aggressivity to

assign payloads with the MDS (unlike the IMS with HILL). To

substantiate this claim, in Figure 5, we plot the distribution of

the maximal payload assigned by IMS and MDS in bag sizes

corresponding to the bag gain in two different domains. The

top histogram corresponds to HILL at 0.3 bpp and bag size

B = 16 while the bottom histogram shows the distribution

for J-UNIWARD at 0.1 bpc for quality factor 95 and bag size

B = 15. The IMS with HILL in the spatial domain does

not assign the largest payloads nearly as aggressively as the

MDS. In contrast, the IMS and MDS with J-UNIWARD are

more similar in terms of payload assignment aggressivity.

VI. CONCLUSIONS

When a batch sender maintains a fixed communication rate

and assigns payloads to images based on detectability, the

security is maximal when the payload is spread among a

certain number of images. This gain in security is called the

bag gain. In the current paper, we study this phenomenon in

the JPEG domain. Our experimental findings are supported

with analysis from a simple source model. In particular, the

bag gain is more significant for larger JPEG qualities and

for batch senders that assign the payload chunks to images

in a more aggressive manner. Also, the bag gain is more

pronounced when the sender maintains a fixed rate in terms of

bits per DCT coefficient than per non-zero AC DCT coefficient

because the latter constraint decreases the diversity of stego

bags. The bag gain and the optimal bag size depend on the

rate and the type of the batch sender. For the image merging

sender, the gain can be up to 0.04 in terms of wAUC of the

pooled detector (for high qualities) and up to 0.065 for the

minimum deflection sender. Since the optimal bag size ranges

from 2 to 8, the results are relevant for practitioners.

The bag gain largely disappears for very low JPEG qualities

because the embedding is generally more detectable in such

images and there are not enough images that are complex

enough to safely hold large payloads.
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APPENDIX

EFFECT OF PAYLOAD CONSTRAINT ON BAG GAIN

As shown in [16], many experimentally observed trends in

detectability as a function of bag size for the MDS can be

explained with a linear model of response curves (5),

̺i(αi)− ̺i(0) = biαi, bi ≥ 0 (10)

and a bivariate model of slopes bi ∈ {ε, 1}

P(bi = ε) = p

P(bi = 1) = 1− p, (11)

where 0 < ε ≪ 1 and p ∈ [0, 1]. In other words, the cover

source consists of two types of images—easy to steganalyze

images with slope b = 1 and difficult images with slope ε,

which can hold a large payload with a virtually unchanged

detector response. Due to the different statistical makeup of

small and large bags, the detectability initially decreases, then

levels off, and eventually increases due to the square root law.

The advantage of the simple model (10) and (11) is a closed

form2 for MDS payloads

αi =
r × c(X)

b2i
∑B

k=1
1
b2
k

, (12)

that minimize the deflection (4). Denoting the number of

images with slope ε in bag X with Cε ∈ {0, 1, . . . , B},

2This is because we minimize a function quadratic in αi with a linear
payload constraint. Technically, the solution requires the payloads to be
unbounded.
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Figure 2. Pooled detector’s wAUC on the test set as a function of the bag size B for IMS (left 2 × 2 subfigures) and MDS (right 2 × 2 subfigures) for
quality 75 and 95 for two payload constraints, bpc (top) and bpnzac (bottom) with simple average pooler (blue, light blue) and the correlator pooler (red,
light red). Solid colored bars correspond to poolers with SID, while the hatched bars to poolers with qSID.
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∑B

k=1
1
b2
k

= ε−2Cε + B − Cε and the deflection ∆2(X) =

1/σ2
∑B

i=1 b
2
iα

2
i becomes

∆2(X) =
r2c2(X)

σ2(ε−2Cε +B − Cε)
. (13)
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Figure 4. Pooled detector’s wAUC on the test set in terms of wAUC as a
function of the bag size to show the effect of the rate r on the bag gain.
Payload constraint in bpc, MDS, quality 95 when steganalyzed with the best
pooler.

Note that Cε follows a binomial distribution on its support

across bags X. As shown in [16], when c(X) = B the trends

exhibited by the expected deflection with respect to B, ε,
and p qualitatively match experiments on real datasets. The

bag gain will manifest as long as larger bags contain enough
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hard-to-steganalyze images on average and the batch sender

is aggressive enough in assigning the payload (IMS or MDS).

The reader is referred to [16] for a detailed analysis of the

above model and its ability to explain many interesting trends

in detectability observed in experiments.

To understand why the bag gain is less pronounced for the

payload constraint in bpnzac, note that the response curve is

generally steeper (has a larger slope b) for images with fewer

non-zero DCTs as such images are smoother. In contrast,

highly textured / noisy images, which are more difficult to

steganalyze, will have smaller slopes and a larger number of

non-zero DCTs Ni. Hence, there is an approximate inverse

proportionality between bi and Ni: Ni ∝ 1/bqi for some q > 0.

We note that for q = 0, c(X) ∝
∑B

i=1 1/b
q
i = B, which

corresponds to the payload constraint in bpc (1). If we model

the relationship for bpnzac with q = 2, c(X) = 1
N

∑B

i=1 Ni ∝
∑B

k=1
1
b2
k

, and (13) simplifies

∆2(X) ∝
B
∑

i=1

b2i
c2(X)

b4i

(

∑B

k=1
1
b2
k

)2 (14)

∝
B
∑

i=1

1

b2i
= ε−2Cε + (B − Cε). (15)

Since Cε has a binomial distribution, the expectation of the de-

flection increases monotonically w.r.t. bag size B, suppressing

the manifestation of the bag gain.
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