
NNV 2.0: The Neural Network
Verification Tool

Diego Manzanas Lopez1(B), Sung Woo Choi2,
Hoang-Dung Tran2, and Taylor T. Johnson1

1 Vanderbilt University, Nashville, USA
diego.manzanas.lopez@vanderbilt.edu
2 University of Nebraska, Lincoln, USA

Abstract. This manuscript presents the updated version of the Neural
Network Verification (NNV) tool. NNV is a formal verification software
tool for deep learning models and cyber-physical systems with neural net-
work components. NNV was first introduced as a verification framework
for feedforward and convolutional neural networks, as well as for neural
network control systems. Since then, numerous works have made signif-
icant improvements in the verification of new deep learning models, as
well as tackling some of the scalability issues that may arise when veri-
fying complex models. In this new version of NNV, we introduce verifica-
tion support for multiple deep learning models, including neural ordinary
differential equations, semantic segmentation networks and recurrent neu-
ral networks, as well as a collection of reachability methods that aim to
reduce the computation cost of reachability analysis of complex neural net-
works. We have also added direct support for standard input verification
formats in the community such as VNNLIB (verification properties), and
ONNX (neural networks) formats. We present a collection of experiments
in whichNNVverifies safety and robustness properties of feedforward, con-
volutional, semantic segmentation and recurrent neural networks, as well
as neural ordinary differential equations and neural network control sys-
tems. Furthermore, we demonstrate the capabilities of NNV against a com-
mercially available product in a collection of benchmarks from control sys-
tems, semantic segmentation, image classification, and time-series data.

Keywords: neural networks · cyber-physical systems · verification ·
tool

1 Introduction

Deep Learning (DL) models have achieved impressive performance on a wide
range of tasks, including image classification [13,24,44], natural language pro-
cessing [15,25], and robotics [47]. Recently, the usage of these models has
expanded into many other areas, including safety-critical domains, such as
autonomous vehicles [9,10,85]. However, deep learning models are opaque sys-
tems, and it has been demonstrated that their behavior can be unpredictable
when small changes are applied to their inputs (i.e., adversarial attacks) [67].
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 397–412, 2023.
https://doi.org/10.1007/978-3-031-37703-7_19

https://doi.org/10.24433/CO.0803700.v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_19&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_19


398 D. M. Lopez et al.

Therefore, for safety-critical applications, it is often necessary to comprehend
and analyze the behavior of the whole system, including reasoning about the
safety guarantees of the system. To address this challenge, many researches have
been developing techniques and tools to verify Deep Neural Networks (DNN)
[4,6,22,39,40,48,55,64,65,77,83,84,86,87], as well as learning-enabled Cyber-
Physical Systems (CPS) [3,8,12,23,26,34,35,38,50,51]. It is worth noting that
despite the growing research interest, the verification of deep learning models still
remains a challenging task, as the complexity and non-linearity of these models
make them difficult to analyze. Moreover, some verification methods suffer from
scalability issues, which limits the applicability of some existing techniques to
large-scale and complex models. Another remaining challenge is the extension of
existing or new methods for the verification of the extensive collection of layers
and architectures existing in the DL area, such as Recurrent Neural Networks
(RNN) [37], Semantic Segmentation Neural Networks (SSNN) [58] or Neural
Ordinary Differential Equations (ODE) [11].

This work contributes to addressing the latter challenge by introducing ver-
sion 2.0 of NNV1 (Neural Network V erification)2, which is a software tool that
supports the verification of multiple DL models as well as learning-enabled CPS,
also known as Neural Network Control Systems (NNCS) [80]. NNV is a software
verification tool with the ability to compute exact and over-approximate reach-
able sets of feedforward neural networks (FFNN) [75,77,80], Convolutional Neu-
ral Networks (CNN) [78], and NNCS [73,80]. In NNV 2.0, we add verification
support of 3 main DL models: 1) RNNs [74], 2) SSNNs (encoder-decoder archi-
tectures) [79], and 3) neural ODEs [52], as well as several other improvements
introduced in Sect. 3, including support for The Verification of Neural Networks
Library (VNNLIB) [29] and reachability methods for MaxUnpool and Leaky
ReLU layers. Once the reachability computation is completed, NNV is capable of
verifying a variety of specifications such as safety or robustness, very commonly
used in learning-enabled CPS and classification domains, respectively [50,55].
We demonstrate NNV capabilities through a collection of safety and robustness
verification properties, which involve the reachable set computation of feedfor-
ward, convolutional, semantic segmentation and recurrent neural networks, as
well as neural ordinary differential equations and neural network control systems.
Throughout these experiments, we showcase the range of the existing methods,
executing up to 6 different star-based reachability methods that we compare
against MATLAB’s commercially available verification tool [69].

2 Related Work

The area of DNN verification has increasingly grown in recent years, leading
to the development of standard input formats [29] as well as friendly com-
petitions [50,55], that help compare and evaluate all the recent methods and
tools proposed in the community [4,6,19,22,31,39–41,48,55,59,64,65,77,83,84,
1 Code available at: https://github.com/verivital/nnv/releases/tag/cav2023.
2 Archival version: https://doi.org/10.24433/CO.0803700.v1.

https://github.com/verivital/nnv/releases/tag/cav2023
https://doi.org/10.24433/CO.0803700.v1


NNV 2.0 399

86,87]. However, the majority of these methods focus on regression and classifica-
tion tasks performed by FFNN and CNN. In addition to FFNN and CNN verifi-
cation, Tran et al. [79] introduced a collection of star-based reachability analysis
that also verify SSNNs. Fischer et al. [21] proposed a probabilistic method for the
robustness verification of SSNNs based on randomize smoothing [14]. Since then,
some of the other recent tools, including Verinet [31], α,β-Crown [84,87], and
MN-BaB [20] are also able to verify image segmentation properties as demon-
strated in [55]. A less explored area is the verification of RNN. These models have
unique “memory units” that enable them to store information for a period of
time and learn complex patterns of time-series or sequential data. However, due
to their memory units, verifying the robustness of RNNs is challenging. Recent
notable state-of-the-art methodologies for verifying RNNs include unrolling the
network into an FFNN and then verify it [2], invariant inference [36,62,90], and
star-based reachability [74]. Similar to RNNs, neural ODEs are also deep learning
models with “memory”, which makes them suitable to learn time-series data, but
are also applicable to other tasks such as continuous normalizing flows (CNF)
and image classification [11,61]. However, existing work is limited to a stochastic
reachability approach [27,28], reachability approaches using star and zonotope
reachability methods for a general class of neural ODEs (GNODE) with contin-
uous and discrete time layers [52], and GAINS [89], which leverages ODE-solver
information to discretize the models using a computation graph that represent
all possible trajectories from a given input to accelerate their bound propaga-
tion method. However, one of the main challenges is to find a framework that is
able to verify several of these models successfully. For example, α,β-Crown was
the top performer on last year’s NN verification competition [55], able to verify
FFNN, CNN and SSNNs, but it lacks support for neural ODEs or NNCS. There
exist other tools that focus more on the verification of NNCS such as Verisig
[34,35], Juliareach [63], ReachNN [17,33], Sherlock [16], RINO [26], VenMas [1],
POLAR [32], and CORA [3,42]. However, their support is limited to NNCS
with a linear, nonlinear ODE or hybrid automata as the plant model, and a
FFNN as the controller.

Finally, for a more detailed comparison to state-of-the-art methods for the
novel features of NNV 2.0, we refer to the comparison and discussion about
neural ODEs in [52]. For SSNNs [79], there is a discussion on scalability and
conservativeness of methods presented (approx and relax star) for the different
layers that may be part of a SSNN [79]. For RNNs, the approach details and
a state-of-the-art comparison can be found in [74]. We also refer the reader to
two verification competitions, namely VNN-COMP [6,55] and AINNCS ARCH-
COMP [38,50], for a comparison on state-of-the-art methods for neural network
verification and neural network control system verification, respectively.

3 Overview and Features

NNV is an object-oriented toolbox developed in MATLAB [53] and built on top
of several open-source software, including CORA [3] for reachability analysis of



400 D. M. Lopez et al.

nonlinear ordinary differential equations (ODE) [73] and hybrid automata, MPT
toolbox [45] for polytope-based operations [76], YALMIP [49] for some optimiza-
tion problems in addition to MATLAB’s Optimization Toolbox [53] and GLPK
[56], and MatConvNet [82] for some convolution and pooling operations. NNV
also makes use of MATLAB’s deep learning toolbox to load the Open Neu-
ral Network Exchange (ONNX) format [57,68], and the Hybrid Systems Model
Transformation and Translation tool (HyST) [5] for NNCS plant configuration.

NNV consists of two main modules: a computation engine and an analyzer,
as illustrated in Fig. 1. The computation engine module consists of four com-
ponents: 1) NN constructor, 2) NNCS constructor, 3) reachability solvers, and
4) evaluator. The NN constructor takes as an input a neural network, either
as a DAGNetwork, dlnetwork, SeriesNetwork (MATLAB built-in formats) [69],
or as an ONNX file [57], and generates a NN object suitable for verification.
The NNCS constructor takes as inputs the NN object and an ODE or Hybrid
Automata (HA) file describing the dynamics of a system, and then creates an
NNCS object. Depending on the task to solve, either the NN (or NNCS) object
is passed into the reachability solver to compute the reachable set of the system
from a given set of initial conditions. Then, the computed set is sent to the ana-
lyzer module to verify/falsify a given property, and/or visualize the reachable
sets. Given a specification, the verifier can formally reason whether the spec-
ification is met by computing the intersection of the define property and the
reachable sets. If an exact (sound and complete) method is used, (e.g., exact-
star), the analyzer can determine if the property is satisfied or unsatisfied. If an
over-approximate (sound and incomplete) method is used, the verifier may also
return “uncertain” (unknown), in addition to satisfied or unsatisfied.

NN 
Constructor

NNCS 
Constructor

Reachability
solvers

Evaluator
Falsifier

Verifier

Visualizer
Computation Engine

Analyzer

Network 
Configuration

Plant 
Configuration

Reachable 
Sets

Evaluation 
Traces

Set of counter 
inputs or 

unsafe traces

Safe/
Unsafe/
Robust

Plot of reachable 
sets/traces

Unsafe/
Uncertain?

Initial Condition

Fig. 1. An overview of NNV and its major modules and components.

3.1 NNV 2.0 vs NNV

Since the introduction of NNV [80], we have added to NNV support for the
verification of a larger subset of deep learning models. We have added reacha-
bility methods to verify SSNNs [79], and a collection of relax-star reachability
methods [79], reachability techniques for Neural ODEs [52] and RNNs [74]. In
addition, there have been changes that include the creation of a common NN
class that encapsulates previously supported neural network classes (FFNN and
CNN) as well as Neural ODEs, SSNNs, and RNNs, which significantly reduces
the software complexity and simplifies user experience. We have also added direct
support for ONNX [57], as well as a parser for VNN-LIB [29], which describes



NNV 2.0 401

properties to verify of any class of neural networks. We have also added flexibility
to use one of the many solvers supported by YALMIP [49], GLPK [56] or lin-
prog [70]. Table 1 shows a summary of the major features of NNV, highlighting
the novel features.

Table 1. Overview of major features available in NNV. Links refer to relevant
files/classes in the NNV codebase. BN refers to batch normalization layers, FC to
fully-connected layers, AvgPool to average pooling layers, Conv to convolutional lay-
ers, and MaxPool to max pooling layers.

Feature Supported (NNV 2.0 additions in blue)

Neural Network Type FFNN, CNN, NeuralODE, SSNN, RNN

Layers MaxPool, Conv, BN, AvgPool, FC, MaxUnpool, TC, DC, NODE

Activation functions ReLU, Satlin, Sigmoid, Tanh, Leaky ReLU, Satlins

Plant dynamics (NNCS) Linear ODE, Nonlinear ODE, HA, Continuous & Discrete Time

Set Representation Polyhedron, Zonotope, Star, ImageStar

Star Reach methods exact, approx, abs-dom, relax-range, relax-area, relax-random, relax-bound

Reachable set visualization Yes, exact and over-approximation

Verification Safety, Robustness, VNNLIB

Miscellaneous Parallel computing, counterexample generation, ONNX*

*ONNX was partially supported for feedforward neural networks through
NNVMT. Support has been extended to other NN types without the need
for external libraries.

Semantic Segmentation [79]. Semantic segmentation consists on classifying
image pixels into one or more classes which are semantically interpretable, like
the different objects in an image. This task is common in areas like perception
for autonomous vehicles, and medical imaging [71], which is typically accom-
plished by neural networks, referred to as semantic segmentation neural net-
works (SSNNs). These are characterized by two major portions, the encoder, or
sequence of down-sampling layers to extract important features in the input, and
the decoder, or sequence of up-sampling layers, to scale back the data informa-
tion and classify each pixel into its corresponding class. Thus, the verification of
these models is rather challenging, due to the complexity of the layers, and the
output space dimensionality. We implement in NNV the collection of reachabil-
ity methods introduced by Tran et al. [79], that are able to verify the robustness
of a SSNNs. This means that we can formally guarantee the robustness value for
each pixel, and determine the percentage of pixels that are correctly classified
despite the adversarial attack. This was demonstrated using several architectures
on two datasets: MNIST and M2NIST [46]. To achieve this, additional support
for transposed and dilated convolutional layers was added [79].

Neural Ordinary Differential Equations [52]. Continuous deep learning
models, referred to as Neural ODEs, have received a growing consideration over
the last few years [11]. One of the main reasons for their popularity is due to
their memory efficiency and their ability to learn from irregularly sampled data
[61]. Similarly to SSNNs, despite their recent popularity, there is very limited
work on the formal verification of these models [52]. For this reason, we imple-
mented in NNV the first deterministic verification approach for a general class



402 D. M. Lopez et al.

of neural ODEs (GNODE), which supports GNODEs to be constructed with
multiple continuous layers (neural ODEs), linear or nonlinear, as well as any
discrete-time layer already supported in NNV, such as ReLU, fully-connected
or convolutional layers [52]. NNV demonstrates its capabilities in a series of
time-series, control systems and image classification benchmarks, where it sig-
nificantly outperforms any of the compared tools in the number of benchmarks
and architectures supported [52].

Recurrent Neural Networks [74]. We implement star-based verification
methods for RNNs introduced in [74]. These are able to verify RNNs without
unrolling, reducing accumulated over-approximation error by optimized relax-
ation in the case of approximate reachability. The star set is an efficient technique
in the computation of RNN reachable sets due to its advantages in computing
affine mapping, the intersection of half-spaces, and Minkowski summation [74].
A new star set representing the reachable set of the current hidden state can
be directly and efficiently constructed based on the reachable sets of the pre-
vious hidden state and the current input set. As proposed in verifying FFNNs
[7,77,78], CNNs [72], and SSNNs [79], tight and efficient over-approximation
reachability can be applied to the verification of ReLU RNNs. The triangular
over-approximation of ReLU enables a tight over-approximation of the exact
reachable set, preventing exponentially increasing the number of star sets dur-
ing splitting. Estimation of the state bound required for over-approximation can
compute state bounds without solving LPs. Furthermore, the relaxed approx-
imate reachability estimates the triangle over-approximation areas to optimize
the ranges of state by solving LP optimization. Consequently, the extended exact
reachability method is 10× faster, and the over-approximation method is 100×
to 5000× faster than existing state-of-the-art methods [74].

Zonotope Pre-filtering Star Set Reachability [78]. The star-based reacha-
bility methods are improved by using the zonotope pre-filtering approach [7,78].
This improvement consists on equipping the star set with an outer-zonotope,
on the reachability analysis of a ReLU layer, to estimate quickly the lower and
upper bounds of the star set at each specific neuron to establish if splitting may
occur at this neuron without the need to solve any LP problems. The reduction
of LP optimizations to solve is critical for the scalability of star-set reachability
methods [77]. For the exact analysis, we are able to avoid the use of the zonotope
pre-filtering, since we can efficiently construct the new output set with one star,
if the zero point is not within the set range, or the union of 2 stars, if the zero
point is contained [78]. In the over-approximation star, the range information is
required to construct the output set at a specific neuron if and only if the range
contains the zero point.

Relax-Star Reachability [79]. To tackle some of the scalability problems that
may arise when computing the reachable set of complex neural networks such as
SSNNs, a collection of four relaxed reachability methods were introduced [79].
The main goal of these methods is to reduce the number of Linear Programming
(LP) problems to solve by quickly estimating the bounds or the reachable set,



NNV 2.0 403

and only solving a fraction of the LP problems, while over-approximating the
others. The LPs to solve are determined by the heuristics chosen, which can be
random, area-based, bound-based, or range-based. The number of LPs is also
determined by the user, who can choose from 0% to 100%. The closer to 100%,
the larger number of LPs are skipped and over-approximated, thus the reachable
set tends to be a larger over-approximation of the output, which significantly
reduces the computation time [79].

Other Updates. In addition to the previous features described, there is a set
of changes and additions included in the latest NNV version:

- Activation Functions. The star set method is extended to other classes of
piecewise activation functions such as saturating linear layer (satlin), saturating
linear symmetric layer (satlins), and leaky ReLU. The reachability analysis of
each of these functions can be performed similarly to ReLU layers using the
zonotope pre-filtering method to find where splits happen.

- LP solver. We generalize the use of LP solvers across all methods and
optimizations. We allow the user to select the solver to use, which can choose
between GLPK [56], linprog [70] (MATLAB’s Optimization Toolbox) or any of
the solvers supported by YALMIP [49]. We select linprog as the default solver,
while keeping GLPK as a backup. However, if a different solver is selected that
is supported by YALMIP, our implementation of the LP solver abstraction also
supports this selection for any reachability method.

- Standard Input Formats. In the past few years, the verification community
has been working to standardize formats across all tools to facilitate comparison
among them. We have improved NNV by replacing the NNVMT tool [81] with a
module to load ONNX [57] networks directly from MATLAB, as well as adding
support for VNNLIB [29] files to define NN properties.

4 Evaluation

The evaluation is divided into 4 sections: 1) Comparison of FFNN and CNN
to MATLAB’s commercial toolbox [53,69], 2) Reachability analysis of Neural
ODEs [52], 3) Robustness Verification of RNNs [74], and 4) Robustness Verifica-
tion of SSNNs [79]. The results presented were all performed on a desktop with
the following configuration: AMD Ryzen 9 5900X @3.7GHz 12-Core Processor,
64 GB Memory, and 64-bit Microsoft Windows 10 Pro.

4.1 Comparison to MATLAB’s Deep Learning Verification Toolbox

In this comparison, we make use of a subset of the benchmarks and properties
evaluated in last year’s Verification of Neural Network (VNN) [55] competition,
in which we demonstrate the capabilities of NNV with respect to the latest
commercial product from MATLAB for the verification of neural networks [69].

We compared them on a subset of benchmarks from VNN-COMP’22 [55]:
ACAS Xu, Tllverify, Oval21 (CIFAR10 [43]), and RL benchmarks, which con-
sists on verifying 90 out of 145 properties of the ACAS Xu, where we compare



404 D. M. Lopez et al.

Table 2. Verification of ACAS Xu properties 3 and 4.

matlab approx relax 25% relax 50% relax 75% relax 100% exact (8)

prop 3 (45) SAT 3 3 3 2 0 0 3

UNSAT 10 29 8 2 1 0 42

time (s) 0.1383 0.6368 0.6192 0.5714 0.3843 0.0276 521.9

prop 4 (45) SAT 1 3 3 2 0 0 3

UNSAT 2 32 6 1 1 0 42

time (s) 0.1387 0.6492 0.6420 0.5682 0.3568 0.0261 89.85

Table 3. Verification results of the RL, tllverify and oval21 benchmarks. We selected
50 random specifications from the RL benchmarks, 10 from tllverify and all 30 from
oval21. - means that the benchmark is not supported.

RL (50) Tllverify (10) Oval21 (30)

SAT UNSAT time (s) SAT UNSAT time (s) SAT UNSAT time (s)

matlab 20 11 0.0504 0 0 0.1947 – – –

NNV 32 14 0.0822 0 0 13.57 0 11 136.5

MATLAB’s methods, approx-star, exact (parallel, 8 cores) and 4 relax-star meth-
ods. From the other 3 benchmarks, we select a total of 90 properties to verify,
from which we limit the comparison to the approx-star and MATLAB’s method.
In this section, we demonstrate NNV is able to verify fully-connected layers,
ReLU layers, flatten layers, and convolutional layers. The results of this compar-
ison are described in Table 2. We can observe that MATLAB’s computation time
is faster than NNV star methods, except for the relax star with 100% relaxation.
However, NNV’s exact and approx methods significantly outperform MATLAB’s
framework by verifying 100% and 74% of the properties respectively, compared to
18% from MATLAB’s. The remainder of the comparison is described in Table 3,
which shows a similar trend: MATLAB’s computation is faster, while NNV is
able to verify a larger fraction of the properties.

4.2 Neural Ordinary Differential Equations

We exhibit the reachability analysis of GNODEs with three tasks: dynamical
system modeling of a Fixed Point Attractor (FPA) [52,54], image classification
of MNIST [46], and an adaptive cruise control (ACC) system [73].

Dynamical Systems. For the FPA, we compute the reachable set for a time
horizon of 10 s, given a perturbation of ± 0.01 on all 5 input dimensions. The
results of this example are illustrated in Fig. 2c, with a computation time of
3.01 s. The FPA model consists of one nonlinear neural ODE, no discrete-time
layers are part of this model [52].

Classification. For the MNIST benchmark, we evaluate the robustness of two
GNODEs with convolutional, fully-connected, ReLU and neural ODE layers,
corresponding to CNODES and CNODEM models introduced in [52]. We verify
the robustness of 5 random images under an L∞ attack with a perturbation



NNV 2.0 405

5 10 15 20
T steps

0.01

0.1

1

10

100
C

om
pu

ta
tio

n 
Ti

m
e 

(s
) N2,0

N4,4
N8,0

(a) RNN
Computation Times

0 1 2 3 4 5
Time (s)

40

50

60

70

80

90

100

110

D
is

ta
nc

e 
(m

)

rel dist
safe dist

(b) Neural ODE, NNCS
Nonlinear ACC

-1.5 -1 -0.5 0 0.5
x1

-2.5

-2

-1.5

-1

-0.5

0

x 2

NNV

(c) Neural ODE
FPA

Fig. 2. Verification of RNN and neural ODE results. Figure 2a shows the verification
time of the 3 RNNs evaluated. Figure 2b depicts the safety verification of the ACC,
and Fig. 2c shows the reachability results of the FPA benchmark.

value of ± 0.5 on all the pixels. We are able to prove the robustness of both
models on 100% of images, with an average computation time of 16.3 s for the
CNODES , and 119.9 s for the CNODEM .

Control Systems. We verify an NNCS of an adaptive cruise control (ACC)
system, where the controller is a FFNN with 5 ReLU layers with 20 neurons
each, and one output linear layer, and the plant is a nonlinear neural ODE [52].
The verification results are illustrated in Fig. 2b, showing the current distance
between the ego and lead cars and the safety distance allowed. We can observe
that there is no intersection between the two, guaranteeing its safety.

4.3 Recurrent Neural Networks

For the RNN evaluation, we evaluate of three RNNs trained on the speaker
recognition VCTK dataset [88]. Each network has an input layer of 40 neurons,
two hidden layers with 2,4, or 8 memory units, followed by 5 ReLU layers with
32 neurons, and an output layer of 20 neurons. For each of the networks, we
use the same 5 input points (40-dimensional time-independent vectors) for com-
parison. The robustness verification consists on proving that the output label
after T ∈ {5, 10, 15, 20} steps in the sequence is still the same, given an adver-
sarial attack perturbation of ε = ± 0.01. We compute the reachable sets of all
reachability instances using the approx-star method, which was able to prove
the robustness of 19 out of 20 on N2,0, and N4,4 networks, and 18 for the N8,0

network. We show the average reachability time per T value in Fig. 2a.

4.4 Semantic Segmentation

We demonstrate the robustness verification of two SSNNs, one with dilated con-
volutional layers and the other one with transposed convolutional layers, in addi-
tion to average pooling, convolutional and ReLU layers, which correspond to N4

and N5 introduced in Table 1 by Tran et al. [79]. We evaluate them on one



406 D. M. Lopez et al.

random image of M2NIST [18] by attacking each image using an UBAA bright-
ening attack [79]. One of the main differences of this evaluation with respect
to the robustness analysis of other classification is the evaluation metrics used.
For these networks, we evaluate the average robustness values (percentage of
pixels correctly classified), sensitivity (number of not robust pixels over number
of attacked pixels), and IoU (intersection over union) of the SSNNs. The compu-
tation time for the dilated example, shown in Fig. 3, is 54.52 s, with a robustness
value of 97.2%, a sensitivity of 3.04, and a IoU of 57.8%. For the equivalent exam-
ple with the transposed network, the robustness value is 98.14%, sensitivity of
2, IoU of 72.8%, and a computation time of 7.15 s.

zero

two

six

nine

ten

(a) Target Image

zero

two

six

nine

ten

misclass

(b) Transposed SSNN

zero

six

ten

misclass

(c) Dilated SSNN

Fig. 3. Robustness verification of the dilated and transposed SSNN under a UBAA
brightening attack to 150 random pixels in the input image.

5 Conclusions

We presented version 2.0 of NNV, the updated version of the Neural Network
Verification (NNV) tool [80], a software tool for the verification of deep learning
models and learning-enabled CPS. To the best of our knowledge, NNV is the
most comprehensive verification tool in terms of the number of tasks and neural
networks architectures supported, including the verification of feedforward, con-
volutional, semantic segmentation, and recurrent neural networks, neural ODEs
and NNCS. With the recent additions to NNV, we have demonstrated that NNV
can be a one-stop verification tool for users with a diverse problem set, where ver-
ification of multiple neural network types is needed. In addition, NNV supports
zonotope, polyhedron based methods, and up to 6 different star-based reachabil-
ity methods to handle verification tradeoffs for the verification problem of neural
networks, ranging from the exact-star, which is sound and complete, but com-
putationally expensive, to the relax-star methods, which are significantly faster
but more conservative. We have also shown that NNV outperforms a commer-
cially available product from MATLAB, which computes the reachable sets of
feedforward neural networks using the zonotope reachability method presented
in [66]. In the future, we plan to ensure support for other deep learning models
such as ResNets [30] and UNets [60].



NNV 2.0 407

Acknowledgments. The material presented in this paper is based upon work sup-
ported by the National Science Foundation (NSF) through grant numbers 1910017,
2028001, 2220418, 2220426 and 2220401, and the NSF Nebraska EPSCoR under grant
OIA-2044049, the Defense Advanced Research Projects Agency (DARPA) under con-
tract number FA8750-18-C-0089 and FA8750-23-C-0518, and the Air Force Office of
Scientific Research (AFOSR) under contract number FA9550-22-1-0019 and FA9550-
23-1-0135. Any opinions, findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect the views of AFOSR,
DARPA, or NSF.

References

1. Akintunde, M.E., Botoeva, E., Kouvaros, P., Lomuscio, A.: Formal verification of
neural agents in non-deterministic environments. In: Proceedings of the 19th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2020), IFAAMAS 2020, . ACM, Auckland (2020)

2. Akintunde, M.E., Kevorchian, A., Lomuscio, A., Pirovano, E.: Verification of rnn-
based neural agent-environment systems. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, pp. 6006–6013 (2019)

3. Althoff, M.: An introduction to cora 2015. In: Proceedings of the Workshop on
Applied Verification for Continuous and Hybrid Systems (2015)

4. Bak, S.: nnenum: verification of ReLU neural networks with optimized abstraction
refinement. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I. (eds.)
NFM 2021. LNCS, vol. 12673, pp. 19–36. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-76384-8 2

5. Bak, S., Bogomolov, S., Johnson, T.T.: Hyst: a source transformation and transla-
tion tool for hybrid automaton models. In: Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control, pp. 128–133. ACM
(2015)

6. Bak, S., Liu, C., Johnson, T.T.: The second international verification of neu-
ral networks competition (VNN-COMP 2021): Summary and results. CoRR
abs/2109.00498 (2021)

7. Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 66–96. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8 4

8. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: Juliareach: a
toolbox for set-based reachability. In: Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pp. 39–44 (2019)

9. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016)

10. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for
direct perception in autonomous driving. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 2722–2730 (2015)

11. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary dif-
ferential equations. Adv. Neural Inf. Process. Syst. (2018)

12. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18


408 D. M. Lopez et al.

13. Cireşan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. arXiv preprint arXiv:1202.2745 (2012)

14. Cohen, J., Rosenfeld, E., Kolter, Z.: Certified adversarial robustness via ran-
domized smoothing. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of
the 36th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 97, pp. 1310–1320. PMLR (2019)

15. Collobert, R., Weston, J.: A unified architecture for natural language processing:
Deep neural networks with multitask learning. In: Proceedings of the 25th Inter-
national Conference on Machine Learning, pp. 160–167. ACM (2008)

16. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks, pp. 121–138 (2018)

17. Fan, J., Huang, C., Chen, X., Li, W., Zhu, Q.: ReachNN*: a tool for reachability
analysis of neural-network controlled systems. In: Hung, D.V., Sokolsky, O. (eds.)
ATVA 2020. LNCS, vol. 12302, pp. 537–542. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-59152-6 30

18. (farhanhubble), F.A.: M2NIST, MNIST of semantic segmentation. https://www.
kaggle.com/datasets/farhanhubble/multimnistm2nist

19. Ferlez, J., Khedr, H., Shoukry, Y.: Fast BATLLNN: fast box analysis of two-level
lattice neural networks. In: Bartocci, E., Putot, S. (eds.) HSCC ’22: 25th ACM
International Conference on Hybrid Systems: Computation and Control, Milan,
Italy, 4–6 May 2022. pp. 23:1–23:11. ACM (2022)

20. Ferrari, C., Müller, M.N., Jovanovic, N., Vechev, M.T.: Complete verification via
multi-neuron relaxation guided branch-and-bound. In: The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, 25–29 April
2022. OpenReview.net (2022)

21. Fischer, M., Baader, M., Vechev, M.: Scalable certified segmentation via ran-
domized smoothing. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 139, pp. 3340–3351. PMLR (2021)

22. Fischer, M., Sprecher, C., Dimitrov, D.I., Singh, G., Vechev, M.: Shared certificates
for neural network verification. In: Shoham, S., Vizel, Y. (eds.) Computer Aided
Verification, pp. 127–148. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-13185-1 7

23. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

24. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2414–2423 (2016)

25. Goldberg, Y.: A primer on neural network models for natural language processing.
J. Artif. Intell. Res. 57, 345–420 (2016)

26. Goubault, E., Putot, S.: Rino: Robust inner and outer approximated reachability
of neural networks controlled systems. In: Shoham, S., Vizel, Y. (eds.) Computer
Aided Verification, pp. 511–523. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-13185-1 25

27. Gruenbacher, S., Hasani, R.M., Lechner, M., Cyranka, J., Smolka, S.A., Grosu, R.:
On the verification of neural odes with stochastic guarantees. In: AAAI (2021)

28. Gruenbacher, S., et al.: Gotube: scalable stochastic verification of continuous-depth
models (2021)

29. Guidotti, D., Demarchi, S., Tacchella, A., Pulina, L.: The Verification of Neural
Networks Library (VNN-LIB) (2022). https://www.vnnlib.org

http://arxiv.org/abs/1202.2745
https://doi.org/10.1007/978-3-030-59152-6_30
https://doi.org/10.1007/978-3-030-59152-6_30
https://www.kaggle.com/datasets/farhanhubble/multimnistm2nist
https://www.kaggle.com/datasets/farhanhubble/multimnistm2nist
https://doi.org/10.1007/978-3-031-13185-1_7
https://doi.org/10.1007/978-3-031-13185-1_7
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-031-13185-1_25
https://doi.org/10.1007/978-3-031-13185-1_25
https://www.vnnlib.org


NNV 2.0 409

30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016)

31. Henriksen, P., Hammernik, K., Rueckert, D., Lomuscio, A.: Bias field robustness
verification of large neural image classifiers. In: Proceedings of the 32nd British
Machine Vision Conference (BMVC21). BMVA Press (2021)

32. Huang, C., Fan, J., Chen, X., Li, W., Zhu, Q.: Polar: a polynomial arithmetic
framework for verifying neural-network controlled systems (2021). https://doi.org/
10.48550/ARXIV.2106.13867

33. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Reachnn: reachability analysis of
neural-network controlled systems. arXiv preprint arXiv:1906.10654 (2019)

34. Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G., Lee, I.: Verisig 2.0:
verification of neural network controllers using taylor model preconditioning. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 249–262. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 11

35. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Hybrid Systems:
Computation and Control (HSCC) (2019)

36. Jacoby, Y., Barrett, C., Katz, G.: Verifying recurrent neural networks using invari-
ant inference. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302,
pp. 57–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 3

37. Jain, L.C., Medsker, L.R.: Recurrent neural networks: design and applications
(1999)

38. Johnson, T.T., et al.: Arch-comp21 category report: artificial intelligence and neu-
ral network control systems (ainncs) for continuous and hybrid systems plants. In:
Frehse, G., Althoff, M. (eds.) 8th International Workshop on Applied Verification
of Continuous and Hybrid Systems (ARCH21). EPiC Series in Computing, vol. 80,
pp. 90–119. EasyChair (2021). https://doi.org/10.29007/kfk9

39. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

40. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

41. Khedr, H., Ferlez, J., Shoukry, Y.: PEREGRiNN: penalized-relaxation greedy neu-
ral network verifier. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol.
12759, pp. 287–300. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81685-8 13

42. Kochdumper, N., Schilling, C., Althoff, M., Bak, S.: Open- and closed-loop neural
network verification using polynomial zonotopes (2022)

43. Krizhevsky, A.: Learning multiple layers of features from tiny images, pp. 32–33
(2009)

44. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

45. Kvasnica, M., Grieder, P., Baotić, M., Morari, M.: Multi-parametric toolbox
(MPT). In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 448–
462. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 30

46. LeCun, Y.: The mnist database of handwritten digits (1998). http://yann.lecun.
com/exdb/mnist/

https://doi.org/10.48550/ARXIV.2106.13867
https://doi.org/10.48550/ARXIV.2106.13867
http://arxiv.org/abs/1906.10654
https://doi.org/10.1007/978-3-030-81685-8_11
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.29007/kfk9
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-81685-8_13
https://doi.org/10.1007/978-3-030-81685-8_13
https://doi.org/10.1007/978-3-540-24743-2_30
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


410 D. M. Lopez et al.

47. Lenz, I.: Deep learning for robotics. Ph.D. thesis, Cornell University (2016)
48. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J.: Algo-

rithms for verifying deep neural networks. Found. Trends Optim. 4(3–4), 244–404
(2021). https://doi.org/10.1561/2400000035

49. Löfberg, J.: Yalmip : A toolbox for modeling and optimization in MATLAB. In:
Proceedings of the CACSD Conference, Taipei, Taiwan (2004). http://users.isy.liu.
se/johanl/yalmip

50. Lopez, D.M., et al.: Arch-comp22 category report: artificial intelligence and neu-
ral network control systems (ainncs) for continuous and hybrid systems plants.
In: Frehse, G., Althoff, M., Schoitsch, E., Guiochet, J. (eds.) Proceedings of 9th
International Workshop on Applied Verification of Continuous and Hybrid Systems
(ARCH22). EPiC Series in Computing, vol. 90, pp. 142–184. EasyChair (2022)

51. Lopez, D.M., Johnson, T.T., Bak, S., Tran, H.D., Hobbs, K.: Evaluation of neural
network verification methods for air to air collision avoidance. AIAA J. Air Transp.
(JAT) (2022)

52. Manzanas Lopez, D., Musau, P., Hamilton, N., Johnson, T.: Reachability analysis
of a general class of neural ordinary differential equation. In: Proceedings of the
20th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS 2022), Co-Located with CONCUR, FMICS, and QEST as part of
CONFEST 2022, Warsaw, Poland (2022)

53. MATLAB: Update 3, (R2022b). The MathWorks Inc., Natick, Massachusetts
(2022)

54. Musau, P., Johnson, T.T.: Continuous-time recurrent neural networks (ctrnns)
(benchmark proposal). In: 5th Applied Verification for Continuous and Hybrid
Systems Workshop (ARCH), Oxford, UK (2018). https://doi.org/10.29007/6czp

55. Müller, M.N., Brix, C., Bak, S., Liu, C., Johnson, T.T.: The third international
verification of neural networks competition (vnn-comp 2022): Summary and results
(2022)

56. Oki, E.: Glpk (gnu linear programming kit) (2012)
57. (ONNX), O.N.N.E.: https://github.com/onnx/
58. O’Shea, K., Nash, R.: An introduction to convolutional neural net-

works. CoRR abs/1511.08458 (2015). http://dblp.uni-trier.de/db/journals/corr/
corr1511.html#OSheaN15

59. Prabhakar, P., Rahimi Afzal, Z.: Abstraction based output range analysis for neural
networks. Adv. Neural Inf. Process. Syst. 32 (2019)

60. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

61. Rubanova, Y., Chen, R.T.Q., Duvenaud, D.K.: Latent ordinary differential equa-
tions for irregularly-sampled time series. In: Wallach, H., Larochelle, H., Beygelz-
imer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Infor-
mation Processing Systems, vol. 32. Curran Associates, Inc. (2019)

62. Ryou, W., Chen, J., Balunovic, M., Singh, G., Dan, A., Vechev, M.: Scalable poly-
hedral verification of recurrent neural networks. In: Silva, A., Leino, K.R.M. (eds.)
CAV 2021. LNCS, vol. 12759, pp. 225–248. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81685-8 10

63. Schilling, C., Forets, M., Guadalupe, S.: Verification of neural-network control
systems by integrating Taylor models and zonotopes. In: AAAI, pp. 8169–8177.
AAAI Press (2022). https://doi.org/10.1609/aaai.v36i7.20790

https://doi.org/10.1561/2400000035
http://users.isy.liu.se/johanl/yalmip
http://users.isy.liu.se/johanl/yalmip
https://doi.org/10.29007/6czp
https://github.com/onnx/
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#OSheaN15
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#OSheaN15
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1609/aaai.v36i7.20790


NNV 2.0 411

64. Shriver, D., Elbaum, S., Dwyer, M.B.: DNNV: a framework for deep neural network
verification. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp.
137–150. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 6

65. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Advances in Neural Information Processing Systems,
pp. 10825–10836 (2018)

66. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 41 (2019)

67. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

68. The MathWorks, I.: Deep Learning Toolbox Converter for ONNX Model Format.
Natick, Massachusetts, United State (2022). https://www.mathworks.com/
matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-
model-format

69. The MathWorks, I.: Deep Learning Toolbox Verification Library. Natick, Mas-
sachusetts, United State (2022). https://www.mathworks.com/matlabcentral/
fileexchange/118735-deep-learning-toolbox-verification-library

70. The MathWorks, I.: Optimization Toolbox. Natick, Massachusetts, United State
(2022). https://www.mathworks.com/products/optimization.html

71. Thoma, M.: A survey of semantic segmentation (2016)
72. Tran, H.-D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional

neural networks using imagestars. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 18–42. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8 2

73. Tran, H.D., Cei, F., Lopez, D.M., Johnson, T.T., Koutsoukos, X.: Safety veri-
fication of cyber-physical systems with reinforcement learning control. In: ACM
SIGBED International Conference on Embedded Software (EMSOFT 2019). ACM
(2019)

74. Tran, H.D., Choi, S., Yamaguchi, T., Hoxha, B., Prokhorov, D.: Verification of
recurrent neural networks using star reachability. In: The 26th ACM International
Conference on Hybrid Systems: Computation and Control (HSCC) (2023)

75. Tran, H.D., et al.: Parallelizable reachability analysis algorithms for feed-forward
neural networks. In: Proceedings of the 7th International Workshop on Formal
Methods in Software Engineering (FormaliSE 2019), pp. 31–40. IEEE Press, Pis-
cataway (2019). https://doi.org/10.1109/FormaliSE.2019.00012

76. Tran, H.D., et al.: Parallelizable reachability analysis algorithms for feed-forward
neural networks. In: 7th International Conference on Formal Methods in Software
Engineering (FormaliSE2019), Montreal, Canada (2019)

77. Tran, H.-D., et al.: Star-based reachability analysis of deep neural networks. In:
ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp.
670–686. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8 39

78. Tran, H.D., et al.: Verification of piecewise deep neural networks: a star set app-
roach with zonotope pre-filter. Formal Asp. Comput. 33(4), 519–545 (2021)

79. Tran, H.-D., et al.: Robustness verification of semantic segmentation neural net-
works using relaxed reachability. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021.
LNCS, vol. 12759, pp. 263–286. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81685-8 12

80. Tran, H.D., et al.: NNV: the neural network verification tool for deep neural net-
works and learning-enabled cyber-physical systems. In: 32nd International Confer-
ence on Computer-Aided Verification (CAV) (2020)

https://doi.org/10.1007/978-3-030-81685-8_6
http://arxiv.org/abs/1312.6199
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format
https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library
https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library
https://www.mathworks.com/products/optimization.html
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1109/FormaliSE.2019.00012
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-81685-8_12
https://doi.org/10.1007/978-3-030-81685-8_12


412 D. M. Lopez et al.

81. Transformation, N.N.V.M.: https://github.com/verivital/nnvmt
82. Vedaldi, A., Lenc, K.: Matconvnet: convolutional neural networks for matlab. In:

Proceedings of the 23rd ACM International Conference on Multimedia, pp. 689–
692. ACM (2015)

83. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th {USENIX} Security Symposium
({USENIX} Security 2018), pp. 1599–1614 (2018)

84. Wang, S., et al.: Beta-CROWN: efficient bound propagation with per-neuron split
constraints for complete and incomplete neural network verification. Adv. Neural
Inf. Process. Syst. 34 (2021)

85. Wu, B., Iandola, F.N., Jin, P.H., Keutzer, K.: Squeezedet: unified, small, low power
fully convolutional neural networks for real-time object detection for autonomous
driving. In: CVPR Workshops, pp. 446–454 (2017)

86. Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and ver-
ification for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
29(11), 5777–5783 (2018)

87. Xu, K., et al.: Fast and Complete: enabling complete neural network verifi-
cation with rapid and massively parallel incomplete verifiers. In: International
Conference on Learning Representations (2021). https://openreview.net/forum?
id=nVZtXBI6LNn

88. Yamagishi, J., Veaux, C., MacDonald, K.: Cstr vctk corpus: English multi-speaker
corpus for cstr voice cloning toolkit (version 0.92). In: University of Edinburgh.
The Centre for Speech Technology Research (CSTR) (2019). https://doi.org/10.
7488/ds/2645

89. Zeqiri, M., Mueller, M.N., Fischer, M., Vechev, M.: Efficient robustness verification
of neural ordinary differential equations. In: The Symbiosis of Deep Learning and
Differential Equations II (2022)

90. Zhang, H., Shinn, M., Gupta, A., Gurfinkel, A., Le, N., Narodytska, N.: Verification
of recurrent neural networks for cognitive tasks via reachability analysis. In: ECAI
2020, pp. 1690–1697. IOS Press (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://github.com/verivital/nnvmt
https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=nVZtXBI6LNn
https://doi.org/10.7488/ds/2645
https://doi.org/10.7488/ds/2645
http://creativecommons.org/licenses/by/4.0/

	NNV 2.0: The Neural Network Verification Tool
	1 Introduction
	2 Related Work
	3 Overview and Features
	3.1 NNV 2.0 vs NNV

	4 Evaluation
	4.1 Comparison to MATLAB's Deep Learning Verification Toolbox
	4.2 Neural Ordinary Differential Equations
	4.3 Recurrent Neural Networks
	4.4 Semantic Segmentation

	5 Conclusions
	References




