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Abstract— Circadian rhythms play a vital role in maintaining
a person’s well-being but remain difficult to quantify accurately.
Numerous approaches exist to measure these rhythms, but
they often suffer from performance issues on the individual
level. This work implements a Steady-State Kalman Filter as a
method for estimating the circadian phase shifts from biometric
signals. Our framework can automatically fit the filter’s
parameters to biometric data obtained for each individual, and
we were able to consistently estimate the phase shift within
1 hour of melatonin estimates on 100% of all subjects in
this study. The estimation method opens up the possibility of
real-time control and assessment of the circadian system, as
well as chronotherapeutic intervention.

Clinical relevance— This establishes a near real-time alterna-
tive to melatonin measurements for the estimation of circadian
phase shifts, with potential applications in feedback circadian
control and chronotherapeutics.

I. INTRODUCTION

Circadian rhythms are biological processes that follow an
approximate 24-hour cycle and play a vital role in maintaining
an individual’s well-being. These rhythms include the sleep-
wake cycle, core body temperature (CBT), and a host of
hormonal production cycles, which work in concert to keep
a person in sync with their external environment. Disruptions
in the circadian system have been found to have numerous
short- and long-term effects, ranging from low productivity
and digestive issues, to diabetes and certain cancers [22, 12].
These findings have motivated research into the field of cir-
cadian rhythms estimation, with techniques being developed
to assess and mitigate the effects of circadian disruption.

Circadian rhythms are known to be maintained by numer-
ous peripheral oscillators, which are all kept synchronized
by the principal clock known as the suprachiasmatic nuclei
(SCN) located in the brain. Due to its physical location, the
SCN is inaccessible for measurements, so work in the field has
focused on the use of downstream signals that are driven by
the circadian clock as proxies for the true circadian state. The
most widely used signals include melatonin concentration in
blood, saliva, or urine; CBT, activity levels, skin temperature,
and heart rate [1, 4, 17].
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Many of these signals serve as both inputs and outputs of
the circadian system, and are also open to numerous external
disturbances - for example, exercise directly affects heart
rate. As such, they are prone to masking factors that further
compound the task of circadian estimation [9]. Melatonin
possesses a relatively strong resistance to masking, and is
thus the current clinical standard for circadian phase
estimation. Particularly, research has used the time at which
melatonin concentrations reach a specified threshold in low
light - the dim light melatonin onset (DLMO) - as a circadian
phase marker since it was first proposed by Lewy et al. in
[16]. However, melatonin measurements are burdensome and
difficult outside of clinical conditions, thus preventing the
study of individuals in their natural environment. Moreover,
the melatonin values only become available after samples are
processed in a lab, eliminating the method’s usefulness in
near real-time applications. For estimates of the circadian
state to be useful in applications like feedback control of
the circadian system and chronotherapeutics, a continuous
estimation method is still needed [8].

Multiple model-based and model-free approaches exist that
use more accessible data streams [6, 13, 7]. However, many
of these methods are accurate on the population average, but
performance tends to suffer on the individual level where
it is most needed [21]. Moreover, different data streams
possess different characteristics, leading to further difficulties
in employing the same single-input algorithm across data
types.

There have also been methods of estimating circadian char-
acteristics using techniques borrowed from signal processing
for approximately periodic time series. These include wavelet
analysis methods which identify the period and amplitude
information of the rhythms localized in the time-domain [15,
14], Fourier analysis, and auto-regressive modeling [5]. Many
of these methods estimate the circadian system’s parameters
(often period and/or amplitude), after which the parameters
can be used in a subsequent estimation technique. Woelders et
al. used an estimated circadian period in the Kronauer model
to achieve improved performance [24].

In this paper, we demonstrate the use of a steady-state
Kalman filter in continuously estimating the human circadian
phase in entrained conditions on an individualized basis. In
our previous work, we proposed the use of a linear state
observer for the same task [10]. We compared the method
against the gold standard DLMO values obtained during a
clinical study and achieved an average estimation error of
1.5 hours across all subjects. We also compared the method
against the adaptive notch filter (ANF) from [26] and found



that it was a superior algorithm with a fraction of the
ANF’s computational cost. In this paper, we instead use a
Kalman filter and show that the method is more consistently
accurate than the observer-based filter (OBF) from [10], while
providing the same advantages of the OBF over DLMO and
the ANF.

To address the problem of individualization, we implement
a method that tunes the parameters of the filter based on the
specific individual’s data provided. In [10], we parameterized
the filter optimization with the observer gain vector L, and
directly searched for each of the vector’s elements. In this
paper, we instead parameterize the optimization with the
filter’s covariance parameters, and we found that doing so im-
proved the accuracy and precision of our phase shift estimates.
The tuning method is also able to learn the characteristics
of the specific data stream used (actigraphy, light exposure,
CBT, etc.). The resulting Kalman filter estimator achieved
phase shift estimates within ±1 hour of the DLMO-based
estimates for 100% of the subjects in the study.

II. METHODS

A. Experimental setup

1) Data Collection: The same dataset was used in the
validation of the methods in [26] and [10]. We collected the
actigraphy data of eight healthy young adults (5 female and 3
male) aged between 18 and 34 y (25.8 ± 6.6 y). The data was
collected over an 8-month period, but the filter was tested on
data over a 2-week period to minimize the role that weather
and climate played. This is because the length of the day and
natural light exposure can be assumed to be largely the same
from one week to the next. Actigraphy data was recorded with
an ActiGraph GT3X+ Monitor (Pensacola, FL) worn on each
subject’s non-dominant wrist. The device took readings at 1-
minute intervals over the 2 weeks, providing near real-time
data on subject behavior.

Melatonin measurements were taken on the 7th and 14th
days via saliva swabs collected at 30-minute intervals with
Salimetrics SalivaBio Oral Swabs (State College, PA). The
samples were taken with subjects in dim lighting and in a
supine position, starting approximately 5 hours before and
ending 30 minutes after the average bedtime. Participants
accumulated saliva for 2 minutes, after which they stored the
samples at -20°C. For analysis, the samples were thawed and
centrifuged for 10 minutes at 2500 rpm.

All participants gave their informed written consent, and
the experiments followed the principles in the Declaration
of Helsinki from the World Medical Association. The ex-
periments were monitored by the University of New Mexico
(UNM) Health Sciences Center Human Research Protections
office and approved by the UNM Institutional Review Board
(IRB). The study’s IRB number is 14-002.

2) Simulation Environment: All numerical experiments
were done using MATLAB R2021a on a Dell workstation
equipped with an Intel Core i7-3770 3.40GHz processor and
16GB of RAM.

B. Problem Formulation
In our work, we assume that the nominal noiseless bio-

metric signal (e.g., actigraphy) is periodic and can thus be
approximated using a Fourier series. This periodic signal can
then be represented as a sum of K harmonics and a bias term,
in the form

yk = d +
K

∑
i=1

ai sin(iω∗k+φi), (1)

where yk is the signal value at time-step k, ω∗ is the funda-
mental frequency of the signal which we assume to be fixed at
2π

24 rad/h (corresponding to a 24 hour period), d is the constant
bias term; and ai and φi are the amplitude and phase offset of
the i-th harmonic, respectively. The sinusoidal components
of this signal can then be assumed to be the outputs of
K harmonically related linear oscillators represented by the
autonomous discrete-time system

xk = Axk−1, yk =Cxk, (2)

where xk and yk are the system state and output at time-step
k, respectively; A is the state dynamics model, and C is the
observation model. We choose A and C to be

A=


A1 0 . . . 0 0
0 A2 . . . 0 0
...

...
. . .

...
...

0 0 . . . AK 0
0 0 . . . 0 0

 , C =
[
C1 C2 . . . CK 1

]

with submatrices

Ai =

[
0 1

−(iω∗)2 0

]
, Ci =

[
0 2

iω∗
]
, i ∈ {1, . . . ,K},

which represents our view of the biometric data yk as the sum
of K harmonics.

We design a Kalman filter (KF) to simultaneously estimate
the states of each of these oscillators. In practice, the parame-
ters of the biometric signal are time-varying, so the KF tracks
the deviation of each from the nominal values produced by
the oscillators.

Remark: Note that the model above is not a model of the
biochemical and/or regulatory processes that constitute the
circadian rhythms, which is typically nonlinear. Our goal is
not to estimate the states of such processes. Rather, we aim
to estimate the phase shift in a noisy biometric signal, which
is nominally periodic.

C. Kalman Filtering
The Kalman filter is a state estimation algorithm that accounts
for the uncertainty in both the system’s dynamics and in
output measurements. It is best suited to a discrete-time
system given by

xk = Axk−1 +wk, yk =Cxk + vk,

which is the same system as in Equation 2 with additional
terms wk ∼N (0,Q) as the process noise drawn from a zero-
mean multivariate normal distribution with covariance Q ∈



Rn×n, n the system’s dimension, and vk ∼ N (0,R) as the
observation noise drawn from a zero-mean normal distribution
with covariance R∈R+. The initial state and the noise vectors
at each step are also assumed to be mutually independent.

The recursive version of the filter involves a prediction step
where estimates are predicted in the absence of measurements,
and an update step where the predictions are corrected based
on the latest measurement. This process repeats until the
estimate covariance and the Kalman gain reach a steady-state.
However, this recursion can be replaced with the use of a
steady-state version of the filter conditioned on the following
assumptions [20]:

1) The pair (A,C) is detectable
2) The pair (A,QT

f ) is stabilizable, where Q = Q f QT
f

3) Q is positive semi-definite
4) R is positive definite.

To use the steady-state version of the Kalman filter, we first
solve the algebraic Riccati equation (ARE)

P̂ = AP̂AT +Q−AP̂CT (CP̂CT +R)−1CP̂AT

for P̂, where P̂ is the estimate covariance, Q and R are the
covariance parameters described above, and A and C are from
Equation 2. The solution of this equation is then used in
calculating the steady-state Kalman gain

L = AP̂CT (CP̂CT +R)−1.

We use this gain in the filter updates, and the filter functions
similarly to a time-invariant observer with update equations
given by

x̂k = Ax̂k−1 +L(yk−1− ŷk−1)

ŷk =Cx̂k,
(3)

where x̂ is the filter’s state estimate, and ŷ is the output esti-
mate whose Fourier transform we attempt to match with that
of the input signal. We use this steady-state KF to estimate
the circadian phase in our work, as it runs significantly faster
than the recursive version, with near-identical performance.

D. Filter Optimization

To account for variations in circadian dynamics across people,
we tune the filter’s covariance parameters Q and R for each
individual using the cost function from [26] detailed below.

F(Y (ω),Ŷ (ω)) = Jharmo + Jnoise, (4)

with

Jharmo =
∫

δω

0
[Y (ω)− Ŷ (ω)]2 dω

+
K

∑
n=1

∫ nω∗+δω

nω∗−δω

[Y (ω)− Ŷ (ω)]2 dω

and

Jnoise =
K−1

∑
n=0

∫ (n+1)ω∗−δω

nω∗+δω

Ŷ (ω)2 dω

+
∫ +∞

Kω∗+δω

Ŷ (ω)2 dω,

where Jharmo represents the square error around each com-
ponent and the bias term, Jnoise is the filtered output outside
the desired components, K is the filter order being used, and
Y (ω) and Ŷ (ω) are the Fourier transforms of the input bio-
metric signal and the filter output, respectively. δω represents
the assumed bandwidth of the harmonics, which is set at
0.06786 rad/hour, chosen based on the phase dynamics for
light intensities less than 1000 lux as measured during the
experiments[26, 11].

The optimization variables are the covariance parameters
Q and R from above, and we optimize using the evolutionary
strategy [18] detailed in algorithm 1 on the cost function (4).
The optimization starts with µ members of the population,
and at each iteration, we create λ offspring using ρ members
each, run the filter with each new member, calculate the costs,
then remove the members with the λ highest costs. Each
offspring is generated by taking the arithmetic mean of ρ ran-
dom members of the population, making the evolution more
transparent compared to the standard Genetic Algorithm.

This process is repeated for a specified number of iterations,
after which the best parameters can be used on the subject’s
biometric data. We found that in contrast to [10] where we
parameterized the optimization with the observer gains L, the
parameterization using Q and R provided more consistently
accurate results.

Each population member is a pair of a random matrix Q f
and a random positive real number R. To yield a symmetric
positive definite matrix for the process noise covariance, we
take

Q = Q f ·QT
f .

E. Filter-based Circadian Phase Shift Estimation

Once the filter has been tuned, we can use it in estimating
the phase shift between any two days. We take the estimated
circadian phase at a given time-step k to be the argument of
the first harmonic term as represented by the first two state
estimates of the KF

φ̂1,k ≜−arctan
(

x̂2,k

ω∗ · x̂1,k

)
.

This is in line with the assumption that the fundamental
harmonic of the input signal is representative of the person’s
circadian state. We define the circadian phase on a given day
to be the average value of φ̂1,k on that day. Thus, to estimate
the circadian phase shift between the 7th day and the 14th
day, we compare the average phase on those days. A positive
value here represents a phase delay, suggesting that circadian
oscillation occurred later in time on the 14th day than it did on
the 7th. This is analogous to the standard of measuring phase
shift with melatonin, where the phase marker for a given day
is compared with that of another to yield the phase shift.



Algorithm 1: Covariance Optimization
Input: max iterations, y, µ , λ , ρ

Initialize:
Create initial populations Qpop and Rpop
Create state space matrices A and C
for i = 1, . . . ,µ do

Q←− Qpop(i) ·Qpop(i)T

R←− Rpop(i)
P̂←− ARE(A,C,R,Q)
if P̂ exists then

L←− getKalmanGain(A,C, P̂,R)
ŷ←− runKalmanFilter(A,C,L,y)
Cost(i)←− F(Y (ω),Ŷ (ω))

else
Cost(i)←− int max

end
end
Iteratively improve population:
for i = 1, . . . ,max iterations do

for j = µ +1, . . . ,µ +λ do
Qcombo,Rcombo←− ρ random members
Qpop( j)←− mean(Qcombo)
Rpop( j)←− mean(Rcombo)
Q←− Qpop( j) ·Qpop( j)T

R←− Rpop( j)
P̂←− ARE(A,C,R,Q)
if P̂ exists then

L←− getKalmanGain(A,C, P̂,R)
ŷ←− runKalmanFilter(A,C,L,y)
Cost( j)←− F(Y (ω),Ŷ (ω))

else
Cost( j)←− int max

end
end
Remove λ highest costs and corresponding
population members

end
Result: Optimal parameters Qopt and Ropt

III. RESULTS

In this section, we compare the results of running 100
independent optimizations each of the KF and the OBF.
From previous testing of the OBF, we found that the third
order version of the filter consistently outperformed other
versions [10], so we compare the KF to the third order OBF.
The number of optimization variables for the KF increases
nonlinearly with the filter order, since the matrix Q f has
(2K + 1)2 entries, where K is the filter order. Because of
this, optimization beyond the first order requires a larger
population size and consequently, longer optimization time.
Moreover, this increase in filter order did not yield a signifi-
cant increase in the filter’s performance, so we opted to use
the first order KF in our work. The results presented are thus
a comparison between the third order OBF and the first order

KF - the best performing versions of each filter.

A. Phase Shift Estimation Accuracy

The accuracy of the phase shift estimates serves as the
most important quantifier of the algorithm’s usefulness. In
Figure 1, we compare the OBF and KF’s phase shift estimates
with the DLMO-based estimates obtained for each subject.
There are up to 3 DLMO values for each subject, as we
calculated it with the methods from [16], [2], and [23], which
all choose the thresholds slightly differently. [16] chooses a
fixed threshold to use for all subjects. [2] sets each subject’s
threshold as twice the mean of that person’s first three low
daytime values. [23] takes the mean of the subject’s first three
low values and adds 2 standard deviations. For any given
subject, we can thus have up to 3 distinct DLMO estimates
as seen in Figure 1. None of the three methods yielded DLMO
values for subjects 5 and 9, so we exclude those subjects in
the results reported.

We see that the KF provides more consistent estimates that
are closer to the DLMO-based estimates than the OBF across
all subjects. To further evaluate the comparative level of
agreement of the KF’s estimates with the DLMO-based ones,
we performed a right-tailed t-test on the absolute deviations
of both filters’ estimates from the average DLMO values.
More specifically, we tested the null hypothesis that the
filters’ deviations were the same versus the alternative that
the OBF’s deviations were greater. The results are displayed
numerically in Table I and graphically in Figure 2. In 4 of the
6 subjects, we found that the KF outperformed the OBF at
the 5% significance level. In subjects 8 and 10, the required
significance was not met. However, after testing the opposite
alternative hypothesis, we found that the KF’s deviations were
not higher than the OBF’s, implying that in these cases, the
KF performs on par with the OBF and not worse. These
results help confirm that the Kalman filter provides a solid and
consistent improvement over the OBF in entrained circadian
conditions.

Fig. 1: Phase Shift Estimates for Subjects (A) 3, (B) 4, (C)
6, (D) 7, (E) 8, and (F) 10. Note: Box-plot variations are due
to the random initialization of the filters’ parameters for each
optimization.



TABLE I: Average Absolute Deviation (in minutes) from the Average DLMO Values By Subject.
1Hypothesis test results - 0 indicates mean deviations are statistically same, 1 indicates OBF deviations are higher.
2Significance level - smaller values cast doubt on validity of null hypothesis. The chosen threshold here was 5.0×10−2.

OBF KF (this paper)
Subject Mean (± Std) % within 1 hr Mean (± Std) % within 1 hr h1 p2

3 38.6 (±20.6) 91 17.9 (±3.76) 100 1 3.787×10−19

4 13.1 (±10.5) 99 15.0 (±0.742) 100 0 9.688×10−1

6 49.9 (±21.2) 74 40.5 (±2.30) 100 1 8.841×10−6

7 40.3 (±61.0) 83 26.5 (±3.35) 100 1 1.207×10−2

8 60.0 (±6.54) 58 57.9 (±0.757) 100 1 8.038×10−4

10 60.4 (±26.7) 61 56.6 (±2.66) 100 0 7.433×10−2

Fig. 2: Absolute Deviation from Average DLMO-based esti-
mates for Subjects (A) 3, (B) 4, (C) 6, (D) 7, (E) 8, and (F) 10.
Note: Box-plot variations are due to the random initialization
of the filters’ parameters for each optimization.

B. Optimization Runtimes

The efficiency of algorithms proposed for continuous esti-
mation of the circadian phase is an important performance
metric, as the ability to deploy these methods on compu-
tationally constrained devices has a direct effect on their
potential usefulness. To this end, we evaluate the algorithm’s
efficiency using the optimization runtimes and compare them
to the OBF’s. Across all subjects, we found the average OBF
runtime to be 26.3 seconds, while the average KF runtime was
29.5 seconds. Figure 3 visualizes this, and we see that the KF
runs nearly as fast as the OBF. We thus get a slight slowdown
by using the KF, but with the advantage of increasing the
accuracy and consistency of the estimated phase shifts as seen
in the previous section.

IV. CONCLUSION

In this paper, we described a method for continuous cir-
cadian phase estimation using a Kalman filter with easily
accessible physiological signals. By assuming a form on
the circadian signals and carefully parameterizing the filter
optimization, we were able to tune a Kalman filter to isolate
the fundamental harmonic of the signals, and to subsequently
estimate the change in phase using the filter’s output. The
estimator consistently achieved phase shift estimates within
1 hour of the average DLMO-based estimates on 100% of

Fig. 3: Runtimes for Subjects (A) 3, (B) 4, (C) 6, (D) 7, (E) 8,
and (F) 10. Note: Box-plot variations are due to the random
initialization of the filters’ parameters for each optimization.

the subjects studied, suggesting that the method is potentially
useful as a low-burden alternative to DLMO in entrained
settings.

The ability to assess the circadian phase in real-time using
the method proposed here opens up the ability to incorporate
the measurements both in methods of controlling the circadian
system, and in general studies of circadian rhythms. Current
methods for circadian control tend to rely on open-loop
approaches to guiding the circadian system to a goal state
[27, 25, 19, 3]. Real-time estimates of the circadian state have
the potential to improve the design and subsequent efficacy
of control methods.

One potential avenue of future research is the incorporation
of multiple signals to improve estimation accuracy. It has been
shown in multiple instances that the combination of external
stimuli - often light - and biometric signals can often improve
the performance of the algorithm used [21, 13]. We intend
to explore the possibility of a multi-input KF estimator and
evaluate how the method performs in comparison to DLMO.
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[4] André Dittmar et al. “A non invasive wearable sensor
for the measurement of brain temperature”. In: 2006
International Conference of the IEEE Engineering in
Medicine and Biology Society. IEEE. 2006, pp. 900–
902.

[5] Harold B Dowse. “Maximum entropy spectral analysis
for circadian rhythms: theory, history and practice”. In:
Journal of circadian rhythms 11.1 (2013), pp. 1–9.

[6] Daniel B Forger, Megan E Jewett, and Richard E
Kronauer. “A simpler model of the human circadian
pacemaker”. In: Journal of biological rhythms 14.6
(1999), pp. 533–538.

[7] Enrique A Gil, Xavier L Aubert, and Domien GM
Beersma. “Ambulatory estimation of human circadian
phase using models of varying complexity based on
non-invasive signal modalities”. In: 2014 36th Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society. IEEE. 2014, pp. 2278–
2281.

[8] Joseph D Gleason et al. “A novel smart lighting clinical
testbed”. In: 2017 39th Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology
Society (EMBC). IEEE. 2017, pp. 4317–4320.

[9] Kevin M Hannay and Jennette P Moreno. “Integrat-
ing wearable data into circadian models”. In: Current
Opinion in Systems Biology 22 (2020), pp. 32–38.

[10] Chukwuemeka O Ike et al. “Fast Tuning of Observer-
based Circadian Phase Estimator Using Biometric
Data”. In: Heliyon (2022), e12500.

[11] A Agung Julius, Jiawei Yin, and John T Wen. “Time
optimal entrainment control for circadian rhythm”. In:
PloS one 14.12 (2019), e0225988.

[12] Anders Knutsson. “Health disorders of shift workers”.
In: Occupational medicine 53.2 (2003), pp. 103–108.

[13] Vitaliy Kolodyazhniy et al. “An improved method
for estimating human circadian phase derived from
multichannel ambulatory monitoring and artificial neu-
ral networks”. In: Chronobiology International 29.8
(2012), pp. 1078–1097.

[14] Tanya L Leise. “Wavelet analysis of circadian and
ultradian behavioral rhythms”. In: Journal of circadian
rhythms 11.1 (2013), pp. 1–9.

[15] Tanya L Leise and Mary E Harrington. “Wavelet-based
time series analysis of circadian rhythms”. In: Journal
of biological rhythms 26.5 (2011), pp. 454–463.

[16] Alfred J Lewy and Robert L Sack. “The dim light mela-
tonin onset as a marker for orcadian phase position”. In:
Chronobiology international 6.1 (1989), pp. 93–102.

[17] Hazuki Masuda et al. “The estimation of circadian
rhythm using smart wear”. In: 2020 42nd Annual
International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC). IEEE. 2020,
pp. 4239–4242.

[18] E Ruffio et al. “Tutorial 2: Zero-order optimization
algorithms”. In: Eurotherm School METTI (2011).

[19] Kirill Serkh and Daniel B Forger. “Optimal sched-
ules of light exposure for rapidly correcting circadian
misalignment”. In: PLoS computational biology 10.4
(2014), e1003523.

[20] Robert F Stengel. Optimal control and estimation.
Courier Corporation, 1994.

[21] Julia E Stone et al. “Computational approaches for
individual circadian phase prediction in field settings”.
In: Current Opinion in Systems Biology 22 (2020),
pp. 39–51.

[22] Martha Hotz Vitaterna, Joseph S Takahashi, and Fred
W Turek. “Overview of circadian rhythms”. In: Alcohol
Research & Health 25.2 (2001), p. 85.

[23] Athena Voultsios, David J Kennaway, and Drew Daw-
son. “Salivary melatonin as a circadian phase marker:
validation and comparison to plasma melatonin”. In:
Journal of biological rhythms 12.5 (1997), pp. 457–
466.

[24] Tom Woelders et al. “Daily light exposure patterns
reveal phase and period of the human circadian clock”.
In: Journal of biological rhythms 32.3 (2017), pp. 274–
286.

[25] Jiawei Yin, A Agung Julius, and John T Wen. “Opti-
mization of light exposure and sleep schedule for cir-
cadian rhythm entrainment”. In: Plos one 16.6 (2021),
e0251478.

[26] Jiawei Yin et al. “Actigraphy-based parameter tun-
ing process for adaptive notch filter and circadian
phase shift estimation”. In: Chronobiology Interna-
tional 37.11 (2020), pp. 1552–1564.

[27] Jiaxiang Zhang, John T Wen, and Agung Julius. “Opti-
mal circadian rhythm control with light input for rapid
entrainment and improved vigilance”. In: 2012 IEEE
51st IEEE Conference on Decision and Control (CDC).
IEEE. 2012, pp. 3007–3012.


