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Abstract

In this paper we consider a composite optimization problem that minimizes the sum of a
weakly smooth function and a convex function with either a bounded domain or a uni-
formly convex structure. In particular, we first present a parameter-dependent conditional
gradient method for this problem, whose step sizes require prior knowledge of the param-
eters associated with the Holder continuity of the gradient of the weakly smooth function,
and establish its rate of convergence. Given that these parameters could be unknown or
known but possibly conservative, such a method may suffer from implementation issue
or slow convergence. We therefore propose a parameter-free conditional gradient method
whose step size is determined by using a constructive local quadratic upper approximation
and an adaptive line search scheme, without using any problem parameter. We show that
this method achieves the same rate of convergence as the parameter-dependent conditional
gradient method. Preliminary experiments are also conducted and illustrate the superior
performance of the parameter-free conditional gradient method over the methods with some
other step size rules.

Keywords: Conditional gradient method, Hoélder continuity, uniform convexity, adaptive
line search, iteration complexity

1 Introduction

In this paper we consider a composite optimization problem in the form of

"= gleilrgl{w(w) = f(z) +g(z)}, (1)

where E is a finite dimensional real Hilbert space endowed with an inner product (-,-), and
the functions f,g: E — R U {400} are proper and lower-semicontinuous. Assume that ¢*
is finite and attainable, and that ¢ is a convex function, while f is possibly nonconvex.

(©2023 Masaru Ito, Zhaosong Lu, and Chuan He.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided

at http://jmlr.org/papers/v24/22-0983.html.


https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-0983.html

Ito, Lu, AND HE

In the recent years conditional gradient methods (e.g., Bach, 2015; Harchaoui et al.,
2015; Nesterov, 2018; Ghadimi, 2019) have been developed for solving problem (1), which
generate the iterates {x;} by the following scheme:

vy € Arg;}gin{(Vf(xﬁw) +g(x)}, x41 = (1 — 1)z + Ty (2)
x
for each t > 0, where 7, € [0,1] is a step size chosen by a certain rule. These methods
originate from the Frank-Wolfe method (Frank and Wolfe, 1956) that was initially proposed
for quadratic programming and later studied for more general or structured problems (e.g.,
Levitin and Polyak, 1966; Demyanov and Rubinov, 1970; Dunn, 1979; Beck and Teboulle,
2004). Conditional gradient methods have found rich applications in machine learning and
statistics, where f and g are typically a loss function and a regularizer, respectively. The
advantage of conditional gradient methods in these applications is that the solution v; to
the subproblem in (2) is efficiently computable and also has some desirable property, such
as preserving sparsity or low rank (Hazan, 2008; Clarkson, 2010; Jaggi, 2013; Harchaoui
et al., 2015; Freund and Grigas, 2016; Nesterov, 2018).
The conditional gradient methods provide a computable quantity d;, commonly referred
to as the Frank-Wolfe gap, which is given by

o = (Vf(z), 2 —vi) + g(@) — g(vy) = r;lg{éc{(Vf(a:t),xt —x) +g(z) —g(x)} 2 0. (3)

Notice that §; = 0 if and only if z; is a stationary point of (. In addition, if f is convex, one
can have p(x;) —p* < §; (see Lemma 3). Consequently, d; < € is often used as a termination
criterion for the conditional gradient methods.

The choice of step sizes is crucial for the performance of the conditional gradient meth-
ods, which is typically measured by the iteration complexity, namely, the worst-case number
of iterations for reaching d; < ¢ or p(z:) — ¢* < ¢ for a prescribed tolerance ¢ > 0. There
are numerous studies (e.g., Frank and Wolfe, 1956; Levitin and Polyak, 1966; Dunn, 1979;
Freund and Grigas, 2016) on the step size rule when f is L-smooth, i.e., Vf is Lipschitz
continuous with constant L under a norm ||-||. For example, the choice

«n:mm{ldt} (4)

"L — v

guarantees an iteration complexity of O(s~2) for reaching §; < e (Lacoste-Julien, 2016).
When f is additionally convex, it can be improved to O(¢~!), which can also be achieved
by the step size 7 = a well-known choice for convex f (Jaggi, 2013; Freund and Grigas,
2016).

More generally, step size rules were studied when f is weakly smooth, that is, Vf is
Hélder continuous with exponent v € (0,1]. In particular, when f is additionally convex,
the choice 7 = 154%2 ensures an iteration complexity of O(e~/") for reaching p(z;) — ¢* < e
(Nesterov, 2018), which is known to be nearly optimal from complexity theory perspective
(Guzman and Nemirovski, 2015). When g is strongly convex, Nesterov (2018) proposed the

step size 1w = % for obtaining a better iteration complexity of O(a_%). Recently,

Ghadimi (2019) improved this complexity to 0(5_12_7” log %) by using a step size 7; deter-
mined by a backtracking line search procedure. Remarkably, his method enjoys a linear

_2_
t+2°
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rate of convergence when v = 1. Ghadimi’s method is also applicable to the case where f
1—v
is nonconvex and achieves an iteration complexity of O(¢~ 2 ~!) for reaching §; < e.

Conditional gradient methods were also studied for minimizing an L-smooth convex
function over a strongly convex set (e.g., see Levitin and Polyak, 1966; Dunn, 1979; Garber
and Hazan, 2015). Under the assumption that the set does not contain a stationary point
of the function, it was established that the conditional gradient method with the step size
given in (4) has a linear rate of convergence (Levitin and Polyak, 1966; Dunn, 1979). Such
a method was also generalized to minimize an L-smooth convex function over a uniformly
convex set (Kerdreux et al., 2021a).

In this paper we first study a parameter-dependent conditional gradient method pro-
posed in (Zhao and Freund, 2020, Algorithm 4) with a step size depending explicitly on
the problem parameters for solving a broad class of problems in the form of (1), including
but not limited to the problems considered in the above references (Levitin and Polyak,
1966; Dunn, 1979; Jaggi, 2013; Garber and Hazan, 2015; Freund and Grigas, 2016; Lacoste-
Julien, 2016; Nesterov, 2018; Ghadimi, 2019; Kerdreux et al., 2021a; Zhao and Freund,
2020). Though this method was analyzed in (Zhao and Freund, 2020) for problem (1) with
convex f and bounded dom g, there is a lack of analysis for (1) with nonconvex f. In this
paper, we analyze the rate convergence of this method for problem (1) with f being possibly
nonconvex under the assumption that Vf is Holder continuous and dom g is bounded or
the problem has a uniformly convex structure. As a byproduct, we obtain a new iteration
complexity of 0(5_12;;) ! for problem (1) with Vf being Hélder continuous with exponent
v € (0,1) and g being strongly convex, which improves by the factor log(1/e) the previously
best known one (Ghadimi, 2019).

Though the aforementioned parameter-dependent method (Algorithm 1) is simple and
also enjoys a nice iteration complexity, its step size may suffer from some issues. Indeed, its
step size requires prior knowledge of the parameters v and M, associated with the Holder
continuity of Vf. Since they depend on f, g, and also a particular norm on E, they may
be hard to be found if f is sophisticated. On another hand, the parameters v and M, are
not unique. The tighter value of them typically leads to a faster convergent algorithm. Yet,
it may be challenging to find the tightest possible value for them. Motivated by these, we
further propose a parameter-free conditional gradient method (see Algorithm 2) in which
the step size is chosen by using a constructive local quadratic upper approximation and an
adaptive line search scheme, without using prior knowledge of v and M,. We show that
this method achieves the same rate of convergence as the parameter-dependent conditional
gradient method, which, however, uses prior knowledge of the problem parameters v and
M,,.

The results of this paper were presented in the STAM Conference on Optimization in
July 2021 (Ito et al., 2021). During the preparation of this paper, a concurrent work (Pena,
2022) proposed a parameter-free conditional gradient method for problem (1) with convex
f and established similar complexity bounds as the ones obtained in this paper yet in terms
of primal-dual optimality gap that is typically weaker than the Frank-Wolfe gap which we

1. For simplicity, the complexity here only emphasizes its dependence on the tolerance parameter e, while
the other parameters such as v are viewed as a fixed constant and thus omitted. Its detailed expression
including the dependence on the other parameters can be found in (22) with p = 2.
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use. It shall be mentioned that our analyses are vastly different from those in (Pena, 2022)
and shed new insights into conditional gradients for solving a broader class of problems.

The rest of this paper is organized as follows. In Section 2 we introduce some notation
and make some assumptions on the problem studied in this paper. In Section 3 we propose
a parameter-dependent conditional gradient method, and show some results on its rate
of convergence. In Section 4 we propose a parameter-free conditional gradient method,
and establish its rate of convergence and also iteration complexity. Section 5 presents
numerical experiments to compare the performance of this method with the conditional
gradient methods with some other step size rules. The proofs of main results are given in
Section 6. Finally, we make some concluding remarks in Section 7.

2 Notation and Assumptions

Throughout the paper, E is a finite dimensional real Hilbert space endowed with an inner
product (-, -). Let [|-|| be an arbitrary norm on E and ||| its dual, i.e., [|z]|, = supj<; (2, 2)
for = € E. We denote by Ry and Z4 the set of nonnegative real numbers and the set of
nonnegative integers, respectively. For any real number a, we denote by a, the nonnegative
part of a, that is, a; = max{a,0}. For the convex function g, dom g denotes the domain of
g,ie.,domg = {x € E: g(x) # +oo}. We denote by D, the diameter of dom g, that is,

Dy= sup |z—y|. (5)
z,y€dom g

Clearly, D, = +oc if dom g is unbounded.
We make the following assumption on the functions f and g throughout this paper.

Assumption 1 (i) The function f : E — RU{+o0} is a proper and lower-semicontinuous
function. Moreover, f is differentiable on dom g and the gradient Vf is Hélder con-
tinuous on dom g, i.e., there exist v € (0,1] and M, > 0 such that

IVf(@) = Vil < My |z —y[”, Va,y € domyg. (6)

(ii) The function g : E — R U {400} is a proper, lower-semicontinuous, and convex
function. In addition, for each x € dom g, the subproblem

min{(V f(z),) + g(0)} 7)
has at least one optimal solution.

The function f satisfying Assumption 1(i) is commonly referred to as a (v, M, )-weakly
smooth function on domg. There are many instances of problem (1) satisfying Assump-
tion 1(i). For example, problem (1) with Vf being semi-algebraic? continuous and dom g
being a compact semi-algebraic set is one of them (Bolte et al., 2020, Proposition C.1).
Also, there are some machine learning models satisfying Assumption 1(i) (see, e.g., Bolte

2. A semi-algebraic set is a finite union of sets of the form {z € E | p;(z) =0,i=1,...,k, ¢i(z) <0, j =
1,...,1} for some real polynomials p;,q;. A map h: R™ — R" is said to be semi-algebraic if its graph
{(z,y) | y = h(x)} is a semi-algebraic set.
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et al., 2020; Zwiernik, 2016; Chen et al., 2020). In addition, Assumption 1(ii) plays an
important role in a conditional gradient method for solving problem (1). Indeed, all the
conditional gradient methods in the literature solve a subproblem in the form of (7) per
iteration.

In this paper, we will consider problem (1) satisfying Assumption 1 and one additional
assumption that g has a bounded domain or problem (1) has a uniformly convex structure
introduced below.

Assumption 2 Problem (1) has a uniformly convex structure, that is, there exist k > 0
and p > 2 such that for any x € dom g and any optimal solution v* to the subproblem (7),
we have

(Vi(@),v) +g(v) = (Vf(2),0") = g(v) = % lo =", Vv eR. (8)

There are many instances of problem (1) with a uniformly convex structure. We next
provide two examples of (1) for which Assumptions 1 and 2 hold.

Example 1 (Optimization over a uniformly convex set) Let C C E be a nonempty
compact (c, p)-uniformly convex set with respect to ||-|| for some ¢ > 0 and p > 2,2 that is,
C' is a nonempty compact convex set satisfying that (1 — Nz + Ay + 2z € C for any z,y € C,
A €[0,1], and z with |[z]| <A1 = A)7 [z — y||°. Consider the problem

min f(x), (9)
where f is differentiable on C, V f is Holder continuous on C, and a = mingec ||V f(z)]], >
0 (i.e., no stationary point of f belongs to C). Let g be the indicator function of C. One
can easily observe that problem (9) is a special case of (1), and moreover, Assumption 1
holds for it. We next verify that Assumption 2 also holds for it. Indeed, let x € dom g
and v* € Argmin, g {(Vf(z),v) + g(v)} be arbitrarily chosen. Then we have that x € C
and v* € Argmin, .- (Vf(x),v). Since C is a (c, p)-uniformly convexr set, one has that
w=M*"+(1=XNv+ [AX1=Xcl|v—2*/plz € C for any X € (0,1), v € C, and z with
l|z|| < 1. This and the optimality of v* lead to

<Vf<x>,m* B e e > = (Vf(2)w —v") 2 0,

which implies that (Y f(2),0 = v*) > Oe/p) llo ="l (V f(z),~2). Taking supj., on

both sides of this inequality, letting A 1 1, and using o = mingec |V f(x)|,, we obtain that

. c . ac "
(Vi(@),v—v") 2 V()] p o —v*||” = " lv — ™"

This, together with g being the indicator function of C, implies that (8) is satisfied with
k = ac. Therefore, Assumption 2 holds for problem (9).

3. For example, the £,-balls are uniformly convex with p = max(2,p) for p € (1,00). In addition, C is often
referred to as a strongly convez set if p = 2. See Vial (1982); Levitin and Polyak (1966); Garber and
Hazan (2015); Kerdreux et al. (2021a,b) for the discussion on uniformly or strongly convex sets.
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Example 2 (Optimization with a uniformly convex function) Consider a special case
of problem (1), where V f is Holder continuous on dom g, and g is a proper, lower-semicontinuous
and (k, p)-uniformly convex function with respect to ||-|| for some k > 0 and p > 2, that is,

g satisfies that

g(Az + (1= Ny) < Ag(z) + (1 = Ng(y) — A(1 - A)g |z —yll”, Vz,y € domg,\e€[0,1].4
By this, one can observe that (e.g., see Zalinescu, 2002)
K
9(y) = g(z) + ¢'(z:y — 2) + ” |z —yl”, Vz,y€domy, (10)

where ¢'(z;d) = limgo(g(x + sd) — g(x))/s is the directional derivative of g along the
direction d. It then follows that g is coercive, which together with the lower-semicontinuity
of g implies that subproblem (7) has at least one optimal solution. Thus, Assumption 1
holds for this problem. We next verify that Assumption 2 also holds for it. Indeed, let
x € domg and v* = argmin, g {(V f(z),v) + g(v)}. By these and (10), one has

(VF(2),v) +g(v) = (Vf(2),0") + (Vf(2),v —0") + g(v") + g'(v"50 —v") + % lo = v*||”,

for all v € domg. In addition, by the optimality of v*, we have (V f(x),v —v*) + ¢ (v*;v —
v*) > 0 for all v € domg. These two inequalities immediately yield (8). Therefore, As-
sumption 2 also holds for this problem.

3 A Parameter-Dependent Conditional Gradient Method

In this section we present in Algorithm 1 a parameter-dependent conditional gradient
method for solving problem (1), whose step size 7; depends on the problem parameters
v and M, explicitly. This algorithm was proposed in (Zhao and Freund, 2020, Algorithm
4) and analyzed by them for the case where f is convex and dom ¢ is bounded. However, it
was not analyzed for the case where f is nonconvex. In what follows, we will analyze its rate
of convergence for solving (1) with f being possibly nonconvex under the assumption that
dom g is bounded or problem (1) has a uniformly convex structure. It shall be mentioned
that the convergence results established in this section also hold for a variant of Algorithm 1
with the exact step size 7 € Argmin,¢jo 1 ¢((1 — 7))@t + Tv).

Before proceeding, we state a well-known lemma (e.g., see Ghadimi, 2019), which shows
that the quantity d;, commonly referred to as the Frank-Wolfe gap, provides an upper bound
on the optimality gap of problem (1) at z; when f is convex. For the sake of completeness,
we include a proof for it.

Lemma 3 Let the sequences {x;} and {0;} be generated in Algorithm 1. Suppose that f is
convez. Then it holds that §; > p(x¢) — ¢* for all t > 0.

4. For the case p = 2, the function g is a usual strongly convex function with modulus &.
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Algorithm 1: A parameter-dependent conditional gradient method
Input: x¢ € domg.
1: fort=0,1,2,..., do
2: vt € Argminer{(Vf( ) >
3: 6 = (Vf(xe),21) + g(

4: Tt:min{1,<

g(z )}
f(@i),ve) — g(vr).

Mu\lﬂft Ut||1+y }
5: Tiyl = (]. — Tt)xt + TVt
6: end for

<l+

"\‘\»—n

Proof Let z* be an arbitrary optimal solution of problem (1). Then f(z*) + g(z*) = ¢*.
By this, the expression of §;, and the convexity of f, we have that for all ¢ > 0,

= (Vf (@), 20) + g(ae) = (Vf (1), 1) — g(vi)
(Vf(2e), 2e) + g(e) = (V (@), 2%) — g(a7)
f(@e) + glae) — f(27) — g(27) = @) — ¢ (11)

ARV}

Remark 4 From the proof of Lemma 3, one can observe that the convexity of f is only used

n (11). More generally, (11) is also valid if f satisfies the star-convexity property (Nesterov
and Polyak, 2006): there exists some x* € Argmin, p(z) such that f(Az* + (1 — N)z) <
A(x*)+ (1 = XN)f(z) for all A € [0,1] and z € domg. Thus, the conclusion of Lemma 3
also holds if f satisfies the star-convexity property. Moreover, all the results established in
this paper for a convex f also hold for a star-convex f.

In what follows, we state some results regarding the rate of convergence of Algorithm 1
in Theorems 5 and 7, whose proofs are deferred to Section 6.2. In particular, we first present
the results under the assumption that g has a bounded domain, namely, D, < +o0.

Theorem 5 Let the sequences {x:} and {d;} be generated in Algorithm 1. Suppose that
Assumption 1 holds, Dy < 400, and that 6; > 0 for all t > 0, where Dy is defined in (5).
Let 5t* = ming<;<¢ 0; and

1 1+v %
+

v vAY
1
Te = (plar) =) v + L+ ) TATHE—t)] 7, VE = to.
Then the following statements hold.

(i) {¢(x¢)} is non-increasing and @, = limy_ o0 ©(z¢) exists. In addition, {0} satisfies

* (1 + V)(QO(J:O) - 90*) (1 + I/)A(QO(:L‘O) — 90*) ﬁ
oy Smax{ 1) , ( ) ) }, vt >0. (12)

v(t+ v(t+1
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(i) Assume additionally that f is convex. Then we have

gD(fEt) - QD* < Vs vt > to,
2(1+v)A

v(p(xty) — 9*)

. 1_
Of S €V |(t4to11)/2), VE=to+

1
v

Remark 6 When f is nonconvex, the limit p, = lim_,o @(x) in Theorem 5 can be in-
terpreted as the function value at some stationary point of ¢. Indeed, for any convergent
subsequence {x e with limit x. such that {0 }ter — 0, it follows from (3) that

o > (Vf(xy),xp —x) + g(zy) — g(x), Va €.

Taking the limit over t € T, we can see that x, € Argmin, {(V f(z.),x) + g(x)}. Thus, x,
is a stationary point of ¢ and moreover p, = p(xy).

We next present some results regarding the rate of convergence of Algorithm 1 under
the assumption that problem (1) has a uniformly convex structure, namely, Assumption 2
holds.

Theorem 7 Let the sequences {x;} and {6;} be generated in Algorithm 1. Suppose that
Assumptions 1 and 2 hold and that 6; > 0 for all t > 0. Let 6] = ming<;<;9; for allt >0
and

K vAr—1-v

(p(x0) — ©*) exp (—% min{1, Tﬂ%}t> ifv=1andp=2,

pv
1-v

A= () Y hu (10g (1+ V) (g(xo) w*))j |

p—1—v

[(@(Ito)_(p*)i " +Z(_11+33A_1(t_t0)} -

otherwise.

Then the following statements hold.

(i) {p(z¢)} is non-increasing and @, = limy_, o p(x¢) exists. In addition, {6} } satisfies

* (14 ) (p(x0) — x) [ (14 ) A(p(x0) — @x)\ T DT
o < max{ v(t+1) ’ ( v(t+1) > } ) (13)

for allt > 0.
(ii) Assume additionally that f is conver.

(a) When v =1 and p =2, we have

90(1775) - (p* S Wta \V/t Z 07

2M
(5: Se%ﬁL(t+2)/2j’ Vt24max{1,nl}

8
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Algorithm 2: A parameter-free conditional gradient method
Input: x¢9 € domg and L_; > 0.

1: fort =0,1,2,..., do

2: v € Argmin, g {(V f(z¢), z) + g(2)}.

3 0= (Vf(xe), ze) + 9(we) = (Vf(2e), v6) — g(ve).
4: repeat for i =0,1,2,...,
5. L\ = oi-1p, .
. (&) _ s Ot
6: T | = min {1, '2L§i)|lwz—’u't||2 }
3:%21 =(1- Tt(z))xt + Tt(z)vt.
8: until ) )
o) < plan) = 5776+ L0 () o — vl (14)
9: Set (xt+17Lt7Tt> < (szQl?LEZ)?Tt(Z))
10: end for

(b) When v # 1 or p # 2, we have

Sp(xt) - 30* S ﬁtv vt Z th
2(1+v)A

pv_ -
v(p(my,) — @*)p—1

R
O S e (t+to+1)/2)s  VE>to+

Remark 8 [t can be observed from Theorem 7 that under Assumptions 1 and 2, Algorithm 1
enjoys a linear rate of convergence when applied to problem (1) with f being convez, v =1
and p = 2.

4 A Parameter-Free Conditional Gradient Method

As seen from above, Algorithm 1 is not only simple but also enjoys a nice rate of convergence.
However, its step size 7y may suffer from some practical issues. Indeed, to evaluate 74, one
needs to know the problem parameters v and M, in advance. As observed from (6), these
parameters depend on f, g, and also a particular norm on E. Thus, it may not be easy to
find them if f is a sophisticated function. On another hand, the parameters v and M, are
not unique. The tighter value of them typically leads to a faster convergent algorithm. Yet,
it may be challenging to find the tightest possible value for them. Motivated by these, we
next propose a parameter-free conditional gradient method (Algorithm 2) in which the step
size is chosen by using a constructive local quadratic upper approximation and an adaptive
line search scheme, without using prior knowledge of v and M,,.

We now provide some explanation for Algorithm 2. Observe that the step size 7 in
Algorithm 1 is the minimizer of hy(7) = @(zy) — 76; + 71T f‘ﬁ/ |y — ve||*™ over [0,1].
Assuming that v and M, are unknown, we can find a quadratic approximation to hg,
without explicitly involving v and M,,, and then obtain a step size by minimizing it over
[0,1]. Indeed, by the Holder continuity of Vf, the following inequality holds (e.g, see




Ito, Lu, AND HE

Nesterov, 2015, Lemma 2):

F0) < 7+ (V@) — )+ B ey e, Ve edomg, v 05 (15)

where

1—v
l—v 1\ 2
L(e) = C— My, Ve >0. 16

(©) <1+y 25) v TS (16)
By (15) and a suitable choice of € (see the proof of next theorem for details), one can obtain
a quadratic approximation to h; given by

Fu(r) = (@) — %nst + %Ln? 2t — v
for some L; > 0, which is determined by an adaptive line search scheme without explicitly
using v and M,,. The step size 73 in Algorithm 2 is then obtained by minimizing hy in place
of h; over [0,1]. Therefore, Algorithm 2 does not explicitly use the parameters v and M,,.
The following theorem shows that Algorithm 2 is well-defined, whose proof is deferred
to Section 6.3. In particular, we will establish that in each outer iteration of Algorithm 2
the adaptive line search procedure must terminate after a finite number of trials. We will
also establish some other properties for the adaptive line search procedure.

Theorem 9 Let the sequences {L;} and {0;} be generated in Algorithm 2. Suppose that
Assumption 1 holds and that 6; > 0 for all t > 0.5 Let

L; = max {L(«St/Q), L <5t2> & } (17)

4z — vl

for allt >0, where L(-) is defined in (16). For any § > 0, let

1—v

1—v _2 1—v 1
B max{(};ﬁ%) M (2(11;;)) My (%) Y } if dom g is bounded,
L(o) = FEr g 21 T =
max{(%_,_’y’%) M (%) "My (msf_l) pv } if Assumption 2 holds.
(18)

Then the following statements hold.
(i) The inequality (14) holds whenever ng‘) > L.
(7i) L < 2maxo<i<t L; holds for any t > (logy(L_1/Lo))+.

(i1i) Suppose further that ming<,<;d; > € for some t > 0 and € > 0. Then the total

number of inner iterations performed by the adaptive line search procedure until the
t-th iteration of Algorithm 2 is bounded by 2t + 2 + [logy(2L(g)/L-1)]+-

5. By convention, we set 0° = 1. One can observe that when v = 1, L(¢) becomes M, and thus (15) still
holds.

6. If 6; = 0 for some t > 0, x; is already a stationary point of problem (1) and Algorithm 2 shall be
terminated.

10
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The next theorem establishes some results for the case where g has a bounded domain,
namely, D, < +o0, whose proof is deferred to Section 6.3.

Theorem 10 Let the sequences {x;} and {6;} be generated in Algorithm 2. Suppose that
Assumption 1 holds, Dy < 400, and that 6; > 0 for all t > 0, where Dy is defined in (5).
Let 67 = ming<;<; d; for allt > 0 and

1 14w - _ 4 N %
A= @i, = | () | = [a (oM ) T
Io /. A N

xy—1 - v
To= [(@(@4q) =9+ WA —t0)| T, W2,

where Ly is defined in (17). Then the following statements hold.

(i) {p(zs)} is non-increasing and @, = limy_,oc ©(x¢) exists. In addition, {6} } satisfies

A(p(x7 ) — ) [4A(p(x7 ) — )\ T7 3
5 < max (p(xz,) ¢ )7< (p(xz,) i )) VS (19)
t+1—+tg t+1—+tg

(i) Assume additionally that f is convex. Then we have

o) —¢" < Ty V> To +to,
8A

(‘P(x£0+t0) — %)

* 1_ g
O0f < €| (t—forto+1)/2)  VEZtottot

N

As an immediate consequence of Theorem 10, we obtain the following complexity results
for Algorithm 2 for finding an approximate solution of problem (1) with an e-Frank-Wolfe
gap, whose proofs are omitted.

Corollary 11 Under the same settings as in Theorem 10, Algorithm 2 reaches the criterion
0; < & within

1
A(p(zg)) — Ps) e d 1 (2MVD;+V> v
€ ’ €

f() +
iterations. Furthermore, if f is convez, it reaches the criterion §; < & within

1 1

~ oM, DI+ \ ¥ ee(p(zr . ) — o)\ "

fo+to+8—L9 " max< 1,v (¢ tOHO) ¢ -1
‘P(xfo-s-to) - €

iterations.
In what follows, we present some results regarding the rate of convergence of Algorithm 2

for the case where problem (1) has a uniformly convex structure, namely, Assumption 2
holds, whose proof is deferred to Section 6.3.

11
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Theorem 12 Let the sequences {x;} and {d;} be generated by Algorithm 2. Suppose that
Assumptions 1 and 2 hold and that 6; > 0 for allt > 0. Let 6; = ming<;<¢d; for all t > 0,
and

A= (g) oMb, B = ngz Li(j) J . to= {4 <log W)j :

(p(xg,) — @) exp <—i min{1, 4—;[1}75) ifv=1and p =2,
_p—1l—v ——L£

[(@(%HO) —p") T e + p;;;"Afl(t — to)} 7T otherwise,

where Ly is defined in (17). Then the following statements hold.

(i) {¢(x¢)} is non-increasing and @, = limy_,oc @(x¢) exists. In addition, {0} satisfies

5 < max { Ap(ag) — %)7 <4A(<P(x£0) — ¢4) > M““} 7 (20)

t+1—1p t+1—1p
for all t > tg.
(ii) Assume additionally that f is convex.
(a) When v =1 and p =2, we have
o(we) — " <75, Vt>to,

1 - 2My
& < €| (t—tp+2)/2) YVt >ty —|—4max{1, m} .

(b) When v # 1 or p # 2, we have

o(re) — " <74, Yt >1o+to,
8A

* 1_ -
Of < €| (—ipttot1)/2)> VE=to+to+

p—1l—v *

(P(@gy14y) — )

As an immediate consequence of Theorem 12, we obtain the following complexity results
for Algorithm 2 for finding an approximate solution of problem (1) with an e-Frank-Wolfe
gap, whose proofs are omitted.

Corollary 13 Under the same settings as in Theorem 12, Algorithm 2 reaches the criterion

0y < & within
14+v 1
_ A(p(x1) — s v (2M)v
- (p(zg,) — )max 17/);( p_1_>y
Keve »v

iterations. Furthermore, if f is convex, v =1 and p = 2, Algorithm 2 reaches the criterion

o0 < & within

. AM xp ) — "

t0+8max{171}max{1,1ogw<to>¢} (21)
K g

12
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iterations. In addition, if f is convex, and v # 1 or p # 2, Algorithm 2 reaches the criterion
0y < & within

14+v 1
- 8p v (2M,)v
to+to+ o p ( ) ST, max 1,

K P (gp(xgo-i-tg) - SO*) o

pv (ei(w(xfoﬂo) — 90*)> o 1

p—1—v €

iterations.

Remark 14 In view of the identity limq_q é(azo‘ — 1) = logx, one can observe that the
limit of (22) asv — 1 and p — 2 is

O (M max {1,log 780(36{0) g }) ,
K €

which is consistent with the bound (21) for the case with v =1 and p = 2.

4.1 Iteration Complexity

As mentioned earlier, the Frank-Wolfe gap d; defined in (3) is a computable quantity and
can be used to measure whether the associated iterate x; is an approximate stationary
point of problem (1). Therefore, §; < ¢ can be used as a practical termination criterion
for Algorithms 1 and 2 for a prescribed tolerance ¢ > 0. Besides, one can observe from
Theorems 5, 7, 10 and 12 that Algorithms 1 and 2 enjoy the same rate of convergence
and thus the same iteration complexity with respect to the termination criterion é; < e.
Consequently, it suffices to discuss the iteration complexity of Algorithm 2 with such a
termination criterion.

One can observe from Corollaries 11 and 13 that the iteration complexity of Algorithm 2
for reaching the termination criterion §; < ¢ is:

(i) O(e~'=1/¥) if f is nonconvex and dom g is bounded;

(ii) O(e~1=(=1=)/(P)} if f is nonconvex and problem (1) has a uniformly convex struc-
ture;

(iii) O(e~'/¥) if f is convex and dom g is bounded;

(iv) O(log(1/e)) if f is convex and problem (1) has a uniformly convex structure with
v=1and p=2;

(v) O(e=(p=1=2)/(P)Y if f is convex and problem (1) has a uniformly convex structure with
v#1orp#2.

Since p > 2 and v € (0, 1], one has e~ (P=1=9)/ () < =1/V and g=1-(p=1=0)/(p) < o=1-1/v
when v # 1 or p # 2. In view of this and the above complexity results, we can observe
that Algorithm 2 enjoys a lower iteration complexity bound under Assumption 2 than the
one under the assumption that dom ¢ is bounded. Besides, the iteration complexity bound
in (iii) matches the ones obtained in (Nesterov, 2015; Zhao and Freund, 2020). It should,
however, be noted that the conditional gradient methods in (Nesterov, 2015; Zhao and

13
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Freund, 2020) use the step size 7, = 2/(t + 2) and the same one as given in Algorithm 1,
respectively. These step sizes are not locally adaptive because they use none of local or
global problem information, and could be conservative in practice. Moreover, the latter one
requires prior knowledge of the parameters v and M,. In contrast with them, the step size
in Algorithm 2 is locally adaptive and free of problem parameters. In addition, the iteration
complexity bounds in (ii) and (iv) match the ones obtained in (Ghadimi, 2019) for the case
with p = 2. The iteration complexity bound in (v) improves by the factor log(1/e) the one
established in (Ghadimi, 2019) for the case with v < 1 and p = 2. For a smooth convex f
with v = 1 and ¢ being the indicator function of a uniformly convex set, similar iteration
complexity bounds as in (iv) and (v) with ¥ = 1 were established in (Kerdreux et al.,
2021a) for a parameter-dependent conditional gradient method for reaching the criterion
p(z) — " < e

In addition, as observed from Theorem 9 (iii), the total number of inner iterations of
Algorithm 2 for reaching the termination criterion d; < ¢ is at most 2t + [log,(2L(g)/L_1)]+.
Also, notice from (18) that log L(¢) = O(log(1/¢)). In view of these, one can see that the
total number of inner iterations of Algorithm 2 enjoys the same complexity bounds as given
in (i)-(v) for reaching the termination criterion J; < e.

5 Numerical Experiments

In this section we conduct some numerical experiments to compare the performance of the
conditional gradient methods studied in this paper with the ones with some other step size
rules. For the comparison, we construct the problems whose Hélder continuity exponent
v and uniform convexity exponent p are known in advance. More specifically, we generate
the test instances from the problem classes discussed in Examples 1 and 2, respectively.
Our experiments are conducted in Matlab on an Apple desktop with the 3.0GHz Intel Xeon
E5-1680v2 processor and 64GB of RAM.

5.1 /,-Norm Minimization over ¢, Ball

In our first experiment, we consider the following problem:

min | Az —b|P
P P (23)

st. z€By={zeR": 2], <1},

where 1 < p <2,¢>1, AecR™" and b € R™. Note that B, is a uniformly convex set

with exponent p = max(2,q) (e.g., see Kerdreux et al., 2021a,b). In addition, as shown in

Lemma 17 in Section 6.1, the gradient of the objective function of (23) is Hélder continuous
(p=1)(2=p)
with respect to | - |2 with exponent v = p — 1 and modulus M, = 227Pm T | A5

Thus, problem (23) belongs to the class of the problems minimizing a weakly smooth convex
function over a uniformly convex set discussed in Example 1. Note that when A = I, it
reduces to the problem of the ¢,-norm projection of a vector onto the ¢, unit ball.

We next apply the following three conditional gradient methods to solve problem (23),
and compare their performance.

: : 5, =D
e Algorithm 1 with ||- || = |2, v =p—1, and M, =2"Pm 2 ||A]5.

14
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o Algorithm 2 with || || = | - ||2.

e The conditional gradient method with the well-known diminishing step size 7, =
2/(t + 2) (Jaggi, 2013; Freund and Grigas, 2016), which is similar to Algorithm 1
except the choice of 7.

As discussed in Section 4.1, for finding an approximate solution of (23) with an e-Frank-
Wolfe gap, the conditional gradient method with step size 7, = 2/(t + 2) enjoys an iteration
complexity of O(e’l/ ¥), while Algorithms 1 and 2 enjoy the following iteration complexity:
O(log(1/e)) if p=2and q <2, ,

{ 0(8_(/)_1_”)/(/)1,))) otherwise, with p = max(2,¢) and v =p — 1.

When applied to (23), the above three methods need to solve the subproblems of the
form

min(u, z) : fJzfl, <1}

for uw € R™. It is not hard to observe that this problem has a closed-form solution given by

1
ot = — |lullg 7 sign(ui)us| 7T, i=1,...,n.

The instances of problem (23) are generated as follows. In particular, we generate matrix
A by letting A = UDUT, where D € R™™" is a diagonal matrix, whose diagonal entries
are randomly generated according to the uniform distribution over [1,100] and U € R™*"
is a randomly generated orthogonal matrix. We set b = AZ for some T generated from a
uniform distribution over {z € R" : ||z[|, = 10}.

In this experiment, we consider p € {1.3,1.6,2}, ¢ € {1.5,2,3} and m = n €
{1000, 5000}. For each choice of (p,q,n), we randomly generate 10 instances of problem
(23) by the procedure mentioned above, and apply the aforementioned three conditional
gradient methods to solve them, starting with the initial point zp = 0 and terminating
them once the criterion d; /9 < 107° is met, where &; and &y are the Frank-Wolfe gap at the
iterates x; and xg, respectively. Table 1 presents the average CPU time (in seconds) and
the average number of iterations of these methods over the 10 random instances. In detail,
the values of n,q,p are given in the first three columns, and the average CPU time and
the average number of iterations of Algorithms 1, 2 and the conditional gradient method
with step size = = 2/(t + 2) are given in the rest of the columns. In addition, Figure 1
illustrates the behavior of the best relative Frank-Wolfe gap 6} /dp := ming<;<¢ 0;/dp and
the objective value gap ¢(x¢) — @, with respect to CPU time on a single random instance of
problem (23) with n = 5000, ¢ = 3, and p = 1.3, 1.6, 2, respectively, where @, is the mini-
mum objective function value of all iterates generated by the three algorithms. One can see
that Algorithm 2 generally outperforms the other two methods. This is perhaps because:
(i) Algorithm 2 improves the iteration complexity of the conditional gradient method with
step size 7 = 2/(t + 2); (ii) Algorithm 2 uses an adaptive step size determined by using a
constructive local quadratic upper approximation of the objective function and an adaptive
line search scheme.
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Figure 1: Numerical results on a single random instance of problem (23) with n = 5000,
g =3, and p = 1.3, 1.6, 2, respectively. These sub-figures illustrate the behavior
of the best relative Frank-Wolfe gap ¢6; /dp := ming<j<¢ d;/dp and the objective
value gap @(x¢) — @. with respect to CPU time in seconds, where @, is the
minimum objective function value of all iterates generated by the three algorithms
for solving one problem instance.
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Average CPU time (sec) Average number of iterations
n q p || Algorithm 1 Algorithm 2 H% Algorithm 1 Algorithm 2 H%

1000 1.5 1.3 | 3.51 0.054 0.56 || 8881.4 84.9 1404.5
1.6 || 0.0065 0.0055 0.52 || 13.5 6.2 1333.5

2.0 || 0.0028 0.0037 0.44 || 5.0 6.2 1287.1

20 13| 1.63 0.13 0.50 || 4901.2 252.5 1544.4

1.6 || 0.0054 0.0060 0.44 || 13.8 6.9 1335.1

2.0 || 0.0020 0.0022 0.37 || 4.0 4.0 1299.4

3.0 1.3 109 1.18 1.76 || 27442.3 2038.1 4449.2

1.6 || 0.028 0.012 0.52 || 68.4 18.5 1323.1

2.0 || 0.0036 0.0038 0.45 || 7.7 7.4 1289.8

5000 1.5 1.3 || 20.6 1.34 13.3 || 2223.8 132.5 1424.4
1.6 || 0.063 0.078 12.5 || 5.7 6.2 1334.6

2.0 | 0.056 0.067 12.0 || 5.0 6.2 1288.0

20 1.3 7.03 3.23 13.2 || 809.5 341.3 1506.4

1.6 || 0.10 0.083 11.6 || 10.5 7.2 1335.8

2.0 || 0.044 0.043 11.2 || 4.0 4.0 1300.1

3.0 1.3 161.2 284 37.3 || 17364.6 2827.7 3972.8

1.6 || 0.41 0.20 12.4 || 43.7 18.7 1323.4

2.0 || 0.084 0.083 12.0 || 7.8 7.8 1289.9

Table 1: Numerical results for problem (23)

5.2 Entropy Regularized /,-Norm Minimization

In our second experiment, we consider the following problem:

min % Az —b|) + A>T, @;loga; (24)
st. zelA,i={zeR":>" %=1 2>0,1=1,...,n},
where p > 1, A > 0, A € R™*" and b € R™. Note that f(z) = %HAI‘ — b|ly is weakly
smooth and g(x) = A ", x;logx; + ta, (z) is A-strongly convex with respect to the ;-
norm (e.g., see Beck and Teboulle, 2003), where ta,, denotes the indicator function of A,,.
Thus, problem (24) is a special case of Example 2 with v =p — 1 and p = 2.

We next apply Algorithms 1 and 2 with the same settings as in Subsection 5.1 and the
conditional gradient method with the diminishing step size

6(t+1)

0+ 2) 2+ 3) (25)

Tt —

proposed by Nesterov (2018) to solve problem (24), and compare their performance. The
latter method is similar to Algorithm 1 except the choice of 7, and enjoys an iteration
complexity of O(e~/2P=1)) for finding an approximate solution of (24) with an e-Frank-
Wolfe gap (Nesterov, 2018). In addition, as seen from Section 4.1, Algorithms 1 and 2
enjoy the following iteration complexity for finding an approximate solution of (24) with

17



Ito, Lu, AND HE

an e-Frank-Wolfe gap:

if p=2,

fp)/(Q(Pfl)))) otherwise.

)

—~

|
o >

—
Q
m p—
>
o o
<)
09
M =

When applied to (24), the aforementioned three methods need to solve the subproblems
of the form

n
i A ;log x;
Jnin (u,z) + ;xl 0g T;

for some u € R™. It is well-known that this problem has a closed-form solution given by

. e*’ui//\ '
=", i=1,...,n.

v n —u; /N’
Zj:le il

The instances of problem (24) are generated as follows. In particular, we generate matrix
A with ||A]l, < 100 by letting A = VDUT, where D is a m x m diagonal matrix, whose
diagonal entries are randomly generated according to the uniform distribution over [0, 100],
and U € R™™ and V' € R™*™ are randomly generated orthonormal matrices. Each entry
of b € R™ is generated from the uniform distribution on [0, 1].

In this experiment, we consider m = n/2 € {1000,5000}, p € {1.5,1.75,2}, and \ €
{1,10,50}. For each choice of (m,n,p, \), we randomly generate 10 instances of problem
(24) by the procedure mentioned above, and apply the aforementioned three conditional
gradient methods to solve them, starting with the initial point 29 = (1/n,...,1/n)T and
terminating them once the criterion §;/dy < 10~® is met, where §; and §y are the Frank-
Wolfe gap at the iterates x; and xg, respectively. Table 2 presents the average CPU time
(in seconds) and the average number of iterations of these methods over the 10 random
instances. In detail, the values of m, p, A are given in the first three columns, and the average
CPU time and the average number of iterations of Algorithms 1, 2 and the conditional
gradient method with step size 7, = 6(t + 1)/((t + 2)(2t + 3)) are given in the rest of the
columns. In addition, Figure 2 illustrates the behavior of the best relative Frank-Wolfe
gap 0; /6o = ming<;<¢ d;/dp and the objective value gap ¢(z;) — @« with respect to CPU
time on a single random instance of problem (24) with m = 5000, n = 10,000, A = 10, and
p =1.5,1.75,2, respectively, where @, is the minimum objective function value of all iterates
generated by the three algorithms. One can see that Algorithm 2 generally outperforms
the other two methods, which is perhaps for the similar reasons as explained at the end of
Subsection 5.1.

5.3 Simplex-Constrained Nonnegative Matrix Factorization
In our third experiment, we consider the following simplex-constrained nonnegative matrix

factorization problem (see Thanh et al., 2022):

min  ||X — UVI[% + A(|UIE + [IVIIF)
st. UEBnp={UeR | 0<U;;<a, 1<i<n, 1<j<k}, (26)
V€ Ay = {V eRF™ | VT = 1,1,
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Average CPU time (sec) Average number of iterations
m P A || Algorithm 1 Algorithm 2 Rule (25) || Algorithm 1  Algorithm 2 Rule (25)
1000 1.5 1 | 314.3 0.47 0.49 640908.6 607.5 982.4
10 || 33.4 0.030 0.046 67184.7 34.1 87.4
50 || 2.60 0.010 0.016 5186.6 8.1 28.1
1.75 1 || 0.77 0.17 0.39 1446.4 210.8 731.3
10 || 0.21 0.020 0.048 404.3 21.4 85.0
50 || 0.015 0.0056 0.016 27.6 5.0 28.0
2 1 0.12 0.14 0.32 236.8 237.1 647.0
10 || 0.021 0.015 0.050 40.2 24.0 94.7
50 || 0.0035 0.0047 0.015 5.0 5.1 27.4
5000 1.5 1 || 8300.7 5.23 8.99 459440.4 272.6 518.4
10 || 1943.9 0.33 1.77 107117.5 16.3 100.4
50 || 16.5 0.10 0.55 952.0 4.3 31.0
1.75 1 || 30.9 2.77 8.99 1716.2 143.0 513.6
10 || 6.28 0.30 1.86 353.9 14.7 106.3
50 || 0.16 0.071 0.56 8.3 3.0 30.6
2 1 || 4.00 2.67 8.99 230.7 150.7 513.7
10 || 0.78 0.33 2.11 44.8 17.5 119.2
50 || 0.071 0.070 0.55 3.0 3.0 31.0
Table 2: Numerical results for problem (24)
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Figure 2: Numerical results on a single random instance of problem (24) with m = 5000,

n =10,000, A = 10, and p = 1.5,1.75, 2, respectively. These sub-figures illustrate
the behavior of the best relative Frank-Wolfe gap d; /do := ming<;<¢ d;/dp and the
objective function value gap p(x;) — @« with respect to CPU time in seconds.
Here, ¢, denotes the minimum objective function value of all iterates generated
by the three algorithms for solving one problem instance.
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where X € R™™_ a, A >0, || - || is the Frobenius norm, and 15 € R? is the all-ones vector
for any d > 1. Problem (26) can be viewed as ming v {¢(U, V) := f(U,V) + g(U,V)} with

1
FOV) = SIIX = UVIE g(UV) = MIUIE + IVIE) + 15, (U) + tag,. (V),

where ¢ Bk and N denote the indicator function of By, and Ay ,,, respectively. Notice
that f is nonconvex and smooth, dom g is compact, and g is strongly convex. Clearly,
problem (26) is a special case of problem (1) satisfying Assumptions 1 and 2 with v =1
and p = 2.

We next apply the following two conditional gradient methods to solve problem (26),
and compare their performance.

o Algorithm 2 with || || = | - || -

e The conditional gradient method with line search (Ghadimi, 2019, Algorithm 2), ab-
breviated as CGM-LS. We set the parameters v = 0.5 and § = £dp/4 for this method
as suggested in (Ghadimi, 2019), where g is the Frank-Wolfe gap at the initial point
and ¢ is the targeted tolerance for the final relative Frank-Wolfe gap.

It shall be mentioned that these two methods enjoy an iteration complexity of O(1/e) for
finding an approximate solution of (26) with an e-Frank-Wolfe gap (see Section 4.1 and
equation (1.8) in (Ghadimi, 2019)).

The data matrix X € R™ "™ for problem (26) is generated as follows. In particular,
we first randomly generate U* € R™** with all entries following the uniform distribution
over [0, a]. We next randomly generate V € RFX™ with all entries following the standard
normal distribution and set V* = ‘7D, where D € R™*™ is a diagonal matrix such that
(VT1;, = 1,,. Finally, we set X = U*V* + E, where the entries of £ € R™*™ follow the
normal distribution with mean zero and standard deviation 0.01.

In this experiment, we set A = 0.01, « = 2, and consider m = n € {100, 200, 300,400, 500}
and k € {5,10}. For each choice of (m,n, k), we randomly generate 10 instances of prob-
lem (26) by the procedure mentioned above. Then we apply the aforementioned two condi-
tional gradient methods to solve them with the initial point U? and V° being the matrices
of all entries equal to 1 and 1/k, respectively, and terminate the methods once the criterion
8t/60 < 1072 is met, where d; is the Frank-Wolfe gap at the t-th iteration (U?, V). The com-
putational results are presented in Table 3. In particular, the values of m and k are given
in the first two columns, and the average CPU time (in seconds) and the average number
of iterations over each set of 10 random instances for these methods are given in the rest of
the columns. Besides, in Figure 3 we illustrate the behavior of the best relative Frank-Wolfe
gap 6 /8o := ming<;<; §;/8o and the relative objective function value p(U*, V) /(U V)
with respect to CPU time on a single random instance of problem (24) with m = n = 300,
A=0.01, @« =2, and k = 5, 10, respectively.

One can observe that Algorithm 2 significantly outperforms the conditional gradient
method with line search proposed in Ghadimi (2019). This is perhaps because: (i) the line
search criterion of the conditional gradient method in Ghadimi (2019) explicitly depends on
the targeted accuracy ¢, while the line search criterion of Algorithm 2 does not; (ii) at each
iteration, the initial trial step size in Algorithm 2 is determined by using a constructive local
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quadratic upper approximation of the objective function, while the line search procedure in
Ghadimi (2019) does not use such a novel scheme.

6 Proof of the Main Results

In this section, we provide a proof of our main results presented in Sections 3 and 4.

6.1 Auxiliary Lemmas

In this subsection we establish some technical lemmas that will be used subsequently.

Lemma 15 Suppose that {p;} and {y:} are sequences of nonnegative real numbers such
that

Ye+1 <y — cBrmin{l, B /A}, VE>0 (27)
for some constants ¢ € (0,1), a > 0 and A > 0. Then, v = lim¢ 00yt emwists and the
sequence B = ming<;<; 3; satisfies

1
— A — 14+
B §max{ =3 ( (o 7)) }, Vvt > 0.

c(t+1)’ c(t+1)

In particular, we have B} < e whenever

— A
t2% Vmax{l,}.
80{

ce

Proof Since {5;} C R4, the relation (27) implies that {7} is non-increasing, which together
with {7:} C Ry further implies that v = lim;_,o 7; exists. In addition, by £ = ming<;<; f;
and (27), one can obtain that

Y1 < 7 — oBf min{1, (B)°/A}, ¥t > 0. (28)
Summing up these inequalities yields
Yot <0 — (¢ + 1) min{1, (87)/A}, Vi > 0.

By this and 7341 > v, we have 8f min{1, (5;)*/A} < (v —7)/(c(t + 1)), which implies the
desired assertions. [ |

Lemma 16 Suppose that {$;} and {y} are sequences of nonnegative real numbers such
that the recurrence (27) holds for some constants ¢ € (0,1), & > 0 and A > 0. Assume
additionally that By > ¢ for allt > 0. Let 5} = ming<i<¢ 8;. Then the following statements
hold.

(i) If a = 0, then we have vy < 7, for all t > 0 and B < F|(42)/2) for all t >
2max{1, A}/c, where
¥, = Yo exp(—cmin{l, A71} t).

Consequently, we have [ < e whenever

2
t > —max{1, A} max{l,log@} .
c €
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57 /4o

relative objective value

Figure 3:

Average CPU time (sec) || Average number of iterations
m Algorithm 2 CGM-LS || Algorithm 2 CGM-LS
100 5 || 0.71 6.17 1724 1139.1
10 || 0.34 2.62 55.7 355.1
200 5 | 2.26 17.09 329.8 2086.4
10 || 1.35 9.97 124.9 803.7
300 5 | 6.41 49.24 624.1 4035.1
10 || 3.36 30.67 194.3 1398.2
400 5 || 9.89 62.94 796.0 4208.8
10 || 4.87 41.01 230.3 1474.6
500 5 || 14.74 179.24 904.3 7131.6
10 || 6.35 79.91 263.3 2588.0

Table 3: Numerical results for problem (26)

k=5 k=10
10° N 10° e
= ~ = ~
Y N
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\ 3 R
P \
— Algorithm 2 ‘| - — Algorithm 2 \
~ -CGM-LS X ~ -CGM-LS I
1079 - 10~° . L
1072 10° 107 1072 10° 107
time (sec) time (sec)
1 k=5 ;g 1 k=10
=T=qT 3 —==I
0.8F =~ _|—Algorithm 2 2 0.8] T~ _ |—Algorithm 2|/
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\ ksl \
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Mo {é .
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Numerical results on a single random instance of problem (26) with m = n = 300,

A =001, a = 2, and k = 5,10, respectively. These sub-figures illustrate the
behavior of the best relative Frank-Wolfe gap d;/dp := ming<;<¢0;/dp and the
relative function value (U, V) /(U V?) with respect to CPU time in seconds.
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(1) IJia > 0, then we have v+ < 7, for all t > to and B < (1 + a)lfaﬂ(tﬁoﬂ)/m <
€| (t4to41)/2) for allt >t + 24/ (cpy), where

_ 1 1 70
h (wwlca(t—to)) o= [ (s )| )

Consequently, we have B} < e whenever

24 L[ (et \"
tZto—l—amax{l, - K%) —1”. (30)
ey a €

Proof (i) Consider the case « = 0. By (27) and 8; >~ > 0 for all ¢ > 0, one can obtain
for all t > 0 that

Ql~

Yir1 < v — eyemin{1,7%/A} = v(1 — cmin{1, A7'}) < v exp(—cmin{1, A71}),

and hence 7y; < ypexp(—cmin{1, A71}t) = 7, for all ¢ > 0. By this, {v} C Ry, and (28)
with a = 0, one has that for any k£ < t,

t t
emin{l, A7}t —k+ 1) <Y (emin{l, ATE)) <Y (% = 1) = %k — Y1 < T
i=k i=k
(31)

For convenience, let Ty = 2max{1, A}/c and T; = max{1, A}log(vo/e)/c. For any t > T,
letting k = [(t +2)/2] in (31), we obtain 8] < 7¥|(42)/2) due to

cmin{l, A7 }(t =k +1) > emin{1, A" }t/2 = t/Tp > 1.

Moreover, since ¥ (44.9)/2) < € holds if [(t +2)/2] > T1, we have 8; < ¢ whenever

2
t > max{Ty,271} = — max{1l, A} max {1,log E} .
c €

Hence, statement (i) holds.

(ii) We now consider the case o > 0. It follows from the relation 7, < (; and the
monotonicity of the sequence {7;} that v; < 8f. As long as 8; > AY“, the relation (28)
implies

Yerr < e — By < (1= )y < yrexp(—c). (32)
Claim that 3; < AV for t defined in (29). Suppose for contradiction that Bi, > Al/e,
Then, as (32) holds for t = 0,...,ty, we have v, < 7oexp(—ctg) and thus v, < cAY®
follows by the expression of ty. However, since {7;} is nonnegative, the first inequality of
(32) implies B;, < ¢ 1y < A/ which leads to a contradiction. Hence, B, < AV holds
as claimed.

It follows from the monotonicity of {3} that 4, < 8F < AV for all t > to. By this and
(28), one can obtain the recurrence

Yer1 <y — (B TA <y — ey TUJA, VE> H, (33)
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Then, by (Borwein et al., 2014, Lemma 4.1), this recurrence implies the assertion

Y < (1 + A cal(t —to)) TV =7, V>t (34)

first inequality in (33) and the monotonicity of {5;} that

1
We next show that 87 < (14 )™ e% | (44441)/2) for all t > o+ %. It follows from the

C(Bf)l+a/14 <7 —Yit1, VE>tg, i<t (35)

Let k = [(t +to +1)/2]. Observe that t — k+1 > k —ty. When ¢t > t; + 1, we have
t >k > to+1 and thus v, <7, holds from (34). By these relations, ;41 > 0, and summing
up the inequality (35) for ¢ = k,...,t, one has

(k —to)e(By) /A< (t =k +1)e(B) T/A < =1 S < g, VEZ T+ L

In view of this and the expression of 7,, we obtain that for all ¢ > ¢y + 1,

1

— i -« —1 1+«
* i 1+a ’)/to -+ A C()é(k — t(]) o o
< _— g = 9
By < (Alc(k - 750)) < A~ le(k — to) Tk = Ok (36)
1 11
Y+ A lca(k— +o
where 0, = (WO Xflc(kfi];) tO)) . Observe that 0 is non-increasing and 0 | 1 as k£ —

oo. For convenience, let To = to + 2A4/(cyfy). Claim that 6, < (1 + a)l%ﬂ whenever
t > T,. Indeed, fix any ¢ > T5. By this and the expression of k, one can observe that
k> to+ A/(cyi), which along with the expression of 6 implies that 6, < (1+ a)l%a holds
as claimed. Using this and (36), we conclude that

v

* L _ 1_
B < (1 + )™ (ipto41)/2) < €V (t4t041) /2] VE = T,

1
where the second inequality follows from (14 «)Ta < maxgsq6~? = ec.

Finally, by the expression of 7,, one can see that the relation eéit(t tio+1)/2) < € holds

if t > T3, where
1 «
€

It then follows that §; < e holds whenever ¢ > max{75,75} and hence (30) holds. This
completes the proof of statement (ii). [ |

2A

67
eattel

T3 =to+

The following lemma establishes the weak smoothness of the function 1% | Az — bl|}) for
p € (1,2] which has been used in Section 5.

Lemma 17 For p € (1,2], A € R™" and b € R™, the function ¢(x) = %HAJ:—ng
satisfies
IVé(2) = Vo)llo < My [z =yl Yo,y R,

9_ (p=1)(2=p) »
where M1 =2""Pm 2 ||Aly and ||Ally = max)z), <1 || Az
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Proof We first consider the univariate function g(7) = %Mp for 7 € R. Its derivative is
given by ¢'(7) = |7[P~1sign(r). Claim that
9(7) — g ()] < 2Fr 7P, vr € R, (37)

Indeed, it suffices to show that
ot — gl < Ja— P aPT 4 B <22 P (a - B)PY

for every a, 3 > 0. The first inequality follows from the fact (z + y)P~!1 < 2P~ 4 ¢yP~1
for z,y > 0 and the second one holds due to the concavity property [(a + 3)/2]P~! >
(aP~! 4 pP=1)/2. Hence, (37) holds as claimed.

Let h(z) = %HzHg for any z € R™. Notice that h(z) = Y " g(z), which together
with (37) implies that |[Vh(z) — VA(y)[l, < 2277 ||z — yHg_l. Also, observe that ¢(x) =
h(Az —b). Using these and ||z, < ||z|[, < m'/P=1/2|z||,, for any z € R™, we obtain that

IVe(x) = Vo)l < |A" ||, IVA(Az — b) — Vh(Ay = b)|l, < [|Ally [IVA(Az — b) — VA(Ay —b)]|,
< 2277 Al A — y)llp " < 22 Pm @O A, (| AG - )57
< 92 P = DC=P)/CP) | A ||z — y|B " .

Hence, the conclusion holds as desired. |
6.2 Proof of the Main Results in Section 3
In this subsection, we prove Theorems 5 and 7. Before proceeding, we establish a descent

property for the sequence {p(z¢)}.

Lemma 18 Let the sequences {x¢}, {6:} and {v:} be generated in Algorithm 1. Suppose
that Assumption 1 holds and that 6; > 0 for allt > 0.7 Then we have

1

1% (5,5 v
dymin < 1, , Vit >0. 38
1+v ! { <MV||wt—vt||1+”> } (38)

Proof By the Holder continuity of Vf (see (6)), we have

o(e41) < (o) —

F) < F@) 4 (V@) y =)+ 2 o=y, Veyedomg. (39

7. If 6; = 0 for some t > 0, x; is already a stationary point of problem (1) and Algorithm 1 shall be
terminated.
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By the convexity of g, and (39) with y = (1 — 7)z; + 7v; and & = x4, one can obtain that
for any 7 € [0, 1],

(1 = 71)at + Tup)
< f(@) +(Vf(xe), (1= 7) + Tvp — 31)
+9((1 — 1)z + TV1)

M, »
T+0 (1—7’)$t+7"l)t—£€t”1+

M,
< flz) — 7 (Vf(@e), 2 — o) + T 1+uv |z — UtHHV + (1 =71)g(zt) + 7g(ve)
= p(zy) — 76, + T |2y — v (40)
1 —i—
Letting 7 = 7 in (40), and using the expression of 7; and x;1, we obtain that for any ¢ > 0,
M,
p(ir1) < @) — e+ T+ e — vl

< p(z) —

1
5t min V) ’ .
{ M, cht—th o }

We are now ready to prove Theorems 5 and 7.

Proof of Theorem 5 Let the sequences {x;} and {v;} be generated in Algorithm 1. One
can observe that x;,vs € domg for all ¢ > 0. It then follows that ||z; — v¢|| < Dy. By this
and Lemma 18, one can obtain

1
12 . 51& v
o(wei1) < (1) — T V5t min {17 <W> } , Vt=>0. (41)

(i) It follows from (41) that {p(x)} is non-increasing, which, together with the fact
that p(z;) > ¢* for all t > 0, implies that ¢, = lim;_,o ¢(x¢) exists. In addition, one can
observe from (41) that the recurrence (27) holds for 5y = &, 1 = p(zt) — s, @ = 1/v,

1 1

1 14w
c=v/(14+v),and A= M) Dy" . The inequality (12) then directly follows from Lemma 15.
(ii) One can observe from (41) that the recurrence (27) holds for 8; = &y, ¢ = w(t) — ",

1 14y
a=1/v,c=v/(1+v), and A = My Dy . In addition, 5 > 7 due to Lemma 3. The
conclusion of this statement then immediately follows from Lemma 16 (ii). [

Proof of Theorem 7 Let the sequences {z;} and {v;} be generated in Algorithm 1. One
can observe that xy, v; € dom g for all t > 0. By this, the expression of §;, and Assumption 2,
one has

0 = (Vf(@e),x) + 9(we) = (V[ (), 00) = g(ve) 2 7 Sl —wlf, vEz0. (42)

Using this inequality, we can obtain that

5 1 5 1t+v 1ty 1 1+v 1t
¢ - <t) g 52‘7 S - <“) 7 52—7
M, ||z — v |7 My \ e — ve]|” - M, \p
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which together with (38) yields

1+v 171+V %
. kP "
o(xi1) < o(xe) — . d¢min ¢ 1, = , Vt>0. (43)
+v p e M,

(i) By (43) and a similar argument as in the proof of Theorem 5 (i), one can see that
{¢(x4)} is non-increasing and ¢, = lim;_,oo @(2¢) exists. In addition, one can observe from
(43) that the recurrence (27) holds for f; = ¢, 1t = p(zt) — s, a = (p—1—v)/(pv), c =

ltv © 1
v/(1+v),and A= (£) » M} . The inequality (13) then directly follows from Lemma 15.
(ii) Let « = (p — 1 —v)/(pv) and ¢ = v/(1 + v). One can observe from (43) that the

recurrence (27) holds for such a, ¢, B = 0, & = @(x¢) — ¢*, and A = (g)%ﬂ Ml,% Also,
B¢ > v due to Lemma 3. In addition, by v € (0, 1], p > 2, and the expression of «, it is not
hard to see that &« = 0 if and only if v = 1 and p = 2. Also, one can see from the expression
of ¢ and A that ¢ = 1/2 and A = 2M;/k when v = 1 and p = 2. The conclusion of this
statement then follows from these observations and Lemma 16. |

6.3 Proof of the Main Results in Section 4
In this subsection, we prove Theorems 9, 10, and 12.

Proof of Theorem 9 (i) For any 7 € [0, 1], by the convexity of g, the expression of d;,
and (15) with z = a4, y = (1 — 7)xy + 7v4 and € = 79, /2, one has

(1 —7T)xe + 7o) = fF(1 — 7y + 7o) + g((1 — 7))zt + Tvr)

< Fla) + (V). (L= Pyt 7o~ )+ DT 0y g 24 T

+9((1 = 7)zt + T01)
Sf@w—wwvﬂwxm—vw+7ﬂ*€“”H@—UM?+Q_TMQQ+TMWy+Z?
= o(z¢) — %T&g + 7‘2[/(7?/2) @ — o2

Letting 7 = Tt(i) in this inequality yields

o L(1"8,/2)
2

i 1 ¢ i
p(@) < p(x) — 706, + (717)

2
5 lze — ve]]”

Hence, (14) holds if

A : 2
Ly > L(r"8:/2) = max {L(5t/2)v L ( @ L 2) } ’ (44)
4Ly llze — vl

where the equality follows from the expression of Tt(i) and the fact that L(-) is non-increasing.

By (16), one can verify that

. 52 , 52 e
o o (T = Q”ZL<t2> ,
4L§Z) |2 — vy 4|z — ve]
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which together with (44) implies that

| . . 52 l;;u
LY > L(r96,/2) <= LY >max{ L(6,/2),L (tz = L.
4l — |

Hence, (14) holds if L\ > L,.

(ii) In the t-th outer iteration, let 7; > 0 denote the final iteration counter for the
adaptive line search loop, and let E;‘ = maxo<;<t EZ For t > 0 and s € {0,...,t}, we first
show that

Lo, <20 = Ly<2L:. (45)

Indeed, if is = 0, one can observe that Ly = Ls_1/2, which immediately implies that (45)
holds. Now we suppose ¢s > 0. It then follows that the adaptive line search loop fails
to terminate at the inner iteration i; — 1, which along with statement (i) implies that
Ls/2 = L™ < I,. Tt then follows that L, < 2L, < 2L¥. Hence, (45) holds as desired.
By these arguments, one can also observe that L; = L;_1/2 whenever ¢t ¢ T, where

T= {t€Z+2Lt_1 SQE?}

Due to this observation and the fact that Z}f > EQ > 0 for all ¢ > 0, the set 7 must be
nonempty. Then, {y = min{t : ¢t € T} is well-defined. Since ¢ € T implies ¢t + 1 € T due to
(45), we see that T = {fo, o + 1,...}. In addition, (45) implies 7 C {t € Z, : L, < 2L}}.
Hence, we obtain that

Ly < 2L, vt >t

To complete the proof, it suffices to show fy < (logy(L_1/Lo))+. Indeed, it holds trivially
if #p = 0. Now we suppose fo > 0. Recall that L; = L;_1/2 whenever ¢t ¢ T. It then follows
that Ly = Ly 1/2 for t =0,...,%y — 1. Hence, we have

Loy/2' =Ly o >2Lf | > 2L,

which yields #y < log2(£_1/zo). Thus, #o < (logy(L_1/Lo))+ holds as desired.
(iii) We first show L; < L(8;). Indeed, by (16) and the expression of Ly, one has

1—v 1—v 1—v
~ 1—v1 1+v _2 2(1 _1/) 2v ||xt _UtH v 1
L, = — M —_— My . 46
t maX{(l—l—V(st) v ’< 14+v > ( Oy v ( )

Since x¢,v¢ € dom g, one can observe that ||x; — v¢|| /0; < Dg/d; if dom g is bounded. Also,
if Assumption 2 holds, it follows from (42) that

1
e —vell _ (Nlwe — vl ™\ 7 o5t (P);l» 5ot
Oy Oy t T \K t

Then, L; < L(&) holds due to (46) and the last two inequalities. By this, mino<i<¢ 6; > €,
and the fact that L(-) is non-increasing, we obtain that

L = max L; < max L(;) < L(e).
0<i<t 0<i<t
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In addition, from the proof of statement (ii), we can observe that L, < max{L_;/2,2L}}
for all t > 0. Also, by the definition of iy, one can see that Ly = 2 'L,_; for s > 0, and
the total number of inner loops performed by the adaptive line search procedure until the
t-th iteration of Algorithm 2 is given by Zi:o(l +is). By these observations, one can have

t t

. LS Lt
d (i) =) <2+log2L 1) :2(t+1)+10g2i

s=0 s=0 =

max{L_1/2,2L¢}
L4

<2(t+1) + logy < 2t + 2+ [logy(2L(e)/L-1)]4+,
and hence the conclusion holds. |
Before proving Theorems 10 and 12, we establish a lemma that will be used shortly.

Lemma 19 Let the sequences {zi}, {6:} and {vi} be generated in Algorithm 2. Suppose
that Assumption 1 holds and that & > 0 for all t > 0. Let to = [(logy(L-1/Lo))+],
8f = ming<;<¢ &, and Ly and L(-) be defined in (17) and (18), respectively. Then it holds
that

*

5 ~
o(xi1) < o(ay) — Zt min{1,C;}, Vt > to, (47)

where

1 0;
i > 0. (48)

C = — min , Vt>
C2L(57) 0%ist g — il

Proof One can observe from Algorithm 2 that

. 1) 1 1
T = min {1, 152} s p(xeg1) < p(ay) — =70 + thTf ||z — vt|]2 , Vt>0.
2Ltth_UtH 2 2
It then follows that
o . ¢
oleein) < oo~ Lmin {1, — 21 ysg (49)
4 L ||z¢ — v

Recall from the proof of Theorem 9 (iii) that Ly < L(&;) for all ¢ > 0. Using this, Theo-
rem 9 (ii), 6 = ming<;<¢ &, and the monotonicity of L(-), we have

L, <2 L <2 L(8;) = 2L(5* t> 1.
t <2 max L; <2 max (6:) (67), Vt>to

The conclusion then follows from this, (49), and §; = ming<j<¢ ;. [ ]

We are now ready to prove Theorems 10 and 12.

Proof of Theorem 10 One can observe that x;,v; € domg. It then follows that
|zt — v¢]| < Dy for all t > 0. By this and §; = ming<;<¢ ;, one has
0 of

— > —, V0<i<t. (50)
|z —vi||* ~ Dj
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Let C; be defined in (48). We next bound Cy from below by considering two cases in view
of the definition of L(-) in (18).
1—v

_ = |
Case 1) L(0}) = (2(11;:)> My (?—;) " . By this, (48) and (50), we obtain that

1—v 1—v 1—v 1

1/20—v)\ 2 _ —1/D,\ v & i (1w 5F v
c,>- (2= M, (=2 L =97 —*t—) =D
t—2< 1+v ) (&) Dz (Hv) (MVD;” t

1—

Case 2) L(6}) = (i_—;j%) "

1-v 1—v 2
1/1—-v 1\ ™ -2 §¥ 1 /1—v\ 1+ oF T+ 2v
C > — —_— M I+v | t — 715 :D1+u‘
t_2<1+l/5f) v D?] 2<1+y> <MVD;+” t
2v

Combining these two cases, and using (18) and (48), we conclude that C; > min{D;, D™ }.
By this and 2v/(1 + v) < 1, one can observe that

v oz
" M,*". By this, (48) and (50), one has

min{1,C¢} > min{1, D;}, Vt>0.

In view of this, (47), and the expression of Dy, one has

1—v 1
(Szk . _14v 1—v\ 2v (5; v
< - — 1,272 — 1
o(ze1) < p(xy) o nin { 272 (1 n y> (MVD;+V> } ;

1
of . of v ~
< o(xy) — - min {1, (W) } .Vt =, (51)
. . . 1+v 1+1 1—v
where the last inequality is due to 2722- < 272" and 1 < 1.

(i) It follows from (49) that {¢(x¢)} is non-increasing, which, together with the fact
that () > ¢* for all t > 0, implies that ¢, = lim; o @(x¢) exists. In addition, one can
observe from (51) that (27) holds for g; = 5;50, Y = (T 1q,) — P, @ =1/v, c=1/4, and
A= (ZMZ,D;"H’)%. The inequality (19) then directly follows from Lemma 15.

(ii) One can observe from (51) that (27) holds for 8; = 5:+t~0, Y = (rpg,) " a=1/v,

c=1/4,and A = (QMZ,D;J”’)%. In addition, by Lemma 3, and the monotonicity of {¢(z)},
one has
* — : ) > : . _ * — _ * > .
0; = min 6; > min {o(zi) — "} =plz) —¢", VE>0
Hence, B, > v, for all t > 0. The conclusion of this statement then follows from Lemma 16 (ii).
|

Proof of Theorem 12 It follows from (42) and J; = ming<;<; 0; that

2 2 2
6i 61 P 1-2 AW 1-2 K\ P 1-2 .
= 6. P>(=) 6 ?>|= 0y) T, VYO<i<t. 52
- <||xi—vi||'3> i —(p> i —<p> %) (52)

Let C} be defined by (48). We next bound Cy from below by considering two cases in view
of the definition of L(-) in (18).
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1—v

_ v
Case 1) L(6;) = (2(11;/")) My (n(ét*gp—1> "’ . By this, (48) and (52), we obtain that

1—v 1—v 2
1/2(1-v)\ 2 -1 P T K\ P, 12
Sl e Sl v X
o3 (57) T ) T (5) e

1

p=(4v) | ¥

o— Lt <1—y>_1’;j (%) Lo(oF) e B

2
Case 2) L(6}) = (i%ﬁ%) " M. By this, (48) and (52), one has

1—v 2
1/1—-v 1)\ 1+ 2 K\ » 1-2
Cy > = — M, " = oF
t_2<1+v52‘> Y <P> @y
2
B 1ty p—(1+v) T+v
1/1—v\ 15 (%) To(of) B
T2 \1+v M, St

2u
Combining these two cases, and using (18) and (48), we conclude that C; > min{Ey, E,"" }.
By this and 2v/(1 + v) < 1, one can observe that
min{1,C¢} > min{1, E;}, Vt>0.

In view of this, (47), and the expression of E;, one has

o(xer1) < p(at) — Zmin 1,272

., p—(1+v) T ¥
of 1ty (1—1/)12v (%) ’ (67) 7

1+v M,
L p=(1+v) 7 v
s | 1(5) 7 e )
< p(xy) — - min 1, i , V>, (53)
12

where the last inequality is due to 2% < 2% and % <1.

(i) In view of (49) and p(z:) > ¢* € R, the sequence {¢(x¢)} is non-increasing and

Vi« = limy_o0 p(a¢) exists. In addition, one can observe from (53) that (27) holds for

Lty 1

Bi= 6 = 9(@agy) — 9o = (p— 1= )/ (pw), ¢ = 1/4, and A = (£)'% (2M,)%.
The inequality (20) then directly follows from Lemma 15.

(ii) One can observe from (53) that (27) holds for f; = 51;{0, 7 = o(T1q,) — ¢

1+v
a=(p—1-v)/(pv),c=1/4, and A = (&) (2M,,)%. The rest of the proof is the same
as that of Theorem 10 (ii). [
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7 Concluding Remarks

In this paper we first analyzed iteration complexity of a parameter-dependent conditional
gradient method for solving problem (1), whose step sizes depend explicitly on the problem
parameters. We then proposed a novel parameter-free conditional gradient method for
solving (1) without using any prior knowledge of the problem parameters and showed that
it enjoys the same order of iteration complexity as the the parameter-dependent conditional
gradient method. Preliminary numerical experiments demonstrate the practical superiority
of our parameter-free conditional gradient method over the other variants.

It shall be mentioned that our proposed method requires a pre-specified norm and thus
it is norm-dependent. In contrast, some existing conditional gradient methods (e.g., Jaggi,
2013; Lacoste-Julien, 2016; Pena, 2022) are norm-independent. It would be interesting to
develop a parameter-free but norm-independent conditional gradient method achieving the
same complexity bounds as obtained this paper for solving (1). This is left for future
research.
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