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Abstract

Langevin algorithms are gradient descent methods augmented with additive noise,
and are widely used in Markov Chain Monte Carlo (MCMC) sampling, opti-
mization, and machine learning. In recent years, the non-asymptotic analysis
of Langevin algorithms for non-convex learning has been extensively explored.
For constrained problems with non-convex losses over a compact convex domain
with IID data variables, the projected Langevin algorithm achieves a deviation of
O(T~*(log T)*/?) from its target distribution [27] in 1-Wasserstein distance. In
this paper, we obtain a deviation of O(T~'/21log T') in 1-Wasserstein distance for
non-convex losses with L-mixing data variables and polyhedral constraints (which
are not necessarily bounded). This improves on the previous bound for constrained
problems and matches the best-known bound for unconstrained problems.

1 Introduction

Langevin algorithms can be viewed as the simulation of Langevin dynamics from statistical physics
[14]. They have been widely studied for Markov Chain Monte Carlo (MCMC) sampling [37],
non-convex optimization [5, 23] and machine learning [43]. In the statistical community, Langevin
methods are used to resolve the difficulty of exact sampling from a high dimensional distribution. For
non-convex optimization, the additive noise assists the algorithms to escape from local minima and
saddles. Since many modern technical challenges can be cast as sampling and optimization problems,
Langevin algorithms are a potential choice for the areas of adaptive control, deep neural networks,
reinforcement learning, time series analysis, image processing and so on [4, 10, 29].

Related Work. In recent years, the non-asymptotic analysis of Langevin algorithms has been
extensively studied. The discussion below reviews theoretical studies of Langevin algorithms for
MCMC sampling, optimization, and learning.

The non-asymptotic analysis of Langevin algorithms for approximate sampling (Langevin Monte
Carlo, or LMC) began with [16, 17], with more recent relevant work given in [3, 4, 10, 13, 19, 22,
28, 30, 32-34, 42, 46]. Most works on LMC consider log-concave target distributions, though there
exists some work relaxing log-concavity [10, 13, 33, 34, 42] and smoothness of the target distribution
[13, 28, 34]. Most LMC work focuses on the unconstrained case.
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Constrained problems are less studied, but a variety of works have begun to address constraints in
recent years. The work [8, 9] analyzes the case of log-concave distributions with samples constrained
to a convex, compact set. Other methods derived from optimization have been introduced to handle
constraints, such as mirror descent [1, 25, 26, 45] and proximal methods [7].

Pioneering work on non-asymptotic analysis of Langevin algorithms for unconstrained non-convex
optimization with IID external data variables was given in [35], which was motivated by machine
learning applications [43]. Since then, numerous improvements and variations on unconstrained
Langevin algorithms for non-convex optimization have been reported [10-12, 21, 44].

The work [41] examines the Unadjusted Langevin Algorithms without convexity assumption of
the objective function and achieves a convergence guarantee in Kullback-Leibler (KL) divergence
assuming that the target distribution satisfies a log-Sobolev inequlity. However, KL divergence
is infinite with the deterministic initialization. To mitigate this pitfall, our work measures the
convergence bound in 1-Wasserstein distance, which allows the initial condition to be deterministic.

The first analysis of Langevin algorithms for non-convex optimization with IID external variables
constrained to compact convex sets is given in [27], and builds upon [8, 9]. However, the convergence
rate derived in [27] is rather slow since it uses a loose result on Skorokhod problems in [40]. Recent
work of [39] obtains e-suboptimality guarantees in O(e‘l/ 3). However, some extra work would be
required to give a direct comparison with the current work, as the results in [39] depend additionally
on the spectral gap, which is not computed here.

Most convergence analyses for constrained non-convex optimization require no constraints or bounded
constraint sets and IID external random variables or no external variables. In practice, the boundedness
of constraint sets and the dependence of external variables do not always hold. The work [10] gives
non-asymptotic bounds with L-mixing external variables and non-convex losses, which achieves tight
performance guarantees in the unconstrained case. In contrast, our work gets a tight convergence
bound (up to logarithmic factors) with L-mixing data streams and applies to arbitrary polyhedral
constraints, which may be unbounded.

Contributions. This paper focuses on the non-asymptotic analysis of constrained Langevin algo-
rithms for a non-convex problem with L-mixing external random variables and polyhedral constraints.
We show the algorithm can achieve a deviation of O(T~'/?log T') from its target distribution in
1-Wasserstein distance in the polyhedral constraint and with dependent variables. The result from [10]
on unconstrained Langevin algorithms with L-mixing external random variables gives a deviation
of O(T~'/?(logT)'/?), and so we see that our results match, up to a factor of (logT")'/2. For
constrained problems, our general polyhedral assumption is not directly comparable to related work
of [27], which examines compact convex constraints, and [39], which examines bounded non-convex
constraints. In the cases where the domains and random variable assumptions match (i.e. bounded
polyhedra with IID external random variables or no external random variables), our paper gives the
tightest bounds. In particular, this improves on the bound from [27], which gives a deviation of
O(T~/*(log T)'/?) with respect to 1-Wasserstein distance.

A key enabling result in this paper is a new quantitative bound on the deviation between Skorokhod
problem solutions over polyhedra, which gives a more explicit variation of an earlier non-constructive
result from [18]. Additionally, we derive a relatively simple approach to averaging out the effect of
L-mixing random variables on algorithms.

2 Problem Setup

2.1 Notation and terminology

R denotes the set of real numbers while N denotes the set of non-negative integers. The Euclidean
norm over R” is denoted by || - ||

Random variables will be denoted in bold. If x is a random variable, then E[x] denotes its expected
value and £(x) denotes its law. IID stands for independent, identically distributed. The indicator
function is denoted by 1. If P and () are two probability measures over R", then the 1-Wasserstein
distance between them with respect the Euclidean norm is denoted by W1 (P, Q).



The 1-Wasserstein distance is defined as:

P = inf — I
Wi(PQ) = it | o= yldrey)

where € is the couplings between P and Q).

Let IC be a convex set. (In this paper, we will assume that K is polyhedral with 0 in its interior.) The
boundary of K is denoted by K. The normal cone of K at a point x is denoted by Ny (x). The
convex projection onto K is denoted by Ilx.

Let Z denote the domain of the external random variables zy.

If F and G are o-algebras, let F \V G denote the o-algebra generated by the union of F and G.

2.2 Constrained Langevin algorithm

For integers k let Wy, ~ A(0, I') be IID Gaussian random variables and let zy, be an L-mixing process
whose properties will be described later. Assume that z; is independent of w; for all ¢, j € N.

Assume that the initial value of xg € K is independent of z; and W ;. Then the constrained Langevin

algorithm has the form:
2n .
X1 = e | Xp — Vo f (Xp, 21) + AR (1)

with £ an integer. Here > 0 is the step size parameter and S > 0 is the inverse temperature
parameter. In the learning context, f(x, z) is the objective function where x are the parameters we
aim to learn and z is a training data point.

2.3 L-mixing processes

In this paper, we assume that z, is a sequence of external data variables. The class of L-mixing
processes was introduced in [24] for applications in system identification and time-series analysis,
and gives a means to quantitatively measure how the dependencies between the z; decay over time.
Formally, L-mixing requires two components: 1) M-boundedness, which specifies a global bound on
the moments and 2) a measure of the decay of influence over time.

A discrete-time stochastic processes zy is M-bounded if for all m > 1

M (z) = sup EY/™ lzx|I™] < oo. 2)
k>0

Let F}, be an increasing family of o-algebras such that z, is F;-measurable and F, ,j be a decreasing
family of o-algebras such that 7}, and F, ,j are independent for all £ > 0. Then, the process zy is
L-mixing with respect to ((Fy) , (F;")) if it is M-bounded and

U,,(z) = Z?/)m(T,Z) < 00 (3a)
7=0
with .
Um(T,2) = 2lip]E1/m [lze — E [z ][] - (3b)

For a concrete example, consider the order-1 autoresgressive model:

Zipt1 = azg + &g 4)

where « is a constant with |a| < 1 and for all k& € Z, &, are IID standard Gaussian random variables
and z; € Z, where Z = R in this case. It can be observed from (4) that

Zp — Za]£k7] (5)
7=0

Then, if we specify 7, = 0{¢; : i <k} and F;” = o{€, : i > k}, it can be verified that zy, satisfy
(2) and (3) and so is an L-mixing process.



2.4 Assumptions

We assume that V. f(x,z) is ¢-Lipschitz in both x and 2. In particular, this implies that
IVaf(21,2) = Vo f (w2, 2)|| < U2y — @2l and [|Va f (2, 21) = V (2, 22)|| < L|z1 — 22]].

We assume that z, is a stationary L-mixing process, and let f(x) = E[f(x,z,;)] denote the function
which averages f(z,z;) with respect to z;.

Further, we assume that f(x) is u-strongly convex outside a ball of radius R > 0, i.e. (71 —
z2) " (Vf(z1) = V(z2)) > plar — 5| for all 1, 2y € K such that ||z — 25| > R.

We assume that the initial second moment is bounded above as E[||x]|?] < ¢ < oo.

Throughout the paper, K will denote a polyhedral subset of R with 0 in its interior.

3 Main results

3.1 Convergence of the law of the iterates

For f defined above, the associated Gibbs measure is defined by:

_ fAﬂ]C e_Bf(z)dx

[ e Pr@dr ©

ms7(A4)
The main result of this paper is stated next:

Theorem 1. Assume that n < min {i, ﬁ}, IC is a polyhedron with 0 in its interior, xg € K, and

E[||x0]|?] < s. There are constants a, c1, ca, c3, and ¢, such that the following bound holds for all
integers k > 4:

Wi(L(xk), m57) < (€1 4 cav/S)e ™ + (e3 + cav/5)y/nlog(n1).

In particular, if n = 1;517:, T>4and T > €22, then

_ 3+ ca/S —1/2
Wi(L(xr),m57) < <C1 +e2v/S + (2@)1/2) T=/"logT.

Furthermore, the constants, c1, ca,cs, and cq are O(n) with respect to the dimension of xj, and
_ BeR?
4

2
O(e*P1°/2) with respect to the inverse temperature, 3. And for all 3 > 0, a > ﬁe
2 "

The constants depend on the dimension of xj, n, the noise parameter, 3, the Lipschitz constant, ¢, the
strong convexity constant u, the variance bound of the initial states, ¢, and some geometric properties
of the polyhedron, .

The constants shown in Theorem 1 are described explicitly in Appendix H.

3.2 Auxiliary processes for convergence analysis

Similar to the previous analyses of Langevin methods, e.g. [9, 10, 27, 35], the proof of Theorem 1
uses a collection of auxiliary processes fitting between the algorithms iterates from (1) and a stationary
distribution given by (6).

The algorithm and a variation in which the z, variables are averaged out are respectively given by:

m .
Xf‘+1 = Ik (Xf - anf(xtA, z) + gwt) (7a)
) - / 2n
xp1y =Tk (xtM —nVa f(xM) + ;wt> : (7b)

Here xtA represents the Algorithm, while x represents a corresponding Mean process.



We embed the mean process in continuous time by setting xM = xf‘fj, where |t| indicates floor

function. The Gaussian noise Wy, can be realized as W = W1 — Wi where w; is a Brownian
motion.

Let x{ denote a Continuous-time approximation of x/ defined by the following reflected stochastic
differential equation (RSDE):

dx{ = -V, f(xO)dt + 4/ %dwt —vauC(t). (8)

Here — [y v€dpC (s) is a bounded variation reflection process that ensures that x{’ € K for all t > 0,

as long as x§ € K. In particular, the measure u© is such that 4 ([0,¢]) is finite, u© supported
on {s]x¢ € 0K}, and v¥ € Nx(x¢) where Ni(x) is the normal cone of K at z. Lemma 10 in
Appendix A shows that the reflection process is uniquely defined and x€ is the unique solution to the
Skorokhod problem for the process defined by:

c_ .C 2j . ‘ 71 C
yi =xq + 5w ; Vi f(xg)ds. )

See Appendix A for more details on the Skorokhod problem.

For compact notation, we denote the Skorokhod solution for a given trajectory, y, by S(y). So,
the fact that x© is the solution to the Skorokhod problem for y© will be denoted succinctly by
x¢ = S(yY).

The basic idea behind the proof is to utilize the triangle inequality:
Wi(L(xi0), map) < WiL(xi), L) + Wi (L(xK), m57)- (10)
and then bound each of the terms separately.

The second term is bounded by the following lemma:

Lemma 2. Assume that xo € K and E[||x§||?] < s. There are positive constants a, ¢, and cy such
that forallt > 0

Wi(L(x{),m57) < (c1 4 c20/<) e

This result is based on an extension of the contraction results from Corollary 2 of [20] for SDEs to
the case of the reflected SDEs. Appendix D steps through the methodology from [20] in order to
derive a, ¢; and ¢, for our particular problem.

Most of the novel work in the paper focuses on deriving the following bound on Wy (£(x1}), £(x$)):

Lemma 3. Assume that x§} = x§ € K, E[||x{||?] <<, and n < min {7, &z }. Then there are
positive constants cs and cy such that for all integers k > 0:

Wi(L(xi), £(x5)) < (€3 + cay/S) V/nlog(n~1).

Proof of Theorem 1 Plugging the results of Lemmas 2 and 3 into the triangle inequality bound

from (10) proves the first result of the theorem. Specifically, let n = 1;’57? , then
_ logT 2aT
WA(L(xr), m37) < (1 + 2T + (03 + e/ oo log (107

<(c1 + cz\ﬁ)T_l/Q logT + CS+AET_1/2 logT.
(2(1)1/2

This gives the specific bound in the theorem. The last inequality utilizes the fact that log T > 1 for

allT > 4 and li‘g? < T when T > e3¢,

Furthermore, we examine the bounds of the constants ¢y, c2, c3, ¢4 and a in Appendix H, where
the dependencies of the convergence guarantee on state dimension n and the inverse temperature
parameter, 3 can be observed directly. ]

The rest of the paper focuses on proving Lemma 3.



3.3 Proof overview for Lemma 3

This subsection describes the main ideas in the proof of Lemma 3. The results highlighted here, and
proved in the appendix, cover the main novel aspects of the current work. The first novelty, captured
in Lemmas 4 and 5, is a new way to bound stochastic gradient Langevin schemes with L-mixing
data from a Langevin method with the data variables averaged out. The key idea is a method for
examining a collection of partially averaged processes. The second novelty is a tight quantitative
bound on the deviation of discretized Langevin algorithms from their continuous-time counterparts
when constrained to a polyhedron. This result is based on a new quantitative bound on Skorokhod
solutions over polyhedra.

First we derive time-dependent bounds (i.e. bounds that depend on k) for W1 (L£(x;}), £(x{')) . This
is achieved by introducing a collection of intermediate processes and bounding their differences.
Time-uniform bounds are then achieved by exploiting contractivity properties of x¢'.

To bound W1 (L£(x3), L(x')), we first use the triangle inequality:
Wi(L(x), £(xi)) < WiL(xi), L") + WL, L(xF)). (11)

We bound Wy (L£(x2), £L(xM)) via a collection of auxiliary processes in which the effect of zj, is
partially averaged out. We bound W1 (L(xM), £(x{')) via a specialized discrete-time approximation

of x¢.

Now we construct the collection of partially averaged processes. Recall that z; € Z is a stationary
L-mixing process with respect to the o-algebras F, and F, . For k < 0, we set Fj, = {0, Z}, i.e.
the trivial o-algebra. Let G; be the filtration generated by the Brownian motion, w;.

Recall that for £ € N, we set W, = wj+1 — wWy. Define the following discrete-time processes:

s 2n
xpy = T (xﬁ“ — [V f (" 2) | Frms V Gi] + \/”wk) (12)
ety = Tk <Xk — B[V f(xp%, 20) | Froms—1 V Gr] + \/7 > (12b)
Assume that all initial conditions are equal. In other words, x{' = x}! = XO = xO , for all
s > 0. The iterations from (12a) define a family of algorithms in which the data variables are partlally

averaged, while ka ** from (12b) corresponds to an auxiliary process that fits between szu,s and

JW s+1

X}, . (Here “A” stands for algorithm, “M” stands for mean, and “B” stands for between.)
Note for s = 0, we have that xfgwo = xk and for s > k, we have that xiu M x{y.

So, in order to bound Wi (L(x), £(x})), it suffices to bound Wi (L(xpy ), £(x;)) and

Wl(ﬁ(ka’s),L(x,iVI’s'H)) for all s > 0. These bounds are achieved in the following lemmas,
which are proved in Appendix E.

Lemma 4. Forall s > 0 and all k > 0, the following bound holds:
Wi (L6, L)) < Ellxt™ = x| < 260 (s, 2V

Lemma 5. Forall s > 0and all k > 0, the following bound holds

Wi (L) L6 ) < Bl — < 2tua(s VR (e - 1).

Now we define the discretized approximation of x¢. For any initial x}’ € K, we define the following
iteration on the integers:

k+1
_ om
XkD+1 = HIC(XkD + ykcﬂ — ykc) =TIk (ka + : Vf(xg)ds + 4/ Bwk) )

Recall that the process y© is defined by (9).



Provided that x} = x§, we have that x” = S(y”) = S(D(y®)), where D is the discretization
operator that sets D(x); = x4 for any continuous-time trajectory x;. Recall that S is the Skorokhod
solution operator.

The approximation, xP, was utilized in [9, 27] to bound discretization errors. The next lemmas show
how to bound W1 (£(x$), £(x2)) and W1 (L(x), L(xP)), respectively. In particular, Lemma 6 is
analogous to Propositions 2.4 and 3.6 of [9] and Lemma 9 of [27]. These earlier works end up with
bounds of O(1*/*k'/? + \/nlogk). It is shown in [27] that such bounds can be translated into time-
uniform bounds of the form O(n'/4). The bound from Lemma 6 is of the form O(nk'/? + \/nlogk),
and we will see in the next subsection that this leads to a time-uniform bound of the form O(nl/ 3.

Lemma 6. Assume that K is a polyhedron with O in its interior. Assume that Xg =xb € K and

that B[||x§||] < <. There are constants, cs, cs and c; such that for all integers k > 0, the following
bound holds:

Wi (L(x(), L) < E[IIx —xi[l] < (es + cov/Q) nVk + er/nlog(4k).

Lemma 7. Assume that K is a polyhedron with 0 in its interior. Assume that x§ = xP = x} € K
and that E[||x§||] < . Then for all integers k > 0, the following bound holds

Wy (L6, L)) < E [l —xPI] < ((e5 + eov/a) v + ery/loa(ah) ) (e — 1)

We highlight that Lemma 6 utilizes the rather tight bounds on solutions to Skorokhod problems over
a polyhedral domain shown in Theorem 9. The derivation of such tight bounds is one of the novelties
of our work. More details will be discussed in Section 4 and Appendix A.

With all of the auxiliary processes defined and their differences, we have the following lemma, which
gives a time-dependent bound on W1 (£(x1)), £(x$)):

Lemma 8. Assume that K is a polyhedron with 0 in its interior. Assume that x{' = x§ € K and that
E[||x4||]] < s. There are constants, cg, c7 and cg, such that for all k > 0, the following bound holds:

WAL, £)) < ((es + cov/e) nVF + er/ilog(4k) ) e

0 M,k+1

Proof of Lemma 8 Recalling that xi,w = x? and x;; = x7 and using the triangle inequality

gives:

< 30 (WAl ), £67%)) + WaL ("), L5

s=0

Lemmas 4 & 5

k
ST S 25, 2y e
s=0

< 200, (2)nVke"F. (13)

Here (s, z) and W5(z) are the terms that bound the decay of probabilistic dependence between the
z;. variables, as defined in (3).

Similarly, we bound

Wi(L(xy"), L(x))

< WL, £(xi)) + Wi(L(x1), £(x))

et T (5 + cov/@mvE + ery/nlog(ak) ) e, (14)
Plugging the bounds from (13) and (14) into (11) proves the lemma, with cg = ¢5 + 20U5(z). W

The proof of Lemma 3 is completed by showing how the time-dependent bound from Lemma 8 can
be turned into a bound that is independent of k. The technique used for this step is based on ideas
from [10], and is shown in Appendix G.



4 Quantitative bounds on Skorokhod solutions over polyhedra

In this section, we present a result that enables our new bound between the continuous-time process
x¢ and the discretized process x} when constrained to the set K defined by:

K ={z|laj z <b;fori=1,...,m}, (15)

where a; are unit vectors.

As discussed in Section 3.3, the bound in Lemma 6 improves upon the corresponding results in
earlier works [9, 27]. The improvement arises from the use of Theorem 9 below, which utilizes
the explicit polyhedral structure of X to achieve a tighter bound than could be obtained for general
convex constraint sets. It is a variation on an earlier result from [18]. The main distinction is that the
proof in [18] is non-constructive, and so there is no way to calculate the constants, whereas the proof
in Appendix A is fully constructive and the constants can be computed explicitly.

Theorem 9. There are constants cy and o € (0,1/2] such that if © = S(y) and ' = S(y') are
Skorokhod solutions on the polyhedral set KC defined by (15), then for all t > 0, the following bound
holds:

sup [lzs — ]| < (co + 1) sup [lys — ll.
0<s<t 0<s<t

1 rank(A)/2
Cg — 6 a

.
and A =[a1 ---an] whose rows are the a;'— vectors.

Here

5 Limitations

Our current work is restricted to polyhedral sets. In particular, Theorem 9 requires the polyhedral
assumption, and it is unclear if Skorokhod problems satisfy similar bounds on any more general
classes of constraint sets. As a result, it is unclear if our main results on projected Langevin algorithms
can be extended beyond polyhedra. We also only considered constant step sizes, but in many cases
decreasing or adaptive step sizes are used in practice. Finally, the dependence of the external data
variables is limited to the class of L-mixing processes, which does not include all the real-world
dependent data streams. Furthermore, it can be difficult to check that a data stream is L-mixing
without requiring strong assumptions or knowledge about how it is generated.

6 Conclusions and future work

In this paper, we derived non-asymptotic bounds in 1-Wasserstein distance for a constrained Langevin
algorithm applied to non-convex functions with dependent data streams satisfying L-mixing as-
sumptions. Our convergence bounds match the best known bounds of the unconstrained case up
to logarithmic factors, and improve on all existing bounds from the constrained case. The tighter
bounds are enabled by a constructive and explicit bound on Skorokhod solutions, which builds upon
an earlier non-constructive bound from [18]. The analysis of L-mixing variables followed by a
comparatively simple averaging method. Future work will examine extensions beyond polyhedral
domains, higher-order Langevin algorithms, alternative approaches to handling constraints, such as
mirror descent, and more sophisticated step size rules. More specifically, future work will examine
whether the projection step, and thus Skorkhod problems, can be circumvented by utilizing different
algorithms, such as those based on proximal LMC [7]. Additionally, applications to real-world
problems such as time-series analysis and adaptive control will be studied.
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A Background and results on Skorokhod problems

In this section, we will show that when the domain is a polyhedron, rather tight bounds on solutions
to Skorokhod problems can be obtained.

A.1 Background on Skorokhod problems

Let K be a convex subset of R” with non-empty interior. Let y : [0, 00) — R™ be a trajectory which
is right-continuous with left limits and has yo € K. For each 2 € R™, let Nx:(x) be the normal cone
at z. Then the functions z; and ¢, solve the Skorokhod problem for vy, if the following conditions
hold:

cxy =y + ¢ € Kforallt € [0,T).

* The function ¢ has the form ¢(t) = — fg vsdp(s), where ||v,|| € {0,1} and vs € Ni(z5)
for all s € [0,T), while the measure, y, satisfies 1([0,7")) < oo for any T > 0.

It can be shown that if a solution exists, it is unique. See [40]. However, existence of solutions
typically relies on extra requirements beyond just convexity. For example, [40] showed the existence
of solutions in the case that y is continuous and K is compact. Below, we will utilize results from [2]
to prove existence in the case that KC is a polyhedron. Whenever solutions are guaranteed to exist,
uniqueness implies that we may view the Skorokhod solution as a mapping: = = S(y).

A.2 Existence of solutions over polyhedra

The following is a consequence of Theorem 4 from [2].

Lemma 10. Let IC be a polyhedron with non-empty interior. If y; is a trajectory in R™ which is
right-continuous with left-limits, then x = S(y) exists, is unique, and is right-continuous with
left-limits.

Proof To verify the conditions of Theorem 4 from [2], we just need to show that K satisfies
condition 3 of that paper, which states that there exist constants € > 0 and § > 0 such that for all
x € OK, there exist o € K such that ||z — x| < d and {y]||y — xo|| < €} C K. We will show how
to construct ¢, §, and we will see that a suitable vector, x(, exists for any x € K.

Note that since K is a polyhedron, there are vectors uq, . .., u, such that z € K if and only if it can
be expressed as
k P
i=1 i=k+1

with \; > Ofori=1,...,pand Zle A = 1. See [38]. (If p = k, then K is a compact polytope,
while if k = 0, then K is a convex cone.)

Let 2* be an arbitrary point in the interior of K and let € > 0 be such that {y||ly — z*|| < €} C K.
Pick § such that ||u; — 2*|| < fori =1,..., k.
Forany z = Y7, \iu; € K, letzo = 2* + >0, | Adju;. It follows that

k
E /\iui — J’J*
i=1

k
Z /\1 (ul — .13*)
i=1

k
< Aillui — 2|
=1

|z — 2ol =

<

IN
=]



Also, if y € {y|||ly — zoll < €}, then there is a vector, v, with ||v|| < €, such that

y=z0+0=(a"+0) Z it
i=k+1

Now note that * + v € K, so there must be numbers A, > 0 such that Zle A, =1 and
z* +v=>" Mu,. It follows that

y—ZAuer Z Aitg = Z)\/Uz‘f' Z (Ai + A € K.

i=k+1 i=k-+1

A.3 Proof of Theorem 9

In this subsection, we provide a short proof of Theorem 9. A supporting Lemma is firstly presented
to complete the proof.

The technical work in this subsection relies on some notation about the vectors defining K from
(15). Let A=[a; --- am]T be the matrix whose rows are the a, vectors. For Z C {1,...,m}
let A7 be the matrix whose rows are a; fori € Z. Let [Wz Vz] be an orthogonal matrix such
that N'(Az) = R(Wz). Here N'(Az) denotes the null space of A7 and R(Wz) denotes the range
space of Wz. Let Pr = VVIVVIT , which is the orthogonal projection onto N'(Az). We will use the
convention that Ay is a 1 X n matrix of zeros, so that N'(Ap) = R™, and thus Py = I.

The following lemma is a quantitative and explicit version of Theorem 2.1 of [18]:

Lemma 11. If K is a polyhedron defined by (15), then there is a compact, convex set B with
0 € int(B) such that if z € B, v € Np(z), and a; is a unit vector from (15) with a/ v # 0, then

L |a) 2| > 1
2. sagn(aTz) = blgn(ajT v).

Furthermore, the diameter of B is at most cg, defined by

rank(A)/2
1
“= 6 ()
(&%

1 . .
a= len{”PIajHQ‘Pzaj #0,ZC{l,...,m}, j€ {1,...,m}},

where

and o € (0,1/2].

A non-constructive proof of the existence of B was given in [18]. While that paper shows that B is
compact, it does not quantitatively bound its diameter. The diameter of B is precisely the quantity
that is used to bound the difference between Skorokhod solutions.

Proof of Theorem 9. Theorem 2.2 of [18] shows that if a compact convex set with 0 € int(B)
satisfying conditions 1 and 2 exists, then
sup |lzs — 2%|| < (diameter(B) + 1) sup |lys — v%]|.
0<s<t 0<s<t

The result now follows since cg is an upper bound on the diameter of the set B constructed in
Lemma 11. ]

Proof of Lemma 11. We will focus on constructing a compact, convex B with 0 € int(53) which
satisfies condition 1. Lemma 2.1 of [18] shows that condition 2 must also hold. (Note that the sign is
opposite of what appears in [18], because that paper examines inward normal vectors, while we are
examining outward normal vectors.)
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We will find numbers € € (0,1) and rz € (0,1) forZ C {1,...,m} such that
B = {z||Prz| < e 'rrforZ € {1,...,m}}

has the desired properties. By construction, B is compact and convex, 0 € int(B), and the diameter
is at most 2¢~1ry < 271, since every x € B satisfies | Pyz| = ||z|| < e 'rg. Furthermore,

B = ¢ '3, where R
B = {z||Prz|| < rg forZ C {1,...,m}}.

A similar construction for B was utilized in [18]. The main distinction is that this proof will give an
explicit procedure for determining the values of € and 7.

Note that z € B if and only if e "'z € B, z € dB if and only if e 'z € OB, and Ny(z) = Np(et2).
Thus, Condition 1 holds for B if and only if

z€ 0B, ve Ny(z), and a;-rv #0 = \a;-rz| >e>0. (16)

Note that if 2 € 913, then
Ny () = cone{ Prx|||Prx| = r}

= Z M Prz|Ar > 0% . (17)

{Zll Przl|=rz}
See Corollary 23.8.1 of [38].

The representation in (17) implies that if z € dB,v e N B(x), and aij # 0, then there must be a

set Z such that, | Prz|| = rz, Az > 0, and a] Pz # 0. We will choose € such that for all Z and j
with Pra; # 0, e is a lower bound on the optimal value of the following (non-convex) optimization
problem:

min \a;-rx| (18a)
subject to |Prz|| > rz (18b)
IProgyzll < rzog (18¢)
||| < 1. (18d)

By construction, if x € OB, v € N, 5(x), and aij # 0, there must be some Z such that x is feasible

for (18). As a result, we must have that |a] x| > €. Thus, the implication from (16) will hold,
provided that the values of 77 can be chosen so that all of the problems of the form (18) have strictly
positive optimal values.

The rest of the proof proceeds as follows. First we derive conditions on 77 that ensure that the
problems from (18) always have positive optimal values. Next, we compute specific values of rz that
satisfy these conditions. Finally, we use those values of 7 to compute ¢, the desired lower bound on
the optimal value of (18).

We now assume that rz, 77,1 € (0, 1) and derive sufficient conditions to make the optimal value in
(18) strictly positive.

To derive the optimal value of (18), we need a few basic facts:
. IfICj,thenPjpzszanszPj:Pj.

¢ The matrix [qu{j} ”%Zj” Vz| is orthogonal.

First we show that 7 C J implies that Py Pz = P;. Symmetry of the projection matrices would
then imply that PrP; = P;. Note that Pz = I — VIVIT, where

R(Vz) = R(Pr)*" = N(Az7)" C N(Ag)" = R(P7)".
It follows that PzVz = 0 and thus Py Pz = P.
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Now we will show that Pra; € R(Pr)\R(Pryuq;})- By construction, Pra; € R(Pz). Also, we have
that Pry ;) Pra; = Prugjya; = 0, where the second equality follows because a; € N(AIU{j})J- =
R(Prugjy) " Thus, we have that Pra; # PryqjyPra;. Now, if Pra; € R(Pryuygjy), then Pra; =
Pz ;17 for some vector z. But then PI2U{j} = Pryg;y would imply that Pz Pra; = Pryi;32 =
Praj, which gives a contradiction. Thus, Pra; ¢ R(Pryg;}).

Now the rank nullity theorem implies that

rank(Az) = n — dim(N(4z7))
rank(Azyg;y) = n — dim(N (Azugjy))-

Now since Az;} has only one more row than Az, we must have that rank(Az) < rank(Azyg;y) <
rank(Az) + 1. Also, N'(Azugj1) € N(Az) by construction, and we just saw that Pra; € N'(Az)\
N (Azugj3)s so the inclusion is strict. It follows that
dim(A (A7) = dim(R(Py))
= dim(N(AZU{j})) +1
— dim(R(Pry;3)) + 1. (19)

Now, since R(Wzyu(;3) = N (Azug,y), we must have that

R([WIUU‘} HPNJMD N(Az).

Furthermore, since R(Wzyy;3) = R(Prugjy) and Pryg;yPra; = 0, we must have that

WIU{]
(Pzaj)

PIG.‘ _
o] Ve T Ve| =1

Vr

Now we use this orthogonal matrix to perform a change of coordinates. In particular, let ¥4, y2, and
y3 be such that

= Wzugv + ||P H —yo + Vrzys.
In these new coordinates, (18) is equivalent to
min I1Pza;lyz + o] Vzys| (20a)
subject to Iy l* + 3 > 3 (20b)
vl < rzugs (20c)
lyall + 3 + lysl® < 1. (20d)

The equivalence arises because
T T
a; © = ||Prajllyz + a; Vzys

Pr a;
= Wr Y1+ =792
PO Pray |

Progiye = Wrugyn
along with orthogonality of the corresponding transformation from y to x.

If we choose r7 > TIU{}> then we must have

s > 1% — |nll® > 17 — r3 > 0.

Now, if y is feasible, —y is also feasible, and they have the same objective value in (20). So, without
loss of generality, we may assume that yo > 0.
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The Cauchy-Schwartz inequality, combined with (20d), implies that
1Pzajllyz + a] Vrys > | Prajllys — IVZ ajll\/1 = [yl - v3- 2n

Ta
Note that this bound is achieved by setting y3 = —H%%Jj” 1—[jyi* — v3.

The right side of (21) is monotonically increasing in y». So, (20b) implies that it is minimized over
Yo by setting y2 = /7% — ||ly1||>. This leads to a lower bound of the form:

1Prajllyz = IV ajlly/1 = loall? = 93 > || Praglly/r3 = 9l = V7 ajlly/1 =%

The right side is now monotonically decreasing with respect to ||y ||, and so it is minimized by setting
ly1|l = rzug;y- This leads to the characterization:

Optimal Value of (20)

= ||Prajll\/13 — 13,5y — IV a4lly/1 =%
= | Pral|\/r3 — 2, — 1~ [1PLa]2/1 - 3. (22)

The second equality follows because

V7 a;|* = o] V2V{ aj = a] (I — Pr)a; =1 — || Pra;||>.

Now, we have that the right side of (22) is positive if and only if:

| Prayj|® (r% - r%u{j}) > (1= || Praj||?) (1= r2) (23a)
= 17> 1~ ||Prajl® + | Praj|*rzu (23b)
= r7>1— || Praj|*(1 = r7g5,) (23¢)
= 77> 17 + (= 1Prajl) (1 =170 15)- (23d)

Note that (23d) implies that rz > rz;} holds.

Also note that any collection of rz values in (0, 1) that satisfy (23) will ensure that the corresponding
set, B, satisfies the implication from (16). In that case, we have that 3 has the desired properties.

Now we seek a simpler, more explicit formula for the 7 values which satisfy (23). Note that (23c)
implies that the right side is monotonically decreasing with respect to || Pza;||*. So, if « > 0 is a
number such that a < 1| Pra;||? for all Z and j with Pra; # 0 we obtain a sufficient condition for
(23):

r7=1—a(l—r7,4) (242)
17 =(1—a)+arg, - (24b)

Now we use (24) to derive the desired formula for 7. In particular, consider the recursion
Tpr1 = (1 — @) + axy.
This has an explicit solution given by
o =aofrg+1—a=1-a"1—x).
In particular, if o € (0, 1), we have that z;, € (0,1) for all & > 0.

We define rz by fixing a value 2o € (0,1), which will be defined explicitly later, and setting
r2 =, =1— (1 — ) if rank(A) — rank(Az) = k.

To see that this definition satisfies (24), first note that 72 = x for all Z with rank(A) = rank(Az).
Now, recall that if Pra; # 0, then (19) implies that rank(Azy;3) = rank(Az) + 1. The converse

is also true: If rank(Az ;) = rank(Az) + 1, then we must have that a; ¢ R(A7) = R(Vz) =
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R(Pr)*. It follows that Pra; # 0. Thus, if rank(A) — rank(Azy ;) = k > 0, we have that
Praj # 0 precisely when rank(A) — rank(Az) = k + 1. So we see that setting 72 = 11 =
1 — a1 — xy) gives the same value as specified in (24).

The final step in the proof requires finding a lower bound, ¢, for the optimal value from (22). Let
r2 = z; and r%u{j} = z1_1. Then we have that

r2 — T%U{j} =(1- a)ak_l(l — )
1—7r2=aad (1 - ).

Also note that the right side of (22) is monotonically increasing with respect to || Pra;||? and that
| Pra;||*> > 2a by our choice of v. So, plugging in this lower bound gives

1Pragll\ /13 = 205y = /1 = IPLasl12y/1 - 13
> (x/%ﬂ —a-Vi- 204\/5) ah=1(1 — x0)
= (V2 —2a — V1 —2a)\/ak(1 — z0)
> (V2 - 1) yJamk) (1 - )

The final inequality follows because k < rank(A) and the minimum value of v/2 — 2a — /1 — 2«
over a € [0, || Pra;||?/2] C [0,1/2] occurs at o = 0.

To simplify the final formula for ¢, note that v/2 — 1 > 1/3, and thus we can choose zy € (0,1) so
that

1 1
(V2-1)Vl-mp=< < 29=1— ———— ~0.352.
3 9(v2-1)
Plugging in this value for x( gives the bound:
. 1 rank(a)
Optimal Value of (20) > ga 2 =€
Now recalling that the diameter of B is at most 2/¢ completes the proof. ]

B Invariance of the Gibbs measure
Lemma 12. The Gibbs measure, (6), is stationary under the dynamics of the reflected SDE from (8).

Proof Before showing invariance of the Gibbs measure, we first remark that it is well-defined. In
particular, we have that [,. e~ "/ @) dz < oo.

To see this, let |z|| > R/6, where 6 € (0, 1) is a number to be chosen later. Note that for ¢ € [0, 1],
we have that ||§x|| > R. So, we can use strong convexity outside a ball of radius R to show

f(w)zf(o)Jr/ Vf(tx) zdt
0
0 1
:f(O)+Vf(O)Tx+/ (vf(m)-vf(@fmw/ (Vf(tz) — VF(0)) " xdt
0 0
F(0) — IV FO)|[ll]| — || 0tdt+ |x||2/1tdt
> f(0) = [IVFO)[l][]| — £]|=|l /O % ,

> f(0) = IV (O)|ll|]| + %Hxll2 (=00 + p(1 - 6%))

The coefficient —¢26% + (1 — 62) is positive, as long as < i In particular, choosing
6% = %ﬁ gives

. _ . 1

f(x) = f0) = IVFO)ll=]l + 1M||l‘||2- (25)
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It follows that Z = [ e #/®dz < co.

In [27], it was shown in that the Gibbs measure is invariant under (8) when K is compact. We will
extend the result to non-compact C via a limiting argument.

Let K; = KN {z € R"|||z]|eo < i}. Let Z; = f,cv e~BI(@)dx. Note that lim; .o, Z; = Z, by
monotone convergence. We choose ||z||cc = max{|z1],...,|xn|} < iso that K; becomes a compact
polyhedron for ¢ > 1.

Let xtc be a solution to the original form of (8) and let xtc " be a solution to the RSDE from (8), with

IC; used in place of K. Since K; is polyhedral, Lemma 10 in Appendix A shows that xtCl is uniquely
defined. Define the diffusion operators P and P* by

(Pig)(w) = E[g(x{)|xo = 2]
i C,i
(Pig)(x) = E[g(x;"")|x0 = ]
Let Ly (K, U f-) be the set of functions g : L — R which are square integrable with respect to the

measure 73 7. We will show that 747 is invariant for (8) by showing that for all g € Ly (K, 7Tﬁf‘) the
following equality holds for all £ > 0:

l/ g(x)e_ﬁf(w)dx: l/(Ptg)(ac)e_ﬁf(g”)alac. (26)
Z Jx Z Jx

The subset of bounded, compactly supported functions in Ly(K,74) is a dense subset. Fix an
arbitary bounded, compactly supported g € Lo (K, mg). It suffices to show that (26) holds for g.

Lemma 19 of [27] shows that for all ¢ > 1, the following holds:

1 . 1 , .
7/ g(z)e P @ dy = 7/ (Pig)(x)e PF@ dy. (27)

3

We saw earlier that Z; — Z. Furthermore, since g is compactly supported, there is a number, m,
such that ¢ > m implies that

/ g(x)e_ﬁf(m)dx:/g(x)e_ﬂf(m)dx.
Ki

K
It follows that the left of (27) converges to the left of (26).

The proof will be completed if we can show that for £ > 0,

lim (Pig) (x)eiﬁf(@dx = lim Elg(x"")|xg = x]eiﬁf@)dm (28)
11— 00 K'i 71— 00 IC,L
:/ E[g(x)|xo = x]e*ﬂf@)dx (29)
K

~ [ (Pg)w)e Wiz,
K

We assumed that g was bounded, and so there is a number, b, such that |g(x)| < bforall x € K. It
follows from the definition of P; and P} that | P;g(x)| < band |Pfg(x)| < b for all ¢.

Fix any ¢ > 0. The Brownian motion, w, is continuous, and so for each ¢, w is bounded for s € [0, ¢].
Now the form of (9) shows that yc, and thus x© must also be continuous, and thus also bounded
for s € [0, ¢]. Thus, for each realization, we see that there is a number m such that x¢ € K; for all
s € [0,t] and all i > m. Thus, we see that xX¢ = x for s € [0, ¢]. This argument shows that the
integrand on the right of (28) converges pointwise to the integrand of (29). So, the desired equality
follows by the dominated convergence theorem. ]

C Bounded variance of the processes
In this section, we derive variance bounds on all of the main processes, E[||x;}||%] and E[||x¢'||%]. The

bound on E[||x¢||?] is used to prove bounds on the discretization error from x}/ to x¢'. The bound
on E[||x2|?] is used to derive the time-uniform bounds on W1 (£(x3}), £(x{')) from Lemma 3.
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C.1 Continuous-time bounds

In this section, we show that the assumption that f is strongly convex outside a ball implies that
V(z) = L|z||? can be used as a Lyapunov function for x¢'. In turn, we use this Lyapunov function

2
to derive bounds on E[[|x¢'||?].

Lemma 13. If f(x) is p-strongly convex outside a ball with radius R, then V(z) = 127

the following the geometric drift condition:
AV (z) < =2nuV(x) + c1om-
Here cyq is defined by
- n
10 = ({+ p)R? + R||V.f(0)[| + 5
Proof By Ito’s formula, we have

2V)dx¢

x

1
dv(x%) = v, vTdx¢ + 5d(x?)T(v

_ 2 1
= ()T (Va6 )t + [ rdwe = vadp) 5 dxf) T

- 2
= —n(xtC)Tfo(xtc)dt +4/ g(xtc)wat - (xtC)Tvtdut + QTr(dwtdth)

B
= (=) TV o) + Tyt + %xffdwt ) Tvedpy.

x satisfies

The third equality holds because fg vsdp has bounded variation. The last equality is based on the

fact that dw,dw, = dt I.

Since v; € N (x¢), p, is a nonnegative measure, and 0 € K, we have that —(x¢) "v;dp, < 0.

Thus, the generator of the Lyapunov function satisfies

AV(z) < —nz "V, f(z) + %

(30)

If ||z|| > R, strong convexity outside a ball of radius R, along with the Cauchy-Schwartz inequality

imply that

2 Vo f(@) = (x - 0) (Vo f(z) = Vof(0) + 27V, f(0)
> pll=” = RV, F(0)]

It follows that when ||z|| > R, we have that

AV() < =2l + 7 (anmﬂmn n g)

— 2uV(e) (Rfo(O)I T g) .

If ||z]] < R, then the Cauchy-Schwartz inequality and the Lipschitz continuity imply that

—2'Vof(x) = -2 (Vof(z) — Vo f(0) + Vo f(0))
<Nz IVaf(z) = Vo fO)]] + RV f(O)]l
< Lz]* + RV, f(0)]
= —pllz)|* + (¢ + p)|=]* + RV f(0)]
< —pllzl’ + (£ + p)R* + RV f(0)]].
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Note that (31) implies that (32) also holds whenever ||z|| > R. So, combining (32) with (30) shows
that for all z € IC,

_ nn
AV(z) < n (—plle))? + (€ + p) R + R||[V. fO)]]) + 5
- n
— (o) + 0 (64 B+ RIT.FO)] + 5 )
|
Lemma 14. IfE[||x§||?] < <, then for all t > 0, we have that
1
E[llx{”] <<+ P
where c1g is defined in Lemma 13.
Proof Recall that Lyapunov generator A is defined as below
1
AV(z) = {sing [t(V(XtC> —VENXS =] .
Using Dynkin’s formula and Lemma 13 gives
t
E V) - V(S)] = / E [AV(xO)] ds
0
t
< —277u/ E [V(XSC)] ds + ciont.
0
Letu; = E [V(x{)], uo = E [V(x§)]. By Gronwall’s inequality, we get
t
up < e—2”71ttu0 + ,’7610/ 6—277Msd8
0
_ & _
= e 2Mmly 4 % (1 _e 2Wt)
C10
< —_—.
< ug + 2
Recalling that uy = 1E[||x;[|?] and E[||x0||*] < ¢ completes the proof. [ |

C.2 Discrete-time bounds

Here we derive a uniform bound on E[||x#||?].

Lemma 15. Assume that E[||x{'||*] < < and that n < min {1, 45 }. There is a constant, ¢y such
that for all k > 0, we have that
E[lx; |%] < <+ en.

The constant is given by
4 (n z 1
e =— ( + (L4 pR*+ 2+ R)||[V.f(0)| + (8(2 + ) £2M2(z)>
p\pB Iz
Proof Using non-expansiveness of the projection and then expanding the square of the norm gives:

2
E x4 ]2] = E ‘ I (xf VL F (i 7) + \/?w) T (0) ]

2
2n
SE[ xz“—nvxﬂx:‘,zt)ﬂ/gwt ]
2nn

E [[lx1? + 02| Vo f (< 201 — 20(x) TV f(xf', 20)] + e
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Now we bound the term E [||V,, f (x;*,z)||?]. For any € K, we have that

IVaf(x,2)|* = | Vaf(2,2) = Vo f(0,2) + Va f(0, 2)|?
< 2|V (0, 2)||* + 22|, (33)

This leads to:
E [k 11°] < (14 269°) E [|Ix)1?]

2nn 2 21121 — AT <A 2
+( T PBI9 0. 20)] ]) WE [(x) TV f(xih22)]

To bound the term E[|| V.. £(0, z)||?], note that V, f(0) = E[V,.f(0,2;)], where 2, is identically
distributed to z; and independent of z;.

E[|Vaf(0,20)[?] = E [ Vo f(0) + Vo f(0,2¢) — B[V, £(0,2¢)]||?]
< 2[[Vo f(0)]1* + 2E[|| V4 f(0,2,) — E[V.f(0,2,)]||°]

T SV F(O) |2 + 2E[[| Vo f (0, 2) — Vi (0, 2)|]]

< 2|V, FO)] + 2°E[ |2, — 2]

< 2V, F(0)| + 4|20 + |2,

< 2|V, f(0)]| + 86> My (2), (34)

where M(z) is a bound on E[||z,||?] from (2).

So, we have a bound of the form
E (x4 )17 < (142677 E [|Ix1?]

+ <2Zn +0? (4IVFO) + mer(z))) = 2B [() Vo f (!, 2)] - (39)

To bound the inner product term, note that

E [(X;‘,A)Tvmf(vazt)] = E [(X;‘L‘)T (vzf(vazt) - vrf(vait))] + ]E [(X?)Tvxf(xfa Zt)}
=E[(x")" (Vo (xi' 20) = VoS (x,20))] + E [(x7) " Va f(x7)] -
The second equality follows because 2; is independent of x;! and identically distributed to z;. So, we

can use the Cauchy-Schwartz inequality on the first term on the right and (32) on the second term to
give:

E ()" Vaf (', 20)] > —CE[|1x |12 — 2] + pElx %] = (€ + p)R? + R V. FO)]]) -

Using a completing-the-squares argument shows that for any numbers a and b

2 2
2o = P (0 Lp) — 42
2a Kab—2<a Hb> 2,ub
62

b2.
2p

>

Setting a = ||x;}|| and b = ||z; — || leads to a bound of the form
2

B [(x) V.2 2] 2 SEI(P] ~ 5Bl — ) = (¢+ B2 + RIT.FO)])

Y

DBIP) = Maa) — (64 W + RIVSTO) . 36

21



Plugging the new bounds into (35) gives
E [IIxfi 7] < (1= pn +2629°) E [|1x"]]

2nn 2 7 2 e 2 7
(2 (VT + 168 Mate)) ) 20 (S rt) + (€4 )2 + RIT.FO))

Note that if n < then

1
ladl)

L—pun+209°<1— 5

Furthermore, if n < 1, we get the simplified bound:

E x4 l”] < (1 57) B (I 1]

2
+2n (g +2[[ Vo f(0)]| + 862 Ma(2) + %Mz(Z) + (0 + wR* + RIIfo(O)H) - (3D

Now for any a € [0,1) and any b > 0, if u; > 0 satisfies
U1 < aug +b

then
t—1
w < atug + bZak

k=0
1— t
=alug+b a
1 —
b
<wug+ ——

Applying this bound to E[||x;}||?] and using that E[||x3'[|?] < ¢ gives

A2 4 (n 2 7 o, 1 2
Bl <+ (5+<4+mR L@+ RVLFO) + (86 +u)e M2<z>).

D Stochastic contraction analysis
In this Appendix, we prove Lemma 2.

D.1 Contraction for the reflected SDEs

We extend the analysis of standard SDEs from [20] to the case of reflected SDEs. The main idea
of [20] is to construct a specialized metric over R™ and corresponding Wasserstein distance under
which contraction rates can be computed. In the context of this paper, we only use Euclidean norm to
construct the metric, whereas in [20], both Euclidean and a second norm were used to construct the
specilized metric. Using just one norm leads to some simplifications. Our choice of reflection term in
the coupling process is also slightly different, leading to further simplifications.

In the following, we firstly examine the contractivity properties of the generalized reflected SDEs and
then associate the generalized process with the original process from (1).

Let IC be a closed convex subset of R™ and consider a reflected stochastic differential equations of
the form:

dXt = H(Xt)dt + det — thll/(t)7 (38)
where G is an invertible n X n matrix with minimum singular value o, (G), w; is a standard
Brownian motion, and — fot vedp(s) is a reflection term that ensures that x; € K for all ¢ > 0. (We
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are slightly abusing notation, since here x; denotes the solution to a general RSDE, and is not the
iterates of the original algorithm from (1).)

Following [20], we construct a function ¢ : [0, +00) — R such that 6(0) = 0, §'(0) = 1, ¢'(r) > 0,
and 6" (r) < 0 for all r > 0. With these properties, it can be shown that §(||z — y||) forms a metric
over K. The particular metric is constructed so that the dynamics are contractive with respect to the
corresponding Wasserstein distance.

Assume there exists a continuous function x(r) : [0, +00) — R such that for any z,y € R,z # y,

(x—y)" (H(z)~ H(y) < w(llz = yl) |z - yl* (39)

Also, assume that
lim sup x(r) < 0. (40)

This implies that there is a postive constant, Ry, and a negative constant &, such that x(r) < & < 0
for all » > Ry.

We choose
o1 g o0 GPE
Ry = 5 + 5 RO = > RQ,
and define § via the following chain of definitions:
o(r) = / o(s)g(s)ds (41a)
0
é- rAR;
glry=1- 3 ®(s)p(s) tds (41b)
0
Ry
—_ / B(s)p(s) " \ds (41c)
0
O(r) = / o(s)ds (41d)
0
o(r) = e~ hm (41e)
1 T
h(r) = m/{) s(k(s) V 0)ds. 410

In the above definition, we use the shorthand notation a A b = min{a, b} and a V b = max{a, b}.

The details on the choices of Ry and R; will be presented during the proof of Theorem 16 for the
general reflection coupling related to (38) and Corollary 17 for the specific reflection coupling related
to (8).

As discussed above, d(||x — y||) is a metric. See [20] for details. The corresponding Wasserstein
distance is defined by

P.Q)= inf —y|hdr
WiP.@) = int [ (e —yl)arie.y)

Here, € is the couplings between P and Q).

To get an explicit form of the constant factor in Lemma 2, we use the following theorem, which is
analogous to Corollary 2 of [20].

Theorem 16. [f x} and x? are two solutions to (38), then for all 0 < s < t, their laws satisfy

Wi (L(x}), L(x7)) < e” W5 (L(x,), L(x3))

S

where @ = Eomin(G)2.

Proof The proof closely follows the proof of Theorem 1 from [20] with constraints handled similar
to works in [27, 29]. The key is to create an explicit coupling between x; and x2, which is known as
a reflection coupling [31].
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To define the reflection coupling, let 7 be coupling time: T = inf {¢|x} = x?}. Letr, = ||x] — x7|,

u; = (x; — x?)/r;. Then the reflection coupling between x; and x? is defined by:

dx; = H(x%)dt + Gdw; — V,}dul(t) (422)
dx} = H(x})dt + (I — 2wpu) 1(t < 7))Gdw, — vidp®(t) (42b)

where — fg vidput(s) and — fot v2dp?(s) are reflection terms that ensure that x; € K and x7 € K
forallt > 0.

The processes from (42) define a valid coupling since IOT (I —2ugu) 1(t < 7))Gdwy, is a Brownian
motion by Lévy’s characterization.

The main idea is to show that with the specially constructed metric (41), there will be a constant a
such that €%*6(r;) is a supermartingale. Then, the definition of Wy and the supermartingale property
shows that

Ws(£(x}), £(3)) < E[5(r,)] < e " IE[5(r,)]

Since this bound holds for all couplings of the laws £(x_) and £(x?2), it must hold for the optimal
coupling, and so
Wi(L(x}), £(x})) < e IW5(L(xy), L(x3)),

which is the desired conclusion.

Therefore, to complete the proof, we must show that e*§(r;) is a supermartingale, which is to ensure
that this process is non-increasing on average. Recall that 7 is the coupling time, so that e**§(r;) = 0
for ¢ > 7. So we want to bound the behavior of the process for all ¢ < 7. Specifically, it is required
to show that non-martingale terms of d (e‘ité (rt)) are non-positive. By Itd’s formula, we have that

To achieve the desired differential, we have to derive the terms dr; and (dr;)?.
dr; =u/ (dxi — dx?)

=u, ((H(x}) — H(x})) dt + 2u,u] Gdw, — vidp'(t) + vidp’(t))

The above equation is simplified because (dx; — dx?) T (V?r;)(dx} — dx?) = 0.
Also, by assumption we have
(xy —x7) " (H(xp) = H(xP)) < mlllx; == 1)lIxi —x]%. (43)
By the definition of u; and the facts that v € Ni(x}) and vi € Ni(x?) imply that
—u/ vidu'(t) < 0and u vZdu?(t) < 0. It follows that and the assumption (39) gives
dry < k(r)rdt + 2u/ Gdw,.

Now, since the terms that were dropped in the inequality have bounded variation, we have that

(dry)? = 4u, GG T u,dt > 40 min (G)2dt.

By construction ¢'(r) > 0 and ¢"(r) < 0, and so Itd’s formula gives

d (e™5(ry)) < dte™ (ad(r) + &' (r)(r)r + 6" (r)20min (G)?) + my

a k("")"" / "
720—min(G)26(r) + 7201,1111((}’)25 (r)+9 (r)) + my,

= QO'miH(G)26atdt (
where m; denotes a local martingale.
So it suffices to pick certain a and R; to ensure that for all » > 0, the following holds:

a K(r)r
QUmin(G)Qé(r) - 20min(G)?

8 (ry+46"(r) <0. (44)
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Recall that
8" (r) = ¢'(r)g(r) + g'(r)e(r)
_mr(m(r) V)8 (r) — g@(r)ll(r < Ry).
So if we set @ = Eopin(G)?, then 6(r) < ®(r) implies that (44) holds for all r < Rj.
The remaining work is to find a sufficient condition under which (44) holds when r > R;.
Recall that we assume that there exists 0 < Ry, such that k(r) < 0 for all » > Ry. So, if we choose

Ry > Ry, we have for all v > R; that ¢(r) = ¢(Ry). By definition, g(r) = 3 forall 7 > Ry, and
so we must also have &'(r) = 2¢(Ry).

Therefore, for r > Ry, (44) becomes

“ w(r)r
mé(r) + m 2<P(R0)

So, a sufficient condition for (44) to hold when r > R1 is given by:
ao(r) K(r)r

270G 2oanl G2 5o(Fo) <0 (462)
hand ”(T)T%@(Ro) < —ad(r) 460)
= ﬁ(T)T%@(Ro) < —£0min(G)?0(r) 46d)

1 0'7nin(G)2
¥t == J 46
— m(r)r2%0( 0) < foRl 2 (5)o(e) s (r) (46e)
1 Jmin(G)2
= K(r)r5e(Ro) < - RO)(I)(Rl)QO(Ro)_l/Q(s(T) (46f)
<— k(r)r=p(Ry) < — Tmin(G)? , “62)
2 T (B1— Ro)®(R1)p(Ro)~1/2
_ Aomin(@)?
— k(r) < o~ Tio)B(0) 46h)
. 2
<= (R1 — Rp)®(Ry) > W 46i)
A 2
— (Ry — Ro)Rye—B0) » _Aomin(G)” asi)
K(r)
. 2
= R0 AL (46K)

Note (46¢) is implied by (46f) because for r > Ry, p(r) = p(Ry), therefore, ®(r) = ®(Ry) +
©(Rp)(r — Roy) which gives

R, Ry
| e s [ a(s)et) s

Ro

Ry
- / (B(Ro) + o(Ro)(s — Ro)) p(Ro)~'ds

Ro

= B(Ro)p(Ro) (R — Ro) + LT

2
®(Ro)p(Ro) " (R1 — Ro) n (R1 — Ry)?
- 2 2
= (R — Ro) (®(Ro) + (R1 — Ro)¢(Ro)) ¢(Ro) " /2
= (R1 = Ro)®(R1)p(Ro) ™" /2. (47)
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Also, (46f) is implied by (46g) because §(r) < r.
From (461) to (46j), we use:

Ry
D(Ry) = /0 »(s)ds

R
= / e M) ds
0

Ry
> / o~ h(R0)
0

= Rye o), (48)
The implication (46k) = (46) arises because of the assumption that x(r) < & < 0 for all » > Ry.
Therefore, (44) will hold all » > Ry, as long as R, satisfies (46k). The smallest such R; is given by

Ry 1 160 ,min (G)2eh(Ro)
:o+\/R5_ Omin(G)%e

R Ry. 49
1 5 5 — > Ry (49)

[
|

We choose our reflection term as (I — 2u;u, 1(t < 7))Gdw,, while [20] uses G(I — 2ee, 1(t <

T))dwy, with e; = |G71(x}_x3)

T T = Our form of the reflection term leads to mild simplification of
t t

some formulas.

Now we specialize the result from the previous theorem to the specific case of this paper:

Corollary 17. Ifx} and x? are two solutions to (8), then for all 0 < s < t, their laws satisfy
Ws(L(x;), L(x7)) < e CTIW5(L(xy), L(x3))

2

- BLRZ .
where a = E%, Ry =R, and R, = g + % R2 + %6 8 in the construction of 6.

Proof We can see that (8) is a special case of (38) with
H(x) = -V, f(x)
2n
G=,/—1.
B

Since we assume that f is /-Lipschitz and convex outside a ball with radius R, we have that (39)
holds with x(s) = nf for 0 < s < R and x(s) = —nu for s > R. Therefore, we can pick Ry = R
to construct the metric (41).

Now, omin(G)? = %” implies that a = £ %7 Furthermore, the choice of x(r) implies that h(Ry) =

_ BeRr?
h(R) = =5*.
The choice of «(r) also implies that K = —npu. Thus, the form of R; is given by plugging terms into
(49). ]

Corollary 18. Ifx} and x? are two solutions to (8), then for all 0 < s < t, their laws satisfy
Wi (L(x}), £(x7)) < 20(R) e IWi (L(xy), £(x3)).
Proof From the special constructed of §, we that ¢’(r) is monotonically decreasing, and also

§'(r) = 6(Ry) for all > Ry. Furthermore, §(r) = [, &'(s)ds > &'(r) [, ds = rd’(r). Thus, for
all » > 0, the following bounds hold:

8(R)r <& (r)r <d(r)<r

These bounds are now used to relate the W and 17 distances:

8" (ROWL(L(x), L(x7)) < Ws(L(xy), Lx7)) < Wi(L(x4), L(y2))- (50)
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In particular,

5 (1) = p(R)g(Rr) = 50(R). &
Plugging (51) into the first inequality of (50) gives
Wi(L(x;), L(x7)) < 20(R) ™ Ws(L(x;), L(x7)) (52)
And combining with Corollary 17 gives

Wi(L(x}), £(x7)) < 20(R) "t M mIWs(L(x}), L(x2)) (53)

S

Finally, utilizing the second inequality of (50) gives the desired result. ]

D.2 Proof of Lemma 2

In Lemma 12 of Appendix B, we showed that the Gibbs distribution, Bf> defined in (6) is invariant
for the dynamics of x{. Thus, setting £(x}) = £(x{) and L(x}) = 7 7 in Corollary 18 gives

Wi(L(x{),m57) < 20(R) e "Wy (L(x(), m47)- (54)

Let y be distributed according to 7 7. For any joint distribution over (x§', y) whose marginals are
L(x§') and 747, we have that

WA (L(x§), m55) < E[Ix§ ~ 1]
E[lx§ — |
¢ 20xG 12 + 2lly|I?
— \2E[IxS 7] + 2E{ly |

\/2§+2 §+ C10>
2
< 1/;010 + 2. (55)

The second to last inequality uses Lemma 14.
Combining (54), (55) shows that

Wl )msp) < 200 e (2 205).

Thus, the lemma is proved and the constants are given by:

= 275 (56a)
1 /2
Cc1 = 2@(R) ;010 (56b)
co = 4p(R)™* (56¢)
where £ is given in (41c). |
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E Proofs of averaging lemmas

Proof of Lemma 4 Non-expansiveness of the projection and the definitions of xi”’s and Xf * show
that:
M,s B,s 12
||Xt+1 - Xt+1|l

2
xi\/[’s — xf’s +7n (E[vzf(xi\/[ﬁ?zt)']:tfsfl VG - E[me(xémsyzt”ftfs v gt]) H

.
= " = x7)2 + 2 (xh — x)

<]

(BIVaf (0" 201 Foom1 V G = BV F (", 20| Fos V G

2

1P ||EIVa f (", 20| e a1 V Gl = BIVL S (37, 20)| Fis V G (57

We will show that the second term on the right of (57) has mean zero, and then we will bound the
mean of the third term on the right of (57).

By construction, we have that xiw " is Fy_s—1VG,-measurable, while xtB " is Fy_s—2VG,-measurable.
Thus, the only part of the second term on the right of (57) which is not ;_¢_1 V G;-measurable is

E[V.f(x;"*, 2;)|Fi_s V Gi]. Therefore, the tower-property gives:
E {(xtM’S ) (B0 O 20 Foan V G — BV 6 2| Fomy v gt])]
=E [(sz’s - Xf’S)T (E[sz(xy’svzt)\ft_s_l Vv Gil
-E [E[fo(xiw’sv 2y)|Fis V gt]) ‘}—t—sq \% gtH

Now we focus on bounding the mean of the third term on the right of (57). Recall that xiw’s is

Fi_s—1 V Gi-measurable. Furthermore, since .Ftt o 1s independent of F;_, V G, it must also be
independent of F;_;_1 V G; because F;_s_1 C Fy_s. It follows that

E[Vaf(xt"* Elze Fi )| Fies V Gi] = E[Va f(x)"° Elze| FE )| Feoso1 V G-

Thus, adding and subtracting E {fo(xiw’s, E[z:|F;" ) ‘}}_s % Qt} gives

2
|BIV. £, 20) | Fivsm1 v Gi] = BV S (5", 20) oy V Gl

<2 B[V s m) — Vo, Bla ) i

Fis—1 V gt:|

+2|[E [Vo £, 21) = Vo f (" Bl FED) | Fooe v G1] (58)

]

‘ 2

To bound the second term on the right of (58), we have

B[ [V s 6" 20 - Vs Blad 7 D) |Fes v G

Jensen

< E [Hvxf(xtM’s,z,e) - fo(xy’s,]E[zt|]-"t+_s])H1

Lipschitz

< CE ||z - Elz| 7]
< EQwQ(S,Z)Q.
Here 12 (s, z) was defined in (3b).
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The first term on the right of (58) is bounded by analogous calculations with F;__; used in place of
Fi—s, and gives rise to the same bound of £21)(s, z)?.

Plugging these bounds into (57) shows that

E[Ixtfy = x50 < B[kt = xf)12] + dn224a(s,2)°

Iterating (E) ¢ times and using the fact that xg = Xéw *, shows that

E [Ix"" = x*)12] < diPtés(s,2)*

Using the fact that

M, B, M, B,
Bl 1) < | [ <P ]
gives the result. |

Proof of Lemma 5 Non-expansiveness of the projection and the definitions of xt ® and xM st
shows that

M,s+1
||Xt+1 t+1s+ [

< x5 e (BIVL £ 00 20| Fimamt V Gi] — EIVL £, 20) | Fiema v 61

Let ||x||2 = v/E[||x||?] denote the 2-norm over random vectors. The triangle inequality then implies
that

[P =3 oy (BN 20 Fimso1 vV G — BV S (61 20| Fimema V G|

< ’ng XiWSHH +77HE V. f(x M§+1 t)—vwf(xiw’saztﬂft—s—l \/gt]HQ-

For any random vector, x, and any o-algebra, F, Jensen’s inequality followed by the tower property
implies that E[||[E[x|F]||?] < E[||x/|?]. Applying this fact to the second term on the right of (59) and
then using the Lipschitz property shows that

[EIVa el ) = Vo f o™ 20) Foat v G| < et =)o

38

Plugging this bound into (59) then adding and subtracting xf

gives:
M,s+1
th+1*Xt+1S 2
M 1 Ms+1 _ M,
< [lx S e - x SIIQ
< IIXtB’S*X%S“H +nlle T =X lo + g = %o
= (L+n0)]x fxf““llﬁnﬂllxt fxtMsllz- (59)
Using the fact that xég = xéw “*1and iterating this inequality shows that:
: M,s+1
||Xt T x|
t—1
<l (1 +n0kx5 - %0l
k=0
Lemma 4 =1 L
< (20, 2)VE) e Y (1 -+ 0)
k=0

= (26wa(s, 2)nVE) (14 90)" = 1)
< <2€1/12(3, z)n\/%) (enté —1).
The final inequality follows by taking logarithms and using the fact that log(1 + n¢) < nf. |
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F Discretization bounds

Proof of Lemma 6 Recall that y? = yﬁ | and so forall k£ € N, ykD = y,?. By the construction of
Skorokhod solutions to the process xtc and xtD , and using Theorem 9, we have for all £ € N

||X,c — X H <(cog+1) sup s —yﬁj

0<s

t _ 277
yfzngn/ sz(Xg)‘iS*\/FWt,
0

the triangle inequality implies that
| Ve
Ls]

E [SUPse[o,k] HWS — Wiy ||] is upper bounded by 2n+/log(4k). See Lemma 9 in [27]. So, the
remaining work is to bound the first term on the right.

|
[[str

IASC
Jensen k-1
< E sup / V. f(x
s€[i,i+1]

/ v, f(xC)dr )2

So we want to upper bound the supremum inside the expectation operation.
We can show for all s € [0, k],

Since

2
+ (co + 1) il sup ||ws — wi,)]|-

||ka — kaH < (cog+ 1)n sup
B s€[0,k]

s€[0,k]

Take the expectation of the first term, we have

V. FxC)dr

E l sup
Ls]

s€[0,k]

=E | max sup
1=0,- ,k— 56[7.2+1

-1
<E ( sup

s€[i,i+1]

1/2

W‘

)

I
o

%

1/2

I
=)

i
1 1/2
Z E ( sup
i=0

s€li,i+1]

Vo f(x9)dr
Ls]

triangle inequality S _
< Aﬁwﬁmmm

Ls]+1
< [ vaie)dr
Ls]

Jensen [s]+1 N 1/2
2 AJ IV FeS)Par )

F«:EUMWf(NWDW
Fm(i/ Wf()ﬂﬁyé

Therefore,

E ( V. f(x)dr

Ls]

sup
s€[0,k]
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Here, we can see it suffices to bound E [||V, f(x¢)||?].

We have assumed that 0 € K, and so we have
V2 = 1Vef ) = V27 (0) + V7O
< 2|V I () = Vo) +2[|V2FO)|
<26 <7 +2||fo I
Plugging in the bound from Lemma 14 shows that
E [V, F(x)[2] < E [262xC 2 + 2|V, F(0)]2]
= 20K [||x{'[|”] + 2| V= £ (0)|?

1 _
S 262 <§ + MCH)) + 2”fo(0)“2

k-1 1/2
] (Z JRIESE dT>

K2

< \/282 <§ + /i010> + 2||sz_(0)||2\/E

(/220 + 21970 + VR 5 VE.

Therefore, we have

E | sup

s€[0,k]

[ v

IN

Setting

2 _
09+1 \/u£2610+2”vxf(0)|2
(Cg +1 \/i

cr = (g + 1)n\/§

where ¢y is defined in Lemma 14 and ¢y is defined in Theorem 9 and combining the bound on the
second supreme term gives the desired result. ]

Proof of Lemma 7 The argument of bounding x and x” closely follows the proof of Lemma 10
in [27]. Recall that x}/ is a discretized process and x} = x[}/|. We also have x} = S(D(y}")),

t
7 2
s =xi = [ VFds 4y Fw
0

The intermediate process x? satisfies x? = S(D(y¢)), where

ytczngn/ Vf(xg)der,/ﬁwt.
0

X%ﬂ (X +Yk+1 Yk>

=g (xM — VM) + \/?(Wk-i-l_wk))

XkD+1 = Ik (Xk + Yk+1 - yg)
k+1 _ 27,]
=Tk | xi =7 Vf(xS)ds + 4/ F(Wk-H - W) |-
k

31

where yM is defined by

So in particular,



Define a difference process
po= (" yl = yl)) = (xP+yE - vG))
Note that at integers k € N, p,, = x} — xP and for t € [k, k + 1), we have
po= (i =yl —x +yP) +yi - yp
It follows that
dp, = d(y}" —y{) =0 (Vf(x{) - Vi(x"))

By construction, p, is a continuous bounded variation process on the interval [k, k + 1). Thus, when
p: # 0, we can calculate d|| p,|| using the chain rule.

T
hain rul P

d”pt” ¢ a:me <|pt|> dpt
t

T
- (Zt”) 0 (VIx) = Vi) dt
Cauchy-Schwarz

< || VA = VM| dt
Llp;hllz nf thc B X%MH dt
:n£||xtc—xtD+x?—xiw||dt

triangle

<l ([xf = x| + [Ix? = x"])) dt.

To include the case that p, = 0, we use the Lemma 19 from [27]. The analysis is as below:

Fort € [k, k+ 1),

t
loall = lloell + /k d|lod
t
— ol +nm/ (o, = <) dllo,]
e¢0 k
t
< llpul+tim [ 1 (ol = e (€ =2+ 2 = ) o

t
— (1410 oy +77€/k (IxC = x2|]) ds.

The second equality follows from Lemma 19 from [27]. The last equality holds because that
pr =xM —xD Vselkk+1).

Non-expansiveness of the convex projection implies that

ol = [ = x| < tim o, ] (60)
Letting t = k + 1 gives
k+1
lowssll < 0y o+t [ € =P as.

Iterating this inequality, and using the assumption that x3! = x{’ gives

k—1 ] i+1
loall < " ne(1 +ney—it / xC - xP|| ds.

=0
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Taking expectation, and using Lemma 6 gives

k-1 ) i+l
Bllpel) < Y nt( 4001 [ ((es+ cav/Rnys + coy/nlog(is) ) ds
i=0 i
k—1
Snf((Cr + o)V + c7+/nlog(4k) ) Z 1+ ne)k—i-1
=0

< ((es + cav@InVE + cry/mlog(aR) ) (1 +n0)* ~ 1)
< ((05 + oV + ery 7710g(4k)) (e"* —1).

The last inequality is based on the fact that (1 + n¢)*¥ < e7** for all n¢ > 0.
Recall that for all k € N, p, = xM — xP, which gives the desired result. |

G Conclusion of the proof of Lemma 3

This subsection uses a “switching” trick to derive a bound on W7 (L(x;)), £(x{)) that is uniform in

time. The essential idea is to utilize a family of processes that switch from the dynamics of x,f to the
dynamics of x{, and utilize contractivity of the law of x{' to derive the uniform bounds. A similar
methodology was utilized in [10].

For s > 0, let XS i “ be the process such that xftc =x{ = XLtJ fort < sandfort > s, xftc

follows:
- /12
AC A,C n A,C
dxs,t = _nvl’f(xs,t )dt + Fdwt - vs,t du?’c(t)
In other words, xS } “ follows the algorithm for ¢ < s, and then switches to the dynamics of the
continuous-time approxnnatlon from (8) at ¢t = s.

Now let 0 < s < § < t where s, 5 € N, then Corollary 18 from Appendix D shows that
Wi(LE), L) < 20(R) e 0 IW (L(x1E), L)), (61)

s,8 §,8

By starting the analysis of the processes x“ and x¢ at time s, rather than time 0, Lemma 8 implies
the following bound:

Wi(L(x20), L(x0)) = Wi(L(xE), L(x£))

< (o co/BIIPT) VG =5+ cr/ oI = ) ) 7
< ((Cg + VS + o) Vs — s+ crv/nlog(4(5 — s))) eMG=3) (62)

The second inequality is based on Lemma 15.

Let H = [1/n] and t € [kH, (k + 1)H) where k € N, we have ngtc =x{ and x?kfl)Ht =x{ =
xé |- Then, the triangle inequality implies that
k
A A
WA(LGc), L) < 3 WAL, LAC ).
=0
Fori < k, setting s = iH, § = (i + 1)H in (61) gives that
A,C A,C p—alt—(i AC A,C
Wi(L(x) LGy r,)) < 20(R) e EVIOW (L0 ) i) LG iy
SQ ( ) 1 —nat (i+1)H) ( )
<2 (R) 1 —a(k i— 1)/2) (77—1)
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where
g(r) = ((CS + coV/s + 1) VT + ¢ nlog(4r)> e (63)

The last inequality uses the facts that 1/2 < nH < 1 along with monotonicity of g. The lower bound

of nH arises because H > n~! — 1andsonH > 1 —n > 1/2, since n < 1/2. Thus, the first &
terms are bounded by:

ZWl th L( (1+1Ht ZQSD lefa k i— 1)/2)9(7771)

U
< 2¢(R) Py
For i = 12:,
AC AC A,C
W (LG LOEG 1) = WLE), L)
<g(t—kH) <g(n™")
By triangle inequality, adding all the k -+ 1 terms gives

Wi(L(xi), £(x{))

<ot (1+ 2200
< ((Cs +eov/S +ern) L+ ery 7710’8;(477_1)) ef (1 + %) . (64)

For ! > 4, we have log(4n~!) < 2log(n~1), and also logn~! > 1. Thus, if n < 1/4, then (64)
can be further upper bounded by

Wi (L(x{), L(x())

1 —1 14 230(R)71
cs + cov/s + i) ny/ntlog(n=1) + cr/2nlog(n ))e 1+1—e7—a/2

20(R)~*
190(6)(1/2> nlog(n~)

20(R)~*
1—e—a/2

= ((
(CS+C«A/<+7011+\[C7) <
S(CS"‘CG\/CT"‘\[C?"‘C()\[) (

So setting

) nlog(n=).

2p(R)~1
C3 = (Cg + cgr/C11 + \/567) Be (1 + 1S0_(e—)a/2>
2p0(R)"!
_ 14
cy = cge (1+ pp—

completes the proof. |

H Bounding the constants

In this section, we summarize all the constants in Table 1. The second column of the table points to
the place where these values are defined or computed. Then we show the simplified bounds of the
main constants ¢y, ca, c3, ¢4, a in Theorem 1 explicitly and also discuss their dependencies on state
dimension n and parameter 3.

Proposition 19. The constants co and c4 grow linearly with n. The constants ¢y and c3 have O(\/n)
and O(n) dependencies respectively. So overall, the dimension dependency of convergence guarantee

is O(n). Constants cy, ¢, c3, cq all grow exponentially with respect to Wi And for all B > 0,
2
(L> BR 2 16 eilﬂf
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Table 1: List of constants

Constant Definition
- 2%
“=3
c1 = 230(R)711 / %010
co = 4p(R)~1 Appendix D.2 (Proof of Lemma 2)

o = (en + co/rr + vEer) e (14 3483
1
cy = cge <1+ - (e )a/z)

Appendix G (Proof of Lemma 3)

= (0+ 1)y 2ery + 2|V, F(O) P
Cg = (C9 + 1)\/@

cr=(co+1)n %

Appendix F (Proof of Lemma 6)

cg = C5 + 2»€\IIQ(Z)

Section 3.3 (Proof of Lemma 8)

co=6 (é)rank(A)/Q

Appendix A.3 (Proof of Lemma 11)

c10 = ((+p)R? + RV, f(O)] + 2

Appendix C.1 (Proof of Lemma 13)

ey =4 (% +(l+pR? + 2+ R)|VLFO)|| + (852 + i) 52/\/12(2)) Appendix C.2 (Proof of Lemma 15)

m

Proof of Proposition 19 Recall that a = 2£/, and from (41c) we have that from

Ry
el = / B(s)p(s) L ds.

So, to get a lower bound on £, we need an upper bound on the right side. Recalling the definitions of

the various functions for our scenario gives:

_ {Bmin{s?, R?}

8
— ()

2
It follows that ®(s) < s and ¢(s)~! = "(®) < 5. Thus, we have that

Now, note that in Corollary 17 that we have set

v =

Ry = R+ e

1
2 uB
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So, a bit of crude upper bounding gives:

£ < SR
(o).
1

(R2 N 16) per?
upB

2 _8eR?
CL:2£/BZm€ 4
2 Iz

IN

IN

The final bound on a becomes:

The rest of focuses on bounding the other constants as 3 grows large. For all sufficiently large 3, we
have that

BR? 16
+ =  R2
2 b e[ﬁf
=
so that
_ BeR?
a>e 2 . (65)

We have the following inequality for all sufficiently large 3:

L 4 1
1—eaz =M\ T -t

BLR2 1
<maxq4e 2z ,
1—e1

BLR2

:46 2

The first inequality uses the fact that for all y > 0, ;—— < max {%, =1 }, which is shown in
[27].
So

-1 .
20(R)"" | g (66)

1+1—e—“/2 -

Now we bound the growth of the other constants for large 5. So, without loss of generality, assume
B > 1. Then, plugging the definition of £ and ¢ and (66) gives

BLR2

¢ =2 ® \//21 <(€+M)RQ+RI|fo(0)|+Z>

< 2\/i ((¢+ W) R2 + RIV.F(0)] +n)

B¢R2
co = 4e 8
¢ (R)~!
c3 :(08+06\/cl +\[C7>6 ( l—e a/2)
Y B¢R2
§(8+CG\/011+\/§C7>€ 1+4e 2
< r(vn)e* (1 +4e )
rank(A)/2 £ 290(R)_1
ey = 6(—) + 1] V202 71 —5
— e a

)“‘"k(A)/2 + 1) V2ezet (1 + 477 ) .
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For constant c3, 7(y/n) is a monotonically increasing function of order /n, (independent of 7 and
). The upper bound of c3 is derived by direct observation of the corresponding constants.

We can see neither ¢y nor ¢4 depends on the state dimension, so the two constants grow linearly with
n. The constant ¢; are O(y/n) and cs are O(n). As for the dependencies on 3, we can see that all

BLR2
four constants are O(e™z ).
]

I Near-optimality of Gibbs distributions

In this appendix, we prove Proposition 22 which shows that x;, can be near-optimal. The proof closely
follows [27] and [35]. The main difference is that in our case we have to deal with the unbounded
polyhedral constraint, while in [35] there is no constraint and in [27] the constraint is compact.

Firstly, we need a preliminary result shown as below.
Lemma 20. Assume x is drawn according to 7g . There exists a positive constant c12 such that the
following bounds hold:

E[f(x)] < min f(z) + g (2max{0,logc} + c15)

where c15 = logn + 2log(1 + %010) + % log 3 + log 2+/7 — log Tmin and rmiy is a positive constant.

Proof of Lemma 20 Recall that the probability measure mg¢(A) is defined by mgr4)(A) =
Janx e P g

f)c e=BIWdy °
Let A = Ji e PIW)dy and p(z) = e_/j\fm. So logp(z) = —Bf(x) — log A, which implies that

flx) = 7% log p(x) — % log A. Then we have

B 1) = [ Fla)ple)da
1

=3 Kp(ff) log p(z)dx — %10% A. ©7)

We can bound the first term by maximizing the differential entropy.

Let h(z) = — [, p(x)log p(x)dz. Using the fact that the differential entropy of a distribution with
finite moments is upper-bounded by that of a Gaussian density with the same second moment (see
Theorem 8.6.5 in [15]), we have

1
h(z) < %10g(27‘r€0’2) < glog(27re(g + ;010)), (68)

where 02 = E,_.[||x||?] and the second inequality uses Lemma 14.

87 [
We aim to derive the upper bound of the second term of (67).

First we show that there is a vector z* € K which minimizes f over K. In other words, an optimal
solution exists. The bound (25) from the proof of Lemma 12 implies that f(z) > f(0) + 1 for all
sufficiently large 2. This implies that there is a compact ball, B such that if z,, € K is a sequence
such that lim,,_, f(x,,) = inf ek f(x), then x,, must be in B N K for all sufficiently large n. Then
since f is continuous and B N /C is compact, there must be a limit point * € B N X which minimizes

7.

Let z* € K be a minimizer. The normalizing constant can be expressed as:

logA = log/ e P gy
K
:loge—ﬁf(r*)/ B —F@)) gy
K

= —BF(z*) + log / ST -F@) gy

K
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So, to derive our desired upper bound on — log A, it suffices to derive a lower bound on
/ AT =F(@) gy (69)
K
We have
fl@) = f(a*) = /01 Vi@ +t(z —a) " (x—a*)dt.

Lety = a* +t(z — z*), t € [0, 1], then

IVFWll = IV fy) = V(") + V(") = VF(0) + V()|
<ty = 2"l + Ll + [V F )]
<Lz — ™[t + Ll]«”|[ + [V £ O)]]-

We can show ||z*|| is upper bounded by max{R, W}.
We have to find the bound for the case ||z*| > R.
The convexity outside a ball assumption gives

(Vi@®) = VF0) 2 > ulla|?. (70)

The optimality of 2* gives —V f(z*) € Nic(x*), whichistosay forally € K, =V f(z*) " (y—a*) <

0. Since 0 € KC, Vf(z*) "2* < 0 holds. Applying the Cauchy-Schwartz inequality to the left side of
(70) gives

IVFONl*ll > pell]1*.

This implies that ||z*|| < MN(O)”. So we can conclude that ||2*|| < max{R, M}fo)u} = c13.
Therefore,

fl@) = f(=") < /O1 IVF@" + @ — 2)|lz — 2| dt

gllx = 2|+ (Cz* (| + [V FO)I) [l — 2]
< gllx = a*|* + (bess + [IVF(O)]]) [lo — 27

<

To lower-bound the integral from (69), we restrict our attention to the points x such that the integrand
is at least 1/2. For these values, we have the following implications:

eﬁ(f(ﬁ*)—f(w)) >1/2
> B(f(z*) = f(z)) > —log2
J4 - 1
= —glz- 2|12 = (bers + IVFO)) lz — 2™ > ~3 log 2.

So solving the corresponding quadratic equation and taking the positive root gives an upper bound of
e —a~|:

e — || < —+ (fers + [VFO)]) + N (fess + [VFO)” + 24% log 2.

~

Solete = —1 (leys + |VF(0)]) + %\/(6013 + HV]E(O)H)2 + 26% log 2 and let B, (¢) be the ball
of radius € centered at x*. Then we want to find a ball S such that

o 1 1
/ PF@H—F@) gy > 5VOI(K N By- (€)= Svol(8).
K
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To find the desired ball S, we consider the problem of finding the largest ball inscribed within
JC N By« (€). This is a Chebyshev centering problem, and can be formulated as the following convex
optimization problem.

max T (71a)

Ty
subject to Ay<b-rl (71b)
lz* =yl +7 <e (71¢)

where 7 and y denotes the radius and the center of the Chebyshev ball respectively. The particular
form arises because the rows of A are unit vectors, and so the ball of radius r around v is inscribed in
K if and only if (71b) holds, while this ball is contained in B, (¢) if and only if (71c) holds.

We rewrite this optimization problem as:

min —r+Is(z*,[y]) (72a)
T’y
subject to Ay<b-—rl (72b)

where S = {(z*, [y [l|z* —yll + 7 <€}
Here, Ig is defined by

RIS I 2

Let g(z*) denote the optimal value of (72). We will show that there is a positive constant i, > 0
such that —g(x) > ry, forall x € K. As aresult, for any 2* the corresponding Chebyshev centering
solutions has radius at least 7;,.

Let F(z*,[4]) = —r + Is(z*,[y])- We can see that F' is convex in (z*,[y]) and dom F = S.

Let C = {[y]|[1 A][y] < b}. Then the optimal value of (72) can be expressed as g(z) =

inf ry o F(z, [y]) and dom g = {z|3[;] € C s.t. (z,[y]) € S}.

y]ec

The results of Section 3.2.5 of [6] imply that if F' is convex, S is convex, and g(x) > —oo for all z,
then g is also convex.

If (z,[y]) € dom F, then
|z =yl +r<e = r<e—[z—yl
= —r>—c+ |z -yl > —occ.
I

In particular, if there exist y, r such that (z, [ ]) € dom F, then inf o F(z,[y]) > —e.
y

There are two cases:

* If there exist [, ] € C such that (z,[;]) € dom F, then inf[g}ec F(x,[y]) is finite and
bounded below.
* If there does not exist [, | € C'such that (z, []) € domF, thenforall [ ] € C, F(z,[4]) =
+00. So g(x) = inf[;]ec F(z,[y]) = +o00 > —o0.
Hereby, we can conclude that for all =, g(z) > —o0, so g(z) is convex.

So, to found a lower bound on the inscribed radius, we want to maximize g(x) over K. Specifically,
we analyze the following optimization problem

i o(z) 74

which corresponds to maximizing a convex function over a convex set.

Note that K C dom(g). In particular, if z € K, then (z,[2]) € S, which implies that g(z) < 0.
Thus, g(z) < 0 for all z € K. Therefore, using Theorem 32.2 [38], given K is closed convex by our
assumption and g(x) is bounded above gives

sup {g(z)|z € K} = sup {g(z)|x € E}
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where E is a subset of K consisting of the extreme points of IC N L+, where L is the linearity space
of C and L = {z|Az = 0} = N'(A).

Now, we will show that F is a finite set.

Let
Y0 VT]
A=[U, U L.
v vy ol [
Then N (A) = L = R(Vz) and L+ = R(V}), and
KNL* ={ViZ,|AVi Z; < b}.

This is a polyhedral with no lines so has a finite set of extreme points, i.e. F is finite. In particular,
they are contained in a compact subset of . Then it is shown in the proof of Proposition 16 of [27]
that the Chebyshev centering problem has a positive global lower bound, when restricted to a compact
convex set with 0 in its interior. Denote this value by 7,y .

Thus, we have that vol(S) > ﬁéﬂ) T ., Using the fact that a ball of radius p has volumn given by
/2 n
T(n/2+1) P

Then, utilizing an upper bound of Gamma function recorded in [36] shown as below:

1/6
1
r(a;+1)<\/E( ) (83: 1 422 +x+30> x> 0. (75)
Setting z = 5 in (75) gives:
n n\% 1/6
F(§—|—1)<\/7?(%) (n S +30) . (76)

Therefore, we can find the lower bound of log 1 vol(S):
7.[.11/2

1 e —
og F('I’L/Q + 1) Tmin

n 1/6
Zlogﬁ—|—nlogrmm—1og{\/77r(2n€>2 (n +n+ = +30> }—logQ

1
log §vol(S) = —log2

V

1 1 1
,§logﬂ'+nlogrmin+glog(%'e)fglognfglog (n +n? +2 +30> log 2

1
> nlog rpm + glog(%re) — glogn ~ % log (3n3) — log(2y/7) a7

The last inequality holds because n > 1.
Plugging (77) and (68) in (67) gives

7,N[f( z)] < min f(x) + % log(2me(s + %010))

1 1 1
-3 <nlog Tmin + glog(Qﬂe) - glogn -3 logn — G log 3 — log 2ﬁ>

1 1 n 1
= min f(z) + 2ﬂlog(g—i— —c10) — ﬂ<nlogrmin—210gn—210gn)

( log 3 + log 2y/7)

56

1 1
< min f(x) + n (2 log(s + ;Cu)) + g log 3 + log 2v/7 — log 7'min + logn> .

B
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where last inequality holds because n > 1.

The final form of the bound holds because for any ¢ > 0
log (¢ + ¢) < log (max{s,1} + ¢)

c
=1 1} +1 14—
< max{logs,0} +log(1+¢).
|
Now we cover the case of compact sets for comparison with [27].

Proposition 21. Assume that K has diameter D and 0 € K and let ¢14 = €D + ||V f(0)||. Then for
all k > 0, the iterates of the algorithm satisfy

_ ) n
E[f(xi)] < min f () + c1aW (L(x0), map) + 3 (max{logc,0} + c12) (78)
In particular, there are constants c15 and c1¢ such that, for all sufficiently small e, if
= 2n(max{logs,0} + c15) (79a)
€
T = e“16/¢ (79b)
then ~
E[f(x#)] < min f(z) + . (80)

zelkC

Proof. First, we show that f (z) is Lipschitz with Lipschitz constant ¢14. Indeed,
IVF(@) <IVf(x) = VO + [IVFO)] <D+ [[Vf(0)]l.
So, if x and y are in K, we have
1
0= F)l =| [ 9416 =)@ =)
0

<calz -yl

Then (78) follows by Kantorovich duality combined with Lemma 20.

Now, using our bound from Theorem 1 gives that for 7" > 4:

E[f(x4)] < inel’r% flz)+ % (max{logc,0} 4 c12) + c14 (01 + e/ + W) T=Y2log T

Now, note that ¢;5 is monotonically decreasing in /3. In particular, for 8 > 1
— n —
c10 = (C+ wR* + RV f0)l| + 5 < (€ + w)R* + BR[| V. f(0)]] +n,

so that
1 1
c12 = logn + 2log(1l 4+ —ci1p) + 8 log 3 + log 2v/7 — 1og T'min
1

(£ + R+ RV, f(0)] + 7
I

1
<logn + 2log (1+ )—i—610g3—|—10g2\f—logrmi[1

=:C15

It follows that for 3 > 1 we have the bound

_ . n C3 + C44/6 _
E[f(x4)] < min flx) + 3 (max{logs,0} + ¢15) + c14 (c1 + cov/s + W) T=Y2logT
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Now, picking /3 as in (79) gives
% (max{logs,0} + c15) = €/2.

Proposition 19 implies that there is some constant, ¢ (independent of 77 and 3) such that ¢1, ¢2, 3, ¢4 <

2
ce®5— . Furthermore, for all 3 sufficiently large, we have from (65) that
1 per?

— < 8 . 81
Thus, for all 3 sufficiently large we have that

€3 + cay/S BR?
Ci4 (C1+02\E+ (2a)1/2 > <e .

Thus, for our choice of 5 (which is large for sufficiently small €), we have that
E[f(x4)] < mi}rcl flz) + % + PR 2 105 T
e
For simple notation, let a be such that
BeR? = 2.
€
In this case, a = 2n (max{logs,0} + c15) (R>.

We will choose T' = /€ and choose ~ to ensure that

1
GMRZTJ/Q log T = exp < (a _ 7)) J <
€

€

N A

The desired inequality holds if and only if:

1 7Y 2
eXp(e (“‘2))@51
3—a

Note that if v/2 > «, then the left side is maximized over (0, c0) at € = 25—. Thus, a sufficient
condition for this inequality to hold is:

-2
8re ™ 1.

2 —_
7
(2 O‘)
A clean sufficient condition is 1" = e€16/¢, where

16 := v = 4o + 1672 = 8n (max{logs, 0} + c15) LR? + 16e 2.

Now we extend the analysis to the non-compact case.

Proposition 22. Let x;, be the iterates of the algorithms and assume 1 < > and E[||xo[|*1] < oo
forall q > 1. For all q > 1, there exist positive constants c1g, c19 such that for all integers k > 0,
the following bound holds:

2—2q

E[f(xx)] < gr.lEl’ICl F(x) + cisWh (L(xk), ma7) + croWi (L(xg), ma7) =20 + % (max{logs,0} + c12)
(82)

where

2 (IVF O+ VIVIO) + v/uF(0))

=||VF(0 V
cis = |[VF(O)[| + p

Cro — (%+ (E[HX ||2q]+c ) €q2Q—l> ¢ —2q+1
O\VE T g =1)) \ ate - 1) Elxol2] + e22) T2

and ca depends on q, the statistics of z, the parameters y, { and V f(0).

Furthermore, there is a constant coy such if € is sufficiently small, (3 is chosen as in (79), and
T = e%20/¢ then B B
B[ (xr)] < min f(2) + e
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Proof of Proposition 22 Let x be drawn according to 7g 7. Then Lemma 20 implies:

E[f(xx)] = E[f(x)] + E[f(xx) — f(x)]
< min f() + E[f(x) - J(x)] + % (max{logs,0} + c12) (83)

So, it now suffices to bound E[f(x}.) — f(x)]. Ideally, we would bound this term via Kantorovich
duality. The problem is that f may not be globally Lipschitz. So, we must approximate it with a
Lipschitz function, and then bound the gap induced by this approximation.

Namely, fix a constant m > f(0) with m to be chosen later. Set g(x) = min{f(z),m}. The
2(11VFO)|+y/ IV FO) [ +1(m—F(0)))
o

inequality from (25) implies that if ||z|| > R := , then f(x) > m.

We claim that g is globally Lipschitz.
For ||z|| < R, we have that
IVF@)| < IVFO)]| + LR =: u.
We will show that g is u-Lipschitz.
In the case that f(y) > m and f(z) > m, we have |g(x) — g(y)| = 0, so the property holds.

Now say that f(z) < m and f(y) < m. Then we must have ||z|| < R and ||y|| < R. Then for all
t € [0,1], we have ||(1 — t)x + ty| < R. It follows that
9(z) — g(y) = f(x) = f(y)
1

=, Vi +tly —2) (y — o)t

< uflz —yl|.
Finally, consider the case that f(z) > m and f(y) < m. Then there is some @ € [0, 1] such that

f(y +6(z — y)) = m. Furthermore
l9(x) — g(y)| =m — f(y)
=fly+0(z—y) - f(y)

0
= /0 VEy +ta—y) (z - y)dt
<ullz —yll
It follows that g is u-Lipschitz.
Now noting that g(z) < f(z) for all = gives
E[f(xx) — f(x)] < E[f(xx) — 9(x)]
= Elg(xx) — g(x)] + E[L(f (xx) > m)(f(xx) —m)]
< uWi(L(xk), ma7) + E[L(f(xe) > m)(f(xx) —m)]. (84)
The final inequality uses Kantorovich duality. Now, it remains to bound E[1(f(xx) > m)(f(xx) —

m)].

Note that if y is a non-negative random variable, a standard identity gives that Ey] = fooo P(y > €)de.
Thus, we have

E[L(F(xi) > m)(F(xx) — m)] = / B () = m > e)de.
For all x € K, we have

F(x) = F(0) —~ VF(O) Tz + / (VF(tz) — VF(0)) Tt

|

. . 1
< FO) +IVFO =] + el

0+ IOE o

IN
)
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So,

flz)—m>e = f(0)+”vé#n2+€||x||2>m+e
m+ e~ (F(0) + [HPIE)

= ||lz|* > 7

m
2 te

Now assume that m/2 > f(0) + w. Then the right side implies ||z||? >
for any ¢ > 1, we have, via Markov’s inequality and direct computation:

Bl () > w70~ ) < [ 8 (Il > 25 ae
[Frlors (2220
<l [ (5 e

aa-1
(g — yma-1"

. It follows that

= B[l ]

Plugging this expression into (84) and using the definition of u gives

E[f(xx) — f(x)]

2 (IVFOI + VIV O + a(m - F(0)))
7

< [IVFO)l +¢

Wi (L(xk), 75 7)

(12a-1

JrE[kanzq]m~

(85)

We want to derive the bound of E[||xy||?9].

We have
2q 2 ~ 2
Ixp11ll°? < [[xx — 0V f(xk, 21) + Ewk” .

For notational simplicity, let y = %&xﬂkzk) and w = Wy, then the above inequality can be
"

expressed as

2n a
e[ < (5) ly + i

_ (2;) (¥ + 1wl + 25 Tw)"

= ()"0 (4) ™ e+ )

k=0
2n RN q q—k : k i —i
=(F) X () ™) (s1Piwle=2). @6
B k  \ i
k=0 i=0
The last two equalities use the binomial theorem. Here, we construct an orthogonal matrix U =

1T
—y W . . . . v
[|Y| y ] such that we can linearly transform the Gaussian noise w into v = Uw = {vl} , where
s 2

v = myTw and vo = sw. And the orthogonality of the matrix U gives v L v, and thus

v? + v, v follows a chi-squared distribution with n degrees of freedom. Furthermore, we have
[w[l* = vi+v;vaandy ' w = ||y[|v1.
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Therefore, with the change of variables, (86) can be expressed as

el < (2)'30 (4) el ’“Z( ) (11262 + vTva)9).

k=0

Taking the expectation of the above inequality gives

Bl < (4) 8 [Z() 2lylv)" ’“Z( ) (117 V1+V2TV2)U“_”)] )

k=0

< E [lxe =1V f (xk, 20) %] +nE [p(|x — 0V f (xk, 2) )] (88)
where p(|xx — NV f(Xk, z)||?) is a polynomial in ||x; — 7V f(xx, zx)||? with order strictly lower
than g and the coefficients of E[p(||xx — 7V f(Xx, zx)||?)] depend on the moments of the chi-squared
distributions and ¢. (Additionally, note that the coefficients of p can be taken to be monotonically
decreasing with respect to 5.) And the reason the polynomial only have even order terms in
lIxrx — NV f(Xk, zx)]|| is that in (87), when g — k is odd, the expectation is zero since vi ~ N (0, 1)
whose odd order moments are all zero.

Then we firstly aim to bound E[||x;, — nV f(x)[/%9).
We have

i = 0V f (% zi) |29 = (|Ixkl|® = 20 V £ (%0, 2) + 77|V f (3, 20 |7) (89)
We examine the second term:
X, V f(xk,21) = % (Vf(x1) = VF(0) + x4 (VF(0) = VF(xk) + Vf(Xk, 28))
> pllxil|® = (€ + p)R? + %, (VF(0) + Ea[V f (xi, 21) — V f (X, 2)])

where the first term is bounded by the assumption of the strong convexity outside a ball and the
detailed statement is shown below:

If lz[| > R, then =" (V f(x) — Vf(0)) > ul|||*.

If ||| < R, then T (Vf(x) — Vf(0)) > —£||z||> > —¢R>.

Therefore, we have forall z € K, T (V f(z) — Vf(0)) > pl|z||? — (¢ + p)R?
Note here and below z and z are IID.

Taking expectation of (89) gives
E [[lxx — 0V f (xp. 21) ]| *]

= B[ (k2 = 200V £ (x4, 22) + 721V £ (ke ) |2)
< E[((1 = 2m)Ixi||* + 20(¢ + p) R?
=2y (Vf(0) + Ba[V f (xk, 26) — V.f (%6, 28)]) + 02|V f (i, Zk)|‘2)q}
< E[((1 = 2um)llxi]l? + 20(¢ + p) R?
=2, (VF(0) + V. f(xk,2) — V. f (xk, 21)) + 17|V f (., Zk)IIQ)q]
< E[((1 = 2um)||xk]l* + 20 + p) R?
2k IV FO) + Ella — 2 ]) + 0?19 £ G 20 )] ©0)
The second inequality uses Jensen’s inequality, and the last inequality uses Cauchy-Schwartz inequal-
ity together with ¢-Lipschitzness of V f(x, z) in z.
Now we examine the last term of (90).

Firstly, we have

IVf(z,2)[ = [V f(x,2) = Ba[V f(2,2)] + B[V f (2, 2)] |
< Ba[Vf(2,2) = V(@ 2)]| + [ F(@)]
< L[|z = 2] + IV SO + €]l
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So
IV £ )2 < 3 (£ (Ealllz = 2ll)° + I VFO) 2 + 2]2]2) 1

Then, we can group the square terms in (90) together and simplify it:
(1= 2um) |l + 0?3 |l2|* < (1 = nu) ]
=1 =2u+ 0730 <1—np

o
302"

—n<
So, if n < 75, plugging (91) into (90) gives
E [lxx — 0V f (ew, z) [*7] < E[((1— pn)xul|* + 20(¢ + ) R
- ) ) - q
204 | (19 F(O) | + £l — 26l + 78 (€ (Balllzs — 2 )° + IV FO)12) )] . ©2)
We want to further group the first and third terms above together.

For all e > 0, 2ab = 2(ea)(2b) < (ea)® + (1b)% . Leta = f(0)
we can see the third term of the right side of (92) can be upper bounded by a summation of two parts.
The first part can be grouped with the first term of the right side of (92):

pn
(1 = )il + me? [ |2 < (1= 7 [l

Hn

= 1-pn+n?<1— >

< e< \/g
Solete = /Z, we have
E [Jlxi — 0V £ (e, 20l < E [ (1= ED) el + 206 + ) R?
29O+ e~ 3al)? 523 (© Bl — 2l + [950)) ) |
<E[((1 = Bl +20(¢ + w)R?

S2LVFO + o~ 201?473 (2 (o — 2al)* + IVFO) ) |

(93)
= (1 BB ey |27) + Elps s 2 1z — 2 )]
< (1~ 20V e 20 + Elpa el e — 1) o4

The inequality (93) uses Jensen’s inequality twice. The polynomial ps(||xx||?, [|zr — 2x||) is with
order strictly lower than ¢ in ||x;||? and with the highest order of 2¢ in ||z — 2 ||.

Similarly, we can obtain for all 7 < g,

E [l — 0V F e ze) ] < B (1= B Il + 20(0+ ) B2
# SV TN+ = 4423 (2 =51 + IIVf(0)||2)>l] .

This implies that E[p (||xk — an(xk, z1)||?)] can be upper bounded by IE‘][pl(kaH2 ||zk — 2]
where p1 (||x||?, ||zx — Zx]||) is a polynomial with the order strictly lower than q in ||x||? and the
highest order of 2¢ — 2 in ||z — Zk||.
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So (88) can be further upper bounded as below:

p . 3
B[l < (1= ZOEllxul*] + nEpa (I, 12 = 2 1)] + nElp [k ]1*, 126 — 2e])]

= (1 = EDELxel| ] + nElpa (I 2, 12 — 2 )]
<(1- %)wam L= a2+ pan 2, N — 7))
< (1= DRl + B (=l + B0 Iz — 2]))

95)

To get the upper bound of the second term of (95), we examine the following polynomial with z > 0

qg—1
q )
—x? + E Qg i,
i=0

where the a4 ;’s depend on the value of g, the statistics of the external random variables z and some

other parameters including ¢,  and ||V £(0)]|.

To find the upper bound of such a polynomial, we consider two cases

e Assume 0 < z < 1, then —29 + 23;01 aq,izt < Zg;ol lag,il;

« Assume z > 1, then —z% + 3% a, 2" < (Zf;ol \aqﬂ-|) (Zf;ol
Combining the two cases gives that for all x > 0,

g—1 q—1 g—1 q
a1+ S et < (z |) (z agal + 1)
=0

=0 =0

-1

The first case is a direct result of dropping the negative term and using Cauchy-Schwartz inequality.
The second case is obtained by firstly showing the sufficient condition of the polynomial being

non-positive. The detail is shown below:

g—1 q—1
—J:q—&—Zaqzx <0 < —1+Z
=0 zO

— 71+Z‘aq2|

1
¢:>—L+;§%WW¢§O
1=

g—1
= x> max{z lag.il, 1}
i=0
qg—1
= x22|aq7i|+1
i=0
Both (96) and (97) use the assumption that x > 1.
Besides, for 1 <z < 377/ |aq Z\ +1,
qg—1
—z? + Z qu,tgcz < \aq,2|x
i=0
q—1
S Z ‘aq 7|xgna1w
i=0
q—1 q—1 a-1
=) _lag,l (Z lag,i| + 1) :
i=0 i=0

(96)

o7)



Therefore, we can conclude that

qg—1

q— q—1
i
B e P+ el — 3000 < B | 25 s <Z gl + 1)
=0 1=0

The L-mixing property ensures that the right side of the inequality is bounded. Then, we achieve the
upper bound of equation (95).

q—17

qg—1
E{lxs1]127] < (1 = EDE[xel7] + nE Zlam (ZawIH)
=0

(D6 lagal +1)" | g
i=0 10q,i give

Iterating the inequality above and letting a, = E [“ >z |aq7

Eflxl1) < (1- ) E[|| o] +naqz (1 F

1—(1—/"')’c
1—(1-— &1

4 p\*
< 2q = _ _ =7
E[flxolI*] + ;% (1 (1 4) )
E[[lxo**] + édc]'
"

E[llxol**] + naq

Now as long as E[||x¢]|?9] < oo and ) < 1, we have

Efllxx[*9] < Efllx0]|*] + c22,

,J>

where coo = =a,. More specifically, coo depends on g, the statistics of z, the parameters u, £ and
V £(0).
Plugging the above result into (85) gives

E[f(xx) — f(x)]

7;

2197+ VIV FOT + uCm = 70)
o

< [ IVFO)I +

Wi (L(x), 75 7)

4929-1

+ (Ellxo|*] + e22) 5o

The remaining work is to optimize the right side of the above inequality with respect to m so that we
can make a choice of the value of m mentioned earlier in the proof.

Let

2IVFO) -+ VIVFON + o + Vi 0)

I

g(m) = | IVF(O)] +

Wi (L(xk), 75 7)

(a2a-1

+ (Elloll*) + e22) 7y =

We can see that g(m) is an upper bound of the right side of (85).
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Setting g’(m) = 0 leads to m* = (%) T where C = (E[[[x0]|29] + ¢22) % for

notation simplicity. So

max g(m) = g(m”)

2 (IVF O+ VIVTO) + v/uF(0))
"

< | IVFO)] +¢ Wi (L(xx), s 7)

2 (WL, mo)\ T (W L), ) ) T

\/ﬁ< V(g —1)C ) +C< Jilg—1)C )

2 (IVFO)l + VIVTOT + i (0) )
u

= | VSOl +¢

Wi (L(xk), 75 7)

(%) (Gammme) et
I [ Mg 7) ~ 2]
i Vilg—1)C A

Setting

2 (IVF O+ VIVTO) + v/uF(0))
7’

cig = |VF(0)]| + ¢

20 paga—1
o= ( + (E[][x0][?] + ¢22)

S5
g —<q
z (4~ 1>> (ﬂ(q— 1) (Elllxol27] + e22) <>> '
and plugging this bound into (83) give the suboptimality bound from (82).
In particular, if ¢ = 4, 8 > 1 and W7 (L(xx), Wﬁf) < 1 we get a bound of the form:

EL7xw)] < min f(z) + W (£00),map) ¥ + 5 (max{logs, 0} + o)

for some constant ¢ independent of 3.

Indeed, coo decreases monotonically with respect to (3, and thus so does ¢19. So, assuming 5 > 1, we
can take ¢ > c15 + c19 to be a fixed value independent of (.

Setting (3 as in (79) gives

E[f(xt)] < min f(z) + Wi (L(xe) ma7)F + %

Then, arguing as in the proof of Proposition 21, for sufficiently large 5 and T > 4, we have that

Wi(L i < RIS R
Wi(L(xk), mg7)3 < ¢ cl+02ﬁ+W og

Tfl/glogT

280R2
3

<e

Then setting, & = 2n (max{log<, 0} + ¢15) R, 3 from (79), and T = €?/¢ gives
Wi (L(xy),mg7)% < exp (E (3 - 3)) -

So, we seek a sufficient condition for

1/ 2a v Y o€ 1/ 2a v 2y
==L ) )<= === )= <1
eXp<e<3 3))6_2<:>6Xp<6<3 3>)€2_

Then, similar to the compact case, we have that when y > 2q, the left side is maximized over (0, co)

ate = 7762“. Plugging in the maximizer gives the sufficient condition:
-2
T2e =y <1
(y—2a)?
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This is satisfied in particular at
20 =7 = 8a + 72e 2.
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