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Abstract: This paper provides a connection between the concentration of a random
variable and the distribution of the roots of its probability generating function. Let X be a

generating function fyx. We show that if all of the zeros z of fx satisfy jarg(z)j> d andR 1
6 jzj6 Rthen
Var(X) > cR 2P™p;

where ¢ > 0 is a absolute constant. We show that this result is sharp, up to the factor 2 in the
exponent of R. As a consequence, we are able to deduce a Littlewood—Offord type theorem
for random variables that are not necessarily sums of i.i.d. random variables.

1 Introduction

While there are many tools in probability theory for showing that a random variable is concentrated,
there are few for proving anti-concentration in a general setting. One family of results in this direction is
Littlewood—Offord theory [12, 17, 29, 47, 45], also known as small ball probability, which is a set of tools
for obtaining upper bounds on the probability that a random sum is in a “small” set. This line of work has
led to inverse Littlewood—Offord theorems [37, 48, 46] which often present a useful dichotomy: either a
certain random variable exhibits this anti-concentration or a special structure is present. This approach
has been extended to low degree polynomials [32, 23] although sharp results remain elusive in these non-
linear cases.
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Another route towards anti-concentration is by a coupling approach: when the variable of interest is a
function of a random environment, one can often couple two instances of the environment so that one
instance of the variable is larger than the other. This approach was taken by Wehr and Aizenman [51] to
yield lower bounds on certain variances in the context of the Ising model (and other related models) and is
also taken up in other ad-hoc approaches to proving lower bounds on fluctuations [4, 16, 19, 20, 21, 27, 44]
which culminated in a recent unifying work of Chatterjee [7].

For lower bounds specifically on the variance, there are also a few other tools available; the Cramér—
Rao inequality [8, 43] and a related approach by Cacoullos [6] provide variance lower bounds for
functions of i.i.d. random variables in terms of Fisher information.

While these approaches are powerful, they all depend deeply on interpreting the random variable of
interest as a function of a random environment, typically a family of i.i.d. variables, and thus do not apply to
variables without such an interpretation.

In this paper, we prove anti-concentration estimates for a random variable based solely on the location

fx(z) 1= 3 P(X = k)z*
k

be its probability generating function. We shall write p; = P(X = i), when X is clear from context.

Our original motivation der'ves from a conjecture of Pemantle (see [34]) and a related conjecture of
Ghosh, Liggett and Pemantle [14] on random variables with real stable probability generating functions.

jarg(z)j < dg are approximately normal, provided s(X) 1. We formulated the following natural
conjecture which implies, when applied with ideas from [25, 34], an important subcase of Pemantle’s
conjecture, when the roots are bounded a“ay from 0 and ¥.

fx and letd > 0, R> 1. If the zeros z of fx satisfy jarg(z)j> d andR 16 jzj6 Rthen
Var(X) = Wg,4(n):

While we ultimately resolved the conjecture of Pemantle by different means (see [33]), Conjecture 1
remains of independent interest and mot'vates our work here. What is perhaps surprising about this
conjecture is that it says that random variables X of this type have variance that is essentially as large as
possible, as it is not hard to see that Var(X) = Og,q(n). Indeed, under the assumptions of Conjecture 1, we
have

Var(X)= 9 logfx(e?) = & 9 logje' zjj = Oggln);
dt2 t=0  j=1 dt? t=0

is determined up to constant factors.

In this paper we not only prove Conjecture 1, but supply a near-optimal constant. In other words, we
give a near-optimal lower bound for the variance of X based on the smallest argument of a root and the
smallest annulus that contains the zeros of fx.
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fx and letd > 0, R> 1. If the zeros z of fx satisfy jarg(z)j> d andR 16 jzj6 Rthen
Var(X) > cR 2P™p;
where ¢ > 0 is an absolute constant.
We will in fact prove a slightly stronger lower-bound, but we postpone this more technical statement
to Section 7.
1.1 Some corollaries of Theorem 2

In [34, 33] we studied the relationship between zero-free regions of probability generating functions and
central limit theorems, culminating in two sharp central limit theorems?. In [33], we resolved Pemantle’s
conjecture by showing that if the generating function of a random variable X has no roots with argument
less than d, then X is approximately Gaussian provided Var(X) d 2. Combining this [33, Theorem 1.4]
with Theorem 2 allows us to prove a quantitative central limit theorem for X.

bility generating function fx. Alsoletd > 0,R> landset X := (X m)s 1. If the zeros z of fx satisfy
jarg(z)j> d andR 16 jzj6 Rthen

supjP(X 6 t) P(Z61)j6 cd RP™n 2%
t2R

where Z is a standard Gaussian random variable and ¢ > 0 is an absolute constant.

Thus, while Theorem 2 shows a lower Bound on the variance of X, Corollary 3 allows us to deduce
that X also has fluctuations on the order of Var(X) = Qg4 (p n), provided n is large relative to R2P=¢,

From Corollary 3, we obtain a Littlewood—Offord type theorem for general random variables. To
understand this result in the context of Littlewood—Offord theory, we recall the classical result of

max P(X = y) = O(n '2):
y

The following corollary of Theorem 2 says that a similar result holds even if X is not a sum of independent
random variables: one needs only some control on the roots of the probability generating function of X.

fx and letd > 0, R> 1. If the zeros z of fy satisfy jarg(z)j> d andR 16 jzj6 R, then

maxP(X = y) 6 cd 'RP™n 12
y

where ¢ > 0 is an absolute constant.

1see Lebowitz, Pittel, Ruelle and Speer’s work [25] for earlier results on the relationship between zero-free regions and
central limit theorems.
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Again this is best possible, up to a factor of 2 in the exponent of R. The reader may have anticipated a
upper bound of the form c(Var(X)) 1=2in Corollary 4, in the extreme case, which is a factor of d 1 off of
what we have. However this additional factor is necessary; a fact which can, for example, be seen in the
example of sharpness in Section 1.3.

1.2 Zeros of generating functions

Perhaps surprisingly, many families of random variables, which are otherwise elusive, are known to have
generating functions with zero-free regions. A classical instance is provided in the highly influential pair of
1952 works of Lee and Yang [26, 52], which showed that the roots of the partition function in the
ferromagnetic Ising model lie on the unit circle. That is, in our terminology, the probability generating
function for “up spins” in the Ising model has all of its roots on the unit circle. Another classical example is
provided by Heilmann and Leib [18], who showed that a similar special property is enjoyed by the
random variable X = jMj where M is a uniformly chosen matching in a graph G. In this case they showed
that the roots of the probability generating function are known to be real.

These results on zeros have significant implications for the study of these random systems. Lee and
Yang connected the theory of zero-freeness to the non-existence of a phase transition: the ferromagnetic
Ising model cannot have a phase transition as the external field h varies, except at h = 0. The work of
Heilmann and Leib yields similar results for the study of “monomer-dimer” systems and, in fact, here tells us
that there is no phase transition at all. While there are other techniques for ruling out phase transitions for the
monomer-dimer model on amenable graphs such as Z9 [49] (see [24, 42] for analogous results for the
Ising model ), the zero-free approach remains the most robust route to proving there is no phase transition
for these models on arbitrary graphs.

From a more combinatorial perspective, Godsil [15], in a classic work, used the work of Heilmann
and Leib to obtain a central limit theorem for the size of a random matching in a d-regular graph for
fixed d. More recently, this was taken much further by Kahn [22] who, essentially relying on the work of
Heilmann and Leib, gave a nearly complete understanding of this phenomena for matching in graphs.

Recently, it has shown to be fruitful to consider multivariate (or in the case of random variables,
multi-dimensional) versions of these polynomials. In the case of both the Ising and monomer-dimer
models, multivariate zero-free regions are now known and a general theory has developed around these
results. One particular success has been had with stable polynomials, which emerged in probability theory
with the uprising work of Borcea, Branden and Liggett [5], who connected polynomials to a natural
notion of negat've dependence set out by Pemantle in his influential work on the subject [40].

We call a random variable with a real stable generating function strong Rayleigh and since the work of
Borcea, Branden and Liggett [5] many random variables have been shown to be strong Rayleigh, such as
the edges of a uniform spanning tree, independent Bernoulli random variables with conditioned sum, and
more [41]. Our original motivation was to solve a question raised by Ghosh Liggett and Pemantle [14] on the
limiting shape of strong Rayleigh distributions. While we now know these distributions approximate
multivariate gaussians [33], Theorem 2 allows us to understand the scale of this normal shape, in all

degenerate, assuming some control over the maximum and minimum root.
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Another light in which to view our results comes from the analytic theory of characteristic functions
as studied by Yu. V. Linnik, Ostrovskii and others. We refer the reader to [50] and the book of Linnik and
Ostrovskii [28] and the references therein for more detail on this fascinating line of research.

1.3 Sharpness of results

The sharpness of Theorem 2 (and Corollaries 4 and 3), up to a factor of 2 in the exponent of R, is supplied
by a natural class of random variables, which we describe here.

be independent, identically distributed Bernoulli random variables where p = P(X; = 1) and thus
Var(Xj) = p(1 p). Now define X to be the sum

One can then see that fx(z) = (pz*+ (1 p))"=* and thus all roots have modulus R and argument > p=k.
It is not hard to additionally show that

Var(X)= Qd R P¥n;

demonstrating that Theorem 2 is sharp up to the factor of 2 in the exponent? of R. Likewise, one can
show that this example satisfies

max P(X = y) = Qd 7?RP=24p 17
y

provided (n=k)R ¥ 1. Thus it remains an interesting open problem to close the gap between this
example and Theorem 2 and Corollary 4.

1.4 Outline of proof

The proof of Theorem 2 is broken into three principal steps. The first step draws on the results of our
paper [33] and is carried out in Section 3 where we relate Var(X) to the value of the function

jg(z) = logjfx(2)j logjfx(ze®)j

atz= 1. The function j; has several nice properties that will be crucial for us: we will see that if g cd, the
function j is both positive and harmonic in some sector of the positive real axis and, in addition, the
Taylor expansion of jg (1) in variable g has leading term g2Var(X)=2, thus providing the link with the
variance. Bounding the variance in terms of j; (1) then amounts to showing that higher terms in this Taylor
expansion may be disregarded. However, removing these “higher” terms is no small matter and it is at this
point that we make essential use of the tools built up in our previous paper [33] which allow

ZInterestingly, the extra factor of d 1 appears in our more detailed technical statement, Theorem 24, while the exponent
remains off by a factor of 2.
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us to lower bound Var(X) in terms of j; (1) (Lemma 6) by controlling the higher cumulants in terms of
Var(X). Indeed, heavy use of the fact that fx has non-negat've coefficients is used in this step. After
Lemma 6 is in place, our path diverges from the ideas and results in [33].

The second step in the proof of Theorem 2 is carried out in Section 4 where we obtain a lower bound
for jg (1) (Lemma 10) in terms of the value of a certain “truncated Mellin transform” Hy.:(s). While at
this point this is a somewhat mysterious step, we will see later that this Mellin transform has some useful
properties in our context, that will allow us to get a good handle on it.

To relate jg (1) to this truncated Mellin transform we (after some preparations) use the fact that
logjfx(z)j is harmonic in the sector arg(z) 2 (0;d) to write jo(reil 8)) as an integral around the
boundary of the sector against some Poisson kernel P(t). We are then able to truncate this integral and do a
direct comparison to the similar-looking Mellin transform. Again we make use of the non-negativity
hypothesis in this step.

The final step, which is presented in Sections 5 and 6, is to control the value of this truncated Mellin
transform Hw .t (s). The key ingredient here is that in our situation of constrained roots, we have very
good control over this object for small s. Indeed, when we take M ! ¥ ands! 0, we have that Hwu .
approaches ntZ, thereby providing the factor of n in Theorem 2. We compute this limit by first calculating
the (non truncated) Mellin transform exactly, in the s ! 0 limit. We then show that we can (carefully)
truncate the integral without too much loss.

The three lower bounds, Var(X) in terms of jg (1), jg(1) in terms of Hwm;t(s), and Hu;t(s) in terms
of ntZ, are then assembled in Section 7 to prove Theorem 2.

The main contribution of this paper, broadly speaking, is to understand how the constraints on the
roots of fx and non-negat'vity of the coefficients of fx interact. Interestingly, using only information on
the zeros, is not enough, only by using the full strength of this interaction are we able to deduce our
results. Indeed, one can interpret the results of this paper as developing a tool kit for understanding how
the non-negativity of fx interacts with information on the location of the roots.

2 Basic definitions and properties

In this section we introduce some of the central objects in this paper and state their basic properties. We
refer the reader to our paper [33] for a more careful treatment of some of the basic results mentioned in
this section.

For z2 Cnf0g, we write z= rel9, wherer> 0and q 2 [ p;p] and then define arg(z) = q. For
p6 a6 b6 p,wedefine the sector

S(a;b)=fz2C:arg(z)2 [a;b]g;

and define S(d) = S( d;d). We use the notation f(x) = O(g(x)) to denote jf(x)j 6 Cg(x), for a positive
constant C and we use the notation oy19(1) to denote a quantity that tends to zeroas x ! 0.

logarithmic potential of X to be

ux(z) = logjfx(2)j:
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One of the reasons for the use of the logarithmic potential is immediately apparent: if fx has no zeros in an
open set W, then ux is a harmonic function on W; allowing us to appeal to tools available for working with
harmonic functions.

We now note and define a few basic properties of ux. If u is a function defined on S(a;b), we say
that u is symmetric on S(a; b) if u(z) = u(Z), whenever z;Z 2 S(a;b). Of course, if uy is the logarithmic
potential of a random variable, then uy is symmetric due to the fact that fx has real coefficients: indeed,
write

ux(z) = logjfx(z)j = logjfx(z)j = logjfx(2)j = ux(2):

We now introduce a key notion that captures the property that fx has positive coefficients in terms of the
logarithmic potential. We say that a function u defined on a sector S(a; b) is weakly positive if

u(jzj) > u(z); (1)

for all z2 S(a;b). We shall make essential use of the fact that the logarithmic potential of a random
variable is weakly positive; indeed, since fx has non-negative coefficients we have that

ifx(zi)j > jfx(2)i;

for all z2 C. Weak positivity of ux follows by taking logarithms of both sides. The notion of weak-
positivity has been studied in several papers before [2, 9, 10, 11, 13, 35]; in particular, Bergweiler and
Eremenko [2] showed that weak positivity characterizes the logarithmic potentials of polynomials with
non-negative coefficients up to limits.

We now introduce? an essential definition for the work in this paper. We say that a function u, defined
on the sector S(d ), is rotationally decreasing if u(re9) is a decreasing function of q 2 [0;d], forallr > 0.
As we shall see in Section 3, the properties of being weakly positive and harmonic in S(d)
combine nicely to g've us this enriched positivity property.

We shall also draw upon a simple expansion of ux in terms of the roots of fx. In particular, we have

ux(z)= § logl 2+ § logl  Z+Nxlogjzj+cx; (2)
jzj<1 Z jzivl z

where Ny := jfz :jzj < 1gj, the sums are over the roots z of fyx and cx 2 R is defined so that ux (1) = 0.
This last property is due to the fact that fx (1) = 1.

Since we will work in the case of ux harmonic in S(d), we will often use the theory of Poisson
integration, in which we write a value ux(z) in terms of an integral along the boundary of S(d). The
sector S(d) is unbounded and so we will need some basic control over the asymptotic growth of ux(z) as z
I ¥ andz! 0, both of which will be readily available. We say that a function u on a sector S(a; b ) has
logarithmic growth if

u(z) = O(logjzj)asz! ¥; and u(z) = O(logjzj ) asz! 0;

forz2 S(a;b). Notice that since fx is a polynomial of degree at most n, ux has logarithmic growth.

3This is the special case b = 0 of our notion of b-decreasing from our previous paper [33].
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We now introduce an important companion to ux in this paper, the function jg = jg,4. Forg 2 (0;d)
and a function u on S(d), define

jg(z) :=u(z) u(e®z): (3)
The importance of j; comes jointly from the fact that it is both positive and harmonic in a sector and its

leading term in the series expansion of jg (1) is g2Var(X)=2. This second observation will be noted in
Section 3 and we record the first observation here.

Observation 5. For d > 0 and g 2 (0;d), let u be a symmetric function on S( d;d) and put j; (z) =
jg;u(z)-

1. If uis a harmonic function on S(d) then jg (z) is harmonicon S( d;d g);
2. If uis rotationally-decreasing in the sector S(d ) then j is positivein S( g=2;d g).

This observation is not hard to check, but can also be found in [33, Section 3].

3 Relating jg to the variance of X

In this section we prove that the variance of X can be lower-bounded by j; (1) (defined at (3)) for
g 2 (0;d=2°).

for which fx(z) has no zeros in S(d). Then
Var(X) > cg zjg(l);
where ¢ > 0 is an absolute constantand j; = jg;u.

To prove this, we rely heavily on tools developed by the authors in [33]. Our first step is to use the
following lemma which tells us that uy is rotationally decreasing in a sector.

Lemma 7. For d > 0, let u be a weakly positive, symmetric and harmonic function on the sector S(d),
which has logarithmic growth. Then u is rotationally decreasing in S(d =2).

Proof. This lemma follows from Lemma 4.1 in [33], by applying the lemma forall b! 0 and taking r
sufficiently large so that the condition is satisfied.

We now turn to note a useful series expansion of u(e"). We refer the reader to [33, Lemma 3.1] for
a more detailed proof of the facts stated here. If u is symmetric and harmonic in S(d) we may express
u(e%) as a series for all w in a neighborhood of 0 2 C. Indeed, if u(1) = 0 we may write

u(e¥)= §ajRe w/; (4)
j>1

forall w2 B(0;d), where (aj)j>1 is a sequence of real numbers. The sequence (a;j) ;-1 is very closely
related to the cumulant sequence of the random variable X, and in particular

EX = a;; Var(X) = ap=2: (5)
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We call this sequence (a ) j>1 the normalized cumulant sequence of X and, more generally, of a symmetric
harmonic function on S(d ).
Using the definition of j; = jg.u at (3) along with (4) we obtain an expansion for jg
jg(e¥)= dajRe Wl (ig+w); (6)
j>2

for sufficiently small w, when g 2 (0;d=2). We will then apply the following lemma which tells us that if a
function is decreasing, weakly positive and symmetric we can obtain very tight control over the tail of the
normalized cumulant sequence. The following lemma is the special case of b = 0 of Lemma 6.1 in our
paper [33].

Lemma 8. For e 2 (0;1=2), let u be a rotationally decreasing, symmetric and harmonic function on
B(1;2%). Let (aj)j>1 be the normalized cumulant sequence of u. If (aj)j>2 is a non-zero sequence then
forall L > 2 we have

é . .a_.ej

L BIR gy L (7)
a j>2Jajje!

where C > 0 is an absolute constant.

We also need the following result from our paper [33, Lemma 7.1], which says that if there is a
small k for which jagj is large then jaj = 2Var(X) must also be large. This lemma can be a seen as an

quantitative form of a (non-quantitat've) lemma co-discovered by De Angelis [11] and Bergweiler,
Eremenko and Sokal [3]; further, it may be viewed as a quantitative version of Marcinkiewicz’s classical
theorem on cumulants [30, 31]:

Lemma 9. Fors> OandL > 2, let u be a weakly positive, symmetric and harmonic function on B(1; 2s)
and let (aj); be its normalized cumulant sequence. If (aj) > satisfies

L i o . . i
aijajis' > aijajis’; (8)
j>2 j>L

then there exists a real number s > s2 6(L+1) for which jayj > s’ Zjajj; forall j> 2.

With these tools laid out, we are now in a position to prove the main result of this section.

u= ux be its logarithmic potential and let j; = jg,u be the function defined at (3) for 0< g < d=2. Since
fx has no zeros in S(d ), it follows that uy is harmonic on S(d) and thus we may use the expansion of j (e"),
jg(e¥)= g ajRe w (ig+w)! ;
j>2
as noted in Section 2 at (6), which is valid for all jwj 6 d=2. Now set w= 0 and apply the triangle
inequality to obtain
jig(1)i 6 Qjajig’:
j>2

DISCRETE ANALYSIS, 2022:13, 29pp. 9


http://dx.doi.org/10.19086/da

MARCUS MICHELEN AND JULIAN SAHASRABUDHE

Since u is weakly-positive, symmetric and harmonic in S(d) and has logarithmic growth, we may apply
Lemma 7 to see that u is rotationally decreasing in S(d=2). Seeking to apply Lemma 8 with e = g, note
that B(1;2%g) B(1;d=4) S(d=2) and so for all L, we have

dpudaiie’
aj>2 jajjg'

where C is a large, but absolute constant. If we putL = log, C+1, we have

c2 b (9)

L .
jg(1)=26 3 jajig’;
j=2

and thus by averaging there is a j 2 [L] for which
jg(1)=(2g'L) 6 jajj: (10)
Now (9) also tells us that

jajig!> aiajigh
j>L

Qo

—
1

and so we may apply Lemma 9 to learn that thereisa s > g2 ®(1+1) =: gc, for which ja,j > s) 2jajj.
Using this, along with (10) g'ves

> cg 2jg(1);

Var(X) = jagj=2 > E(gco)J %jajj > jg(1)(cog) 2(8Co)J4LgJ

where ¢ > 0 is an absolute constant. O

4 Connection to a Mellin Transform

In the previous section, we showed that we could bound Var(X) in terms of jg(1). In this section, we
take another step towards the proof of Theorem 2, by obtaining a lower bound for jg (1) in terms of a
function® Huy.t(s) = Hwm:t:u(s), which resembles a truncated version of a Mellin transform. In particular,
for a harmonic function u on S(0;t) fort 2 (0;p), s2 (0;1) and M > 1, we define

z M
Hu.tu(s) := 1=M(u(t) u(e'tt))t gt (11)

We note that taking M ! ¥ yields the Mellin transform of our function j; (t). The following lemma
is the main result of this section and allows us to control j in terms of Hy;t.

Lemma 10. Ford 2 (0;p), M> 1,s2 (0;1) and for h 2 (0;1=2) set g = hd and let u be a weakly
positive harmonic function on S(d) that has logarithmic growth. Then

ChHmg(s)

Y (12)

jg(1) >

where c,, > 0 is a constant depending only on h.

4As with jg, we shall usually suppress the explicit dependence on u as it will be clear from context.

DISCRETE ANALYSIS, 2022:13, 29pp. 10


http://dx.doi.org/10.19086/da

ANTI-CONCENTRATION OF RANDOM VARIABLES FROM ZERO-FREE REGIONS

So far we have not made it clear why Hy,.4 is any easier to work with than j; and the reader may
be skeptical that Lemma 10 is of any use to us. However, we shall see that Hy,.4(s) has a very different
behavior for small s > 0, which we are able to take full advantage of. The reader should also keep in
mind that when we apply Lemma 10 in our proof of Theorem 2, we will ultimately choose M to be a
multiple of R, s ! 0, and h an explicit small constant.

We now turn to the proof of Lemma 10, which naturally breaks into three steps. In the first step we
compare jg (1) with values jg(re'( 8)=2) for all r 1. In the second step we use the theory of Poisson
integration to express jg (re'(d 8)=2) in an integral form with positive integrand. Then, finally, we relate
the integral form obtained in the second step to the integral Hy,q4(s).

4.1 Moving away from the boundary

Here we shall compare j, (1) to the values jg (rei(d 8)=2), where r 1, by using the connection between
harmonic functions and Brownian motion. This connection is well-known and we refer the reader to
Chapters 7 and 8 in the book [36] for a detailed treatment.

Here we need a basic estimate on the probability that a Brownian motion hits the top side of a
particular polar-rectangle at its first exit.

Observation 11. Ford > 0and h 2 (0;1=2), letg = hd, let (Bt)t be a planar Brownian motion started
at12 C, let
Ri=fre':r2[e %e'la2 [ g=2;(d g)=2lg;

and let T be the stopping time T := minft : B, 2 {Rg. Then
P(arg(Br) = (d g)=2)> cn;
for some constant c,, > 0 depending only on h.

This estimate together with non-negativity of j; then allows us to compare j¢ (1) to values of j away
from the boundary of S(0;d).

Lemma 12. Ford 2 (0;p) and for h 2 (0;1=2), let g = hd and let u be a weakly-positive, symmetric,
harmonic function on S(d) that has logarithmic growth. Then

i(1)>c, min j (re'ld &72);
I’Z[e d;ed]

where ¢, > 0 is a constant depending only on h.

Proof. First note that since u is a weakly-positive, symmetric, harmonic function on S(d ) with logarithmic
growth, then we can apply Lemma 7 to learn that u is rotationally decreasing in S(d=2). Thus, by
Observation 5, we see that j; is harmonic and non-negative in the region

R=fre'd:r 2 %;e%;q2 [ g=2;(d g)=2lg:
We now use the Brownian motion interpretation of harmonic functions to write

jg(1) = Ejg(B1); (13)
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where B; is a standard planar Brownian motion started at 12 R and T = minft : B, 2 §Rg. Using

Observation 11, (13) and the fact that jg (B1) is non-negat've in R allows us to bound

d ; - - -
& min j (rel™ 8%2)s ¢ min | (rell@ 87°2);

2 r2[e d;ed] 8 r2fe d;ed]

i (1)> Parg(B )=

as desired.

4.2 Obtaining an integral form

We now take our second step towards Lemma 10 by obtaining an integral form for the function jg. To
state this, lett 2 (0;p), set g = p=t, and then for each z2 S(0; t) define the function P .1, Rso ! R by
gt 1Im(z8)

Pz;t(t) = W

(14)

The following Lemma g'ves us our desired integral form of the function jg when evaluated at points of
the form rei(t =2,

Lemma 13. Fort 2 (0;p) and g 2 (0;t=2), let u be a harmonic function on a neighborhood of S(0; t)
that has logarithmic growth. Then for z(r) = re'(t 8)=2 we have
Zy .
jg(z(r)) = . (u(t) u(te™))Pyes(t)dt; (15)

where P,.;-,(t) is defined at (14).

Here, we require only two further properties of P,.-,, that P_;_,(t) > 0 for allt > 0 and the following
basic estimate on its growth.

Lemma 14. For M> 1,t 2 (0;p)and h 2 (0;1=2) letg = ht. Thenfors2 (0;1)

M rlnsithe trg]rigetfthsptr);t:z(t)g > cht M 2p=t s

where z(r) = reilt 82 3nd c,, > 0is a constant depending only on h.

The idea behind Lemma 13 is to use the connection between harmonic functions and Brownian motion
to write u(re'(t 8=2) as an integral over the boundary of S(0;t=2) and u(re'(t*8)=2) as an integral over
the boundary of S(t=2;t). By symmetry, the contribution of integrals along the ray arg(z) = t=2 will
precisely cancel when we take the difference u(re'(t 8)=2) u(rei(t+8)=2) giving the identity Lemma 13.
We postpone the proofs of Lemmas 13 and 14 to Appendix A, as the details are not particularly
interesting and distract somewhat from the main course of our proof. For now, we see how these pieces
fit together to prove Lemma 10.
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Proof of Lemma 10. Lett 2 (d=2;d). For z= re'(t 8=2 e apply Lemma 13 and write
Zy .
jg(z) = . (u(t) u(te'))Py=(t)dt: (16)

We now make crucial use of weak-positivity (1) (thatis u(t) u(tet) > 0) and the fact that Pi=2(t) > 0,

to write 7

je(z)> " (ult)  ulteM)Pyuna(t)dt

An application of Lemma 12 together with weak-positivity and Lemma 14 gives

z
M .
jg(1) > cn  min (u(t) u(te™))P,iop(t)dt
etereet M1
VARY! .
> cp  Mmin min ftl"stt:z(t)g (u(t) u(te™))t (1+s) 4y
M let6Me t6r6et M 1

> chch t IM 2P7E SHy . (s):

Taking t " d completes the Lemma.

5 A Mellin Transform Calculation

The goal of this short section is to compute Hy:t(s) when M = +¥ ands! 0. For this, we define
L,t(t) :=2logl tz ' logl etz ' logl e 'tz %

fort 2 (0;p)andz 2 CnfOg,
Our main goal of this section will be to show the following.

Lemma 15. Fort 2 (0;p), z 2 CnfOg with jarg(z)j > t and s 2 (0;1), we have
Zy
L.(t)t D dt= t2+0410(1): (17)

This calculation is implicit in the work of Eremenko and Fryntov [13] and begins to reveal the special
structure that emerges when s is small. Indeed, angular information about the root z is lost as we send s
I 0.

We also note the connection between L, .; and our function Hy;t.

M> 1landt > 0, we have
1 M2 (s+1)
Hy.c(s) = Eé L(t)t Z,,St dt;, 1=m

where is the sum is over the roots fz g of fy.
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Proof. Set u= ux to be the logarithmic potential of X. The symmetry property of u implies

u(t) u(e™t)= % 2u(t) u(e™) u(e );

and then, using the definition of Hpm.t(s), we write
Z

Hy.t (S) = ! 2u(t) u(e™t) u(e "t)t Yt (18)
’ 2 1=m

Now, using the expansion of u in terms of its roots (as we noted at (2)) gives
o z o z .
u(z)= g logl + g logl +Nyx logjzj+cx;
jzj<1 Z  jzj»1 z
which allows us to write

2u(t) u(eitt) u(e itt)z é Lz;t(t)+ é L, 1;t(1=t)= él-z;t(t) (19)
jzj>1 jzj<1 z

by using the identity L, (t) = L, 1.,(1=t). Using (19) in (18) and swapping the sum and integral
completes the proof.

To aid in our calculation we define (abusing notation slightly), forq 2 R andt 2 (0;p),
Lgt(t) := 2log 1 €9 logl e'@*t)t Jog1 el 9*tlt: (20)

We also define the function fs(q) by first setting fs(q) = cos(s(q p)), for g 2 [0;2p] and then
extend this function periodically to all of R. That is, we define f;(q) := cos(s(q p 2kp)), for all
g2 [2pk;2p(k+1)]andallk 2 Z. We note the following fact before moving on to the proof of Lemma 15.

Fact 17. Forq 2 R and s 2 (0;1) we have
Zy _
logl €9t *Vdt= c.f(q);
0
where ¢ = p=(ssin(ps)).
This identity appears as equation 1.4.22 in [38] as well as [13].

Proof of Lemma 15. Write z = rel9, Changing variables, we write
Zy Zy
L)t Sdt=r 5 L g(t)t 5 dt (21)
0

and then applying Fact 17 gives

Zy
L q;t(t)t (s+1)dt= c(2fs( aq) fs(t q) fs(g+t)):
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Note that since L 4;t = Lq;t, we may assume that g 2 [0; p]. So, the periodicity of fs allows us to write
the expression in the brackets as

2f(2p q) fs(2p+t q) fs(t+q)
which is equal to
2cos(s(p  q)) cos(s(t g+p)) cos(s(t+a p)); (22)
by the definition of fs and the fact that q 2 [t; p], which implies that each of the arguments

2p g;2p+t q;t+q 2[0;2p]:
We now use the Taylor expansion of cosine to express (22) as

, s*t?

s%t 35 (6(p t)2+t2)+E,(s) = s2t?2+0O(s?):

where jE, (s)j6 & ((sp)®) for s < 1. We now notice that

IR
) .

= =1
dirgs”cs = lirg ssin ps

and thus 7 ¥

t
Lye(t)t CHdt= ¢, s* 2+0(s*) = t2+04,0(1):

Putting this together with (21) finishes the proof for r > 1 after notingthatr = 1+05,1(1). The proof
forr 6 1is symmetric.

6 Truncating the Mellin Transform

In this section we prove the following lemma which will be essential to obtaining a lower bound on
HM;t(S)-

Lemma 18. Fore 2 (0;1=2), M> 1+e andt 2 (0;p), letz 2 CnfOg satisfy t < jarg(z)j6 p and
M 16 jzj6 M. Then, for sufficiently small s> 0, we have

Z
L, ()t & dt> o (23)
1=m
If we additionally have jarg(z)j > p=4 then, for sufficiently small s> 0, we have
Z
1_MLZ;t(t)t s+t > jzj 52 Pet?(1+0,,,(1)): (24)

We will also need the following cheap bound to deal with the case when d is bounded away from O.
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Lemma 19. For a 2 (0;1) and t 2 (0;p) let z 2 C nfOg, be such that (aM) 16 jzj6 aM and
jarg(z)j > t. Then we have
Z

L, (t)t ©*Vdt> jzj ° t?=2+0 a'
1=M

for sufficiently small s > 0.

We note that this bound is sufficient to prove a weaker version of Theorem 2 of the form Var(X) >
cgR 2P=dn if one does not care about the dependence on d.

6.1 A few preparations

To prove Lemmas 18 and 19 we need a few useful results about the family of functions Lq ¢ first:
Observation 20. Letq 2 [ p;plandt 2 (0;p).

1. Fort> 0, we have Lq.t(t) = Lqg;t(1=t);

2. jLg;t(t)j= O(1=t)ast! ¥ andjLq;t(t)j= O(t)ast! O.

We now use the symmetry of Lq.:(t) to obtain an estimate for a truncated version of the integral
featured in Lemma 15.

Lemma 21. Fort 2 (O;p),t < jgj6 p ands2 (0;1), we have that
Z,
Lot (t)t B dt = t2=2+0410(1):
0

Proof. Write L(t) = Lqg;t(t) and set
Z, Zy
o= L)t *Ddt and 1, := L)t Mt
0 1
Applying Lemma 15toz = e 9, we have
Zy
lo+ly = Lt)t E*Hdt= t?2+0410(1): (25)
0

Now note that by changing variables t = 1=x and using the symmetry L(1=x) = L(x) (Observation 1), we
have 7
¥

L
lg = ﬂxzsdx
1 X1+5

and thus we can see that lp |y for small s. Indeed, using the fact that L(t) = O(1=t) (Observation 2) we

have 7 7

, . ¥ L(t ¥ 1
jlo Ivj= ks ayare c |t Dy (26)
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which tendsto Oass ! 0. To finish, note (25) tells us that Ig + |y t2. Rearranging this gives
i2lo t%16 t2+jlo lyj+0s10(1) = 0s10(1);

as desired.

The following elementary lemmas will allow us to throw away parts of the integral that are negative.
First we note that Lq;: undergoes at most one sign-change on [1; ¥). When working with the sign-change
I(g;t), which we define in the following lemma, we subscribe to the convention that 1=¥ = 0.

Lemma 22. Lett 2 (0;p).

1. If g 2 (t; p=2), there exists a sign-change| = I(q;t) > 1 for which Lg;¢(t) > Ofort2 [1;I] and
Lg;t(t) 6 O, fort> |;

2. If g 2 [p=2;p) then Lg;¢(t) > Oforallt > 0. In this case, we define | (q;t) := +¥.

We now use this sign-change to lower bound the contribution of the integral near 1 in the case of
jaj> p=4:
Lemma 23. For t 2 (0;p) and q satisfying p=4< jqj6 p, lete 2 (0;1=2) be suchthatl 16 1 e,
where | = I(q;t) is the sign change of Ly;:. Then
z

Lg,e(t)t "D dt > —(1+010(1)):
1 e 29

As the proofs of Lemmas 22 and Lemma 23 are somewhat tedious, we postpone them to Appendix B.

6.2 Proofs of Lemmas 18 and 19

We now use Lemmas 21, 22 and 23 to prove Lemma 18, the main result of this section.

Proof of Lemma 18. Lett 2 (0;p) and let z = reid forr > 0 and q satisfyingt < jqj6 p. We first
assume r > 1 and note that
Zm Z M=r
L ()t CVdt=r ° Ly (x)x 5 dx; (27)
1=M 1=(Mr)

by the change of variables x= t=M. We puta:= 1=(rr), b:=r=r, L(t) := Lgq;r and let| :=1(q;t) bethe
sign-change from Lemma 22. We proceed in two different cases depending on whether b> | orb<
l.
Case 1: Assumeb> |. Then L(t) 6 Oforallt> b and since

a=1=(Mr)6 r=M = 1=b6 1=I

we have that L(t) 6 Oforall06 t6 a. As a result, we have
Z, Zy
L(t)t *Vdt> L)t G dt> t2=2;
0

a
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where the last inequality holds by (17), in Lemma 15, for sufficiently small s.
Case 2 : Assume now that we have 16 b 6 |. In this case we have that L(t) > 0 forallt 2 [1;b]. We
now break into two further cases. If a6 | 1, then for sufficiently small s we have

z, z z

b 1
L)t *Hdt> L)t S Ydes> L)t S de > t2=4; (28)
0 0

a

where the second inequality follows from the fact thatl > b> 1.
In the final case we havea> | 1 and hence L(t) > 0 forallt 2 [a;b], thus we have that

Z
Lit)t “*Ydt> o:

a

In the case that jqj > p=4, we have to additionally show (24). Sincer> 1+e, wehavea6 (1+e) 16
1 e+e?6 1 e=2,since0< e< 1=2. Thus

Zp Z, 2
et
Lit)t M dt > L)t *Vdt> —_(1+0,,,(2));
210 :

a 1 e=2

by using Lemma 23. This completes the proof whenr > 1. The caser 6 1is symmetric.
The proof of Lemma 19 is a simple application of Observation 2 and Lemma 15.

Proof of Lemma 19. Let s 2 (0;1), which we will take to be sufficiently small and write z = rei®. Then

we have
Z wm Z M=r
L. (t)t B Pdt=1r * L q()t M dt:
1=M 1=(Mr)

Rq- R
PutL(t) := L q;(t) and define Iy := o~ ™7 L(t)t (*Ddtandly:= ., L(t)t (+1)dt so that

z

M=r ¥
L(t)t Y dt= L)t S*dt ;. 1= t2 11 lh+0si0(1):
0

1=(Mr)

We now use that L(t) = O(t), fort small, and the fact that 1=(Mr) 6 a to bound

Z .

Z
(Mr) 1=(rM)
jlij = L(t)t “*Ydte C
0

t Sdt=0 al *:
0
Similarly, since jL(t)j = O(1=t) fort large, and r=M 6 a, we have
z

- ¥ (s+1) 2y (2+5) 1+s
ihi= L(t)t dt6 C t dt=0 a :
M=r M=r

Thus, for s > 0 sufficiently small, the result follows from Lemma 15.
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7 The Proof of Theorem 2

We now arrive, at last, at the proof of Theorem 2. As we mentioned in the introduction, we actually prove
a slightly sharper result.

function fx andlete 2 (0;1);d > 0;R> 1+e. Ifthezerosz of fx satisfy jarg(z)j> d andR 16 jzj6 Rthen
Var(X) > cmaxfe;dgd R 2P™p;

where ¢ > 0 is an absolute constant.

One last ingredient is the classical theorem of Obrechkoff [39] on the radial distribution of the set of
zeros of a polynomial with non-negative coefficients.

Theo'em 25. Let f(z) be a polynomial with non-negative coefficients for which f(0) = 0. Then
- - . . 2a
jfz 2 C: f(z)= 0;jarg(z)j6 agj6 —deg(f):
p

Proof of Theorem 24. Let u= uy be the logarithmic potential of X. From the discussion in Section 2, we
know u to be weakly-positive, symmetric and harmonic in

S(d) = fz:jarg(z)j6 dg:

We also know that u has logarithmic growth.

Note that we may assume that n > 1, as the case n = 0 leaves us with nothing to prove. Now, looking
to apply Lemma 6, we note that Var(X) > 0, since P(X = 0)P(X = n) > 0. Choose g = d=27 and apply
Lemma 6 to carry out our first step and obtain

Var(X) > ci1g 2jg(1): (29)

We now introduce a parameter M = a IR for a 2 (0;1) to be chosen later. Since u is a weakly
positive harmonic function on S(d ) with logarithmic growth, we may apply Lemma 10 with parameter
M, t 2 (d=2;d)and h = 2 7 to obtain

C2Hmt(s)

2L (30)

jg(1) >

forall s2 (0;1).
We now use Lemma 16 and (23) in Lemma 18, for sufficiently small s, to remove all terms with
jarg(z)j 6 p=4 from the sum. Indeed, we have

Z Zw
Hy.(s) = = § L (t)t *Vdt> E : L (t)t (s*). (31)
M;t 2 da z;t a 2t :
z

[y

z:jarg(z)j>p=4

There are now a few cases to consider. We let dg > 0 be a (small) absolute constant (to be chosen later)
and split into two cases, depending on whether d > dg or not.
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Case 1: We first consider an easy case, when d > dg. In this case, we consider t 2 (dg;d) and

set M :=a IR, wherea 2 (0;1) is chosen to be a sufficiently small constant so that when we apply
Lemma 19 we get
Z
L, (t)t (+I1 gt > R * t2=2+0 al > R St?=4; (32)
1=M

for sufficiently small s. So, with this choice, apply (32) to (31) to obtain
I

t2 L

Hwm;t(s)> R °— a 1 > ; (33)

z:jarg(z)j>p=4

for sufficiently small s> 0, where the second inequality follows from Obrechkoff’s theorem, Theorem 25.
Chain together (29) and (30) with (33) to obtain
C1. C3 2p=t+s s.2p=t €3t 2p=t ..
Var(X) > —<jg(1) > ——Hm:t(s)M >a ~a —R n:
( ) gzjg( ) gzt M,t( ) 32g2
Thus recalling that g = t=27 and that aP=t > aP=do > Qs a constant, we may take t " d to complete the
proof.
Case 2 : In this case we may assume that d satisfies dg > d > 0, where dg is an absolute constant to
be chosen later. We choose M = (1 +d )R and apply (24) from Lemma 18 to each term in the sum in (31)
to get
!
ept 2

2
t
Huiels)> R * S0 (14 0010(1)) & 1> RPTo(lvoue(1) m (34)

z:jarg(z)j>p=4

where eg = maxfe;dg. We may now assume that dg is small enough so that 0 < t < dg implies that
(1+0¢10(1)) > 1=2in (34). Thus

eot?
Hwm.t(s) > ZTn

and
Var(X) > ;%jg(l) > gCTZtHM;t(S)M 2p=t4s 5 co(1+d) 2PT0ept IR 2Pp;

for sufficiently small s> 0. Since (1+d) 2P=¢ is bounded below, the result follows by taking t " d. This
completes the proof of Theorem 2.

Appendix

A Details from Section 4

We will require a few facts about Poisson kernels, which we interpret as the probability density function
of the location of where Brownian motion exits a region. For this, define

H:=fz2C:Im(z)> Og:
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Fact 26. Let z2 H, (Bt)t>0 be a Brownian motion in H, started at z and let T be the stopping time
T = infft : Im(B¢) = 0g. Then the density of the random variable B+ 2 R is

Im(z)
Pi;z(s) = W

Proof. For bounded domains, the fact that the Poisson kernel is the hitting density of Brownian motion
follows from [36, Theorem 8.5] together with uniqueness of solutions to the Dirichlet problem on bounded
domains [1, Chapter 1]. By conformal invariance of Brownian motion [36, Theorem 7.20], this means
that the Poisson kernel is the hitting density of Brownian motion for the upper half-plane. The Poisson
kernel for the upper-half plane is then given in [1, Chapter 7].

Co'ollary 27. For d > 0 and z 2 S(0;d), let (B);>0 be a Brownian motion in C started at z and let
T = infft > 0:B; 2 9S(0;d)g. Then the density of the random variable Bt is given by

gst 1im(z8)
pjz8 +s8j;

gsg 1Im(zg)_

id oy _
pjzg S8 ’ Pales) =

PZ;d(S) =

where g = p=d.

Proof. For a point 0 < s 2 95S(0;d), we will differentiate P(B(T) 2 [s;s +h]) with respect to h and
evaluate at h = 0. Note that the map z! 28 is conformal on S(0;d) and maps S(0;d) to the H. By
conformal invariance of planar Brownian motion—e.g. [36, Theorem 7.20]—we have that

P(B(T) 2 [s;s+h]) = P(B(T) 2 [s8(s+h)®])
where B is a Brownian motion started at z8 and T = infft > 0: B{t) 2 JHg. By Fact 26, we have

Z (s+h)8
P(§(f)2 [s8; (s+h)8]) = (s+h)®  |m(z8)

s8 pjze  xj?
Differentiating with respect to h gives
Szl () gst 11!
AN T

Noting that Pq(s) = Pgo;.4(e's) yields P,q(e!?s) = P4 (s), thereby giving

» gse lim( 78) gs8 lim(z8)
P.q(e's) = —— = — —:
’ p] z& sgj pjz8 +s8j,

Our goal is to prove Lemma 13. We first prove a more general statement about Poisson integration on
unbounded regions.
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Lemma 28. Let u be a harmonic function on a neighborhood of S(0; d) with
ju(z)j = O(logjzj) asz! ¥ andju(z)j= O(logjzj Y)asz! O©;

while z2 S(0;d). Then 7
u(z) = P 4(w)u(w)dw:
w29s(0;d) “
We first require a lemma about the probability that Brownian motion exits a cone before leaving a
disk, which we prove in [33]. For this, define Sg(0;d) = fz2 S(0;d):R 16 jzj6 Rgand S(O;g) :=fz2
1Sr(0;d) :jzj 2 fR;R lgg.

Lemma 29 (Lemma 4.3 of [33]). For 1< r< Randd > 0, let B(t) be planar Brownian motion started at
some pointz2 S(0;d) with jzj= randset T = infft : B(t) 2 1Sg(0;d)g. Then there exist constants C; c

> 0 so that
r c=d
P(B(T) 2 Sg(0;d))6 C R :

We can now prove Lemma 28, the basic fact about Poisson integration on a sector.

Proof of Lemma 28. Let z2 S(d), put Sg := Sg(0;d) and Sg := Sg(0;d). Of course, for all large R, we
have z 2 Sg. Now, letting PZBd (w) denote the Poisson kernel of Sg, we have

z
u(z) = PZF.{d(w)u(w)dw:
w29sg  “
We partition §Sg = Sg[ Er and write
z z
u(z) = P'?d(w)u(w)dw+ PFfd(w)u(w)dw:
w2Eg Z w2sg Z

R
Now, Lemma 29 implies that |, PzR,d(w)dw = O(R <9) as R! ¥. The growth assumption on
R ’

u(w) then assures that the latter integral convergesto 0 as R! ¥. Further, note that PRZ( ) is increasing in
R, and converges to P;dz(w), the Poisson kernel of S(0;d). Thus, we may take R'! "¥ in the above to

complete the proof.

Proof of Lemma 13. For simplicity, write z; = 2,5, 22 = e8z; and P () for the Poisson kernel of S(0; t=2).
Applying Lemma 28 to S(0;t=2), we have
Zy
u(zq) = . P {t)u(t)+P 1(Zeitzzt)u(eitzzt) dt: (35)

We may apply Lemma 28 to S(t=2;t) by rotating clockwise by t=2; this amounts to multiplying all
factors of z by e t=2 throughout the Poisson kernels. We then obtain

Zy
u(zy) = ; P ét:;zz(t)u(e'tzzt)+P ét=222(e|t:2t)u(eltt)dt:
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We now make use of two crucial identities: as noted in the proof of Corollary 27, we have P,t) =
P.i=2;(e't=2t); by the choice of z; and z,, we have e 1t=,z,e'*=2 = z;. This simplifies the expression for
u(za): z,

u(zz) = ) P, (e™2t)u(e™™=%t) + P, (t)u(e't) dt: (36)

Subtracting (36) from (35) yields
Zy ‘
jg(zt;g) = u(z1) u(z2) = . P, (t)(u(t) u(e™"))dt:

Proof of Lemma 14. Set g = p=(t=2) = 2p=t. Note that fort > 0 and s 2 [e P;eP] we have that
P.i=2(t)=s 1Pfs;tzz(t:s) > e PP _¢(t=s) and thus it is sufficient to find a lower bound in the case of z =
eilt 8)=2 for (Met) 16 t6 Met.
Observe that
Im(z8) = Im ePe 8P = sin(pg=t) = sin(ph):

Fort 2 [1; Met], we then have

tg+S t g+s _
t1P ., (t) = 2sin(ph)—i—)= > sin(ph > ¢cysin(ph)t M 2PTt¥s
Lt—z( ) (p )tje Y el 2 8} (p }‘EE‘* 1sin(ph)

where ¢; > 0 is an absolute constant.
Fort 2 [(Met) 1;1], we have
t8+s

i \— l,8+s 0 1 2p=t s,
H =2 tgj2>cht t*> gt M :

t"**Py.ia(t) = 2sin(ph)—
tje

B Calculations from Section 6

For our discussion here we write L(t) = Lq;t(t). We now look to write express L(t) = lzlog(l a(t)).
Using the identity

logjl el9tj= %Iog(l 2tcos(q) +t?)
we may obtain the expression
1 (1 2tcos(q)+t2)? 2
L(t) = (108t costg+t)Ft2J(T 2tcostg T +t2)

This allows us to write L(t) = %Iog(l a(t)) wherea(t) = A(t)=B(t) and

A= 4(1 cost)(cosq)t 4(sint)’t?+4(1 cost)(cosq)t3; (37)

B= (1 2tcos(q+t)+t2)(1 2tcos(q t)+t?): (38)

We may now prove Lemma 22.
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Proof of Lemma 22. From the discussion above, we may write, for all t > 0,

Lit) = Slogl1 a(t));
where a (t) = A(t)=B(t) and A(t); B(t) are real-valued polynomials in t. Since
B(t)= j1 tel@YjZj1 tell@ YjZ5 o
the sign of L(t) is completely determined by the sign of A(t). We rewrite
At)=t 4(1 cost)(cosq) 4(sint)*t+4(1 cost)(cosq)t?;

(sint)?

T cost)(cosq) N the case g = p=2, so that

by first defining m=

A(t)= 4(1 cost)(cosq)t(l mt+t?):

Note that X "
. (sint) 1 x
> > > 2
ij (1 cost)jcostj o x X2
|

and thus the polynomial P(t) := (1 mt+t?2) has two real roots ? 1 5 m2 4.1fq2 (t;p=2) thenm
> 0, implying that P(t) has two positive roots and therefore L(t) has a positive root > 1, by the
symmetry L(t) = L(1=t). Since limy,y A(t) = +¥, we havethat A(t) 6 Ofort 2 [1=I;q] and A(t) > O,
otherwise. Thus implying Part 1 in the Lemma 22.
If g 2(p=2;t), then m< 0 implying that both of the roots of P(t) are non-positive. Sincelimy;y A(t) =
¥ it follows that P(t) 6 O forallt > O, which means that L(t) > O, forallt> 0. The caseq = p=2is
similar to this case, thus proving Part 2 of Lemma 22.

For the proof of Lemma 23, we need the following lower bound for A, as defined at (37).
Observation 30. For t 2 (0;p) and q satisfying p=46 jqj6 p,let A= Ag;; be as above. Then
Alt)> t2 1+0(t?);
fort 2 [1;3=2].
Proof. We write A(t) = 4tH(t) and note that
H(1) = (sint)> 2(1 cost)cosq = t2 1 cosq+O(t2):

Also, So
HO(t)= t% t 2(sint)® 2tt (1 cost)cosq = t? 1ltcosq+O(t?):

fort 2 [1;3=2] we have that

H(t)> t2(1 cos(q)+O(t?)+(t 1)t>(1 tcos(q)+O(t?))
> t2(t (1 t?>+t)cos(q)+0O(t?))

> i(1+0(t2))‘
1 :
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b
where in the final inequality we used the easy boundst (1 tZ2+t)cos(q)>t (1 t2+t)(1="2) by
positivity of 1 t2+t fort2 [1;3=2] andalsot (1 t2+t)(1= 2)> 1=4. Usingthat A(t) = 4tH(t)
finishes the proof.

We can now prove Lemma 23.

Proof of Lemma 23. Set L(t) = Lq;¢. Since | 16 1 e, wehave
Z, Z,
Lit)t Y dt> L(t) dt

1 e 1l e

and using the symmetry L(t) = L(1=t) andthefact1+e 6 (1 e) 16 |, we have

z z

It 1+e
L(t)dt > L(t)dt:
1 1

Sett = 1+ x and note that for x 2 [0;e] we have jB(x)j 6 16(1+e)*. So for x 2 [0;e], we can use
Observation 30 along with the fact that jgj > p=4 to obtain

2
a(l+x)= ;:(11_&);)> ;7(1+°t!0(1)):

So, using that log(1 +x) > x=2 for x 2 [0;1], we have

Z, X
log(l a(l1+x))dx> =
0 20

e

2
minf a(l+x);1gdx> ezt—9(1+ot!0(1));

as desired.
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