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A Computational Framework for Modeling Cyclic Human Be-
haviors from Multi-Modal Sensor Data

Runze Yan

(ABSTRACT)

Cyclic human behaviors, such as circadian rhythms, have significant implications for

health outcomes. These rhythms have primarily been studied in laboratory and con-

trolled settings with small and sparse amount of data collected in short periods. With

the advancements in mobile and wearable devices, it is possible to collect longitudinal,

continuous, and fine-grained biobehavioral data from individuals in the wild. While

this data enables rigorous modeling of cycling human behavior, existing time series

modeling techniques are insufficient for this task as they assume that the input time

series is strictly stationary, are unable to independently learn non-dominant cycles,

require the number and types of cyclic patterns, and cannot process massive sen-

sor data. This dissertation presents a novel computational framework for modeling

cyclic human behaviors from multi-modal mobile sensing data. The developed frame-

work is designed to be adaptable in processing data with diverse time granularity

and is able to automatically detect and model cyclic human behaviors from multi-

modal mobile sensing data. Moreover, it can model similarities and differences in

rhythms across individuals and time, predict various outcomes related to well-being

and health, identify activity sub-patterns for a single person or across a population,

and facilitate an interpretable description of human behavior. Importantly, this is

the first framework that addresses the variability of cyclic human behaviors using

non-stationary time series. To evaluate the effectiveness of the proposed framework,
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both open-source and self-collected mobile sensing datasets are used. Through this

evaluation, the framework’s ability to process multi-modal mobile sensing data and

accurately model cyclic human behaviors is demonstrated. Overall, this work has the

potential to significantly advance the understanding of cyclic human behaviors and

their relationship to health outcomes in real-world settings.
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Chapter 1

Introduction

Numerous research has examined periodic phenomena in living organisms and con-

firmed that exploring the cyclic human behaviors is an effective way to diagnose

and treat many illnesses such as cancer, cardiovascular disease, and mental health

problems [4, 30, 81]. For example, patients with depression, bipolar disorder, and

schizophrenia usually exhibit irregular changes in circadian rhythm, and adjusting the

circadian rhythm is an efficient auxiliary method for treating these conditions [106,

64]. Disruption in biological rhythms is also caused by changing lifestyles and environ-

mental conditions such as travel across time zones and shift work [59]. For example,

sleep disorders such as delayed sleep stage disorder (DSPD) and advanced sleep stage

disorder (ASPD) are associated with circadian rhythms too late and too early [41,

57]. Jet lag is another common circadian rhythm disorder [59, 14]. The technology of

using sensors of a mobile device (i.e.smartphone and wearable devices) to acquire data

is named mobile sensing; such devices provide the capability of continuous and unob-

trusive tracking of biobehavioral signals of individuals in their daily life and outside

of controlled lab settings. Particularly, the current mobile devices have been able to

record physiological and physical activity data effectively. For example, two studies

with healthy young adults have used activity data from Fitbit devices to quantify

rest-activity rhythms and found that rhythm measurement compared well relative to

research-grade actigraphy [111, 145].
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There have been numerous studies demonstrating the reliability of mobile sensors in

capturing circadian patterns, including sleep, physical and health conditions. For ex-

ample, studies using actigraphy devices have shown differences in circadian rhythms

among patients with bipolar disorder, ADHD, and schizophrenia [34]. Abdullah et al.

used patterns of phone usage to identify chronotypes of students (early birds or night

owls) [98]. Murnane et al. aggregated mobile application usage features by body clock

time and analyzed the correlation between circadian rhythms in application usage and

alertness level [125]. Moreover, Doryab et al. demonstrated modeling of rhythms us-

ing data from Fitbit devices in cancer patients and showed that disruption in circadian

rhythms predicts readmission in cancer patients undergoing treatment [153].

Although previous studies have investigated human rhythms, they have focused mainly

on the 24-hour circadian rhythm and daily routines, overlooking the full range of nat-

ural rhythms in human behaviors. Mobile sensing technologies enable the collection

of data from various sources, which has the potential to capture human behaviors

more comprehensively. However, this also presents new challenges for cyclic time

series modeling algorithms. The longitudinal time series data collected from personal

devices is often noisy, incomplete, and voluminous, requiring careful processing to

extract useful knowledge. Additionally, each data source captures different aspects

of human behaviors, making it essential to incorporate and explore each signal to

identify biological and behavioral indicators that reveal microscopic or macroscopic

levels of cyclic behavior. Furthermore, multiple cyclic patterns may occur during a

time interval, and the number of those patterns is unknown. Current cyclic time

series modeling methods assume the time series are stable and ignore the variability

of human behaviors, which can result in inaccurate results. Finally, generating an

exhaustive number of rhythm models from different sensor sources in different time
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granularities makes it challenging to interpret the models manually. To address these

challenges, I propose a novel framework for modeling cyclic human behaviors from

multi-modal mobile sensing data offers several significant contributions to the field of

human behavior understanding, machine learning, and ubiquitous computing. Some

key contributions are outlined below:

• Identification of cyclic patterns: The ability to identify and model cyclic pat-

terns in human behavior is a significant advancement in the field. The frame-

work can either automatically estimate the periods and shapes of the detected

rhythms from stationary time series, or attribute semantic labels to behavioral

patterns in an unsupervised manner from non-stationary time series. These

assigned labels facilitate a more intuitive comprehension of a behavior’s char-

acteristics while revealing sub-patterns within distinct human activity types,

further enhancing the understanding of cyclic human behaviors.

• Enhanced behavior modeling: By leveraging multi-modal data from mobile

sensing devices, the framework provides a more comprehensive and accurate

representation of human behaviors. Additionally, the framework can flexibly

process massive multi-modal sensor data in different time granularities for fur-

ther human behavior modeling. This enables the identification of the multi-

dimensional relationship between rhythms and human outcomes, and the de-

tection of disruptions in these rhythms. Moreover, it allows for the quantifica-

tion of the variability of rhythms between user groups (e.g., well-being or health

groups) or across time. These insights are essential for enhancing overall human

behavior understanding.

• Improved machine learning models: By accounting for cyclic patterns in human
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behavior, the framework can lead to the development of more accurate and effi-

cient machine learning models. These models can be used to predict outcomes

related to health and well-being.

• Contributions to interdisciplinary research: The proposed framework demon-

strates significant applicability in various interdisciplinary research contexts.

Examples include predicting mental health status and readiness levels, investi-

gating the connection between human rhythms and productivity, and measuring

behavioral rhythm variability in relation to well-being factors such as cognitive,

emotional, and physical energy levels. These applications yield new insights

that would not be possible without the understanding of cyclic human behav-

iors derived from multi-modal sensing data, thereby showcasing the framework’s

academic value and potential impact.

In the following sections, I first offers a through examination of relevant research,

and existing methodologies related to cyclic human behaviors and the analysis of

multi-modal sensor data. Then, I detail the development of the novel computational

framework, outlining the design, implementation, and validation of the proposed ap-

proach. In the results section, the findings obtained from applying the framework

to both simulated and real-world data are presented and evaluated, highlighting its

effectiveness in modeling biobehavioral rhythms. In the end, I discussed the broad

significance and the timeline of the proposed work.
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Chapter 2

Literature Review

Understanding and modeling cyclic human behaviors have become increasingly impor-

tant as technology advances and integrates more deeply into the daily lives. Cyclic

human behaviors, such as daily routines and seasonal activities, provide valuable

insights into various aspects of human life, including health, productivity, and well-

being. By accurately modeling these behaviors, researchers and practitioners can de-

velop more effective, personalized, and context-aware systems, such as smart homes,

healthcare monitoring solutions, and recommender systems. In this section, I will

review the existing literature on cyclic human behaviors, , as well as time series al-

gorithms for modeling human behavior. By doing so, I aim to provide a thorough

understanding of the current state of the art, identify gaps and challenges in the field,

and demonstrate how the proposed computational framework addresses these issues

to advance the understanding and modeling of cyclic human behaviors from multi-

modal sensor data. The review will still focus on image representation of sensor data,

and the application of transfer learning for image processing in the context of cyclic

human behavior modeling.

2.1 Cyclic Human Behaviors
The investigation of cyclic phenomena in living organisms uncovers the presence of

recurring events and behaviors that follow specific cycles and can be represented
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by periodic functions [17, 47]. Each periodic function is characterized by its mean

level, oscillation magnitude, and optimal oscillation duration. Biological rhythms,

such as activity and rest patterns or circadian rhythms, have been widely explored in

Chronobiology and medicine [151, 80, 63], predominantly in controlled environments.

One benefit of examining these cyclic behaviors is the improved understanding of how

human physiology and behavior are influenced by internal and external factors [60].

This can help identify correlations and underlying mechanisms between human be-

havior and various health conditions [40], ultimately contributing to better diagnos-

tic tools [178], treatments [51], and preventive measures. For example, studies in

[151, 80, 63] demonstrate the association between long-term disruption in biological

rhythms and health outcomes such as cancer, diabetes, and depression. Other studies

have shown the impact of shift work on the quality of life in shift workers such as

nurses and doctors [38, 136]. These studies, however, have often been limited to con-

trolled settings to observe certain behaviors and effects. However, these studies have

often been restricted to controlled settings to observe specific behaviors and effects.

Technological advancements in activity trackers have facilitated the study of these

phenomena beyond laboratory settings, exhibiting the reliability of such devices in

detecting circadian disruptions related to sleep and physical and mental health condi-

tions [195, 188, 194]. For example, studies utilizing research-grade actigraphy devices

have identified differences in circadian rhythms among patients with bipolar disorder,

ADHD, and schizophrenia [34]. Other research has employed the same data type to

examine circadian disruption in cancer patients undergoing chemotherapy [34]. Com-

mercial devices, such as Fitbits, are now capable of reasonably accurately deducing

sleep duration and quality. Two concise studies involving healthy young adults uti-

lized activity data from Fitbit devices to quantify rest-activity rhythms, discovering
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that rhythm measurements correlated well with research-grade actigraphy [120, 138].

Investigations in [130] and [124] have also examined the ability of personal tracking

devices to measure sleep in comparison to gold standard methods like polysomnogra-

phy. In summary, analyzing cyclic human behaviors using mobile sensing technologies

not only expands our understanding of biological rhythms but also fosters innovative

approaches in monitoring, diagnosing, and treating various health conditions.

2.2 Time Series Algorithms for Human Behavior

Analysis

In this section, the goal is to present a thorough summary of time series analysis

techniques tailored for human behavior modeling. Human behavior modeling entails

the representation of behavioral patterns derived from time series data [29]. This

process uncovers hidden insights into human behaviors from raw or modified time

series and has emerged as a vital research field across multiple disciplines, includ-

ing psychology [109], social sciences [158], and computer science [160]. This review

will first examine cutting-edge general time series models and assess their suitability

for modeling human behaviors. Subsequently, an overview of time series methods

specifically designed for cyclic time series will be provided, along with a discussion

of their distinct advantages for modeling human behaviors compared to general time

series models. Lastly, the current challenges in human behavior analysis using mobile

sensing will be summarized.
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2.2.1 Time Series Models for Human Behavior Modeling

The field of human behavior modeling has attracted considerable interest owing to

its potential impact across multiple domains. A key method for modeling human

behavior involves the examination of time series data, which can be categorized as

either stationary or non-stationary [165, 168]. Analyzing human behavior from these

two types of time series data necessitates distinct approaches and considerations, given

the unique properties of each data category [162]. In the subsequent paragraphs, a

discussion of time series for both stationary and non-stationary data, along with their

successful implementation in human behavior modeling, will be presented.

Stationary time series data, by definition, exhibit constant statistical properties over

time, such as mean and variance [54]. This allows for simpler modeling techniques,

such as autoregressive integrated moving average (ARIMA) [25], exponential smooth-

ing state space models (ETS) [42], and seasonal decomposition of time series (STL) [13],

which rely on linear relationships and decomposable components. Autoregressive

(AR) and moving average (MA) models have been commonly used to model human

behavior patterns. Box and Jenkins [25] introduced the ARIMA model, which com-

bines AR, MA, and integrated components. ARIMA models have been utilized in

numerous studies, such as in the work of Matarazzo et al. [10], where they analyzed

conversational patterns between therapists and clients. STL is an important tech-

nique in time series analysis, which is useful in capturing seasonal patterns in human

behavior. Cleveland et al. [13] introduced the STL method, which has since been em-

ployed in various studies, including analyses of mood fluctuations, consumer behavior,

and social media activity patterns [109, 89, 87, 118]. ETS is a class of time series

forecasting methods that are based on the state space model framework [42]. ETS

models are particularly useful when the time series exhibits trend, seasonality, and/or
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irregularity [65]. ETS models have been applied to model various human behaviors,

including forecasting web traffic (Hyndman et al. [65]) and modeling disease pro-

gression (De Livera et al. [78]). However, many real-world human behavior datasets

exhibit non-stationary characteristics, such as time-varying mean or variance, which

may limit the applicability of stationary time series models.

A non-stationary time series exhibits variations in its statistical properties [54]. One

common approach to deal with non-stationary time series is differencing [6, 45], which

is employed in the ARIMA model to transform the original data into a stationary

form by calculating the differences between consecutive observations. This process

can be applied iteratively until the resulting time series becomes stationary, allowing

classical models like ARIMA to be effectively used for non-stationary human behav-

ior data [149]. The decomposition of time series into its components, such as trend,

seasonality, and residuals, can also help address non-stationarity [6]. STL, as men-

tioned earlier, is one such method used to extract and model seasonal patterns in

non-stationary human behavior data [141].

State space transition models, such as Markov chains, are one class of models that have

been used for modeling non-stationary time series in human behavior research [62].

State space transition models consist of a system equation, which describes the un-

derlying state dynamics, and an observation equation, which links the state to the

observable time series [37]. Rabiner et al. provided a comprehensive introduction

to state space models, highlighting their flexibility in handling various types of non-

stationary time series data [12]. Valstar et al. [55] employed hidden Markov models

to analyze facial expressions.

More recent deep learning techniques, such as the recurrent neural network (RNN)

and Transformer models, can handle non-stationary data more effectively [182]. These
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models can adapt to the changing patterns in the data, making them suitable for mod-

eling complex and dynamic human behavior patterns without explicit stationarization

or differencing procedures [134, 156]. Recurrent neural networks (RNNs) represent

a class of neural networks specifically designed for the analysis of sequential data,

such as time series [186]. The architectural foundation of RNNs incorporates hidden

states, which enable these networks to account for prior information effectively [180].

As a result, RNNs are particularly adept at modeling underlying patterns and de-

pendencies within time series data, making them a fitting choice for tasks within

this domain. Choi et al. [94] developed a RNN model specifically for predicting user

behavior in software applications. The long short-term memory (LSTM) network,

a type of RNN, have been applied by Tian et al. [185] for predicting user behavior

in mobile applications. Transformer-based models have gained significant attention

in recent years due to their ability to effectively model long-range dependencies in

time series data [193]. Shafiullah et al. designed a new Transformer architecture to

model unlabeled driving behavioral patterns [191]. Sun et al. developed a multi-

modal Transformer-based framework to capture the long-range dependency of human

behaviors for depression detection [192]. In summary, non-stationary models can bet-

ter handle the changing statistical properties in time series data and model complex,

non-linear relationships. Many human behaviors naturally exhibit non-stationary

properties, making non-stationary time series models more appropriate for capturing

and modeling these dynamics. However, non-stationary models can be more complex,

requiring more parameters and a deeper understanding of the underlying algorithms.

This may increase computational requirements and make interpretation more chal-

lenging. Due to the greater flexibility of non-stationary models, there may be an

increased risk of overfitting, leading to poor generalization performance.
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Furthermore, time series analysis methods have been combined with other approaches,

such as feature extraction and dimensionality reduction, to better capture and model

human behavior [188, 194]. Picard et al. integrated time series analysis with feature

extraction techniques to assess emotions from physiological signals [39]. In another

study, Wang et al. employed time series analysis and dimensionality reduction tech-

niques to predict human actions from video data [88]. The parameters derived from

time series models can be subsequently utilized as features within a prediction system.

This approach effectively incorporates time series characteristics into the prediction

process, enhancing its performance and accuracy. For example, authors in [181] used

the LSTM model to process the time series data from ECG signals and learn the

temporal relationship between ECG features and blood pressure values, which are

further used for blood pressure prediction.

While the aforementioned time series methods offer a degree of utility in analyzing

human behaviors, their applicability to investigating cyclic human behaviors may be

limited. For instance, many conventional models, such as hidden Markov models and

neural networks, primarily predict future values within time series data without effec-

tively extracting cyclic patterns (e.g., period, amplitude, and phase). Consequently,

these methods do not provide sufficient interpretability for cyclic human behaviors.

Though the stationary ARIMA model can identify cyclic patterns, it fails to deter-

mine the periods for all underlying cycles. In addition, these existing time series

methods may face difficulties when handling raw, multi-modal mobile sensor data. In

particular, these multi-modal sensor datasets often exhibit large volumes, longitudi-

nal structures, high dimensionality, noise, and missing values [187]. To address these

issues, the developed framework in my work integrates various pre-processing com-

ponents tailored for time series analysis, which include automated processing (e.g.,
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data cleaning, missing value imputation, and temporal window segmentation) and

modeling. The framework is generalizable and can incorporate any stationary and

non-stationary time series method.

2.2.2 Processes Specifically for Modeling Cyclic Human Be-

havior

In this section, I will describe algorithms designed to detect cyclic patterns within

time series data. This procedure, known as rhythm modeling, allows for improved

comprehension and analysis of recurring human behaviors. Consistent rhythms are

commonly observed in stationary time series, wherein the extraction of steady rhyth-

mic characteristics can be achieved through periodicity detection and shape estima-

tion of cyclic time series. In contrast, non-stationary time series exhibit fluctuating

frequencies over time. The Wavelet transform serves as a useful tool to identify these

variations in periods.

Periodicity Detection

Among the periodicity detection methods, Fast Fourier Transform (FFT) is the most

commonly used approach. FFT converts a time function into a frequency func-

tion. The dominant frequency in the frequency function is selected as the period

of rhythm [5]. Lomb-Scargle periodogram is another algorithm for cycle discovery

based on Fourier analysis and is mainly used for unequal distance data [53]. Saner

et al. assessed blood pressure and heart rate with Fourier analysis and found that

cardiovascular rhythmicity is related to obesity in children [126]. Chi-square peri-

odogram uses Chi-square statistics, has been applied to model the period of lobsters’



13

circadian rhythms to enhance fishing efficiency [61]. Chi-square periodogram cal-

culates the variance between-period and within-period, and use χ2 distribution to

evaluate the significant level. Vukolic et al. applied Chi-squared to model the cir-

cadian rhythms of blood pressure and heart rate of mice carrying the muted gene

Per2, and found the circadian clock gene Per2 control cardiovascular rhythms [76].

Cyclic Hidden Markov Model (CyHMM) has also been used for modeling cyclic time

series data. CyHMM outputs the period’s length by inferring the cyclic latent states

of input time series [147]. Pierson et al. applied the cyHMM to sleep time, steps,

and calories burned and found that these features showed a weekly cycle. All these

statistical models could output the general periods of time series. Still, they all lose

the detailed information within each period simultaneously and do not capture the

variation in the sequence shape in each cycle [147]. To summarize, the previously

discussed approaches have efficiently identified human activity periods by analyzing

sensor signals data. However, the cyclic time series modeling approaches mentioned

above assume stability in the time series, neglecting the inconsistent nature of human

behaviors (e.g., irregular rhythms), which may lead to imprecise outcomes.

Shape Estimation of Cyclic Time Series

Once the period is known, cyclic functions can be applied to the time series data to

model the rhythmicity. Cosinor is a standard method to model the amplitude and

phase of rhythms when the period is used as input. It uses a linear combination of

cosine curves to fit time series data using least squares regression [3]. Doryab et al.

used the Cosinor model to extract rhythm features from cancer patients and to predict

the readmission probability using these features [152]. BIO_CYCLE based on deep

learning is another method to model the shapes of rhythms, which can complete the
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step of period estimation and waveform extraction in one way[117]. BIO_CYCLE

works by training a CNN (Convolution Neural Network) with a periodic simulated

dataset. Then, the trained CNN is used to estimate the period, amplitude, phase,

and phase lag of a new series. As a result, BIO_CYCLE achieved state-of-the-art

performance on several large synthetic and biological time-series datasets. However,

BIO_CYCLE can only model the waveform of the most dominant period, while

Cosinorcan model more than one periodic components simultaneously. In summary,

numerous valuable rhythmic characteristics can be obtained via the processes of pe-

riodicity identification and form approximation. The framework I have developed

encompasses stationary rhythm modeling and integrates these extracted features for

subsequent analysis. These features can be employed in diverse applications, such as

serving as input for machine learning algorithms to generate predictions or conduct-

ing similarity assessments between distinct rhythmic models. Moreover, there might

be several cyclic patterns occurring within a time frame, with an unknown number

of such patterns, but these techniques are limited to modeling the primary or a small

number of rhythms.

Wavelet Transform for Non-stationary Time Series

Wavelet transform can effectively capture variations in periods [33]. Therefore, Wavelet

transform has emerged as a valuable technique for human behavior analysis due to

its ability to handle non-stationary and irregular patterns. This method enables

researchers to study time-varying features and periodic patterns at multiple scales,

offering a richer representation of the underlying behaviors.

Several studies have successfully utilized Wavelet transform in modeling human be-

havior. For example, researchers have applied this technique to analyze physiological
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signals, such as heart rate variability (HRV), to study the impact of stress on indi-

viduals. Additionally, wavelet-based methods have been used to analyze and model

physical activity patterns, sleep cycles, and mood fluctuations. Poon et al. used the

Morlet continuous Wavelet transform to study ultradian activity rhythms [27]. Price

et al. used continuous Wavelet transforms with ridges to analyze cell luminescence

data [66]. Etchegaray et al. used a similar Wavelet analysis to analyze the instability

of the circadian period in mouse SCN neurons [72].

In these cases, investigators used their eyes to process and understand rhythmic pat-

terns from the output of the Wavelet transform, which is a spectrum image and hard

to be processed by statistical and traditional machine learning methods. Analyzing

spectrum images by human eyes can deal with small sample datasets; however, it is

impossible to process massive multi-modal sensing datasets using human eyes. There-

fore, I propose a novel rhythm modeling pipeline based on Wavelet transform and

transfer learning to process the massive mobile sensing data automatically. Specif-

ically, the rhythm modeling pipeline first transforms the time series into Wavelet

power spectrum images. Then, the transfer learning model assigns similar rhythm

patterns with the same category in the spectrum image.

Variability Detection of Cyclic Time Series

Changing point detection (CPD) helps to identify the time when human rhythms

have been disrupted. CPD has been used in monitoring cyclic human behaviors

widely. For example, applying CPD to heart rate (HR), electrocardiogram (ECG),

and electroencephalogram (EEG) has helped better diagnosis of heart disease and

understand brain activity [56, 96, 50, 46, 155]. CPD has also been applied to human

activity recognition using data from smart home and mobile devices. The changing
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points in this context represent the transition of human activity [82, 97, 84]. Selection

criteria differ among CPD methods, and some methods are sensitive to the changes

of amplitude in the mean, variance, correlation, and spectral density. The cumulative

sum (CUSUM) is the most familiar CPD algorithm. CUSUM tracks the shift of local

mean, and if the decrease or increase of the mean exceeds the threshold, one change

will be identified [132]. For modeling the variations in physiological data during each

cycle, I adopt the Automatic Non-stationary Oscillatory Modelling (AutoNOM) to

model non-stationary time series with a known period. AutoNOM identifies change

points in each cycle and achieves piece-wise fitting [155] using sinusoidal regression

models simultaneously. I prefer the CPD technology used in the AutoNOM because

it is more sensitive to the change of frequencies of time series, and the AutoNOM can

find the best sinusoidal equations to fit the data in each segment [155].

2.2.3 Modeling Human Behavior from Mobile Sensor Data

The rapid development and widespread adoption of mobile devices, such as smart-

phones and wearable devices, have revolutionized the study of human behavior. Mo-

bile sensing techniques enable the continuous, unobtrusive, and objective measure-

ment of various aspects of human behavior [189, 183, 153].

The study of biobehavioral rhythms also relates to research in understanding human

behavior from passive sensing data collected via smartphones and wearable devices.

Only few studies have actually used mobile data for understanding the circadian

behavior of different chronotypes (e.g., [98, 116, 131]). Abdullah et al. [98] analyzed

patterns of phone usage to demonstrate differences in the sleep behavior of early and

late chronotypes. In a similar study using the same type of data, they showed the
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capability of using mobile data to explore daily cognition and alertness [116, 131] and

found that body clock, sleep duration, and coffee intake impact alertness cycles.

Data from smartphones and wearable devices has extensively been used for modeling

daily behavior patterns such as movement [100], sleep [101], and physical and social

activities [110] to understand their associations with health and wellbeing. For exam-

ple, Medan et al. [73] found that decreases in call, SMS messaging, Bluetooth-detected

contacts, and location entropy (a measure of the popularity of various places) were

associated with greater depression. Wang et al. [104] monitored 48 students’ behavior

data for one semester and demonstrated significant correlations between data from

smartphones and students’ mental health and educational performance. In addition,

Saeb at al [112] extracted features from GPS location and phone usage data and

applied a correlation analysis to capture relationships between features and level of

depression. They find that circadian movement (regularity of the 24h cycle of GPS

change), normalized entropy (mobility between favorite locations), location variance

(GPS mobility independent of location), phone usage features, usage duration, and

usage frequency were highly correlated with the depression score. Doryab et al. [150]

studied loneliness detection through data mining and machine learning modeling of

students’ behavior from smartphone and Fitbit data and showed different patterns

of behavior related to loneliness, including less time spent off-campus and in differ-

ent academic facilities as well as less socialization during evening hours on weekdays

among students with the high level of loneliness.

Recent tools such as Rhythomic [154] and ARGUS [170] use visualization to ana-

lyze human behavior. Rhythomic is an open-source R framework tool for general

modeling of human behavior, including circadian rhythms. ARGUS, on the other

hand, focuses on visual modeling of deviations in circadian rhythms and measures
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their degree of irregularity. Through multiple visualization panes, the tool facilitates

the understanding of behavioral rhythms. This work is related to the computational

framework for modeling human rhythms. Nonetheless, the majority of research in

this area has primarily concentrated on examining typical human rhythmic patterns,

such as circadian rhythms, and a narrow range of other human rhythms. Moreover,

these methodologies predominantly facilitate the comprehension of rhythms via visual

representation, while the proposed framework offers methods for processing various

data inputs, extracting information, and identifying and modeling rhythms for each

biobehavioral indicator with periods differing from the standard 24-hour cycle. To the

best of our knowledge, this constitutes the first computational framework to extract

and integrate parameters derived from rhythmic models using a multi-modal mobile

sensing dataset.

2.3 Image Representation of Sensor Data

2.3.1 Encode Time Series into Image

In addition to being repented as a timeline function, time series can be transformed

into other forms, such as images [77]. Several works have proposed to encode time se-

ries into image representations, and these works can be grouped into three categories.

The first category is to encode time series into images directly using mathematical

models. Specifically, Wang et al. proposed two encoding time series methods. One is

based on polar coordinates; the other is based on the Markov Transition process[114,

113, 115]. The approach in[163] uses a similar encoding method but for multiple time

series. In addition, Hatami et al. converted 1D time series into 2D images using recur-
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rence plot [144]. The second category generates images with features extracted from

time series. For example, Guinea et al. extracted variation, maximum, and range

of time series, which were then used to generate different regions of an image [190].

The third category transforms series from the time domain to the frequency domain.

Approaches have been proposed to use a Short-time Fourier Transform (STFT) to

represent the time-series into image form (e.g., [119, 140, 166, 177]). After transform-

ing time series into images, computer vision techniques can be used to classify, predict

and cluster time series. There have been many applications of image representation

for time series classification ranging from biometric signal analysis (e.g., electroen-

cephalogram (EEG), electrocardiogram (ECG)) in medical or health care field [172,

164, 175, 113] to human activity recognition [190, 173, 171]. In my work, I apply

the Wavelet transform on sensing data from multiple sources to capture the rhythmic

patterns of human behaviors, which are then visualized on a spectrum image. The

Wavelet spectrum image provides an information-rich representation of sensor data,

enabling the identification of periods and transition points derived from these images.

2.3.2 Transfer Learning for Image Processing

Transfer learning has a wide application in processing images. Transfer learning

uses the knowledge gained from one problem (source domain) and applies it to a

different, but related problem (target domain) [128, 75]. Based on the knowledge

transferred from the source domain to the target domain, there are three types of

learning strategies [70, 176]: 1) inductive transfer learning, where all the instances

and their corresponding labels are transferred from the source domain to the tar-

get domain; 2) instance transfer learning, where only the instances are transferred;

and 3) parameter transfer learning, in addition to the instances and labels, a model
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pre-trained on the sources domain is applied on the target domain. There are also

three requirements to achieve transfer learning: developing an open-source pre-trained

model by a third party, re-purposing the model, and fine-tuning for the new problem.

In Image Classification, some large viral datasets are used across research, indus-

try, and hackathons. The following are some of the prominent ones: ImageNet [68],

CIFAR [69], MNIST [90]. MNIST is a widely used dataset of handwritten digits

that contains 60,000 handwritten digits for training a machine learning model and

10,000 handwritten digits for testing the model. The CIFAR-10 dataset contains

low-resolution (32x32) color images in 10 different classes. The ten classes represent

airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. There are 6,000

images of each class. ImageNet is the state of the art largest image dataset, containing

more than 14 million images, usually for 1000 classes. A pre-trained model is already

trained on the same domains. There is a lot of open-source pre-trained architectures

are available, including VGG-16 [103], ResNet50 [122], Inceptionv3 [127], and Effi-

cientNet [161]. In my work, I use inductive transfer learning and the ResNet50 neural

network to transfer the knowledge of real-world objects in the ImageNet dataset into

the patterns shown in the Wavelet power spectrum. This is the first work to apply the

transfer learning model to spectrum images, and I will then describe how I verified

the feasibility of this experiment.
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Chapter 3

CoRhythmo Framework for

Modeling Cyclic Human Behaviors

In this thesis, I created a computational framework to model cyclic human behaviors

using multi-modal sensor data, as illustrated in Figure 3.1. The framework comprises

several components, each focusing on a specific aspect of rhythm analysis. The initial

component, data pre-processing, handles the transformation of noisy and incomplete

sensor streams into data suitable for subsequent rhythm modeling. The second com-

ponent, rhythm modeling and analysis, can model rhythms from either stationary

or non-stationary time series. A stationary time series exhibits consistent rhythms

over time, while a non-stationary time series displays rhythms that change over time,

such as varying frequency. Consequently, the methods for analyzing stationary and

non-stationary time series differ.

For stationary time series, the framework includes a sub-component called periodicity

detection, which estimates periods using a frequency-based model. Once significant

periods are identified, a rhythm characteristics modeling component (e.g., Cosinor-

model) estimates shape parameters of rhythms (e.g., amplitude and phase). These

rhythm features can then be used as input in machine learning algorithms to predict

outcomes. Additionally, a novel method based on Pearson correlation analysis is pro-

posed to determine the multidimensional relationships between rhythms and health
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and well-being outcomes.

In the context of rhythm variability analysis, a change point detection method is

employed to identify abrupt frequency changes within each rhythmic cycle. Moreover,

I proposed a rhythm variability measurement method named COSANOVA, which

utilizes rhythm parameters from the Cosinormethod and allows for the examination

of significant differences between rhythmic components across different populations

or time windows.

For modeling rhythms from non-stationary time series, an innovative unsupervised

Wavelet Transfer Learning (WTL) method is introduced to identify various rhythmic

patterns and assign similar patterns with identical pseudo-labels. The Wavelet trans-

form is incorporated in the WTL to generate a two-dimensional image representation

of the sensor signals, which displays the varying frequency content of the signal over

time. The pseudo-labels generated by the Wavelet Transfer Learning model aid in

identifying sub-patterns of human behaviors.

Figure 3.1: Flowchart of the proposed computational framework for the analysis of
cyclic human behaviors from multi-modal sensor data.

Finally, I explore different uses of the suggested framework for modeling cyclic human



23

behavior, and the outcomes of these applications are discussed in Section 4. By apply-

ing this framework to a variety of multi-modal mobile sensor datasets, I cover a range

of topics such as predicting mental health and readiness, finding the connection be-

tween daily patterns and productivity, assessing changes in cycles related to readiness

and well-being, identifying interruptions in physiological cycles, and recognizing sub-

patterns within each type of activity. This thorough investigation emphasizes the

adaptability and potential influence of the framework in various aspects of human

behavior research, ultimately demonstrating its effectiveness in tackling real-world

challenges.

3.1 Automated Pipeline of Processing Multi-modal

Sensor Data for Modeling Human Behaviors

Figure 3.2: Automated pipeline of processing multi-modal sensor data for modeling
human rhythms.

To process the massive longitudinal multi-modal mobile sensing datasets and model

rhythm with different time granularity automatically, I proposed the pipeline shown

in Figure 3.4 [194]. The pipeline incorporates data streams from mobile and wear-

able devices, including behavioral signals such as movement, audio, Bluetooth, WiFi,

GPS, and logs of phone usage and communication (calls and messages); and biosignals

such as heart rate and skin temperature, and galvanic skin response. The pipeline

performs preprocessing steps such as synchronization, missing data imputation, and
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normalization to ensure data quality. Granular features are then extracted to cap-

ture biobehavioral patterns such as activity, sleep, social communication, work, and

movements. The data streams of biobehavioral sensor features are segmented into

different time windows of interest and sent to a rhythm discovery component that

applies periodic functions on each windowed stream of the sensor feature to detect

their periodicity. The detected periods are then automatically fed into the rhythmic

function that represents the time series data stream for that sensor feature. The out-

put of the pipeline is a rhythm model (e.g., the blue line shown in Figure 3.4). The

parameters generated by the rhythmic function are used in two ways. First, they are

aggregated and further processed to characterize the stability or variation in rhythms

over a certain time segment. Second, they are used as features in a machine learning

pipeline to predict an outcome of interest (e.g., health status). The two applications

of rhythm parameters will be further discussed later. The following sections provide

details on the methods used in different components of the framework.

Handling Missing Values

As mobile sensing datasets collected in the wild are expected to include noise and

missing data, I developed strategies to handle missing data. The missing values

were filled separately for different participants and sensor signals using the local

moving average commonly used in time series. For example, if the hourly values of

location (v) were missing at 2 pm and 3 pm on one day for participant A, then I

imputed the values as following: v2pm = v1pm + (v4pm − v1pm)/(4 − 1) and v3pm =

v1pm + 2 ∗ (v4pm − v1pm)/(4 − 1). Moving average is the most suitable interpolation

method for rhythm modeling. Other methods such as multiple interpolations and EM

estimation introduce cross-correlation between features, and regression estimation
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and K-nearest neighbor increase auto-correlation of a single sensor feature [52, 169].

However, the moving average method is sensitive to the number of continuous missing

data. If the missing block is large, the moving average will introduce high noise and

bias, and the data may need to be removed instead of imputed.

Time Series Segmentation

Windowing is one of the most frequently used processing methods for streams of data.

A time series of length L is split into N segments based on certain criteria such as

time. This framework allows different ways to segment the time series, including the

widely used tumbling windows, which are a series of fixed-sized, non-overlapping and

contiguous time intervals. I call each segment a time window (tw) which is a time

series of length l, where l = L/N . I also add a second segmentation layer to the time

series where at each round k and starting point s (s = 1...N), I allow to combine

a sequence of k consecutive time windows (k = 1...N) starting from time window s

(tws) to generate time series of length k. I call these segments time chunks (tc). For

example, in round k = 1, the tc11 is a time chunk of length one and starting point of

tw1 and tc12 is a time chunk of length one and starting point tw2 whereas for k = 3,

the tc32 is a time chunk of length three and starting point of tw2. Time chunks allow

flexible modeling of rhythms in different time periods over the length of the time

series. Figure 3.3 illustrates the time segmentation process.

Figure 3.3: The segmentation of time series with time windows (tw) and time chunks
(tc)
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Feature Extraction

I extracted features in two processing layers. First, I aggregated the raw sensor

data into more meaningful behavioral features to capture students’ social interaction,

physical activity, sleep, and academic life. The collected raw sensor data is just a

series of numbers without providing much information. For example, screen data is a

time series of values from 0 to 3 (e.g., 0121023…) which does not provide any helpful

information, but I can process this time series to extract more meaningful information

about how often the user has been interacting with the phone. I then divided each

data stream into hourly intervals and extracted behavioral features in each interval

following the descriptions documented in [143]. Typical features included statistical

measures such as minimum, maximum, mean, standard deviation, length of the status

in the hour, and more complex behavioral features such as movement patterns and

type and duration of activities. Example features are shown in Table 3.1. Finally, I

modeled the cyclic pattern of each behavioral feature using Cosinor, which provided a

set of parameters that describe the cyclic pattern. This process and the list of rhythm

parameters are detailed in the following section.

3.2 Approaches for Modeling Rhythms from Sta-

tionary Time Series

Modeling rhythms from time series data involves analyzing the periodic patterns

and extracting meaningful information from them. This process often requires the

use of mathematical and statistical techniques to identify and characterize rhythmic

patterns in the data. In the following section, I will relevant techniques for identifying
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Audio percentage of time with voice/noise/silence,
min/max/mean/std of voice energy

Bluetooth mean/total number of bluetooth scans
Calories min/max/mean/total calories burned, min/max/mean/total of

decrease in 5-minute calories burned
Location location variance, percentage of time staying at home, number

of visits/time spend at green areas/athletic areas/academic
areas/outside campus

Phone Usage minutes interacting with phone, min/max/mean/std length of
interaction periods

Sleep minutes asleep/awake/restless, min/max/mean length of
asleep/awake/restless periods

Steps total number of steps, min/max/mean/total length of
active/sedentary periods

Wifi number of unique wifi hotspots detected

Table 3.1: Examples of sensor features

periodicity and extracting rhythm features, which are incorporated in the suggested

framework.

3.2.1 Periodicity Detection from Stationary Time series

Determining the exact length of a period is crucial for most studies involving rhythms.

The frequency-based approach, such as fast Fourier transform (FFT), can find the pe-

riod value of major rhythms but is limited to stationary time series. Several frequency-

based methods for estimating the period have been developed and can be grouped

into three main categories: 1) frequency domain methods techniques dependent on

periodogram (e.g., FFT) [102]; 2) time domain techniques relying on autocorrela-

tion function (ACF) [105]; 3) state transition techniques utilizing hidden Markov

models (HMM) [148]. In this section, several advanced period estimation techniques

were employed [188], encompassing Fast Fourier Transform (FFT), Chi-squared pe-

riodogram, and CyHMMs. These methods were subsequently applied to a trio of

datasets to investigate the potential of identifying human rhythms through mobile
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sensor data. The initial dataset, generated synthetically with known periods, was

utilized to evaluate the efficacy of the three methods in detecting periods within the

data. Following this, the methods were assessed on a pair of real-world mobile sensing

datasets; one dataset contained heart rate and temperature data spanning 70 days,

while the other dataset comprised 16 days of fine-grained heart rate (HR), heart rate

variability (BVP), skin temperature, and galvanic skin response (EDA) collected from

the E4 wearable device.

Fast Fourier Transform (FFT)

Fast Fourier transform is an algorithm that converts a signal from the time domain

to the frequency domain [5]. In this way, a periodic time series can be expressed

by the sum of its frequency components. The Fourier periodogram obtained by the

FFT encodes the spectral energy at a given frequency, and the dominant frequency

is the component with maximal frequency. The dominant period is the reverse of the

dominant frequency.

Chi-squared Periodogram

The Chi-squared Periodogram was developed from the Enright Periodogram [1]. The

Enright periodogram is based on the principle that the variances of different segments

of the time series are arranged in periodic order sequentially. This process repeat-

edly divides the long data stream into different periods and calculates a variability

index for each period. For the significance test of each hypothesis period, the En-

right periodogram uses the F statistic to compare the between-class and within-class

variabilities, to test the null hypothesis of the equal class mean. The Chi-square peri-
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odogram uses the χ2 distribution instead of F distribution. Sokolove and Bushell [7]

proposed the index QP to calculate the significance of different frequencies in time-

series data. The stronger is the rhythmicity in a data set, the higher is the value of

QP . For a dataset with N values (i.e., Xi for i = 1 to N), which can be broken down

into K sections of period P , the formula of QP could be defined as follows [16]:

QP =
KN

∑P
h=1(Mh −M)2∑N

i=1(Xi −M)2
(3.1)

where Mh is the mean of P values under each time unit of the period length, and M

is the mean of all N values.

Cyclic Hidden Markov Models

Cyclic Hidden Markov Models (CyHMMs) are a special kind of Hidden Markov Mod-

els (HMMs) [11] for detecting and modeling cyclic patterns. The input time series

will be treated as the observation sequence, and a set of cyclic latent states will be

inferred for the observation sequence. The period of latent states will be returned

as the period of input time series. Although having the same primary structure as

the standard HMMs, CyHMMs differ from HMMs as they do not allow the random

transition between hidden states. They require that the transition between hidden

states follows a specific order, and the next state of the final state is the starting

state, thus forming a closed-loop link to reflect the periodicity. In the CyHMMs, the

time spent at a particular stage follows the Poisson distribution, while the standard

HMMs have a Geometric distribution [147].

The Appendix A describes the evaluation of the above three periodicity detection

methods on three datasets.
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3.2.2 Rhythm Characteristic Extraction from Stationary Time

Series

Extracting rhythm characteristics is a method used to create representations of

the recurring patterns found in human behaviors, as observed through sensor data.

These models can come in various forms, such as mathematical equations, as long

as they help distinguish different rhythmic features. In rhythm characteristic mod-

eling, most current techniques primarily focus on stationary rhythms. This section

intends to give an overview of these stationary rhythm modeling methods. Among

the leading approaches, the Cosinormethod has become widely recognized. Further-

more, BIO_CYCLE, a deep learning-based method, has been developed to model

rhythm shapes. This technique has the advantage of combining period estimation

and waveform extraction in a single process.

Cosinor

The Cosinor method is one of the state-of-the-art methods. The Cosinor model

consisting of a linear combination of cosine curves with known periods can be fitted

using least square regression [cornelissen2014Cosinor, 2]. After getting the periods

of rhythms, the Cosinor method can be used to estimate the shape of rhythms from

sensing signals, as shown in Figure 3.4. The black line visualizes the sensing data,

and the blue line represents the Cosinor rhythm model. The Cosinor method is

mathematically expressed as:

yi = M +
C∑
c=1

Accos(2π(ti + ϕc)/Tc) + e, (3.2)
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where yi is the observation at time ti; M is the MESOR; ti is the sampling time;

C is the number of input periods; Ac, Tc, ϕc represent the amplitude, period, and

acrophase respectively; and e is the error. Cosinor also outputs the standard error

(SE) for MESOR, amplitude, and acrophase respectively.

Figure 3.4: A visualization of rhythm features [99].

Table 3.2 provides a complete list of the parameters of the Cosinor rhythm models

output by the above pipeline, and Figure 3.4 visualizes these rhythm parameters. The

generated rhythm parameters will be used in two ways. First, they are processed and

further aggregated to characterize the variation in rhythms. Second, they are used as

features in a machine learning pipeline to predict an outcome of interest (e.g., well-

being and health status). The processes and results of the usage of rhythm features

in rhythm variability and outcome prediction will be described in later sections.
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Rhythm Parameters Definition
Fundamental period Fundamental period is the least common multiple (LCM) of all

individual periods.
MESOR Estimating midline of the rhythm curves.
Amplitude (Amp) Half the difference between the maximum and the minimum of the

best-fitted curve in an individual period.
Acrophase (PHI) Lag from a defined reference time point to the maximum point

within an individual period.
Magnitude Half the difference between the maximum and the minimum of the

best-fitted curve in the fundamental period.
Bathyphase Lag from a defined reference time point to the minimum point

within an individual period.
Orthophase Lag from a defined reference time point to the maximum point

within the fundamental period.
P-value (P) P-values indicates the significance level of the model fitted by an

indivudual period.
Percent rhythm (PR) PR is the coefficient of determination for the model using an

individual period.
Integrated p-value (IP) IP indicates the significance level of the model fitted by the

fundamental period.
Integrated percent rhythm (IPR) IPR is the coefficient of determination for the model using the

fundamental period.

Table 3.2: Definitions of rhythm parameters output from the Cosinor model

3.3 A Novel Wavelet Transfer Learning (WTL) Method

for Modeling Rhythms from Non-stationary Time

Series

In this section, a new Wavelet Transfer Learning Neural Network (WTL) method

is developed for non-stationary rhythms from multi-modal cyclic time series. The

WTL architecture comprises two main components, as shown in Figure 3.5. The first

component employs Wavelet transform (WT) to create an image-based representation

of human behavior from raw multi-modal time series data. The images generated by

WT undergo a fusion and smoothing process (Figure 3.5) before being passed to

the second component. The second component groups the images using a transfer

learning Convolutional Neural Network (CNN).



33

Figure 3.5: The general architecture of Wavelet Transfer Learning (WTL). The
Wavelet transform generates a time-frequency power spectrum of single time series
sensor signals. The image fusion combines the Wavelet power spectrum images from
multiple sources into one. Smoothing makes the fused spectrum images look natural
and highlights the significant regions of the spectrum images. The pre-trained neural
network model will categorize the smoothed spectrum images into the most similar
category from ImageNet and output the corresponding label. (a) spectrum image per
sensor signal; (b) fused spectrum image; (c) smoothed spectrum image; (d) recon-
structed spectrum image after smoothing.

3.3.1 Multi-modal Time Series Wavelet Transform

Human behavior’s periodic oscillations can also display significant variations in pe-

riod and amplitude over time. In this section, instances where periods change over

time are discussed, and the Wavelet Transform (WT) is employed to provide a power

spectrum describing the variability of the periods. WT offers a means of extract-

ing information about time and frequency domains from non-stationary time series,

enabling an interpretation of the signal’s variability [159, 19, 71]. WT produces a

two-dimensional time-frequency Wavelet power spectrum image, as depicted in Fig-

ure 3.6. The X-axis represents the time span of the input time series, the Y-axis

denotes the range of frequency expressed in time units, and the rainbow illustrates

the power of the distinct frequencies.

The definitions of key elements of the power spectrum in Figure 3.6 are listed as
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Figure 3.6: An example of Wavelet spectrum image.

follows:

• Y-axis: the range of periods, expressed in time units.

• X-axis: time span of input time series.

• Rainbow: power of distinct period

• Ridge: The Wavelet ridges are the maxima points of the normalized scalogram.

They indicate the instantaneous frequencies within the limits of the transform’s

resolution.

• Significance level: The thick white contthe lines represent the significance level

and the lighter curve denotes the cone of influence (COI). The area within the

while line is the region of significant periods.

• Ridge: The Wavelet ridges are the maximal points of the normalized scalogram.

They indicate the most significant instantaneous frequencies at a given time

point.

• Cone of Influence (COI): For a time series of finite length, computation of CWT

using DFT requires that the time series is cyclic. To satisfy this requirement, the
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time series is often padded with zeros. Zero padding leads to errors at the ends

of the Wavelet power spectrum. The region in which these edge effects become

important is called the cone of influence (COI). As a consequence, the results

outside the COI may be unreliable and should be interpreted with caution.

Figure 3.7 shows a comparison between Fourier transform spectrum and Wavelet

transform spectrum with the same input time series. The Fourier transform allows us

to detect and measure the periods of significant rhythms, but I do not know whether

the rhythms have changed over time. However, the Wavelet transform power spectrum

includes the rough frequency that happened at the rough time for a signal. As shown

in Figure3.7, 24h is the most dominant period in Fourier spectrum. As for the Wavelet

spectrum, I can also observe a 24h rhythm in general, but the rhythm was disrupted

at around Sep 20 and had an increase in periods after Sep 25. In addition, Wavelet

methods can also be used to assess the strength of signal components lying in different

frequency bands. For example, some significant rhythms with periods less than 24h

can also be observed, but they did not last for a long time.

These characteristics enable Wavelet analysis to evaluate the power of signals across

various frequency bands. I applied the WT to behavioral data, as illustrated in

Figure 3.8. The figure displays three examples of Wavelet power spectra obtained

from accelerometer data corresponding to three separate human activities. Because

the behaviors are different, the three Wavelet spectrograms look significantly different.

In Figure 3.8(a), the series is stationary cyclic across time and appears to have two

periodic components. The first has a period of around 32 (on the y-axis), and the other

around 128. Notice the period of 32 has less power than the period of 128, while the

low-period oscillation region (i.e., the area below 16) provides no significant periods.

Moreover, the period of 32 is not continuous across time, indicating the regular cyclic
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Figure 3.7: Comparison between Fourier transform spectrum and Wavelet transform
spectrum with the same input series. The input time series is one person’s one month’s
steps data (sampling frequency: 1h)

behavior is disrupted. The cycling sample presented in Figure 3.8(b) can be periodic

but not stationary because its periods change over time. In the green window of

the raw sensor data in Figure 3.8(b), a stable period can be observed between 64

and 128. However, in the red window, the red color of the Wavelet power spectrum

also appeared in the region above the 128. And in the blue window, the red color

mainly concentrates on the region below the 32. This observation indicates that the

cycling periods are initially between 64 and 128, then increase in the green window

and drop in the blue window. The time series for the standing activity visualized in

Figure 3.8(c) is non-cyclic and non-stationary. However, as shown in the black window

of Figure 3.8(c), the color and pattern of the Wavelet spectrum changed when the

time series fluctuated. This example shows the Wavelet transform can analyze the

non-stationary patterns and provide visual information about the characteristics of

the time series that otherwise could not be observed.
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(a) Walking (b) Cycling (c) Standing

Figure 3.8: Wavelet power spectrum images of accelerometer samples from three
human activities. The plot depicts the presence of distinct periods throughout the
time series. The time of the respective periods on a logarithmic scale at the ordinate
and the power of distinct periods as a function of the time shown in the rainbow
colors. The sample shown in Figure 3.8(a) is stationary and periodic. The sample in
Figure 3.8(b) is periodic but has changed over time and Figure 3.8(c) is non-periodic.
The Wavelet spectrum shows significant differences when the time series fluctuates
violently.

Fusion of Single Signal Wavelet Spectrums

Different aspects of behavior are often characterized more accurately by interpreting

signals from multiple sensors. the approach can handle multi-modal data by creating

one Wavelet image per sensor. To create a single image from multiple WT images, I

adopt the fusion strategy introduced in [157] to merge the Wavelet spectrum images

(See Figure 3.5). This fusion method can be applied to any number of input images.

The technique has been validated on multiple medical fusion categories and achieved

state-of-the-art performance in visual quality. The intuition behind the fusion is to

gather and preserve common and significant behavioral information from multiple im-

ages into a single image. For example, multiple signals may have different frequencies

and time-dependent patterns that may or may not be significant for characterizing
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the overall behavior. However, if the pattern is preserved in the fusion of the Wavelet

spectrum images, it may signal behavior characteristics.

Power Spectrum Smoothing

As shown in Figure 3.5, I smooth the fused Wavelet spectrum images in two steps.

First, I perform a convolution operation between the given image and a predefined

low-pass filter kernel to generate more natural-looking images. I choose the median

filter, which computes the median of all the pixels under the kernel window and

replaces the central pixel with this median value.

Next, I smooth the color spectrum of the fused image to obtain fewer and more distinct

colors that highlight significant regions of the image. This process partitions the

image into multiple distinct regions containing sets of pixels with similar attributes.

In this way, the original fused time-frequency spectrum images are transformed into

new representations that are more meaningful and easier to analyze. I utilize the

K-Means clustering algorithm to segment the interest areas into pieces with different

colors. The values of the R, G, and B components in the color of each pixel are input

into the K-mean algorithm. Since the Wavelet spectrum comprises the blue, red, and

green colors, I set the number of clusters K equal to 3 and are more interested in the

area with red indicating more powerful frequencies.

3.3.2 Behavior Modeling and Interpretation via Fused Wavelet

Spectrum Transfer Learning

After generating fused and smoothed Wavelet images, I assign pseudo-labels to the

images via transfer learning. There are several advantages to this approach. Specif-
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ically, transfer learning can bridge between a source domain with rich sample data

and a target domain with only a few or even zero labeled samples [128, 75, 167]. This

allows the approach to be parameter-free; neither the number of clusters, a distance

metric, nor any other hyperparameter must be set. I chose to use ResNet-50 [122]

trained on ImageNet dataset [137] to label the input Wavelet power spectrum images.

The ImageNet dataset comprises everyday objects such as an “envelope” and “jersey”.

Thus, because the label assigned by the network characterizes the predominant shape

in the Wavelet image, the properties of the behavior encoded by the Wavelet image

can be intuitively understood. I call this assigned class a pseudo-label.

Because the source dataset (ImageNet) significantly differs from the target dataset

(the Wavelet images), I use an unsupervised domain adaptation approach to improve

the network accuracy. Specifically, I use maximum mean discrepancy (MMD), a

widely used non-parametric criterion that measures the discrepancy between the dis-

tributions of source and target domains [95]. In the implementation, I used the MMD

metrics in the fully connected layer to reduce the difference between the source and

target feature domains. I run a small test to confirm that the pseudo-labels align

with the spectrum images. I count the number of each type of pseudo-label assigned

to the image by WTL. I then choose the three most frequent pseudo-labels — ”En-

velope,” ”Jersey,” and ”Chain” — and find the corresponding real-world image from

the ImageNet Dataset using the Structural Similarity Index (SSIM) [79]. The SSIM

is a common method for quantitatively measuring the similarity between two images.

The SSIM values range from 0 to 1, where 1 is a perfect match between the original

image and the copy. As shown in Figure 3.9, the SSIM between the spectrum images

and ImageNet pictures is relatively high, indicating that the chosen pseudo-labels are

close to the real-world representation of the fused spectrum images.
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Figure 3.9: The figure shows the three fused spectrum images with their assigned
pseudo-labels are close to the real-world representation of the pictures in the ImageNet
using the Structural Similarity Index(SSIM) [79].

3.3.3 Granular Behavior Inspection with Power Spectrum

Segmentation

The processed spectrum images encode various behavioral information about time

and frequency from multiple sensors in different image areas. While the whole image

represents the overall behavior, different areas of the image can reveal various behavior

characteristics. For example, if the image is split into regions across the x-axis,

different behavior time windows can be assessed. Similarly, if the image is split into

regions across the y-axis, behavior frequencies can be analyzed — the top region

represents relatively long frequencies, while the bottom represents relatively short

frequencies. This is an important benefit of the approach because human behaviors

can vary significantly across frequency and time.

More specifically, an input image X ∈ Rc×h×w (c, h, w representing the channel,
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height, and width) is split into M × N parts Region1, Region2, ..., and RegionM×N ,

where M represents the number of period oscillation bands, and N represents the

number of time windows generating sub-images if size c × h
M

× w
N

. The RegionM×N

shows the change of power from the time N−1
N

×w to w for the periods M−1
M

×h to h.

Before feeding it into the neural network model, I resize the sub-images to 224× 224

(the input size of the transfer learning neural network model). I use all the sub-images

as independent samples of the neural network.

3.4 Multi-dimensional Correlation Identification in

Rhythm Analysis

In this section, I concentrate on exploring assessing possible connections between

rhythmic events and specific human outcomes, such as health and well-being. Gain-

ing insights into these relationships is crucial for enhancing our comprehension of the

challenges associated with health and well-being. Initially, the Pearson correlation

analysis is employed to identify the relationships between rhythmic patterns and the

targeted human outcome across various time periods. It is important to recognize

that these connections exhibit a multidimensional nature, incorporating various sens-

ing technologies, feature attributes, and rhythm-related parameters. To accurately

quantify this complex, multidimensional relationship, a novel aggregation method-

ology has been formulated and implemented. First, I calculated the correlation co-

efficient between each rhythm parameter and productivity score to understand how

rhythm parameters correlate with the targeted human outcome and whether the cor-

relation is consistent across time windows. To measure correlation, I first normalized

the productivity score and all rhythm parameters using min-max normalization and
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then calculated a Pearson’s correlation coefficient and a 2-tailed p-value for testing

the significance. The first step resulted in one correlation coefficient and one p-value

per behavioral feature, per rhythm parameter, and per time window as shown in

Figure 3.10 (step 1).

...

...
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Aggregate Across 
Rhythm Feature
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Figure 3.10: The pipeline to aggregate the correlation for a multidimensional dataset
with K sensor features, L rhythm parameters, and J time windows. The pipeline
is able to output the correlation between productivity and a single sensor, and the
correlation between productivity and a single rhythm parameter.

Next, as presented in Figure 3.10, I adopt the Fisher’s method to combine the corre-

lation coefficient (r) and its significance (p-value) of every combination of behavioral

feature - rhythm parameter - time window. Fisher’s method is a widely used meta-

analysis technique used for combining the results from several independence tests [15,

179]. These combinations offer insights into the variations in rhythms related to the

targeted outcome for each behavioral feature per week (2a in Figure 3.10), as well as



43

the variations in each rhythm parameter per week related to the targeted outcome (2b

in Figure 3.10), irrespective of the specific behavior. While the correlation coefficient

represents the strength and direction of the relationship, its significance reflects the

reliability and generalizability of the relationship. We, therefore, aggregated signifi-

cant correlation coefficients for all rhythm parameters per behavioral sensor feature

(2a) as well as aggregated significant correlation coefficients for all sensor features

per rhythm parameter per week (2b). In step 3 (3a and 3b), I further combined

correlation coefficients and significance scores across all three weeks. The final step

(4), summarizes the correlation (and significance) values into one final score for each

sensor feature (4a) and for each rhythm feature (4b).

Let SFlj denote the set of sensor features that are present for rhythm parameter l in

time window j, SFsig,lj denote the subset of SFlj with p ≤ threshold t (p represents

the level of statistical significance and typically ≤ 0.05, here t = 0.05) for rhythm

parameter l in time window j. Let RFkj denote the set of rhythm parameters that

are present for sensor feature k in time window j, RFsig,kj denote the set of RF whose

p < threshold t for sensor feature k in time window j.

For each sensor feature sfk (k = 1...K), I first transform the sample correlation rklj

to Fisher’s z score by Equation 3.3.

zklj = 0.5× ln(
1 + rklj
1− rklj

) (3.3)

, where rklj represents the significant Pearson correlation coefficient between rhythm

parameter l and productivity in time window j for sensor feature SF with the index

of k. RFsig represent the set of all rhythm parameters with significant correlation.

Then, I calculate the aggregated correlations and significance between productivity
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and rhythm parameters (rfl, l = 1...L) within each time window j , j = 1...J (e.g.

week 1) using Equation 3.4 and 3.5.

ZjSFk =

∑
l∈RFsig,kj

|zklj|
n(l ∈ RFsig,kj)

(3.4)

SjSFk = (1− 2×
∑

l∈RFsig,kj

log(pklj))×
n(l ∈ RFsig,kj)

n(l)
(3.5)

These aggregated correlations and significance are denoted as ZjSFk and SjSFk,

which are then averaged across J time windows with Equation 3.6 and 3.7.

ZSFk =

∑
1≤j≤J ZjSFk

J
(3.6)

SSFk =

∑
1≤j≤J SjSFk

J
(3.7)

, where J represents the total number of time windows.

In the end, the aggregated z score (ZSFk) is transformed into the format of correla-

tion coefficients by Equation 3.8. The final average correlations and significance are

denoted as CSFk and SSFk respectively.

CSFk =
e(2×ZSFk) − 1

e(2×ZSFk) + 1
(3.8)

Similarly for each rhythm parameter rfl (l = 1...L), I first calculate the aggregated

correlations and significance between the targeted outcome and sensor features (sfk,

k = 1...K) within each time window j , j = 1...J , using Equation 3.9,3.10 and 3.11.
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zklj = 0.5× ln(
1 + rklj
1− rklj

) (3.9)

ZjRFl =

∑
k∈SFsig,lj

|zklj|
||SFsig,lj||

(3.10)

SjRFl = (1− 2×
∑

k∈SFsig,lj

log(pklj))×
n(k ∈ SFsig,lj)

n(k)
(3.11)

, where rklj represents the significant Pearson correlation coefficient between rhythm

parameter l and the targeted outcome in time window j for sensor feature SF with

the index of k. RFsig represent the set of all rhythm parameters with significant

correlation.

The aggregated correlations and significance are denoted as ZjRFl and SjRFl and

then averaged across J time windows using Equation 3.12 and 3.13. The final aggre-

gated correlations and significance are denoted as CRFl and SRFl.

ZRFl =

∑
1≤j≤J ZjRFl

J
(3.12)

SRFl =

∑
1≤j≤J SjRFl

J
(3.13)

CRFl =
e(2×ZRFl) − 1

e(2×ZRFl) + 1
(3.14)

, where J represents the total number of time windows.
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3.5 Prediction of Outcomes

To explore the potential of using biobehavioral rhythms to predict health and well-

being outcomes, a machine learning pipeline (Figure 3.11) was designed to process

biobehavioral data, extract cyclic parameters using Cosinor models, and construct

machine learning prediction models. These models were built using the rhythmic

parameters of each behavioral sensor feature to assess the ability of micro-level cyclic

features to predict health and well-being. The pipeline manages missing values in

both sensor and rhythm features across different time windows, as described in Sec-

tion 3.1, selects important rhythm features during the training process, and creates

machine learning models for outcome prediction. The following discussion describes

the components and configuration of this pipeline.

Figure 3.11: Machine Learning Pipeline for Predicting Outcomes via Rhythm Mod-
eling.
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3.5.1 Feature Selection

As mentioned in previous sections, for each type of sensor feature, a single period or

a multi-frequency Cosinor model is generated which outputs a list of rhythm parame-

ters. These parameters are entered the training process for building machine learning

models.

Let M be the number of sensors (s1...sm), FNi be the number of features for sensor

i and RNj the corresponding number of rhythmic features for feature j in sensor

i. The resulting feature space will be of M ∗ FN ∗ RN which is high dimensional

compared to the relatively few data samples for training. As such, a reduction in the

number of features is prevalent. The framework allows for the integration of different

feature selection methods such as Lasso, Randomized Logistic Regression (RLR), and

Information Gain(IG) in the machine learning component.

Lasso is a linear regression model penalized with the L1 norm to fit the coeffi-

cients [93]. The Lasso regression prefers solutions with fewer non-zero coefficients

and effectively reduces the number of features independent of the target variable.

Through cross-validation, the lasso regression can output the importance level for

each feature in the training dataset. I use a threshold value of 1e-5 to select features

with Lasso, which is the default threshold in the scikit-learn library of Python [85].

Features with importance greater or equal to the threshold are kept, and the rest are

discarded.

Randomized Logistic Regression is developed for stability selection of features. The

basic idea behind stability selection is to use a base feature selection algorithm like

logistic regression to find out which features are important in bootstrap samples of

the original dataset [74]. The results on each bootstrap sample are then aggregated
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to compute a stability score for each feature in the data. Finally, features with a

higher stability score than a threshold are selected. I use 0.25, the default threshold

value in the scikit-learn library [85].

Information Gain (also referred to as Mutual Information in feature selection) mea-

sures the dependence between the features and the dependent variable (predicted

outcome) [48]. Mutual information is always larger than or equal to zero, where the

larger the value, the greater the relationship between the two variables. If the calcu-

lated result is zero, then the variables are independent. I set our algorithm to select

10 (the default value in the scikit-learn library [85]) features with highest information

gain.

3.5.2 Model Building and Validation

The step for building machine learning models using rhythm features of k consecutive

time windows and for a population of D data samples is flexible in the framework

and can incorporate different supervised and unsupervised machine learning meth-

ods such as regression, classification, and clustering. In the current version of the

framework, I implement three classification methods, including Logistic Regression

(LR), Random Forest (RF), and Gradient Boosting (GB). The choice of algorithms

is simply based on our empirical evidence of their performance on this type of data.

Logistic regression [44] uses the logistic function to build a classifier. Random for-

est and Gradient Boosting are two branches of ensemble learning [31] which use the

idea of bagging and boosting [35] respectively. Their common feature is to use the

decision tree as the basic classifier and to get a robust model by combining multiple

weak models. Bagging is short for boost strapped aggregation. Boost strapping is a
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repeated sampling method with replacement and random sampling [36]. In boosting,

the training set of each iteration is unchanged, but the weight of samples is changed.

At each iteration, the training samples with high error rates are given higher weights,

so they get more attention in the next round of training.

I built two types of machine learning models: single sensor modeling and multiple

sensor modeling. The single sensor model was built with rhythmic features extracted

from a single sensor feature alone to better understand the contribution of each sensor

feature in prediction. The multiple sensor model on the other hand was used to eval-

uate the combined power of multiple sensor features. I used a baseline of the majority

class to measure the classifiers’ performance in predicting the outcome. Again, the

flexibility of the framework allows for the incorporation of different baseline measures.

Both feature selection process and building machine learning models are done within

a cross-validation setting, e.g., leave one sample out [18]. The machine learning com-

ponent can measure basic performance measures of accuracy, precision, recall, F1,

and MCC scores to evaluate the algorithms’ performance. From those measures, I

choose the results above baseline for each combination of feature selection and learn-

ing algorithm to further explore the prediction outcomes.

3.6 Rhythm Variability Modeling

Recognizing and measuring the possible reasons for the period instability in human

behaviors is a crucial step in understanding the problems associated with well-being or

health. In this section, I initially discuss my efforts to apply change point detection

for identifying rhythm disruptions. Subsequently, I introduce a new approach to

quantify the variability between rhythm models.
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3.6.1 Changing Point Detection in Cycles

Human rhythms can be influenced by external events, leading to inconsistent changes

in waveform and impacting the characterization of each rhythm. In this study, after

detecting periodicity in the time series data, the focus is on examining the variations

within each period to comprehend the potential effects of external factors or fluc-

tuations in every cycle [188]. The Automatic Non-stationary Oscillatory Modelling

(AutoNOM) method is employed on biological data to identify change points in each

cycle using sinusoidal regression models. The model can be divided into two sub-

models: the segment model and the change point model. The rhythm time series y

is segmented by k unknown change points by analyzing the frequency change over

time. If the frequency on both sides of a time point has a sudden change in the

frequency domain, this time point will be regarded as a substation. In each time

segment, AutoNOM measures the frequency ω, amplitude β, and phase of the seg-

ment σ. ω, β, and σ are multidimensional vectors, and their dimension numbers are

unknown. Before using AutoNOM, I need to set the maximum number of change-

points kmax and the maximum number of frequencies on each segment mmax. These

threshold setting will transform the problem of modeling rhythm series into a finite

state problem. The AutoNOM method will then select an optimal model from the

model state space, which is composed of models with a different number of change

points and frequencies. The optimal model is the model with the maximum posterior

probability, which is calculated as follows [155]:

π(k,mk, sk, θk|y) =π(k|y)π(mk|k, y)π(sk|mk, k, y)

π(θk|sk, k,mk, y),

(3.15)
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where k is the number of unknown change-points, mk is the number of frequency

components in each time series segment, sk is the location of change-points, and θk

is a three-dimensional vector combined by the frequency ω, amplitude β and phase σ

of each segment.

To estimate the parameters k, mk, sk and θk, a reversible-jump MCMC (Markov chain

Monte Carlo) algorithm [21] is applied. The reversible-jump MCMC is an extended

version of standard MCMC that provides a simulation of the posterior distribution

listed above on spaces of varying dimensions [21]. Thus, the simulation is possible

even if the number of parameters in the model is unknown. This algorithm iterates

between the segment model move and the change point model move according to its

basic structure.

Before applying the AutoNOM, the maximal number of change points k needs to be

determined. Although the fitting results will be better as the value of k increases,

I want to avoid setting the k too large, because when the value of k is large, minor

irregular fluctuations in the time series can falsely identify the existence of change

points. I use the mean average percentage error (MAPE) as a measure index to

select the AutoNOM model with different input k values. MAPE is a method used

to calculate the accuracy of curve fitting and is calculated as follows:

MAPE =
1

n

n∑
i=1

|pi − ai|
ai

× 100%, (3.16)

where ai is the actual value, pi is the estimated value on minute i and n is the number

of minutes for which the data is used.
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3.6.2 A Noval Stability Measurement for Human Rhythms

from Sensor Streams

As mentioned previously, periodic patterns’ stability or deviations from regular ones

are important. As such, in this section, I develop a method to quantify variations in

rhythms among individual people over different periods (within-person) and across

different population groups (between-person). the method employs the population-

mean Cosinor method [99] to model a group-level rhythm model for a set of input

time series, and an ANOVA significance test [26] is then adopted to identify significant

variations. The proposed method is named COSANOVA, which is applicable to the

individual biological time series anticipated to be rhythmic with a given period by

periodogram method. The Cosinor model is able to be also applied on a group of time

series, which is called the population-mean Cosinor model. The ANOVA significance

test is used for measuring rhythms stability among different populations through

measuring the variance of rhythm parameters obtained from the population-mean

Cosinor model.

For each period considered, the Cosinor model gives the estimates of the rhythm

parameter MESOR, amplitude, phase, and a standard error for each rhythm param-

eter. The standard error of the regression, also known as the standard error of the

estimate, represents the average distance that the observed values fall from the re-

gression line. Smaller values are better because it indicates that the observations are

closer to the fitted line. An ANOVA is used to analyze the difference in the means

of diffrent groups (for three or more groups). The ANOVA can be thought of as an

extension of the unpaired Student t-test to more than two groups. Or, that is to say,

the Student t-test as a special case of the ANOVA for only two groups (or ”levels”
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Figure 3.12: The pipeline for measuring rhythm stability. G refers to the group, TW
refers to the time window, F refers to the sensor feature, n refers to the number of
samples, µ refers to the mean, and σ refers to the standard deviation.

in ANOVA terminology). A two-level ANOVA is algebraically equivalent to a t-test,

and produces exactly the same p-values. To use this ANOVA significance test, I have

to know how many observations are in each group, and you must know the average

(arithmetic mean) and either the standard deviation (SD) or the standard error of

the mean (SEM) for the observations in each group. The null hypothesis assumes

that there is no variance data in different groups. The following describes the step

by step procedure of ANOVA significance.

Step 1: Calculate the Sum of Squares Equation 3.17 is used to calculate the

sum of squares between groups (SSb), and Equation 3.18 is used to calculate the sum

of squares within groups (SSw).
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SSb =
k∑

i=1

ni × stdi (3.17)

, where k is the number of groups considered, ni is the number of subjects in the i-th

group, stdi represents the standard deviation (SD) of subjects in the i-th group.

SSw =
k∑

i=1

(ni − 1)× se2i (3.18)

, where sei represents the standard error of the mean (SEM) of subjects in the i-th

group.

Step 2: Calculate the Degrees of Freedom Before proceeding to the next step,

I need the degree of freedom. The degree of freedom between groups (DFb) equals to

the number of groups minus one, using Equation 3.19, and the degree of freedom with

groups (DFw) equals to the number of total subjects minus the number of groups,

using Equation 3.20.

DFb = k − 1 (3.19)

, where k is the number of groups.

DFw = N − k (3.20)

, where N is the total number of subjects.

Step 3: Calculate the Mean Squares I now divide the sum of squares by the

appropriate number of degrees of freedom in order to obtain the mean squares. The
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mean squares between groups (MSb) and with groups (MSw) are able to be obtained

using Equation 3.21 and 3.22 in the following.

MSb = SSb/DFb (3.21)

MSw = SSw/DFw (3.22)

Step 4: Calculate the F-statistic (or F-ratio) The final step of this is to divide

the mean square for treatment by the mean square for error using Equation 3.23. This

is the F-statistic from the data, and a p-value can be generated from an F − ratio

score. A p-value less than a threshold (e.g., 0.05) indicates that there is a significant

difference somewhere among the various groups; that is, they do not appear to have

all come from the same population.

F = MSb/MSw (3.23)

The input to the ANOVA significance test can be the number of samples, stan-

dard deviation (SD) and standard error of the mean (SEM) from rhythm parameter

MESOR, amplitude, and acrophase for each population across consecutive time win-

dows - Horizontal COSANOVA (HANOVA), and for each time window across different

populations - Vertical COSANOVA (VANOVA). In HANOVA, the mean value and

the standard error of the rhythm parameters in p consecutive time windows (TW)

(tw1, ..., twP ) are used to calculate the significance (p-value) of the variance between

the means. In VANOVA, on the other hand, the mean and standard error of the

rhythm parameters among Q population groups (G) (g1, ..., gQ) are compared for the
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significance of variance in each time window TW . In other words, HANOVA defines

the rhythm stability of population level, and VANOVA defines the rhythm stability

of time windows. If HANOVA score is greater than the significance level (e.g., 0.05),

the group rhythm is stable. Similarly, if VANOVA score is greater than the signifi-

cance level (e.g., 0.05), the time window rhythm is stable. The scores greater than

the significance level mean the variance of rhythm is not significant. The process of

calculating HANOVA and VANOVA averages the p-values from ANOVA significance

test, as shown in Figure 3.12.

Let p − valuegq be the significance of variance for each rhythm parameter across P

time windows for a specific population group gq. The HANOVA score for a specific

sensor feature Fm is calculated as following:

H − COSANOV AFm =

∑Q
q=1 p− valuegq ,Fm

Q
(3.24)

, where Q is the number of groups considered.

Let p− valuetwp be the significance of variance for each rhythm parameter across Q

population groups for a specific time window twp. The VANOVA score for a specific

sensor feature Fm is calculated as following:

V − COSANOV AFm =

∑P
p=1 p− valuetwp,Fm

P
(3.25)

, where P is the number of time windows considered.

To assess the reliability of measuring variability in cyclic time series, knowing the

ground truth of variability patterns is crucial. As a result, using real-world data for

the initial evaluation of the proposed algorithm is not practical. Instead, I create a
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simulated population of time series, each consisting of a multivariate time series with

added noise to mimic real-world scenarios. The fundamental mathematical signal of

the simulated data is based on a harmonic sinusoidal function. The equation for the

base periodic function is expressed as follows:

F (t) =
C∑
c=1

Accos(
2πti
Tc

+ ϕc) (3.26)

, where yi is the simulated value at time ti; ti is the sampling time; C is the set of

periodic components; Ac, Tc, and ϕc respectively presents the amplitude, period, and

phase.

Variations in periodic time series can be summarized into several types such as scaling

or shift in period, amplitude, and Mesor, which are shown in the following:

1. Amplitude Scaling: FAS(t) = β1 ∗ F (t)

2. Mesor Shift: FMS(t) = F (t) + β2

3. Phase Shift: FPT (t) = F (t+ β3)

4. Hybrid: FH(t) = β1 ∗ F (t+ β3) + β2

The amplitude scaling is implemented by multiplying the basic peridic function Equa-

tion 3.26 with β. The value of β (β1, β2 and β3) is generated through the Monte Carlo

simulation following a normal distribution N(µ, σ). The Mesor shift is achieved by

lifting or droping the whole simulated time series. The Phase shift is introduced by

applying a shift to the sampling time. The hybrid is comprise of all the three above

variation types together. Once the samples of time series had been generated, White

Gausian Noise (WGN) is added to simulate the real-world situations. The amount
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of variability introudced in the MC simulations is controlled by the value of β, and

mean µ and standard deviation of normal distribution N , whose setting is listed in

Table.

Mesor Amp Phi
No Difference 0.84± 0.08 0.76± 0.02 0.71± 0.08
Amplitude Scaling 0.05± 0.09 1.02E − 41± 1.78E − 41 0.78± 0.01
Mesor Shift 4.99E − 21± 9.12E − 21 0.97± 0.02 0.94± 0.03
Phase Shift 0.62± 0.26 0.33± 0.16 4.12E − 3± 5.39E − 3
Hybrid 3.29E − 19± 1.63E − 19 6.09E − 38± 2.70E − 38 2.48E − 3± 4.11E − 3

Table 3.3: The result of VANOVA on the synthetic dataset.

Table 3.3 and 3.4 represents the results on the synthetic data. A lower value indicates

more variability between two groups of time series. If the value lower than a threshold

(e.g., 0.05), the difference between time series is assumed to be significant. The

proposed variability measurement method can distinguish the time series with or

without altering specific simulation parameters. When examining a specific variation

type (e.g., Amplitude Scaling, Mesor Shift, and Phase Shift), the scores of the altered

parameters are significantly lower than the others. For the hybrid variation type, all

three rhythm parameters have aggregated significance values.

Mesor Amp Phi
No Difference 0.91± 0.11 0.78± 0.04 0.83± 0.07
Amplitude Scaling 0.11± 0.09 1.02E − 17± 2.26E − 17 0.62± 0.02
Mesor Shift 7.42E − 8± 6.97E − 8 0.83± 0.15 0.43± 0.05
Phase Shift 0.41± 0.13 0.94± 0.18 7.91E − 2± 3.92E − 2
Hybrid 1.37E − 8± 1.77E − 8 5.71E − 16± 3.12E − 16 3.82E − 2± 1.23E − 2

Table 3.4: The result of HANOVA on the synthetic dataset.
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Chapter 4

Applications of the Framework

4.1 Predicting Human Outcomes Based on Rhythm

Modeling

The framework includes machine learning models (outlined in Section 3.5) that use

rhythmic features derived from the rhythm modeling process for making predic-

tions. To demonstrate the framework’s effectiveness in developing rhythm models

from micro- and macro-level sensor features and applying them in prediction tasks,

I present two distinct cases. The first case uses data from smartphones and Fitbit

devices to examine the connection between biobehavioral rhythms and mental health

status. The second case studies long-term biobehavioral rhythms from OURA smart

ring data and their capacity to predict readiness. Different analysis approaches are

employed to highlight the framework’s adaptability in managing various data types

and assessing multiple outcomes.

4.1.1 Case1: Predicting Mental Health
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The dataset comprises smartphones, Fitbit devices, and survey data collected from

138 first-year undergraduate students at an American university who participated in

a health and well-being research study. The dataset was previously used in [150] to

detect loneliness among college students. Smartphone data was collected through the

AWARE framework [107] and included calls, messages, screen usage, Bluetooth, Wi-

Fi, audio, and location. In addition, a Fitbit Flex2 wearable fitness tracker tracked

steps, distances, calories burned, and sleep; and survey questions gathered informa-

tion about physical and mental health including loneliness and depression. The survey

data was collected at the beginning and at the end of the semester.

The analysis process was performed in two steps: First, I explored the potential of

modeling and detecting rhythmicity in passively collected data from students’ mo-

bile and wearable data streams. Then I used the built rhythm models to extract

features that were fed into machine learning models to explore the relationship be-

tween students’ biobehavioral rhythms and their mental health. I aimed to answer

the following questions:

1. Can we observe rhythmicity in students’ biobehavioral data over the course of

the semester? If so, are those rhythms consistent throughout the semester or

do they change during different periods?

2. Do we observe any difference in biobehavioral rhythms among students with

different health status? If so, do healthy students have more stable rhythms?

3. How accurately can models of biobehavioral rhythms predict mental health

status?

4. What are the most important characteristics and rhythmic features that reveal

change in health status?
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Note that the framework provides the ability to generate a large number of obser-

vations on the micro- (sensor feature) and macro-level (sensor), but in this paper, I

only focus on observations related to the analysis questions.

Sensor Data Processing

The dataset collected from smartphones and Fitbits consisted of time series data

from multiple sensors, including Bluetooth, calls, SMS, Wi-Fi, location, phone usage,

steps, and sleep. I grouped this time series data into hourly bins and processed it

following the approach in [142] to extract features related to mobility and activity

patterns, communication and social interaction, and sleep. Examples of such features

include travel distance, sleep efficiency, and movement intensity. I then split the

semester data into tumbling cyclic time windows of 14 days or two weeks based on

empirical evaluation of different lengths of time windows. The university semester in

the studied population was roughly 16 weeks long, which could be divided into eight

time windows of two weeks except for the last time window that contained only ten

days of data (Figure 4.1). I built a model of rhythm for each student and for each

time window.

Figure 4.1: The size of a time window is 2 weeks which segments the semester into
roughly 8 time windows.
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Ground Truth Measures for Loneliness and Depression

In the evaluation, I focused on two mental health outcomes, namely depression and

loneliness. These two measures were chosen because of their longitudinal aspect, i.e.,

lasting for at least a few weeks to enable the investigation of 1) how biobehavioral

rhythms of students with mental health conditions would differ from other students

and 2) how accurately the state of those mental health conditions could be predicted

from extracted rhythms.

Loneliness data was collected using the UCLA Loneliness Scale, a well-validated and

commonly used measure of general feelings of loneliness [23]. The questionnaire con-

tains 20 questions about feeling lonely and isolated using a scale of 1 (never) to 4

(always). The total loneliness scores range from 20 to 80, with higher scores indicat-

ing higher levels of loneliness. As there is no standard cutoff for loneliness scores in

the literature, I followed the same approach in [150] to divide the UCLA scores into

two categories where the scores of 40 and below were categorized as ’low loneliness’,

and the scores above 40 were categorized as ’high loneliness’.

Depression was assessed using the Beck Depression Inventory-II (BDI-II) [22, 28],

a widely used psychometric test for measuring the severity of depressive symptoms

that have been validated for college students [28]. The BDI-II contains 21 questions,

with each answer being scored on a scale of 0-3 where higher scores indicate more

severe depressive symptoms. For college students, the cut-offs on this scale are 0-13

(no or minimal depression), 14-19 (mild depression), 20-28 (moderate depression) and

29-63 (severe depression) [28]. For simplicity and to be consistent with the loneliness

categorization, I divided these scores into two categories where the BDI-II scores < 14

were labeled as ’not having depression’ and all BDI-II scores >= 14 were labeled as



63

’having depression’.

The machine learning pipeline used these loneliness and depression categories as

ground truth labels to classify students’ depression and loneliness levels using rhyth-

mic features. Each student filled out the surveys both at the beginning (Pre) and the

end of the semester (Post). To capture relationships between biobehavioral rhythms

and changes in students’ mental health, I categorized students into five groups ac-

cording to the survey measures for depression and loneliness. For simplicity of repre-

sentation, I further label low loneliness and no depression categories as 1, and high

loneliness and high depression as 2. The five mental health categories are as follows:

• All students

• Pre1_ Post1: not having a mental health condition in both pre-semester and

post-semester surveys

• Pre1_ Post2: not having a mental health condition in the pre-semester survey,

but having it in the post-semester survey

• Pre2_ Post2: having a mental health condition in both surveys

• Pre2_ Post1: having a mental health condition in the pre-semester survey, but

not in the post-semester survey

The following paragraphs describe the observations and findings. To distinguish the

mental health groups in the two conditions, I add an L and D to the mental health

group for loneliness (e.g., L_Pre1_Post2) and depression (e.g., D_Pre1_Post2) re-

spectively.
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Detection of Rhythmicity and Regularity in Student Data

To investigate whether rhythmicity exists in data collected from students’ smart-

phones and Fitbits (Question 1) and whether students’ rhythms remain stable through-

out the semester (Question 2), I used Autocorrelation and Fourier Periodogram to

model students’ rhythms in each time window for each sensor feature.

I first applied the Autocorrelation on a sleep feature which indicates that students

with high loneliness have less stable sleep rhythms. Figure 4.2 shows the correlogram

of the number of restless sleep bouts in two students from different groups, one with

low loneliness throughout the semester and the other with high loneliness at the

end of the semester. The figure visually depicts differences in the rhythms of these

two students where the correlogram belonging to the student with high loneliness

projects a less stable rhythm towards the end of the time series. To further quantify

such differences in cyclic rhythms of students, I applied Periodogram to 1) detect

dominant periods in students’ data and 2) measure variability in those periods among

students with different health statuses.

(a) (b)

Figure 4.2: Correlograms of feature num_restless_bout (number of restless periods
in sleep) in time window 4 for two students (left: a student in L_Pre1_Post1, right:
a student in L_Pre1_Post2).

To identify the dominant periods, the Fourier periodogram is used to detect all sig-

nificant periods for each sensor feature. The results of the periodogram show that
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the most dominant cyclic periods in each time window are 24- and 12-hours for all

sensor features. For example, for sleep duration feature in the depression category,

this trend is consistent in all students regardless of the mental health condition where

on average 97.6% and 69.6% of students have 24- and 12-hours as dominant periods

in their data across time windows (Tables 4.2 and 4.1). The percentages, however,

have a declining trend starting from TW4 (around midterms) towards the end of the

semester. This trend can be expected because of the increase in students’ workload

that causes irregularity in sleep duration. The lowest percentages across all time

windows (46.3% on average) are observed in the 12-hour period of students in group

D_Pre2_Post2, i.e., students who were depressed throughout the semester. In par-

ticular, there is no 12-hour period observed for this group in TW1 (the first two

weeks) and TW8 (the last two weeks). The 12-hour or half-day period relates to

diurnal/nocturnal activities, and this trend may be indicative of higher irregularity

in sleep behavior among students with depression throughout the semester especially

at the beginning and towards the end of the semester. the observations are con-

sistent with other studies. [184] observed that older adults with depression have a

lower sleep regularity index in a study of 138 participants. [8] observed that irregular

sleepers showed more negative moods, including depression, in a study of male college

students.

I picked the sleep duration to further analyze changes in periodicity in students who

started the semester with normal health status but developed depression or loneli-

ness towards the end (D_Pre1_Post2 or L_Pre1_Post2). Table 4.1 shows that the

dominant periods of 24- and 12-hours are preserved for the sleep duration feature in

all time windows for both loneliness and depression groups. While the same declin-

ing trend towards the end of the semester exists for both loneliness and depression
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Pre1_Post2
Loneliness Depression

Time Window N P1 (%) P2 (%) P3 (%) N P1 (%) P2 (%) P3 (%)
TW1 17 24 (100) 12 (71) 312 (35) 35 24 (100) 12 (89) 312 (34)
TW2 15 24 (93) 12 (87) 312 (40) 34 24 (97) 12 (88) 312 (38)
TW3 16 24 (100) 12 (88) 156 (31) 35 24 (91) 12 (80) 156 (31)
TW4 15 24 (73) 12 (53) 312 (33) 33 24 (91) 12 (64) 78 (40)
TW5 14 24 (100) 12 (64) 156 (29) 33 24 (97) 12 (58) 312 (36)
TW6 12 24 (92) 12 (67) 78 (33) 33 24 (94) 12 (64) 78 (45)
TW7 13 24 (85) 12 (54) 156 (31) 33 24 (91) 12 (61) 156 (40)
TW8 11 24 (91) 12 (55) 72 (45) 28 24 (93) 12 (78) 72 (32)

Table 4.1: Top three dominant periods of sleep duration (minutes asleep) feature
for Pre1_Post2 groups. N is the number of students in the group. P1 is the most
dominant period (i.e., the percentage of students that have this period is highest
among all periods). The percentage in parenthesis is the percentage of students that
have the period. P2 and P3 are the second and third dominant periods.

groups, a sharper slope is observed for the 12-hour period. The lowest percentage of

students in this group with 24- and 12-hour periods are in time windows 4 and 5 with

73% in loneliness category (24-hour), 91% in depression category (24-hour), 53% in

loneliness category (12-hour), and 57% in depression category (12-hour). Given that

time windows 4 and 5 intersect with midterm and spring break, these observations

point to changes in sleep patterns among students whose mental health worsens over

the semester.
TW1 TW2 TW3 TW4 TW5 TW6 TW7 TW8

Group N P1 (%) P2 (%) N P1 (%) P2 (%) N P1 (%) P2 (%) N P1 (%) P2 (%) N P1 (%) P2 (%) N P1 (%) P2 (%) N P1 (%) P2 (%) N P1 (%) P2 (%)
All 125 24 (98) 12 (70) 120 24 (98) 12 (75) 118 24 (95) 12 (71) 115 24 (88) 12 (51) 104 24 (88) 12 (52) 103 24 (88) 12 (65) 101 24 (89) 12 (53) 97 24 (94) 12 (69)
D_Pre1_Post1 72 24 (97) 12 (69) 68 24 (99) 12 (72) 66 24 (98) 12 (74) 67 24 (85) 12 (46) 60 24 (87) 12 (52) 58 24 (90) 12 (66) 57 24 (88) 12 (51) 58 24 (98) 12 (72)
D_Pre1_Post2 35 24 (100) 12 (89) 34 24 (97) 12 (88) 35 24 (91) 12 (80) 33 24 (91) 12 (64) 33 24 (97) 12 (58) 33 24 (94) 12 (64) 33 24 (91) 12 (61) 28 24 (93) 12 (79)
D_Pre2_Post1 2 24 (100) 12 (100) 2 24 (100) 12 (100) 2 24 (100) 12 (50) 2 24 (100) 12 (100) 1 24 (100) 31.2 (100) 1 24 (100) 12 (100) 1 24 (100) 12 (100) 2 24 (100) 12 (50)
D_Pre2_Post2 16 24 (94) 156 (38) 16 24 (94) 12 (56) 15 24 (87) 12 (40) 13 24 (92) 12 (38) 10 24 (70) 12 (40) 11 24 (64) 12 (64) 10 24 (90) 12 (40) 9 24 (67) 54 (33)

Table 4.2: Top two dominant periods of sleep duration feature for depression groups.
N is the number of students in the group. P1 is the most dominant period (i.e.,
the percentage of students that have the period is highest among all periods). The
percentage in parenthesis is the percentage of students with that period. P2 is the
second dominant period.

The third dominant periods for sleep duration across all time windows include 312-

hour (13 days), 156-hour (6.5 days), and 78-hour (3.25 days). This is an interesting

observation as these numbers are multiplies of the 78-hour period. In other words,
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it seems the sleep duration of roughly one third of the population in these groups

follows a weekly pattern that may be imposed by class schedules.

% of Participants with 24-hour period
Audio Battery Bluetooth Calorie Location Location Map Call&Messages Screen Sleep Steps Wifi

62 13 42 92 41 17 18 36 69 95 83

Table 4.3: Percentage of participants with 24-hour period across all sensor features

Overall and across all sensor features, I observe the 24-hour as the dominant period

for over 52% of the student population with the highest percentages belonging to

steps (95%), calories (92%), wifi (83%), and sleep (68%). Table 4.3 presents the

overall percentages for each sensor. Calories and steps relate to physical activity.

The high percentage of students with 24-hour cycles in these two sensor categories is

indicative of regular daily exercise and movement. While there is a low percentage of

students with regularity in their cyclic location patterns and visited places (Location

Map features), it seems a large number of students have regular daily patterns of

using Wifi. This pattern could be expected given that the first-year students live in

dorms and are mostly on campus. Interestingly, a low percentage of students seem

to have regular cyclic patterns of phone usage (Screen, 36%; Call & Messages, 18%;

Battery 13%). While phone use especially battery charging patterns are expected to

be cyclic (e.g., charging the phone at night), these observations present the possibility

of different phone use behavior among students.

To measure the variability of the dominant periods among students with different

health statuses, I look at the percentage of participants in each mental health group

that had 24-hours as one of their dominant rhythms for each time chunk. This would

help observe the extent to which students preserved their normal circadian rhythm

over the semester. Recall that time chunks consist of k consecutive time windows,

there were 36 different time chunks in total for eight time windows of length 2 in the
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dataset. In each time chunk, a participant had 24-hour as a dominant rhythm if and

only if this participant had 24-hour as a dominant rhythm in all time windows in

that time chunk. Figure 4.3 shows the percentage of participants with 24-hour as the

dominant rhythm (y-axis) in each mental health group for each time chunk of length

3 (x-axis). I chose one representative feature from each sensor stream, i.e., Bluetooth

(abbreviated as blue in the figure), location (loc), sleep (slp), calories (calor), screen,

and steps for further analysis. As shown in Figure 4.3, the trend in the percentage

of 24-hour rhythms varies a lot in mental health groups and across time chunks in

each sub-figure. To understand the significance of these variations, I 1) applied K-W

ANOVA (Kruskal–Wallis one-way analysis of variance) [24] to test the variance of

trends across mental health groups, and 2) calculated the variance in the percentage

of 24-hour rhythms for each mental health group across time chunks. For loneliness,

the trends for all features show significant differences among mental health groups

(The average/median of p-value across sensor features is 0.02/0.03). For depression,

mental health groups have more similar trends. In contrast to Bluetooth, calorie,

and step features that have significant differences in their trends (p-values of 0.05,

0.001, and 0.001), location, sleep, and screen features do not show any significant

differences (p-values 0.94, 0.26, and 0.67). This is visually demonstrated in Figure 4.3,

e.g., the trend for location is similar for all fthe depression groups. I also calculated

the average variance for each mental health group across sensor features. As shown

in Table 4.4 for loneliness, most changes in the 24-hour rhythms were observed in

the group with high loneliness at the beginning and low loneliness at the end of

the semester (pre2_pre1) group whereas for depression, the group with depression

throughout the semster (pre2_pre2) had the largest fluctuations.

For loneliness, the group with low loneliness at the beginning and high loneliness at
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(a) (b)

Figure 4.3: The plots show the percentage of participants with 24-hour as the domi-
nant rhythm (y-axis) in each mental health group (left: loneliness, right: depression)
for each time chunk of length 3 (x-axis). The data point at x = i corresponds to
the time chunk of length 3 starting at twi (i.e., tc3i). It represents the percentage
of participants with 24-hour as the dominant rhythm in all the 3 time windows twi,
twi+1, twi+2.

the end of the semester (L_Pre1_Post2) shows an overall higher percentage of 24-

hour rhythms for features of sleep, location, and Bluetooth across time windows. The

opposite group with high loneliness at the beginning and low loneliness at the end of

the semester (L_Pre2_Post1) shows a lower percentage of 24-hour rhythms for fea-

tures of calories and steps but higher percentages for screen features. The Bluetooth

feature in the top left of Figure 4.3 (a) which represents the cyclic patterns of the

scanned devices belonging to the person is a proxy of social isolation, i.e., the person

not being around other people (and their devices) and being mostly by themselves.

Starting from TW3 (week 3, 4 and 5), the percentage of students with regular daily

cycle for this features in L_Pre1_Post2 and L_Pre2_Post1 groups sharply increase

and decrease respectively. In other words, while more students with low loneliness

at the beginning and high loneliness at the end of the semester start having a reg-

ular social isolation pattern on a daily basis towards the end of the semester, fewer

students in the opposite group with high loneliness at the beginning and low lone-
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liness at the end of the semester experience this trend. A very similar pattern is

observed for another socially relevant feature namely the length of stay in significant

locations. The trend is relatively stable and slightly decreasing in students with no

loneliness which reflects the stability of behavior in this group. For sleep, steps and,

calorie burn, I observe an almost counterintuitive opposite cyclic behavior among

L_Pre1_Post2 and L_Pre2_Post1 groups. It seems more students with loneliness

toward the end of the semester engage in regular physical activities as projected by

calories and steps features and have more regular sleep duration cycles. A relatively

similar behavior is observed for the burned calories feature in depression groups (Fig-

ure 4.3 top right). While regularity in physical activities slightly increases in students

with depression (D_Pre2_Post2), it appears to decrease in students with no depres-

sion (D_Pre1_Post1) across time windows. While existing studies, e.g., [67, 92,

150] point to negative associations of physical activities and mental health, I believe

the increase in regular physical activities towards the end of the semester may be a

coping attempt by students with mental health problems.

Mental Group all pre1_pre1 pre1_pre2 pre2_pre1 pre2_pre2
Loneliness 0.04 0.05 0.06 0.07 0.05
Depression 0.05 0.05 0.05 - 0.09

Table 4.4: The table lists the aggregated variance of the percentage of 24-hour
rhythms across time chunks for loneliness and depression separately. I first calculated
the variance per mental health group in each sensor feature shown in Figure 4.3, and
then averaged these variance values across sensor features of loneliness or depression.
The aggregated variance can represent the stability of rhythms of each mental health
group.

But trends generally look different for depression groups in Figure 4.3 (b). All groups

except D_Pre2_Post1 had similar percentages of regular 24- and 12-hour periods for

Bluetooth, location, and screen across time windows. While the group with no depres-

sion at the beginning and with depression at the end of the semester (D_Pre1_Post2)
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shows the highest percentage of normal 24-hour rhythms for features of calories and

steps across all time windows, the group that was depressed throughout the semester

(D_Pre2_Post2) shows lowest percentages for steps, sleep and calories. In particu-

lar, the regularity of sleep in these students seems to decline drastically across time

windows. Although expected, this sharp trend is a valuable observation for further

exploration of relationships between change in sleep cycles and depression status. The

previous study in [184] also observed that sleep irregularity is indicative of depression,

but no existing study has analyzed the relationship between change in sleep cycles

and change in depression status. the observations provide new findings and insights

that call for further and more rigorous investigations.

Prediction of Mental Health Status with Rhythmic Features

The third and fourth questions in the analysis relate to the feasibility of using biobe-

havioral rhythm parameters to predict students’ mental health status. In the frame-

work, I utilize dominant periods that were detected using Fourier Periodogram de-

scribed in Section 4.1.3 to build Cosinor models of biobehavioral data. This process

generates rhythmic features fed into the machine learning process to classify post-

semester loneliness and depression categories (low loneliness vs. high loneliness and

no depression vs. with depression) of the students. I build two types of datasets, one

with single sensors only and one with multiple sensors. In the following paragraph, I

will evaluate the performance of single sensor modeling and multiple sensor modeling

to find out what types of sensor features and rhythmic features contribute most to

the prediction.

For Single Sensor datasets, I use the rhythmic features of each sensor feature sep-

arately, i.e., for each sensor feature and each time window (with time windows of
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two weeks), I take the rhythmic features of this sensor feature and time window to

form the input dataset. I remove datasets with more than 30% missing instances (80

training instances) as I consider it too small to generate a reliable and generalizable

model. For Multiple Sensors datasets, I select the sensor features that provide accu-

racy above baseline in models built with single sensors. For both approaches, I use

the majority class ratio i.e., the category that has the highest percentage of labels for

that category as the comparison baseline. I then repeat the same process I followed

for single sensor datasets, but this time for the combination of sensor features, i.e.,

for each combination of sensor features and each time window, I take the rhythmic

features of the selected sensor features of those sensors and time window to form the

input datasets. Other than the difference in the input dataset, the machine learning

pipeline is the same for the two types of datasets.

Given the imbalanced datasets for both health conditions i.e., the different number

of samples in the two classes (e.g., 59% of samples in category 1 vs. 41% in category

2 of depression), using the accuracy will not be adequate for performance evaluation

and needs to be accompanied by other measures such as F1. For every combination

of time window and sensor, the F1 score is used to select the model with the best

performance. I build models with single sensor and multiple sensors datasets for both

mental health conditions. The results of all combinations are shown in Figures 4.4

and 4.5. The heatmaps use the depth of color to represent the F1 score. Given a large

number of features, I only report results with accuracy above the baseline (majority

class percentage). Through the single sensor modeling, I can judge which type of

sensor is most effective in predicting mental health. Overall, I find that the models

with multiple sensors improve the prediction performance. A summarization of the

results are listed in Table 4.5.



73

Single Sensor Modeling The F1 scores of machine learning models with single

sensor features are shown in Figure 4.4. Overall, the models for loneliness prediction

obtain higher accuracy (F1) scores than depression models (Table 4.5) which may

be due to more sparsity in depression datasets. Rhythm parameters obtained from

Cosinor models built for features related to Bluetooth, calories, location, sleep, and

steps perform better in predicting both loneliness and depression levels. Although

the best model to classify post-semester loneliness is built using Gradient Boosting

on rhythm parameters of calorie data from tw1 to tw3 with an F1 score of 0.76, more

models built on rhythms of location and locationMap provide high performance. The

best model for post-semester depression with an F1 score of 0.7 is also built using

Gradient Boosting but on the locationMap data from tw3 to tw5. Compared to other

sensors, models using rhythmic parameters from locationMap features show better

performance for predicting post-semester depression (six out of ten models with the

highest F1 score use locationMap features). Although the F1 scores of models with

a single time window are generally lower than models with multiple time windows,

there are some exceptions in the heatmaps of both loneliness and depression. For

example, the loneliness model using sleep features in tw1 achieves an F1 score of

0.75, and the F1 score of the depression model using sleep features in tw5 equals

0.68. Interestingly and somewhat counter-intuitively, across all sensors, the majority

of models (avg. 57.5% for single sensors and 53.5% for multiple sensors) using early

semester time windows (tw1 to tw4) appear to have higher F1 scores for post-semester

loneliness and depression prediction than late semester time windows. I believe this

observation provides initial evidence for the possibility of early detection of mental

health status via monitoring of changes in biobehavioral rhythms.
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(a) Loneliness (b) Depression

Figure 4.4: The heatmap displays the largest F1 score in the loneliness and depression
prediction model trained by a combination of different single sensor features and time
windows.

Multiple Sensor Modeling I do the same analysis for the combination of sensor

features. From Figure 4.5, I observe that the combination of multiple sensor features

contributes to the improvement of the F1 score. For example, the combinations

related to steps, sleep, location, calorie, and Bluetooth end with better results. For

predicting loneliness, the best model is built with Logistic Regression, which uses

the Bluetooth and steps data from tw5 to tw8 and obtains an F1 score of 0.91. For

predicting depression, the best model is obtained from Logistic Regression using the

rhythm parameters from Bluetooth, calorie, location, screen, and steps features. The

model only uses tw6 to predict depression with an F1 score of 0.89. The best model

predicting depression has a lower F1 score than the best model predicting loneliness,

which is the same as the single sensor model and may be due to sparsity in sensor

data.

Table 4.5 summarizes the mean and max of F1 scores for models built with each

combination of the feature selection and machine learning methods. In single sen-

sor modeling, the combinations of Logistic Regression with Lasso and Randomized

Logistic Regression) perform best for predicting loneliness with the mean and max

F1 score of 0.7 and 0.76 respectively. The combination of Gradient Boosting and

Information Gain provides the highest F1 score for the prediction of depression. For
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(a) Loneliness (b) Depression

Figure 4.5: The heatmap displays the largest F1 score in the loneliness prediction
model trained by a combination of different multiple sensor features and time win-
dows.

the multiple sensor modeling, I observe that the maximum F1 scores of predicting

loneliness and depression are 0.91 and 0.89, which are obtained from the combination

of Logistic Regression and Lasso. Overall, for the majority of approaches, the com-

bination of Gradient Boosting and Information Gain provides the best performance.

This combination should be further evaluated with other similar datasets to replicate

and confirm their superior performance over other algorithm combinations.

Single Sensor Multiple sensors
Loneliness mean(max) Depression mean(max) Loneliness mean(max) Depression mean(max)
GB LR RF GB LR RF GB LR RF GB LR RF

IG 0.69 (0.76) 0.69 (0.76) 0.66 (0.72) 0.58 (0.70) 0.60 (0.61) 0.56 (0.63) 0.73 (0.83) 0.72 (0.78) 0.69 (0.81) 0.63 (0.83) 0.60 (0.66) 0.63 (0.76)
Lasso 0.68 (0.72) 0.70 (0.76) 0.74 (0.74) 0.57 (0.68) 0.57 (0.64) 0.55 (0.59) 0.72 (0.78) 0.75 (0.91) 0.59 (0.66) 0.67 (0.89) 0.54 (0.54)
RLR 0.70 (0.76) 0.68 (0.73) 0.58 (0.65) 0.56 (0.65) 0.57 (0.60) 0.75 (0.81) 0.73 (0.82) 0.76 (0.84) 0.65 (0.78) 0.65 (0.79) 0.65 (0.79)

Table 4.5: Summary of the mean and maximal values of F1 scorse for each combina-
tion of feature selection and machine learning methods shown in the heatmaps 4.4,
4.5. The bold values are either the biggest mean value of F1 scores, or the biggest
maximal values of F1 scores
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TW1 TW2 TW3 TW4 TW5 TW6 TW7 TW8 HDominant
Audio Amp SE Mesor SE Amp SE IPR Magnitude Amp SE Bathyphase P Amp SE
Battery IPR PR Mesor SE Mesor SE Orthophase Magnitude Orthophase Bathyphase Mesor SE
Bluetooth Magnitude Bathyphase Amp P IPR Orthophase Mesor SE Orthophase Orthophase
Call IPR PHI IPR IPR Amp SE Bathyphase Orthophase Magnitude IPR
Calorie Mesor Magnitude Magnitude Bathyphase Orthophase Orthophase IPR Magnitude Magnitude
Location PHI SE Magnitude Mesor PR IPR Mesor Amp SE IPR Mesor
Location Map Orthophase Magnitude Mesor Orthophase PHI Bathyphase Orthophase Bathyphase Orthophase
Messages Orthophase Magnitude LCM PR Mesor SE Bathyphase PHI SE Magnitude Magnitude
Screen Amp P Orthophase Orthophase PR Orthophase IP Amp SE Orthophase
Sleep Bathyphase PHI SE Mesor Orthophase PHI SE IP Amp SE Bathyphase Bathyphase
Steps P Orthophase Magnitude Bathyphase PR IPR IPR Magnitude Magnitude
Wifi Amp Mesor SE Mesor Orthophase Magnitude IPR IP Amp SE Magnitude
VDominant Amp Magnitude Mesor Orthophase Orthophase Bathyphase Orthophase Magnitude Orthophase

Table 4.6: The most frequently selected rhythmic features by Information Gain during
depression prediction.

Dominant rhythm parameters that predict mental health I count the fre-

quency of rhythmic features selected by machine learning models to measure the

contribution of each rhythm parameter in predicting mental health. Orthophase and

Magnitude appeared on top of the list as the most frequently selected parameters.

Although I used three feature selection methods in the evaluation, I observed that the

Information Gain method provided more reliable and complete list of features during

the training. Table 4.6 shows the rhythm features that are selected most frequently

by Information Gain during depression prediction for each sensor feature in each time

window. The vertical dominant feature (VDominant) is the most commonly selected

feature for most of the sensors at a given time window, and the horizontal dominant

feature (HDominant) is the most commonly selected feature in most time windows for

a given sensor. The overall dominant feature (the feature at the bottom right corner

in bold font) is the most commonly selected feature for all sensors and time windows.

If two features are the most commonly selected features for the same number of sen-

sors/time windows, I break the tie by taking the feature with a higher frequency.

Overall, Orthophase is selected most frequently for all sensors and time windows.

Magnitude comes the second. Given that Phase and Magnitude reflect duration and

intensity of biobehavioral features, frequent selection of these parameters suggests an
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important relationship with mental health status.

In addition to main rhythmic features, i.e., Mesor, Amplitude/Magnitude, and Or-

tho/Bathyphase, I observe frequent selection of features related to the fit of Cosinor

models including the significance level of the fit (P), Standard Errors (SE) and Per-

cent Rhythm (PR and IPR), i.e. the proportion of the overall variance accounted

for by the fitted model. Higher levels of these parameters reflect higher variation

in data. Therefore, frequent selection of these parameters indicates the power of

regularity/irregularity of biobehavioral rhythms in predicting mental health status.

Comparison with Models Built without Rhythm Parameters

To better understand the capability of the framework in utilizing rhythmic features

to predict an outcome, I compare the prediction performance of the models with

rhythm modeling against the models without rhythm modeling. Specifically, I select

the best performing sensor feature in each time window, run exactly the same machine

learning pipeline on the raw feature data without rhythm modeling, and compute the

F1 score. Table 4.7 shows that the pipeline with rhythm modeling outperforms the

one without by a large margin on most of the features. This observation is consistent

with both loneliness and depression predictions.

Time Window Feature Rhythm-F1 Raw-F1
1 shortest period spent at Halls 0.66 0.54
2 longest awake period length 0.64 0.49
3 number of awakes 0.63 0.47
4 maximum calories increase between 5-min periods 0.66 0.60
5 shortest asleep period length 0.70 0.69
6 total distance traveled 0.65 0.50
7 maximum calories decrease between 5-min periods 0.67 0.59
8 minutes spent at Halls 0.65 0.62

Time Window Feature Rhythm-F1 Raw-F1
1 shortest period spent at Halls 0.69 0.55
2 longest awake period length 0.67 0.47
3 total asleep time 0.67 0.49
4 number of awakes 0.62 0.56
5 percentage of time spent moving 0.72 0.52
6 longest period spent at athletic areas 0.68 0.43
7 total change of calories 0.68 0.53
8 variance of moving speed 0.67 0.48

Table 4.7: F1 of machine learning models with rhythm modeling (rhythm) and with-
out rhythm modeling (raw features). Left: Loneliness; Right: Depression.
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4.1.2 Case2: Predicting Readiness

A second dataset was selected to assess the framework’s adaptability in modeling

various data types and employing different analysis approaches. The sensors, partic-

ipants, and ground truth for this dataset differ from the previous one. In this case,

I used data from 11 undergraduate and graduate students who continuously wore

Oura ring, a commercially available smart and convenient health tracker for several

months. As shown in the last plot of Figure 4.7, the length of data collection varies

per participant and ranges from 31 to 323 days. The long-term data makes it possible

to detect and observe rhythms with larger cyclic periods than a day, e.g., weeks or

months. As such, I design the analysis to answer the following:

1. Are there common cycles in participants’ data per sensor and across sensors, and

can I identify similarities and differences in cyclic periods among participants

despite differences in the length of their data?

2. How accurately can individual rhythm models per sensor feature and per par-

ticipant predict average readiness?

Physiological Data Processing

OURA collects sleep, heart rate, skin temperature, calories, steps, and activity. Sleep,

heart rate, and skin temperature samples are collected every five minutes during night

hours; and activity, calories, and steps are sampled every 5 minutes during the day.

The data is summarized and stored on the OURA cloud platform. As the goal is to

detect cycles with multiple-day lengths, I aggregate the features into daily intervals

(as opposed to the previous case that used hours). In total, I use 31 features such
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as total duration of sleep, lowest/average heart rate, average metabolism level, total

amount of calories burned, and total number of steps during the day. To be able

to detect the longest periods in participants’ data, I refrain from segmenting data

into common time windows and use the entire time series data for the analysis. The

convenience of wearing the ring and its long battery life lead to good quality data

with low missing rates (Max 15.6% in the data). I use the moving average method

to handle the missing values.

Readiness Score as Ground Truth

Besides the physiological features, Oura provides a readiness score displayed in the

Oura ring app, i.e., an evaluation of the body’s overall recovery rate after waking up in

the morning. The readiness score ranges from 0 to 100 with scores over 85 indicating

high readiness for challenging tasks and scores below 70 indicating poor body state

and need for recovery. In the dataset, participants’ readiness scores range from 24 to

99 with an average score of 74, and a standard deviation of 11.4. Figure 4.7 and 4.6

shows the distribution and variation of daily readiness score for each participant. I

calculate the average daily readiness score for each participant and use it as ground

truth to explore how well I can use the rhythms to predict the readiness score.

Figure 4.6: The 1 to 11 boxplots display the minimum, median, maximum, and
quartile of the daily readiness scores for each participant. Most daily readiness scores
are clustered in the range from 70 to 85.
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Figure 4.7: The histograms from 1 to 11 display the distribution of the daily readiness
scores for each participant, and the last bar plot shows the duration of each partici-
pant’s data collection.

Detection of Cycles in OURA-Ring Data

the first analysis questions relate to detecting common cycles in the participants’

data and physiological sensors. the results show weekly and biweekly periods were

observed most frequently. Similar to case 1, I applied Fourier Periodogram on the

time series data of each sensor feature per participant to detect significant periods.

In Table 4.8 and 4.9, I list the most frequently detected periods of sensor features and

summarize them by sensor type and participants. The number 7 and its multiple 14

as well as its close preceding and following numbers of 6 and 8 appear most frequently

in both tables suggesting near-weekly biobehavioral patterns. In particular, periods

of Activity, Sleep, and Heart rate project near-weekly cycles across all participants.

For example, Activity cycles of 6, 7, and 8 days are observed in 45%, 55%, and 36%

of participants respectively. These cycles are also observed in sensor data of seven

participants (63%). Calorie and Steps share periods of 2, 10, and 11 days with similar

percentages. Although the percentages of participants with these cycles are low likely

due to different movement patterns among participants, the common periods of these

two sensors may be indicative of exercise cycles in those participants.
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Sensor Detected Period (% of Participants)
Activity 7 (55), 2 (45), 6 (45), 8 (36), 4 (36)
Calorie 2 (18), 11 (18), 10 (18), 4 (9), 81 (9), 20 (9)
Heart Rate 7 (36), 27 (27), 8 (27), 14 (18), 18 (18)
Sleep 8 (55), 3 (55), 7 (45), 6 (45), 11 (36)
Steps 11 (27), 10 (27), 2 (18), 54 (18), 7 (18)
Skin Temperature 12 (36), 14 (36), 15 (27), 27 (27), 34 (18)

Table 4.8: Dominant frequent periods for each sensor. The percentage in parenthesis
is the percentage of participants with the significant period.

Participant Detected Period (% of Sensor Features)
1 7 (29), 34 (26), 2 (23), 3 (16), 39 (10)
2 80 (42), 81 (39), 40 (35), 11 (29), 32 (26)
3 77 (32), 10 (29), 24 (23), 7 (23), 26 (16)
4 7 (52), 202 (39), 101 (35), 67 (19), 201 (16)
5 66 (39), 65 (35),130 (26), 8 (26), 26 (23)
6 6 (35), 56 (29), 14 (23), 28 (13), 19 (10)
7 31 (26), 11 (23), 190 (23), 95 (23), 38 (19)
8 94 (42), 188 (29), 63 (29), 7 (23), 189 (23)
9 68 (45), 102 (35), 29 (29), 204 (26), 41 (16)
10 54 (45), 108 (39), 43 (35), 27 (23), 217 (32)
11 126 (35), 42 (26), 28 (23), 5 (16), 7 (16)

Table 4.9: Most frequent periods of all sensor features for each participant. The
percentage in parenthesis is the percentage of sensor features with that period.

Prediction of Readiness with Rhythmic Features

For each participant, I use the three most significant periods identified by the Peri-

odogram as input to the Cosinor method to build rhythm models per sensor feature.

The rhythmic features are then entered into the machine learning process to predict

average readiness per participant. Since the readiness score is a continuous variable,

I build regression models to make predictions. the choice of machine learning algo-

rithms includes Random Forest and Gradient Boosting with Information Gain and

Lasso as feature selection methods. Similar to case 1 in mental health, I build mod-

els with single and multiple sensor combinations in a leave-one-participant-out cross

validation, but, instead of accuracy, I use the Root Mean Square Error (RMSE) as

the performance measure.

Table 4.10 lists the best RMSE achieved by single sensor models along with the

most frequently selected features. Among single sensor models, the model built with
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the rhythmic feature of sleep data with an RMSE of 4.08 is a stronger predictor of

readiness than others. In comparison, the combination of sleep, calories, and steps

obtain an RMSE of 3.54, the lowest RMSE among all multiple sensor models, as

shown in Table 4.11. This combination considers both the activity of the human body

during the day (calories) and the sleep quality at night (sleep). These observations

are expected and confirm the impact of both sleep and physical activity on the body’s

daily functioning. Interestingly but not surprisingly, the frequently selected features

across all sensors are standard errors of the rhythm parameters (i.e., PHI SE, MESOR

SE, and Amp SE) as well as percent rhythm (PR), all of which are indicative of

variation in the actual data. MESOR SE is the most dominant feature among both

single and multiple sensor models. These results suggest that the level of variability

and potentially irregularity in biobehavior may be most predictive of fluctuations in

readiness.

Table 4.10 and 4.11 also summarize the RMSE for models using each combination of

feature selection and machine learning methods. The Gradient Boosting model with

Lasso regression achieves the best performance for both single sensor and multiple

sensor modeling, with an RMSE of 3.54. Using the same prediction model, the Infor-

mation Gain performs better in single sensor modeling, and the results are reversed

in multiple sensor modeling.

Sensor Activity Calorie HR Sleep Step Skin Temperature
Feature Selection IG Lasso IG Lasso IG Lasso IG Lasso IG Lasso IG Lasso
RMSE (GB) 5.04 8.42 4.79 5.18 4.54 5.50 4.08 5.54 4.71 6.77 5.34 6.77
RMSE (RF) 5.25 8.52 4.38 4.51 4.65 6.20 4.20 5.68 4.81 7.30 5.48 7.30
Frequent Rhythmic Features PR PHI Mesor SE, Amp SE PHI PR PHI, PHI SE, P PR P Mesor SE, Amp SE Mesor, P Mesor SE, Amp SE, P PHI

Table 4.10: Lowest RMSE of single sensor features and frequent rhythmic features
selected by IG and Lasso
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Feature Selection IG Lasso
Sensor sleep, calorie, step sleep, calorie, step
RMSE (GB) 3.73 3.54
RMSE (RF) 3.80 3.68
Frequent Rhtyhmic Features MESOR SE MESOR

Table 4.11: RMSE of multiple sensor models and frequent rhythmic features selected
by those models.

4.2 Identifying Relationship between Rhythms and

Productivity

In this section, the correlation method detailed in Section 3.4 demonstrates its ef-

fectiveness in identifying associations between sensor-specific-rhythm stability and

overall-rhythm stability with high and low productivity. The dataset utilized for this

analysis is a dataset of smartphone and Fitbit logs collected from 188 students at an

American university over a semester was used, with 166 students providing subjective

evaluations of their daily productivity. Data collection involved using the AWARE

app [108] and Fitbit devices to gather information on audio, Bluetooth, Wi-Fi, lo-

cation, phone usage, calls, calories, sleep, and steps. All participants utilized their

smartphones, while the research team provided a Fitbit Flex2 to gather data.

Students’ productivity assessments were collected via an evening survey during week

one, six (mid-semester), and fifteen (last week of classes) of the semester to avoid over-

burdening participants. The assessment question included a single question: ”How

productive did you feel today?”. The possible responses ranged from 0 (not productive

at all) to 4 (extremely productive). The mean and standard deviation of self-evaluated

productivity scores were consistent for different gender and major groups with no

significant difference: female (1.65, 0.92), male (1.80, 0.97), engineering (1.71, 0.96),

business (1.70, 0.99), science (1.69, 0.94), art (1.76, 0.95), humanities (1.68, 0.97),

undecided (1.67, 0.87)). The number of responses varied across the three weeks as
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some participants did not complete the surveys. In total, the dataset contained 488

observations (participant-week pairs).

I used productivity scores (0-4) to categorize participants into high and low productiv-

ity groups. These categories were used as ground truth labels in the machine learning

classification. To identify the cut-off threshold, I calculated the mean and median of

the daily productivity scores for all participants across all three weeks. The mean of

1.89 and a median of 2 indicated a normal distribution across scores (verified by the

Shapiro-Wilk test, p = 0.12). Therefore, I used 2 as the threshold for categorizing

productivity, with scores less than 2 indicating low productivity and scores equal to

or above 2 indicating high productivity. The variance of productivity scores within

each week was less than 1, which indicated that participants’ productivity assessments

were relatively stable each week. We, therefore, averaged the productivity scores of all

days in each week (including both weekday and weekend) as the weekly productivity

score with the same threshold to categorize each participant’s week average into high

or low productivity. I further categorized participants into high and low productivity

groups, where students with at least two weeks (out of three) of high productivity

rates were categorized as highly productive, and the rest were placed into the low

productivity group.

I then used Cosinor to build personal cyclic models per student per sensor stream in

weeks 1, 6, 15, and the weeks adjacent to them (e.g., for week 6, I use sensor data from

week 5, 6, and 7 to build Cosinor models). I then used rhythm parameters generated

by those models in the correlation analysis and the machine learning pipeline. I

assumed all participants had normal daily rhythms and used the input periods of

8h, 12h, 24h in the Cosinor. The 8, 12, and 24 hours reflect nocturnal, diurnal, and

circadian duration, respectively.
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Figure 4.8: The heatmap displays correlations between rhythm parameters and pro-
ductivity by week. The blue (positive correlation) and red (negative correlation) cells
show the correlation average (C-RF) by week (Week-C), and the green cells show the
aggregated significance score (S-RF) by week (Week-S).

While correlations between rhythm parameters and productivity scores were moder-

ate across all behavioral sensor features and all three weeks (Figure 4.8), I observed

more pronounced relationships between parameters related to regularity in rhythm

models, including standard errors (SE), i.e., deviation of the fitted model parameter

from the actual values, Percent Rhythms (PR and IPR) or proportion of variation

accounted for by the fitted model, and the significance of the fit (P and IP). In addi-

tion, the aggregated negative correlation (indicated by the red line) in the majority of

these parameters across all three weeks indicates lower rhythm irregularity in highly

productive students.

The rhythm parameters for location features appeared to be dominant in both aggre-

gated correlation coefficients and significance scores, followed by activity and sleep

features (Figure 4.9). In the following, I discuss the observations in detail.

4.2.1 Correlation Aggregation of Rhythm Parameters

The blue and red cells in Figure 4.8 show the correlation aggregated by week for

each rhythm parameter as calculated using equations 3.9, 3.10, 3.12 and 3.14 in Ap-
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pendix ??. Recall that these formulas aggregate correlation across all sensor features

for each rhythm parameter to measure the strength of the correlation between pro-

ductivity and the rhythm parameter. Blue cells indicate positive correlation while

red cells indicate negative correlation.

The green cells in Figure 4.8 show the significance score by week for each rhythm

parameter as computed by equations 3.11 and 3.13 in Appendix ??. These formulas

calculate correlation significance across all sensor features for each rhythm parameter

to measure the significance of the correlation between productivity and the rhythm

parameter. The higher the significance score, the more significant the relationship is.

Week 1 In week 1, the majority of parameters that measure the irregularity of the

rhythm models correlate negatively with productivity indicating more stable rhythms

in the high productivity group. For example, stronger correlations were observed

between productivity and the model fit for the fundamental period (IP) (C = -0.24),

the 24-hour period (P-24) (C = -0.21), the 12-hour period (P-12) (C = -0.22), the

8-hour period (P-8) (C = -0.21), the fundamental percent rhythm (IPR) (C = 0.18),

and standard error (SE) of phase fit for the 24-hour period (PHI_SE-24) (C = -0.16).

The relationship between regularity in rhythms and productivity is further reinforced

by the negative aggregated correlation coefficients for P-24, P-12, P-8, IP, and SE.

Specifically, their low values indicate that Cosinor was able to create close fits to

the actual data which means more regularity in the actual data corresponds to high

productivity. This further demonstrates a lower rhythm variation in highly productive

students.

The relationship between lower rhythm variability and higher productivity is also

observed in the correlation of Mesor_SE, Amp_SE-8, Amp_SE-12, Amp_SE-24,
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and PHI_SE-24. The values have a relatively high aggregated significance score

compared to other parameters. This means the standard error (SE) has a more

significant relationship with productivity. Given the SE is also a metric reflecting

irregularity of rhythm models, its negative correlation indicates less irregularity of

the rhythm models in high productivity.

The percent rhythm parameter also demonstrated a relationship between low rhythm

variability and high productivity. A higher percent rhythm represents low variability

in the actual data. Specifically, the percent rhythm of the fundamental, 24-hour, 12-

hour, and 8-hour period all have high positive aggregated correlation coefficients with

productivity, indicating lower variability in diurnal activities for the highly productive

students.

Week 6 Week 6 (midterm) projected a relatively different pattern. For exam-

ple, I found positive correlations between productivity and Mesor_SE, Amp_SE-8,

Amp_SE-12, and Amp_SE-24. Because amplitude and Mesor are indicative of the

intensity and volume of activities, I see highly productive students performed more

intense activity during week 6.

I also found amplitude and Mesor have higher standard errors (SE) in the fitted

models. This implies higher variability in the intensity of regular patterns during this

week. This can be expected due to midterm pressure.

Despite this increased variability of intensity of regular activities, as demonstrated by

the positive aggregated correlations of IPR (C = 0.24) and PR-24 (C = 0.26) with

productivity, I see less irregularity in activity patterns during this week for the highly

productive students.
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Finally, like week 1, I see positive correlations between percent rhythm (PR) and

productivity. However, the correlation became more stable in week 6 compared to

week 1 with larger aggregated significance scores.

Week 15 Week 15 (the week before finals) showed the the strongest correlations.

For example, parameters that reflect irregularity in rhythms such as Standard Errors

(SE) (e.g., Mesor_SE, Amp_SE, PHI_SE) show high (mostly positive) correlations

with productivity. Parameters characterizing the fitted cyclic model such as Mesor,

Phase, and Amplitude also show high (mostly positive) correlations with productivity

indicating higher intensity and duration of behavioral activities during this week.

The value of some correlations, however, decreased from weeks 1 and 6 to week 15.

For example, the correlation between Percent Rhythms (e.g., IPR PR_8, and PR_12)

and productivity. Given the increased workload activities close to final exams, the

observed irregularity and divergence from the routine patterns are expected.

Despite the decline in the value of some correlations, observations across all three

weeks still suggest an overall lower irregularity in rhythms among the high produc-

tivity group. For example, there is a consistent negative correlation of the regularity

indicators such as P-24, P-12, P-8, PHI-SE-24, PHI-SE-12, PHI-SE-8, and IP. More-

over, parameters representing the phase’s characteristics in rhythms including Or-

thophase, Bathyphase, PHI-24, PHI-12, and PHI-8 exhibit relatively high aggregated

significance scores in all three weeks. This means more regularity in phase is more

significantly correlated with high productivity. Thus, while further explorations are

needed, these observations indicate the importance of rhythm stability in students’

productivity.
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4.2.2 Correlation Aggregation of Sensor Features

Figure 4.9 shows the aggregated correlation and significance scores by week for the

top ten sensor features calculated through equations 3.3, 3.4, 3.5, 3.6, 3.8 and 3.7 in

Appendix ??. These formulas calculate the aggregated correlation coefficients and

significance scores across all rhythm parameters for each sensor feature to measure

the strength of the correlation between productivity and the behavioral sensor fea-

tures. Features with higher significance scores have a more significant correlation

with productivity. Overall, location features had a stronger aggregated correlation

and significance. The rhythm model for each sensor feature was not consistently

associated with productivity in all three weeks.

Figure 4.9: The heatmap displays the correlation between sensor features and produc-
tivity by week. The left side shows the ten sensor features with the highest aggregated
correlation over all three weeks, and the right side shows the ten sensor features with
the highest aggregated significance score over all three weeks.
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Week 1 In week 1, rhythm parameters for both the time spent in frequently visited

places and the frequency of visits in fraternity/sorority houses (places for socializ-

ing) showed the highest average positive correlations with productivity. A negative

correlation between productivity and off-campus duration was also observed in the

rhythm models. Finally, I found patterns of asleep and burned calories to have high

significance scores.

Week 6 In week 6, the variance of the length or number of stays in academic areas,

halls, and apartments showed high negative aggregated correlations with productivity

(the left side of Figure 4.9), indicating that highly productive students had a stable

living and studying environment at home and school. Conversely, the standard devi-

ation of duration in athletic areas were positively correlated with productivity. This

indicates higher variability in exercise associated with high productivity. A similar

conclusion can be drawn with the data from the aggregated significance score data

(the right side of Figure 4.9).

Week 15 In week 15, I observed the highest aggregated significance scores for

rhythms of restless sleep duration, awake sleep duration, time spent at greens, and

sedentary duration. On the left side of Figure 4.9 I see the time spent at greens was

positively correlated with productivity, whereas the radius of the visited areas was

negatively correlated with productivity. This finding suggests that high-efficiency

students reduced their range of activities and spent time outdoors more frequently in

week 15.



91

4.3 Measuring Variability in Biobehavioral Rhythms

In this section, I explore various applications of measuring variability in biobehavioral

rhythms. First, I apply change point detection methods to physiological signals in or-

der to identify when disruptions occur within individual physiological cycles. Next, I

use the COSANOVA method to quantify rhythm variability between different readi-

ness or well-being groups, as well as across time. This investigation demonstrates

the potential applications of assessing variability in biobehavioral rhythms, offering

valuable insights into the complexities of human behavior and its impact on health

and well-being.

4.3.1 Identifying Rhythm Disruption in Physiological Cycles

As shown in Appendix A, the FFT, chi-square periodogram, and CyHMMs have been

validated in dataset 1 (synthetic data), and they are all able to identify a 24-hour

rhythm period for heart rate and skin temperature in datasets 2 and 3. I continue the

experiment on all three datasets to further detect the inner cycle and change points

with the AutoNOM method (mentioned in Section 3.6.1) within each period.

Dataset 1 is generated using the combination of constant frequencies and noise, and

the AutoNOM identify changing points by perceiving changes in frequency, so it is

reasonable that no change points have been detected in Fig 4.10. From another

perspective, the AutoNOM has a strong anti-noise ability when searching for change

points.

To demonstrate the performance of AutoNOM in detecting changing points in dataset

2, I choose one day from all 70 days in the dataset and use the AutoNOM to fit the
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Figure 4.10: The analysis of dataset 1 using the AutoNOM. The blue lines are the real
data, and the red lines depict the estimated values from the AutoNOM. No changing
points have been detected by the AutoNOM, which is expected as there are no abrupt
frequency changes in the synthetic dataset.

one day’s data. I choose k equal to 4 as the optimal value based on an empirical

observation: as shown in Table 4.12, when the value of k changes from 3 to 4, the

MAPE value drops significantly, and when the value of k changes from 4 to 5, the

change is minor. Figure 4.11 demonstrates similar distributions of the heart rate and

the skin temperature change points where the two most frequent change points are

located at around the 400th minute (6:40 am) and 1200th minute (8:00 pm) for both

distributions. Illustrated in Figure 4.12, the skin temperature remains high at the

start and end of each day, and it has a trough in the middle. As for the heart rate,

it keeps low at the beginning of each day and goes through two combinations of up

and down in turn and returns to a lower value at the end of the day. Between the

two most frequent change points, the amplitudes and frequencies of the oscillation

increases. Based on previous research, the body temperature of the circadian rhythm

is under the control of the suprachiasmatic nucleus (SCN), which receives the input

from photosensitive cells and synchronize body temperature and day and night alter-

nation [9]. The temperature will reach its peak in the late afternoon and drop to its
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trough at the end of sleep [43]. In Figure 4.12, an abrupt decrease in skin tempera-

ture at the second changing point (about 7:00 am) and a stable increase between the

second (about 7:00 am) and third changing point (about 5:00 pm) can be observed,

which is consistent with previous studies. However, the difference is that the peak

of skin temperature occurs in the late evening. Compared with body temperature,

heart rate is less susceptible to the influence of the external environment [32, 20]. The

heart rate is more dependent on physical activity, and the heart rate during sleep is

lower than during the wake time [135]. This view can explain why the heart rate in

Figure 4.12 is lower on both sides of the day. The increase in heart rate in the two

segments may be related to physical activity.

k=3 k=4 k=5
Heart Rate 4.54 3.29 3.14
Skin Temp 3.10 1.92 1.73

Table 4.12: The MAPE values of the AutoNOM method with different maximal
number of change points k.

(a) Heart Rate (b) Skin Temperature
Figure 4.11: The distribution of change points in heart rate per day for 70 days. The
x-axis represents the time of day in minutes. The change points are concentrated
in the 400Th and 1200Th minutes of each day. Compared with the heart rate, the
temperature has a more obvious tendency of the concentrated distribution. This
change in heart rate and skin temperature is similar to the pattern of rest activity
alternating between daytime activity and night rest.

I repeated the same process for dataset 3 and did the same analysis process on one
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random day in the data. The grey vertical lines in Figure 4.13 illustrates the changing

points detected by the AutoNOM for heart rate, skin temperature, EDA, and BVP on

the chosen day. The two common changing points for all fthe signals occur between

the 400th minute (6:40 am) and 600th minute (10:00 am) and at around 1200th

minute (8:00 pm), which are similar to the observation from dataset 2. In each

segmentation between two changing points, the estimated curve output from the

AutoNOM could fit the raw data well except for BVP. BVP reflects the relative change

in blood volume caused by the heart contracting, so there will be many instantaneous

and massive changes in BVP signals, which cause the AutoNOM not to work well.

The daily trend of heart rate and skin temperature shown in Figure 4.12 and 4.13

are different, which could be caused by individual differences (e.g., lifestyle, daily

schedule, and personality traits), climate, and even accuracy of wearable devices. I

observe a seasonal effect in the skin temperature between the two datasets. The skin

temperature in Figure 4.13 shows an apparent decrease between the second and third

changing points, whereas the skin temperature in Figure 4.12 shows an increase at

the same time. Checking the timing of data collection for these datasets, I found

that dataset 2 was collected during spring, whereas dataset 3 was collected during

the early winter. One interesting observation from dataset 3 is that there is one peak

for heart rate during the first and second changing point, which is inconsistent with

what I mentioned above. Peters et al. have found that the accelerated heart rate

during sleep may be caused by uncomfortable sleeping posture [49]. When in an

uncomfortable posture, the volume of intake oxygen will decrease, so the heart will

increase the beat rate to demand oxygen supply, which is similar to what happens

during strenuous exercise [146].

Empatica E4 used in the dataset 3 is a medical-grade device that can collect accurate
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Figure 4.12: The analysis of heart rate and skin temperature in dataset 2 for one
day using the AutoNOM. The blue lines are the real data, and the red lines depict
the estimated values. The gray vertical lines show the estimated location of the
change points. Three changing points occur at around 400th, 1000th, and 1200th in
both heart rate and skin temperature. The heart rate increases in the second and
fourth segments, while the remaining three segments keep low. The skin temperature
maintains a high value at the beginning and end of the day, and there are a significant
decrease and rebound in the middle.

physiological data, but E4 can only work up to 40 hours and needs to be charged

again. E4 cannot work when charging, and this process introduces missing values,

which will cause unnecessary changing points. For example, the time points when

E4 stops and starts working will be recognized as changing points. Due to the above

uncontrollable factor, I do not provide a figure similar to Figure 4.11 for dataset 3.

4.3.2 Quantifying Rhythm Variability of Readiness and Well-

being Outcomes

To assess the effectiveness of the COSANOVA method introduced in Section 3.6.2, I

validate the approach using two real-world datasets, and the variability of rhythms is

then explored in two extensive, multimodal mobile sensing datasets. I choose these
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Figure 4.13: The analysis of heart rate, skin temperature, EDA, and BVP in dataset
3 for one day using the AutoNOM. The blue lines are the real data, and the red
lines depict the estimated values from the AutoNOM.The gray vertical lines show
the estimated location of the change points. The changing point between 400th and
600th minute is pretty close in the fthe signals. Heart rate, skin temperature, and
EDA all have a changing point approximately at the 1200th minute. The heart rate
fluctuates greatly at both ends, and the peak occurs at the beginning of the day.
Similar to Figure 4.12, the trough of skin temperature appears in the middle. Except
at the end of the day, EDA has little fluctuation. BVP declines in the second segment
and has many instantaneous changes.

datasets because they were collected continuously by mobile phones and wearable

devices for a long term, and they have objective or subjective reports of health or

well-being conditions. Through exploratory application of COSANOVA on the two

human behavior dataset, I plan to answer the following questions:
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• Can different rhythm stability scores be observed on different populations or

different time windows?

• Is there any associations between rhythm stability scores and mental health and

readiness scores.

• Which sensor feature and rhythm parameter are in the dominant position when

measuring stability scores?

Case1: Quantifying Rhythm Variability on Real-world Readiness dataset

In this case, the Oura ring dataset, previously utilized in Section 4.1.2, is employed.

The Oura ring measures daily readiness scores based on physical activity and physio-

logical metrics. Collected data includes sleep, heart rate, skin temperature, calories,

steps, and activity. Features are aggregated into daily intervals and analyzed with-

out segmenting into common time windows, aiming to detect the longest periods

in participants’ data. Since there are no ground truth of periodic patterns for the

sensing signals in the readiness and well-being datasets, it’s impossible to evaluate

the performance of COSANOVA on the two real-world datasets. Instead, I directly

explore the feasibility of application of COSANOVA on human behavioral data and

summarize how human behaviors varies between different health groups (VANOVA)

and over time (HANOVA). Figure 4.15 represents the results of COSANOVA for the

top 10 features in readiness dataset by the variability when calculating VANOVA and

HANOVA respectively. Features with a low COSANOVA value have more variability

in specific periodic components. Overall, sensor features related to sleep had stronger

variability between the two readiness populations and over time. Mesor is more likely
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to be significant different compare to the other two rhythm parameters.

Figure 4.14: The results of COSANOVA for on readiness dataset. The heatmap repre-
sents the top 10 features by the variability when calculating VANOVA and HANOVA
respectively. The left part is HANOVA, representing the variability between high-
and low-level readiness groups. The right part is VANOVA, representing the variabil-
ity across time windows. The red cells indicate significant variability. A darker red
color represents greater significance. (Significance threshold σ < 0.05)

Case2: Quantifying Rhythm Variability on Real-world Well-being dataset

The dataset utilized smartphone, Fitbit, and daily self-evaluation survey to collect

data from 167 participants at an American university over the course of one semester.

A commercial device, Fitbit Sense, was used to collect physiological and physical

activity data, including steps, calories burned, sleep logs, and heart rates. Smartphone

data was collected through the AWARE app. AWARE is an open-source framework

[108], including phone calls, screen usage, and location. Table 4.13 gives a full list of

all sensor features from Fitbit and AWARE. In addition, and daily survey questions

gathered ecological momentary assessment (EMA) information about 10 types of well-
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being, including cognitive energy, emotional energy, physical energy, engagement in

professional activity, engagement in social activity, engagement in physical activity,

mental demand, physical demanding, sleep quality, and rushment. Participants will

rate each of these 10 well-being types using numbers from one to five subjectively at

the end of every day. The default value of the survey questions is three.

Abbr. Definition
HR hear rates
Sleep sleep levels (e.g., restless, aslepp, awake)
Step steps
Calorie burned calories
ACT1 time in the sedentary activity level
ACT2 time in the light actitve activity level
ACT3 time in the moderate activity level
ACT4 time in the very active activity level
CALL1 length of the phone call session
CALL2 phone call types (e.g., incoming, outgoing, missed)
BAT1 phone battery level
BAT2 phone battery voltage
BAT3 phone battery temperature
LOC1 current location’s longitude
LOC2 current location’s lattitude
LOC3 current location’s altitude
LOC4 current location’s bearing
LOC5 current location’s speed (meters/second)
LOC6 estimated location accuracy
Screen screen status (e.g., off, on, locked, unlocked)

Table 4.13: Abbreviation and definition of sensor features.
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Figure 4.15: The results of COSANOVA for a combination of sensor feature, rhythm
parameter and well-being type, and a low value indicates high variability in the
rhythm model of a specific sensor feature. The top part is HANOVA, represent-
ing the variability between high- and low-level well-being groups. The bottom part
is VANOVA, representing the variability across time windows. The red cells indicate
significant variability. A darker red color represents greater significance.
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To ensure the robustness of the rhythm variability results, I removed participants who

had data for less than a complete month. After removal, a total of 120 participants

remain. The values of sensing data are assumed to be missing at random (MAR), and I

use the simple moving average (SMA) to impute the missing values. SMA replaces the

missing values by averaging the non-missing values within a rolling window without

weights. I then split the whole semester’s data into tumbling time windows of one

month.

Figure 4.15 visualizes the results of COSANOVA to show stability of rhythms in

each sensor feature between high-level and low-level groups (VANOVA), and across

time windows (HANOVA) for each well-being type. A low value shown in the figure

indicates high stability in a specific rhythm parameter. The heatmap above the red

horizontal line represents the results of VANOVA, while the part below the red line

represents the results of HANOVA.

For VANOVA, the rhythm parameter MESOR has smaller values than Amp and Phi,

indicating the midline of rhythm models had a more significant difference between

high and low-level well-being groups than amplitude and phase. The sensor feature

sleep level (Sleep), call duration (CALL1), longitude (LOC1), and latitude (LOC2) of

visited location had low values for all three rhythm parameters, and sleep level (Sleep)

achieved the generally lowest values of VANOVA in all sensor features. The sensor

feature screen had more variability in MESOR but kept relatively stable in Amp

and Phi. When specifying well-being type, rhythm models of specific sensor features

performed more variability than other features. For example, high- and low-cognitive

populations vary greatly in the rhythm models of sleep level (Sleep). This observation

agrees that sleep is essential for effective cognitive functioning. High- and low-level

engagement in social activity differ significantly in the rhythm models of screen status
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(Screen) and phone call duration (CALL1), indicating that students relied on mobile

phones for social activities. In addition, the rhythm models of longitude and latitude

of the location showed a big difference between high- and low-level engagement in

physical activity.

HANOVA had a similar picture of stability scores with VANOVA. MESOR had the

most variability across time, and sleep level (Sleep) had the lowest values of HANOVA.

However, the phone battery level (BAT1) was most inconsistent in Phi across time,

and the movement speed (LOC5) had more fluctuations in Amp across time. The val-

ues of HANOVA became smaller than the VANOVA, demonstrating that the rhythm

model fluctuates more between different time windows than between different well-

being groups. In addition, HANOVA still has some characteristics that are different

from VANOVA. For example, the sensor feature related to activity level, such as

time spent in the sedentary activity level (ACT1), time spent in the light active ac-

tivity level (ACT2), and burned calories (Calorie), achieved much smaller values in

HANOVA than VANOVA, especially for rhythm parameter. However, Physiological

indicator heart rate (HR) had similar HANOVA and VAONOVA values, suggesting

that HR’s rhythm model is relatively stable across populations and time windows.

The phone battery level’s (BAT1) HANOVA results even rose slightly compared to

its VANOVA value.
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4.4 Mining Sub-patterns for Human Activity Recog-

nition with WTL

The proposed computational framework integrates the Wavelet Transform Leader

(WTL) component (discussed in Section 3.3) to facilitate a comprehensive analysis of

human behavior. I assess the performance of the suggested Wavelet Transfer Learning

method on real-world sensing data for modeling and interpreting human activities.

I evaluate WTL’s capacity to identify and infer 1) clusters of similar activity pat-

terns, and 2) various sub-patterns characterized in different regions of the spectrum

image. To examine the approach’s performance on single- and multi-modal, as well as

cyclic and non-cyclic data, I conducted experiments on two human activity datasets:

WISDM [83] and PAMAP2 [91]. The WISDM dataset is a single-modal human ac-

tivity dataset containing accelerometer data from 36 users engaging in six activities:

ascending stairs, descending stairs, jogging, sitting, walking, and standing. The raw

accelerometer data was collected at a sampling frequency of 20Hz for 3 minutes per

activity. The PAMAP2 dataset is a multi-modal human activity dataset that includes

accelerometer, gyroscope, heart rate, and skin temperature data collected from nine

subjects performing 12 different physical activities. The motion and heart rate sensors

have sampling frequencies of 100Hz and 9Hz, respectively. The activities with more

regular cycles include walking, running, cycling, Nordic walking, rope jumping, and

ascending and descending stairs. The non-cyclic activities consist of lying, sitting,

standing, vacuum cleaning, and ironing.
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4.4.1 Activity Clustering

Baseline Clustering Models

I compare WTL’s performance to that of six clustering algorithms. The baseline

approaches can broadly be divided into two categories 1) time-series cluster-

ing algorithms: K-means [58], Hierarchical Clustering [123], and Self-Organizing

Maps [86]), and 2) deep image clustering algorithms: Deep Embedded Clus-

tering [129], Deep Adaptive Clustering [133], and Semantic Clustering by Adopting

Nearest Neighbors [174].

K-means proceeds by alternating between the cluster assignment and the centroid

update steps. The shortcoming of k-means is that the value of clusters must be

determined beforehand [58]. I use the Elbow method to determine the number of

clusters. Hierarchical Clustering (HC) algorithm works by grouping time series

into a tree of clusters [123]. Hierarchical clustering does not require the number of

clusters to be pre-specified.

Self-organizing map (SOM) algorithm is an unsupervised neural network com-

monly used for high-dimensional data clustering [86]. SOM has a two-dimensional

structure of neurons and is trained by an iterative unsupervised self-organizing pro-

cedure.

Deep Embedded Clustering (DEC) is a clustering algorithm that combines deep

learning and unsupervised clustering techniques [129]. It first pre-trains an autoen-

coder neural network to reconstruct the input images in a lower-dimensional space.

Then it applies the k-means algorithm to the embedded data produced by the en-

coder. This process is repeated until the autoencoder produces a low-dimensional
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representation of the well-suited data for clustering. Deep Adaptive Clustering

(DAC) is an image clustering algorithm that uses a pairwise binary classification

framework. Given two input images, the model outputs whether the inputs belong to

the same cluster [133]. Semantic Clustering by Adopting Nearest Neighbors

(SCAN) is an image clustering algorithm proposed to improve clustering semantics.

It includes a two-step procedure that first learns semantic features and then adopts

the obtained semantic features as a prior in a deep clustering network [174]). I use

the the fused spectrum images as the input to each of these deep image clustering.

To test the performance of the approach on single- and multi-modal as well as

cyclic and non-cyclic data, I conducted experiments on two human activity datasets:

WISDM [83] and PAMAP2 [91]. The WISDM dataset is a single-modal human ac-

tivity dataset that contains accelerometer data collected from 36 users performing six

activities: ascending stairs, descending stairs, jogging, sitting, walking, and standing.

The raw accelerometer data is collected at a sampling frequency of 20Hz for 3 minutes

apiece. The PAMAP2 dataset is a multi-modal human activity dataset that includes

accelerometer, gyroscope, heart rate, and skin temperature data collected from nine

subjects performing 12 different physical activities. The motion and heart rate sen-

sors have sampling frequencies of 100Hz and 9Hz, respectively. The activities with

more regular cycles include walking, running, cycling, Nordic walking, rope jumping,

and ascending and descending stairs. The non-cyclic activities include lying, sitting,

standing, vacuum cleaning, and ironing.

Evaluation Metric

To assess how well the method can cluster human behavior, I divide each participant’s

spectrum image into M temporal samples. I then cluster each temporal sample using
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WTL and six baseline methods. I measure the performance of each approach using

the consistency ratio (CR), the ratio of the number of times participants’ samples

were given the same cluster assignment to the total number of samples in the dataset:

CR =

∑N
i F (CLi1, ..., CLiM)

N
(4.1)

F (CLi1, ..., CLiM) =


1 if CLi1 =, ...,= CLiM ;

0 otherwise

, where M is the number of temporal samples obtained from a single spectrum image,

CLiM is the cluster label assigned for the Mth temporal sample of the ith participant,

and N is the total number of participants in the dataset.

To assess each clustering method I use CR (4.1) with M = 2. Table 4.14 reports

these results. WTL achieves the highest CR across all tested methods. Furthermore,

the results demonstrate that the deep image clustering methods (DEC, DAC, SCAN,

and WTL) that utilize the Wavelet power spectrum representation outperform the

time series clustering algorithms (K-means, HC, and SOM).

Dataset K-means HC SOM DEC DAC SCAN WTL
WISDM 11.7% 10.4% 13.9% 21.1% 18.2% 21.9% 33.0%
PAMAP2_SC 10.8% 10.6% 5.1% 18.7% 17.2% 16.8% 30.0%
PAMAP2_SNC 7.9% 8.8% 4.2% 14.1% 11.1% 12.1% 21.6%
PAMAP2_MC 21.8% 16.1% 14.0% 31.7% 30.9% 35.7% 45.2%
PAMAP2_MNC 11.3% 12.5% 13.3% 22.7% 19.9% 24.7% 31.9%

Table 4.14: Consistency of clustering across different temporal samples; a high
percentage indicates better consistency. The multi-modal human activity dataset
PAMAP2 is divided into fthe parts: single-modal cyclic (SC); SNC single-modal non-
cyclic (SNC), multi-modal cyclic (MC), and multi-modal non-cyclic (MNC).
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4.4.2 Behavioral Sub-patterns

As previously described, the proposed WTL can be used to inspect behavioral pat-

terns and find sub-patterns. By sub-patterns, I mean individuals act differently even

when engaged in the same behavior. Everyone’s activity pattern (e.g., walking style)

may be unique and stable over time or change in different conditions and situations.

For example, one might walk slowly and steadily for relaxation but fast and inconsis-

tently in a hurry. Both are labeled as walking but may project different patterns that

characterize the nature of the walk. The visual inspection of spectrum samples for

walking activities in Figure 4.17 shows that individuals can display diverse patterns

for the same activity. In Figure 4.16, I show the distribution of the number of pseudo-

labels assigned per individual per activity. For example, the figure demonstrates that

12.5% of participants exhibited one ironing sub-pattern, 50% two ironing sub-types,

and 37.5% exhibited three ironing sub-types. The figure also shows that most people

have multiple behavior patterns for several activities. Specifically, I see most people

have at least two behavior patterns for ironing, vacuum cleaning, standing, sitting,

Nordic walking, running, and walking. In fact, at least one participant exhibited

three distinct behavior patterns for each of these activities. There is only one activity

— descending stairs — for which no participant exhibits multiple sub-patterns.

Despite each participant exhibiting somewhere between one and three behavior sub-

patterns per activity, as reported in Table 4.15, the patterns are very diverse. For

example, I see that 11 examples of ironing were labeled “chain”, 5 were labeled “comic

book”, 3 were labeled “beer glass”, 3 were labeled “fountain”, and the 10 remaining

examples were assigned distinct labels. This demonstrates that there are many ways

in which a human can perform even simple behaviors.
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Figure 4.16: The distribution of the number of pseudo-labels assigned per individual
per activity. For each activity, the length of the purple bar indicates the proportion
of individuals whose spectral images were assigned only one type of pseudo-label.
The green represents the proportion of individuals whose spectrum images have two
different pseudo-labels, and the yellow represents three different pseudo-labels.

Activity Pseudo-label Num
Walking tray: 13, jersey: 5, paintbrush: 4, bucket: 4, binder: 4, others: 3
Running jersey: 3, comic_book: 2, laptop: 2, others: 4
Cycling quilt: 7, wall_clock: 5, jersey: 4, chain: 4, others: 3
Rope Jumping laptop: 2, jersey: 1, barn: 1, bucket: 1, tray: 1, analog_clock: 1
Ascending Stairs paintbrush: 4, comic_book: 2, bucket: 2, others: 4
Descending Stairs paintbrush: 3, street_sign: 2, chain: 2, rain_barrel: 2
Nordic Walking jersey: 11, greenhouse: 4, comic_book: 3, laptop: 3, others: 5
Lying web_site: 5, mailbox: 5, jersey: 4, laptop: 3, others: 8
Sitting rain_barrel: 5, jersey: 3, web_site: 3, laptop: 2, others: 8
Standing padloc: 12, jersey: 7, quill: 4, others: 5
Vacuum Cleaning fountain: 7, web_site: 6, ashcan: 5, others: 6
Ironing chain: 11, comic_book: 5 beer_glass: 3, fountain: 3, others: 10

Table 4.15: The table lists the frequency of pseudo-labels in each activity. The most
frequent pseudo-labels are ranked first in each activity, and I use ”others” to represent
those pseudo-labels with low frequency.

4.4.3 Granular Behavior Inspection

As shown in Figure 3.5, the model uses the time window length and frequency band to

split a whole Wavelet power spectrum into pieces and model the fine-grained patterns

in different regions. In this section, I will demonstrate the existence of distinctive
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Figure 4.17: The walking spectrum images from fthe participants: 101, 104, 108, and
103. While the images from participants 101 and 104 were assigned one pseudo-label
each, 108 and 103 have two pseudo-labels.

fine-grained patterns in diverse regions of the image, and examine the number of

distinct pseudo-labels assigned to the entire spectrum image. Figure 4.18 presents

the dominant patterns expressed by pseudo-labels observed in six activities. The fused

spectrum images were split into fthe regions, horizontal and vertical, corresponding to

time windows and frequency bands. The idea was to see how consistent the patterns

of different areas of the fused spectrum are for each activity. The figure shows that

a common pattern exists for the top and bottom regions of the spectrum image for

most activities. For example, in 52% of walking samples, the top left and right regions
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(frequency domains) and the bottom left and right regions (time domains) of the fused

spectrum images have identical pseudo-labels. However, this consistency is observed

in less than half of the samples for each activity. This may indicate wide variations

in the inferred patterns in each region for different activities caused by differences in

activity patterns among people.

Figure 4.18: Examples of the processed Wavelet power spectrum for six activities and
their frequently assigned pseudo-labels. The column of ”Perc” presents the percentage
of the Wavelet power spectrum obtained from the combination of pseudo-labels shown
in the ”Pseudo Labels” column. pseudo-labels in each cell are for regions from the
top left, top right, bottom left, and bottom right.

The distribution of distinct pseudo-labels assigned per split Wavelet image is pre-

sented in Figure 4.19. The figure provides insights into the granular behavior pat-

terns across different regions of the entire spectrum image and shows the number of

distinct granular patterns present in one spectrum image. For example, the same

pseudo-label was assigned to all fthe regions of the Wavelet image in 4% of vacuum

cleaning examples, two distinct pseudo-labels were assigned to 60% of vacuum clean-
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ing examples, three distinct pseudo-labels were assigned to 28% of vacuum cleaning

examples, and fthe distinct pseudo-labels were assigned to 8% of vacuum cleaning

examples. I can observe that most activities have at least two regions for which the

same pseudo-label was assigned. In fact, vacuum cleaning, Nordic walking, and walk-

ing are the only activities for which at least one example was assigned the same label

for each region. By contrast, all activities had at least one example for which all fthe

regions were assigned different labels.

Figure 4.19: The distribution of the distinct pseudo-labels assigned to fthe regions of
Wavelet spectrum image. I count the proportion of images given the same pseudo-
labels, two different pseudo-labels, three different pseudo-label, and fthe different
pseudo-labels, respectively. For most activities, their images have been assigned two
different pseudo-labels.

In order to exhibit the proficiency of the proposed computational framework for

the evaluation of biobehavioral rhythms derived from multi-modal sensor data, this

study introduces fthe distinct applications that leverage constructed rhythm models

to investigate human health and well-being outcomes. These applications consist of

(1) employing machine learning models for outcome prediction, (2) the discovery of

sub-patterns to discern crucial human behavioral patterns, (3) the quantification of

rhythm variability, and (4) the examination of relationships between rhythms and
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health and well-being outcomes. By utilizing a diverse collection of datasets, the

study highlights the framework’s flexibility in handling different types of sensor data

and measuring various outcomes.
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Chapter 5

Discussion

In this thesis, a novel computational framework was developed for modeling cyclic hu-

man behaviors using multi-modal sensor data. The primary contribution lies in creat-

ing a versatile computational framework capable of analyzing biobehavioral rhythms

across a range of sensor data types and time granularities. This framework has po-

tential applications for improving overall well-being.

Initially, I identified key challenges for developing an automated pipeline to process

and model biobehavioral time series data from mobile and wearable devices. These

challenges include 1) handling and processing vast amounts of multi-modal sensor

data, 2) granular examination of signals to extract biobehavioral cycle information,

and 3) computational steps for modeling, discovering, and quantifying common pat-

terns.

The implementation involved detecting periods and modeling rhythm shapes by ex-

ploring both stationary and non-stationary time series methods. For stationary time

series, well-established theories and methods were employed for analyzing periods and

rhythm shapes. Three periodicity detection algorithms were used to examine com-

monality in detecting periods in stationary time series data without ground truth.

For non-stationary time series, Wavelet transform (WT) was incorporated to handle

non-stationary time series by encoding raw sensor data in an image-based represen-

tation, enabling the identification of frequencies and their occurrence times within a



114

signal.

In modeling rhythmic stability, periodicity detection was first carried out on time

series data, followed by an exploration of variations within each period using the

changing point detection technique. A novel approach, COSANOVA, was introduced

to quantify cyclic variability among different populations and across time windows.

This approach demonstrated the ability to infer variability of cyclic time series and

determine the contribution of periodic components to the variation. When applied to

real-world mobile sensing datasets, it provided insights into the variability of health-

related rhythms in various human behavioral and physiological indicators.

To identify relationships between biobehavioral rhythm stability, a correlation-based

method was developed to measure multi-dimensional relationships between biobe-

havioral rhythm stability and productivity across three different weeks. The results

showed more rhythm stability in the high-productivity group of students in the sam-

ple, despite variations in students’ workload in different weeks. Moreover, correla-

tion analysis of rhythms for each sensor feature, along with machine learning models,

demonstrated the predictive power of regularity in location-related patterns and sleep.

In predicting health and well-being outcomes, rhythm models were built for each

sensor feature, and the generated cyclic parameters were used as inputs for machine

learning models to predict outcomes on a per-person and per-time-window basis.

Three case studies predicting mental health, readiness score, and productivity were

presented to demonstrate the capabilities of the proposed computational framework.

The results revealed that the combination of multiple sensor features improved pre-

diction results, and models built with rhythmic features outperformed those built

with raw sensor features.
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In mining rhythmic patterns, a method combining Wavelet image representation with

transfer learning was proposed to enable human interpretation and granular inspec-

tion of inferred behaviors. The method was evaluated in terms of inferring activity

patterns and labels, providing granular information about behavior patterns, and en-

abling more granular inspections of behavior patterns that reveal time and frequency-

dependent characteristics. Despite the promising performance of the proposed WTL

method compared to six baseline clustering algorithms, there are several limitations

to consider.

5.1 Limitations

Due to the absence of ground-truth labels for sub-patterns in public datasets, I have

proposed the consistency ratio of clustering as an evaluation metric. While it pro-

vides a useful measure for comparing clustering algorithms, it does not fully capture

the true quality of the clustering results, as it mainly focuses on temporal split con-

sistency rather than the semantic meaning of the sub-patterns or their relevance to

the overall physical activity. The consistency ratio is based on the assumption that

human behavioral patterns remain stable within each input sample, and therefore,

the behavioral pattern of each temporal split should be similar to the others. How-

ever, this assumption may not hold true for all scenarios, as human behavior can be

dynamic and change within short periods.

The evaluation metric of consistency ratio relies on the temporal splits of input sam-

ples, assuming these splits effectively capture the sub-patterns in the data. However,

different choices of temporal splits could lead to varying clustering results and impact

the consistency ratio, which might affect the overall assessment of the WTL method.
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Real-world human activity data often contains noise and artifacts that can signif-

icantly impact the quality of extracted sub-patterns. The robustness of the WTL

method in dealing with such noisy data and its ability to discern true sub-patterns

amidst noise has not been thoroughly examined. The effectiveness of the WTL

method has been demonstrated on a specific type of human physical activity data.

However, its applicability to other types of activities or different domains has not

been established. Additional validation is required to ensure that the WTL method

can effectively generalize across a broader range of scenarios.

5.2 Future Work

The proposed WTL approach shown in Figure 3.5 has potential applications in moni-

toring behavioral health. For instance, it can be employed to identify emotional states

or psychological conditions by detecting sub-patterns in human behaviors. One key

aspect of recognizing sub-patterns involves detecting minute behavioral changes that

may otherwise go unnoticed. This can offer valuable insights into an individual’s emo-

tional and psychological health. By identifying unique sub-patterns, mental health

professionals can create customized interventions that are specifically designed to ad-

dress a patient’s needs and preferences. Furthermore, determining these sub-patterns

allows for more accurate monitoring of a patient’s progress, facilitating the evaluation

and adjustment of treatment plans as necessary.

To gather data for this study, various aspects of an individual’s behavior can be

captured using multiple sensors, such as wearable devices that monitor physiological

signals, physical activity, and sleep patterns. Additionally, smartphone usage data,

including app usage patterns and social interactions, can be analyzed to gain insights
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into a person’s mental well-being. The WTL method can then be applied to detect

sub-patterns in the behavioral data, which may correspond to specific emotional

states or psychological conditions. Unsupervised clustering methods can be utilized

to group similar patterns. Upon identification of the sub-patterns, mental health

experts can analyze their features and evaluate their significance in relation to the

individual’s mental health. This may include comparing the identified sub-patterns

to normative data or existing diagnostic criteria, examining the connections between

sub-patterns and self-reported mood evaluations, and analyzing the temporal patterns

and consistency of sub-patterns over time. Recognizing behavioral patterns can help

mine specific underlying sub-groups and individual patterns within the data, leading

to a better understanding of individual differences and promoting the development of

personalized interventions or suggestions. As a result, behavioral pattern recognition

techniques can adapt to changing environments or evolving behaviors by detecting

new or emerging patterns. This flexibility is crucial for applications such as behavioral

health monitoring, where a person’s behavior may evolve due to interventions, life

events, or personal growth.
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Chapter 6

Conclusions

In this thesis, the primary contribution is the development of an innovative compu-

tational framework to analyze biobehavioral rhythms using diverse sensor data. The

framework has the ability to process a wide variety of sensing signals at different

time granularities, reveal underlying patterns in human behavior, model the shape

and variability of rhythms, and apply these models to predict health outcomes. By

providing a practical solution to decipher cyclic human behaviors from sensor data,

this framework holds promise for numerous applications aimed at enhancing overall

well-being.

One such application is the potential to assist in diagnosing and treating diseases.

Medical practitioners can have patients wear sensors, allowing the framework to de-

tect disruptions in biobehavioral rhythms that may be indicative of health issues. By

tracking these rhythm changes, doctors can develop a more comprehensive under-

standing of a patient’s condition and create personalized treatment plans to restore

rhythmic balance.

Additionally, the framework can help individuals manage their daily schedules more

effectively by increasing their awareness of personal biobehavioral rhythms. With

this insight, people can make informed decisions about their activities based on their

current state. For example, they may allocate time for cognitively demanding tasks

when their cognitive rhythm is at its peak and schedule relaxation when their emo-
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tional rhythm is at its lowest point. Integrating this framework into existing task

management applications, such as Google Calendar, could further support efficient

time management and foster a healthy work-life balance.

In conclusion, the computational framework presented in this thesis has considerable

potential to improve health outcomes, optimize daily routines, and promote bal-

anced lifestyles. As technology continues to advance, it is expected that applications

like this will become increasingly prevalent, enabling individuals to achieve greater

productivity and well-being through a deeper understanding of their cyclic human

behaviors.
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Appendix A

Evaluation of the State-of-the-Art

Periodicity Detection Methods

The performance of three fundamentally distinct periodicity detection methods (pre-

sented in Section 3.2.1), namely Fast Fourier Transform (FFT), Chi-squared based

periodogram, and Cyclic Hidden Markov Models (CyHMMs), will be evaluated. The

first dataset is artificially created with known periods to evaluate the effectiveness

of the three methods in detecting periods in the data. Subsequently, the methods

are examined on a real-world dataset that includes heart rate and temperature data

spanning 70 days, as well as a dataset derived from the E4 wearable device. The

last dataset comprises 16 days of fine-grained heart rate (HR), heart rate variability

(BVP), skin temperature, and galvanic skin response (EDA) data.

A.1 Datasets

I then use three different datasets to evaluate the effectiveness of the above methods.

I process the three datasets in the following way:

• Dataset 1 - A synthetic dataset with known periods of 24, 36, and 48 hours

(Figure A.1). The sequences are comprised of different sinusoidal signals with
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a predefined frequency. I also add 3dB white noise to the dataset to simulate

real conditions.

• Dataset 2 - A real-world open-source dataset [121] containing 70 consecutive

days of heart rate and skin temperature collected in the one-minute interval

as visualized in Figure A.2. The values assumed to be missing at random

(MAR) account for 7.63% of the whole dataset. I use the simple moving average

(SMA) to impute the missing values [139]. SMA replaces the missing values by

averaging the non-missing values within a rolling window without weights.

• Dataset 3 - A real-world dataset collected from Empatica E4 wristband, a

medical-grade physiological monitoring device [196], for over two weeks. The

E4 device monitors the blood volume pulse (BVP), the electrodermal activity

(EDA), the heart rate, and skin temperature in real-time with a sampling rate

of 64Hz, 4Hz, 1Hz, and 4Hz respectively. I apply the same imputation method

for processing data as in the second dataset.

Figure A.1: Visual inspection of the synthetic dataset
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Figure A.2: Visual inspection of the open-source dataset with heart rate and skin
temperature data over 70 days

A.2 Periodicity Detection

As shown in Table A.1, all three methods can detect the periods of the synthetic

dataset accurately with an error range between 0.09 and 0.36 hours. Among the

three methods, the average error of FFT is the smallest, but the difference between

FFT and the other two methods is small. These results verify the reliability of the

three periodicity detection algorithms.

Synthetic Period Algorithm Estimated Error

24
FFT 23.91 0.09
Chi 23.89 0.11
CyHMMs 23.64 0.36

36
FFT 35.72 0.28
Chi 35.81 0.19
CyHMMs 35.69 0.31

48
FFT 47.84 0.16
Chi 47.79 0.21
CyHMMs 47.87 0.13

Table A.1: The performance of three period estimation algorithms on a synthetic
dataset. The results from the synthetic dataset verify the reliability of the three
periodicity detection algorithms.

For the second dataset with a 70-day heart rate and temperature, the periodograms

outputted by FFT and Chi-square are shown in Figures A.3 and A.4. In the Fourier
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Figure A.3: Fourier peridogram derived from heart rate, and skin temperature for
the second dataset. The dashed line indicates the 0.05 level of significance for the
periodogram. Dominant frequency correspond to 24 and 12 h for both heart rate and
skin temperature.

Figure A.4: Chi-square periodograms derived from heart rate, and skin temperature
for the second dataset. Red straight lines indicate the significance level of p = 0.01.
Both heart rate and skin temperature in Chi-square periodogram exhibits a 24 h
oscillation.

periodogram, the period according to the dominant frequencies are around 24 and 12

hours. As for the Chi-square periodogram, the most significant periods for heart rate

and skin temperature are 167.80 hours and 72.04 h, respectively. However, 168 h and

72 h are both multiples of 12 and 24 h, and the Chi-square periodogram also shows

significant oscillations with a period of 24 hours. CyHMMs only infer a period of

almost 24 hours for both time series (23.94 h and 24.01 h). Therefore, I can confirm

that both heart rate and skin temperature have 24 h rhythms, which is consistent

with the circadian cycle. Table A.2 summarizes the detected results by the three

methods.
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Physiological Data Algorithm Detected Periods

Heart Rate
FFT 23.98, 11.99, 279.83, 27.98
Chi 167.80, 24.00, 12.00
CyHMMs 23.94

Skin Temperature
FFT 23.98, 11.99, 1679, 419.75
Chi 72.04, 24.00, 12.00
CyHMMs 24.01

Table A.2: Periods of heart rate and skin temperature detected by FFT, Chi-square
periodogram, and CyHMMs. Heart rate and skin temperature have obvious cycle
characteristics of 24 h and 12 h.

Figure A.5: Fourier periodogram derived from Empatica E4 wristbant dataset. The
dashed line indicates the 0.05 level of significance for the periodogram. Dominant
frequency in BVP, heart rate and skin temperature corresponds to 24 h, or the integral
multiple of 24 h. Period corresponding to main frequency in EDA is 25.6 h instead
of 24 h. (384 is the total length of the dataset)

Compared to dataset 2, the E4 dataset contains new types of data, namely BVP and

EDA, and the data is more fine-grained and clean. In terms of heart rate and skin

temperature, FFT and Chi-square periodogram can display a period of 24 h, but the

detected period is less significant than dataset 2, which may be a result of shorter

time series (about 2 weeks only) and fine-grained high-frequency sampling rates that



151

result in more fluctuations in the data.

Figure A.6: Chi-square periodograms derived from Empatica E4 wristbant dataset.
Red straight lines indicate the significance level of p = 0.01. Detected period in BVP
is 23.95 h. Detected period in EDA is 50.12, and there is a a peak in the periodogram
at around 25h. For heart rate and skin temperature, the periodograms display a 24
h oscillation.

In contrast to heart rate and skin temperature, the BVP and EDA show less significant

periodic patterns. In Fig A.5, BVP has a 24 h period, and EDA is detected to have a

25.6 h period more significant than the 24 h. In Fig A.6, the Chi-square periodogram

recognizes that the period of BVP is 23.95 h, which is close to the result derived from

the FFT. The rhythm period of EDA is 50.12 h, but in the Chi-square periodogram of

EDA, there also exists a peak QP value above the significant level at around 25 hours,

and this value corresponds to the 25.6 h in the FFT periodogram. The detected period

of EDA by the CyHMMs is also 24.85 hours. As shown in Table A.3, the results from

the three methods reflect that EDA has a more extended period (around 25 hours)

than the other three physiological signals. Besides 24 hours, from Fig A.5, the period

of 12 h is also significant in the Chi-square periodogram of EDA, heart rate and skin
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temperature, and the FFT periodogram of heart rate.

Physiological Data Algorithm Detected Periods

BVP
FFT 192.00, 384.00, 128.00, 24.00
Chi 23.95
CyHMMs 23.97

EDA
FFT 384.00, 25.60, 24.00, 16.69
Chi 50.12, 12.00, 24.00
CyHMMs 24.85

Heart Rate
FFT 24.00, 12.00, 38.40, 11.63
Chi 23.97, 12.00
CyHMMs 24.00

Skin Temperature
FFT 384.00, 24.00, 192.00, 128.00
Chi 23.59, 12.00
CyHMM 23.83

Table A.3: Periods of BVP, EDA, heart rate, and skin temperature detected by FFT,
Chi-square periodogram, and CyHMMs. BVP, heart rate, and skin temperature
own 24 h cycle, but the periodicity is not as evident as that of heart rate and skin
temperature. The EDA detected by the three algorithms is about one hour longer
than that of BVP, heart, and skin temperature.
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