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ABSTRACT

The angular momentum of gas feeding a black hole (BH) is typically misaligned with respect to the BH
spin, resulting in a tilted accretion disk. Rotation of the BH drags the surrounding space-time, manifesting as
Lense-Thirring torques that lead to disk precession and warping. We study these processes by simulating a thin
(H/r = 0.02), highly tilted (T = 65◦) accretion disk around a rapidly rotating (a = 0.9375) BH at extremely
high resolutions, which we performed using the general-relativistic magnetohydrodynamic (GRMHD) code
H-AMR. The disk becomes significantly warped and continuously tears into two individually precessing sub-
disks. We find that mass accretion rates far exceed the standard α-viscosity expectations. We identify two novel
dissipation mechanisms specific to warped disks that are the main drivers of accretion, distinct from the local
turbulent stresses that are usually thought to drive accretion. In particular, we identify extreme scale height
oscillations that occur twice an orbit throughout our disk. When the scale height compresses, ‘nozzle’ shocks
form, dissipating orbital energy and driving accretion. Separate from this phenomenon, there is also extreme
dissipation at the location of the tear. This leads to the formation of low-angular momentum ‘streamers’ that
rain down onto the inner sub-disk, shocking it. The addition of low angular momentum gas to the inner sub-disk
causes it to rapidly accrete, even when it is transiently aligned with the BH spin and thus unwarped. These
mechanisms, if general, significantly modify the standard accretion paradigm. Additionally, they may drive
structural changes on much shorter timescales than expected in α-disks, potentially explaining some of the
extreme variability observed in active galactic nuclei.

1. INTRODUCTION

The traditional description of an accretion disk is the
axisymmetric, geometrically thin Shakura-Sunyaev model
(Shakura & Sunyaev 1973; Pringle 1981 for a review;
Novikov & Thorne 1973 for the relativistic treatment). While
the Shakura-Sunyaev model has found widespread utility in
the field, it is by no means a complete description of accre-
tion. One of its major assumptions is that the disk angular
momentum is aligned with the BH spin. Yet, in most natu-
ral circumstances, the infalling gas that forms the disk has
no prior knowledge of the BH spin orientation. Thus, most
accretion disks should be at least initially misaligned. This
can drastically alter the dynamics of the disk because the
general-relativistic ‘frame-dragging’ of the Kerr BH will
apply Lense-Thirring (LT) torques to the disk (Lense &
Thirring 1918; Misner et al. 1973). These torques induce
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differential precession about the BH spin vector and can lead
to large-scale warps in the disk. Early analytic work found
that these LT torques can align inner regions of tilted ac-
cretion disks with the BH spin (Bardeen & Petterson 1975),
which has sometimes been invoked to neglect the effects of
disk tilt. While recent numerical simulations have confirmed
the existence of BP alignment in misaligned disks with
small tilts (Nelson & Papaloizou 2000; Lodato & Pringle
2007; Perego et al. 2009; Nealon et al. 2015; Liska et al.
2019a), at larger tilts the story changes dramatically. In both
smoothed-particle hydrodynamic (SPH) (Nixon et al. 2012,
2013; Raj et al. 2021; Drewes & Nixon 2021) and general-
relativistic magnetohydrodynamic (GRMHD) simulations of
highly tilted disks (Liska et al. 2019b, 2021; Musoke et al.
2022), the LT torques are strong enough to sometimes rup-
ture the accretion disk, splitting it either into individually
precessing annuli or into discrete sub-disks. It is these highly
tilted, warped and torn disks that we focus on in this paper.

There is a wealth of analytic work devoted to understand-
ing the dynamics of warped accretion disks. This includes
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early work in the linearized domain of small warps (Pa-
paloizou & Pringle 1983; Kumar & Pringle 1985, see also
Pringle 1992); the fully nonlinear one-dimensional theory
that generalized the study of warped accretion disks to ar-
bitrarily sized warps (Ogilvie 2001, 2000; Ogilvie & Lat-
ter 2013); and more recently, the more sophisticated affine
model that is general to both warps and eccentricities and
treats the disk as a composition of mutable fluid columns
(Ogilvie 2018).

While analytic work provides a firm foundation for the
understanding of warped disks, there remains only partial
agreement between theory and the results of numerical sim-
ulations. In particular, disk tearing is a highly nonlinear pro-
cess that results in discontinuities in the accretion flow, which
are difficult to study analytically. These systems also feature
anomalously high mass accretion rates that are also difficult
to reconcile with theory. This was first reported in works
based on SPH simulations (Nixon et al. 2012), which at-
tributed the rapid accretion to the cancellation of misaligned
angular momentum in torn regions. Rapid accretion is also
found in GRMHD simulations of thin, tilted disks, which
have reported effective viscosities well in excess of those ex-
pected in aligned thin disks (Liska et al. 2021).

In this work, we reveal multiple novel mechanisms that
enable rapid accretion in GRMHD simulations of thin, tilted
disks. In §2, we present the details of our simulation. In §3,
we examine the structure of the warped accretion flow. In §4,
we show that mass accretion occurs anomalously fast, and
investigate the dissipation mechanisms that drive this rapid
accretion. In §5, we contextualize the theoretical impact of
our results, discuss their observational implications, and then
summarize our findings.

2. SIMULATION DETAILS

In this paper, we study a simulation of a thin, tilted accre-
tion disk performed with the GPU-accelerated, 3D GRMHD
code H-AMR (Liska et al. 2019b). We work in spherical
polar coordinates (r, θ and ϕ) and use a rapidly rotating
(a = 0.9375) black hole. We initialize the disk with an as-
pect ratio H/r = 0.02 and set the inner and outer radii to
r = 6.5rg and r = 76rg, respectively. We initialize the velocity
as circular everywhere, set the radial surface density profile
to Σ ∝ r−1, and set the vertical density profile to a Gaussian
profile with a full-width at half maximum (FWHM) equal to
the local scale height of the disk. We then tilt the disk with
respect to the equatorial plane by 65◦. We insert into the disk
a purely toroidal magnetic field described by a covariant vec-
tor potential, Aθ ∝ (ρ− 0.0005)r2, where ρ is the fluid frame
gas density which is normalized such that maxρ = 1. We nor-
malize the magnetic field so that the average ratio of gas to
magnetic pressure is β ≈ 7, such that the disk remains dom-
inated by gas pressure. We maintain the disk thickness by

using a cooling function that removes excess internal energy
from the disk (e.g., Noble et al. 2009; Liska et al. 2019a).

We perform the simulation on a spherical grid that is
uniform in logr at extremely high resolutions, which are
needed to resolve the turbulent motions within the disk. To
achieve high resolution, we use several numerical speed-
ups, including acceleration on GPUs, 3 levels of adaptive
mesh refinement (AMR), and 5 levels of local adaptive time-
stepping (LAT). The maximum effective resolution at∼ 10rg

in the disk, where rg ≡ GM/c2 is the gravitational radius, is
Nr×Nθ ×Nφ = 13440× 4608× 8192 cells. This resolution
remains uniform within 4 disk scale heights to ensure that
the disk structure is independent of the AMR criterion used.
The 3 AMR levels used to achieve this resolution are added
at 2, 4 and 8rg, such that at the event horizon the resolu-
tion is reduced to 1728× 576× 1024 in order to prevent the
minimum time-step from becoming too small, thereby speed-
ing up the computation. To prevent the Courant condition
(Courant & Hilbert 1953) in the ϕ direction from limiting the
time-step, we reduce the azimuthal resolution progressively
from Nφ = 1024 cells near the equator to 16 cells within 30◦

of either pole. Both inner and outer radial boundary condi-
tions allow matter and magnetic fields to freely leave the do-
main. We set the inner radial boundary to be five cells within
the event horizon and the outer radial boundary to be suffi-
ciently large such that both are causally disconnected from
(and thus do not affect) the flow. The polar boundary con-
dition is transmissive and the azimuthal boundary condition
is periodic (Liska et al. 2018). We refer the reader to Liska
et al. (2019b) for a full description of H-AMR and Musoke
et al. (2022) for an analysis of this simulation in the context
of quasi-periodic oscillations in X-ray binaries.

In a companion paper, Liska et al 2022 in prep (which we
will refer to as L22), we perform the same simulation that we
have analyzed here, except we separately evolve the electron
and ion entropies and use an M1 closure scheme for radia-
tion rather than a predefined cooling function. The inclusion
of radiation breaks the self-similarity of the flow, so in L22
we set the black hole mass to 10M� and set the Eddington ra-
tio to ∼ 0.35. The results of the present work generally carry
over in L22, and we refer the reader there for detailed com-
parisons of radiative versus cooled simulations of our disk.

3. ACCRETION GEOMETRY

3.1. Main Features

Figure 1 shows a sequence of three-dimensional render-
ings of the fluid frame gas density (ρ) in our simulation,
separated in time by δt ≈ 1000rg/c. This Figure depicts
some of the main features of our simulation. The disk ex-
tends out to roughly ≈ 100rg. As the central black hole
rotates, it drags space-time with it, causing the surrounding
matter to rotate as well. This so-called ‘frame-dragging’ ef-
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Figure 1. The Lense-Thirring torques induced by the rotation of
the central black hole causes the accretion disk to warp and, some-
times, tear into discrete sub-disks. In each panel, we plot a three-
dimensional rendering of the fluid frame gas density, separated by
δt ≈ 1000rg/c. Azimuthal oscillations in the scale height are ap-
parent in the outer sub-disk, where orbiting fluid parcels experience
compressions and expansions twice an orbit (evidenced by the light-
blue ‘spokes’ in the outer sub-disk). These oscillations are also ap-
parent in the side on view of the disk shown in the inset of panel
(d).

fect induces Lense-Thirring torques (Lense & Thirring 1918)
onto orbiting fluid parcels. These torques cause particle or-
bits to precess with an angular frequency following the ra-
dial dependence ΩLT ∝ r−3. Were there no (magneto-) hy-
drodynamic stresses acting on the disk, the disk would shred
completely into independently precessing annuli. In reality,
MHD stresses work to redistribute disk angular momentum.
When MHD forces win, the disk maintains a warped struc-
ture, which we characterize as a series of concentric annuli
with smoothly varying tilt and precession angles. However,
when the Lense-Thirring torques induce a strong enough
warp, the disk becomes unstable (Doǧan et al. 2018; Doğan
& Nixon 2020), leading to a runaway increase in the am-
plitude of the warp that manifests as a ‘tear’. This is seen
most prominently in panels (b) and (c) of Fig. 1, where
the outer and inner regions of the disk break apart. These
two ‘sub-disks’ precess almost independently of one another.
The long-lived outer sub-disk undergoes near rigid-body ro-
tation, while the short-lived inner sub-disk often precesses
differentially and is typically quickly consumed by the BH.
Afterwards, the outer sub-disk refills the inner region, and
the tearing process repeats.

In total, we identified 10 tearing events over the course of
our simulation (e.g., Table 1 of Musoke et al. 2022). A typi-
cal tearing cycle can last anywhere between∼ 102 and∼ 104

rg/c, and while the exact location of the tear varies, it usu-
ally occurs at r . 10 − 20rg. The snapshots in Fig. 1 depict

Figure 2. An annulus of the warped disk experiences vertical and
radial oscillations twice an orbit. Panel (a). We depict the fluid
frame gas density, ρ, at radius r = 13rg and time t = 90471.8rg/c.
We have also drawn velocity streamlines of orbiting fluid parcels in
black. The plot is depicted in tilted coordinates, ϕ′ and θ′, where
ϕ′ = 0 indicates the local precession angle of the disk and θ′ = π/2
indicates the local midplane of the disk. Panel (b). Same as the
top panel, except we plot the radial mass flux ρur. The radial mass
flux also exhibits oscillations twice an orbit, except they are anti-
symmetric about the local midplane of the disk.

the transition between two tearing cycles. In Fig. 1 (a), the
inner sub-disk from the previous tearing cycle is about to be
completely consumed. In Fig. 1 (b), the inner sub-disk is re-
plenished, and is about to tear again. In Fig. 1 (c), the inner
sub-disk tears off once again, and continues to precess in Fig.
1 (d).

Fig. 1 shows that the azimuthal distribution of gas density
exhibits a periodic structure: ρ increases and decreases twice
an orbit, as evidenced by the twin light-blue high-density
‘spokes’ in the outer sub-disk. Whereas the volumetric den-
sity increases locally, the surface density does not: this is be-
cause the volumetric density increase is due to vertical (trans-
verse to the disk) compression. This is also shown in the in-
set panel of Fig. 1 (d), where we show a side-on view of the
disk. This might come as a surprise, as accretion disks are
typically treated as axisymmetric, without any variation in
the azimuthal direction. This non-axisymmetry is fundamen-
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Figure 3. The phase offset of the m = 2 scale height oscillations is equal to the precession angle (set to ϕ′ = 0) in the outer disk but not in the
inner disk. We depict this with space-time diagrams of Hpg/r at fixed r = 10rg (panel b) and r = 40rg (panel d). In the time period visualized, the
tearing radius is initially 10rg < rtear < 40rg, but drifts inwards, crossing r = 10rg at t ≈ 79×104 rg/c. This is reflected in the warp amplitude
(ψ) plots accompanying each space-time diagram. In panel (a), we have drawn a red line when the disk tears. We have also drawn a blue
dotted ψc = 0.089 line as an estimate for when extreme scale height oscillations begin occurring, calculated using Equation 154 of Fairbairn
& Ogilvie (2021a). When t < 79× 104 rg/c, panel (b) shows the inner disk, which exhibits radially-dependent phase offsets (depicted in dark
blue) due to strong differential precession. At all times at r = 40rg, the depicted annulus is part of the outer disk, and the phase of the scale
height oscillations is locked with the precession angle. At r = 10rg, the scale height is also generally larger than the target scale height (= 0.02,
depicted in white) due to the enhanced dissipation and because vertical oscillations cause a departure from hydrostatic equilibrium.

tally due to the warp, which we investigate in the following
subsection.

3.2. Warp and Non-axisymmetric Flow Structures

To better understand the non-axisymmetric structures in
our accretion disk, we begin by examining the local prop-
erties of a single annulus. For this, we use tilted coordinates
r, θ′ and ϕ′, which essentially ‘flatten’ the warp of the disk
and make analysis more convenient. We describe the trans-
formation to tilted coordinates in Appendix A, with an ac-
companying visualization in Fig. 10. The main features to
note are,

1. Because the transformation depends on the radial tilt
and precession profiles, it is different at different radii.

2. The tilted vertical unit vector, ẑ′, is co-aligned with the
angular momentum of the disk at every radius.

3. The tilted polar coordinate, θ′, is set such that the local
mid-plane of the disk is at θ′ = π/2.

4. The tilted azimuthal coordinate, ϕ′, is set such that the
local precession angle is at ϕ′ = 0.

In Figure 2, we depict the fluid frame gas density (ρ, panel
a) and mass flux (ρur, panel b) as a function of θ′ and ϕ′. This
plot is shown at time t = 90471.8rg/c and radius r = 13rg.
Since gas motion is predominantly azimuthal, the flow ap-
proximately follows the θ′ −ϕ′ plane. In Fig. 2 (a), we can
immediately see that the disk scale height varies drastically

as a function ofϕ′. Specifically, it undergoes periodic oscilla-
tion, compressing and expanding twice an orbit. The veloc-
ity streamlines (depicted in black) also follow this periodic
motion, converging and diverging in phase with the oscilla-
tions of the disk scale height. The radial mass flux, depicted
in Fig. 2 (b), also oscillates in phase with the scale height
oscillations, reversing direction at the compression points.
Additionally, these radial motions are approximately anti-
symmetric about the mid-plane. Fluid parcels below (above)
the midplane move inward (outward) during the∼ 0<ϕ′<π
expansion and outward (inward) during the ∼ π < ϕ′ < 2π
expansion. This radial ‘sloshing’ of the disk is much larger
in magnitude than the average, inwards radial mass flux as-
sociated with accretion.

These oscillations can be qualitatively understood by con-
sidering how a warp impacts the hydrodynamic force balance
of the disk (see also Section 4.1 of Lodato & Pringle 2007,
for a useful description). Consider two adjacent annuli that,
when unwarped, are in force equilibrium both radially and
vertically. Then, impose a small tilt on one annulus with re-
spect to the other, such that they are slightly misaligned. As
fluid parcels in the two annuli orbit, at two points along the
orbit they are maximally separated and at two points along
the orbit they are minimally separated. In the frame of the
fluid parcel, this manifests as a radial and vertical pressure
gradient that oscillates twice an orbit. These pressure gra-
dients induce corresponding oscillations of the particle or-
bits at the radial and vertical epicyclic frequencies, which far
from the BH are approximately Keplerian. When the inter-
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nal stresses of the disk respond to these perturbations, we are
left with the oscillating patterns seen in Figure 2. Specifi-
cally, the vertical oscillations manifest as m = 2 scale height
oscillations while the radial oscillations manifest as an in-
creasing eccentricity above and below the midplane (as also
seen in Deng et al. 2021). The argument of periastron above
and below the midplane is out of phase by ≈ 180◦.

These oscillations were also seen in the thick, tilted disk
simulations of Fragile & Blaes (2008), and were recently
computed analytically. Fairbairn & Ogilvie (2021b) devel-
oped a theory of oscillating fluid tori that can describe an-
nuli of warped disks, and then in Fairbairn & Ogilvie (2021a)
they applied this theory to nonlinear warps in inviscid, Keple-
rian disks. They identified a bouncing regime above a critical
warp amplitude, leading to large scale height variations (Fig.
2 of Fairbairn & Ogilvie (2021a)) that are remarkably similar
to those seen here. We refer the reader to these works for an
analytical analysis of this behavior.

Before continuing, we must describe some of our diagnos-
tics. This includes several averages, generally using tilted
coordinates, which we define as

〈· · · 〉xw =
∫

(· · · )W√gxxx̂ ·d~A/
∫

W
√

gxxx̂ ·d~A, (1)

where x is the coordinate over which we‘re performing the
average and W is the weight (if we use one). gxx is one of the
components of the covariant metric tensor. We sometimes
also use this notation for multiple directions, i.e., 〈· · · 〉θ′,ϕ′

ρ

would indicate a density-weighted average over the tilted co-
ordinates θ′ and ϕ′.

We analyze the flow structures depicted in Figure 2 by
measuring the pressure scale height,

Hpg ≡
√
〈z′2〉θ′pg

, (2)

where pg is the fluid frame gas pressure. This expression for
Hpg returns the exact scale height, H, for an isothermal thin
accretion disk in vertical hydrostatic equilibrium (i.e. for the
vertical density and pressure profile ∝ exp(−z2/2H2)).

We explore the time-dependent structure of the scale height
oscillations in Figure 3, where we show space-time (ϕ′ − t)
diagrams of Hpg/r at fixed radii r = 10rg (panel b) and
40rg (panel d). These diagrams are shown from times t ≈
72 − 90× 104 rg/c, during which the inner disk is shrinking
and the tearing radius is decreasing. We have depicted our
target scale height of H/r = 0.02 with white colors, such that
compressed regions are purple and expanded regions are or-
ange. We note, however, that since the ‘target thickness’ of
the disk assumes vertical hydrostatic equilibrium, our cool-
ing prescription is a function only of the temperature profile
and does not consider vertical oscillations. Additionally, it
occurs on a Keplerian timescale, effectively averaging cool-
ing over the annulus. While this is an ad hoc treatment of the

disk thermodynamics, we find much of the same behavior in
L22 where we self-consistently evolve radiation, reassuring
us that our scale height evaluation is robust.

At t = 79× 104 rg/c, the tearing radius crosses r = 10rg.
Thus, the annulus depicted in the left panel belongs to the
inner sub-disk before this time and the outer sub-disk after-
wards. Since our tilted coordinate system sets ϕ′ = 0 to the
precession angle at every radius, it is physically meaningful
to analyze the phase offsets of our scale height oscillations.
We derive the phase offsets by fitting Hpg (r,ϕ′) (Eq. 2) to a
sinusoidal dependence that we define at a given radius as,

H̃pg = H̃ (amp)
pg

sin(mϕ′ +ϕ′0) + H̃ (mean)
pg

(3)

While we only use our fit for ϕ′0 in Fig. 3, we will return to
this expression in §4.2. Fig. 3 (b) highlights the phase offset
of the depicted annulus in blue. In the inner sub-disk, the
offset between the precession angle and the scale height os-
cillations varies in time, while in the outer sub-disk the phase
offset is constant. This is also clear in the annulus depicted in
Fig 3 (d), which at all times belongs to the outer sub-disk and
has a roughly constant ϕ′ dependence. It’s interesting that
these offsets are constant because it implies that they evolve
with the warp, i.e., ϕ′0 ∝ eiωP , where ωP (r) is the precession
rate, which is nearly uniform in the outer sub-disk. Yet, ϕ′0 is
a function of the warp, and points approximately at the ‘lo-
cal’ line of nodes between misaligned adjacent annuli (e.g.,
it is approximately pointed to by the unit vector l̂× ∂ l̂/∂r,
where l̂(r) is the angular momentum unit vector of an annu-
lus). This indicates that the entire outer sub-disk precesses in
a rigid, yet warped, geometry (as expected analytically, e.g.,
Sec. 6 of Fairbairn & Ogilvie 2021a).

To support our statements about the tear, in Fig. 3 (a)
and (c) we depict the warp amplitude, ψ ≡ | ∂ l̂

∂lnr |, for each
space-time diagram. In the left ψ plot, we have drawn a red
line at t ≈ 79× 104 rg/c to indicate when the disk tears. We
have also drawn blue dotted lines at ψc = 0.089, which is
an estimate of the ‘critical’ warp amplitude above which the
extreme scale height oscillations activate. We obtained this
value using Equation 154 of Fairbairn & Ogilvie (2021a) for
our target scale height of H/r = 0.02. Fig. 3 (c) show that the
ψ & ψc criterion is marginally satisfied in the outer sub-disk
at r = 40rg. This is a relatively mild warp, suggesting that it
may be easy to activate large scale height oscillations even
in disks with initial tilt angles that are much smaller than the
65◦ angle considered here.

3.3. Tearing Region

When the disk tears, the inner and outer sub-disks begin
to precess independently. As the two sub-disks evolve, they
expand until they interact. This interaction is strongest at
the line of nodes, where gas parcels orbiting in misaligned
planes collide. These gas parcels shock, leading to significant
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Figure 4. During a tear, the inner and outer sub-disks collide, causing streamers of low-angular gas to rain down onto the inner sub-disk.
Panel (a). We plot contours of inward flowing mass in tilted coordinates at time t = 78854.3rg/c. The mass flux has been integrated in ϕ′ and
is depicted in the plane of tilted cylindrical (R′) and vertical (z′) coordinates. At the tearing radius (rtear ≈ 10rg) the mass flux is distributed
roughly uniformly over a shell. Within the tear, gas plunges radially onto the inner disk, shocking it and increasing the disk mass. Panel (b).
Same as panel (a), except we depict the outward flowing mass flux. Panel (c). Same as panel (a), except we plot the temperature of the gas.
The streamer-populated region within the tear is roughly two orders of magnitude hotter than the inner sub-disk. Panel (d). Here, we plot the
radial profile of the dimensionless circularization radius of the gas ≡ rc/r. Values above (below) unity indicate that the orbital velocity is above
(below) its value for a circular orbit. At rtear, rc/r is small, causing streamlines to plunge. Just above the tear, rc/r is above unity. Panel (e).
Here, we plot the radial profile of the gas pressure in the disk. Since the disk is depleted of gas at the tear, the gas pressure must have a positive
radial gradient at r & rtear. This causes an inwards force that is compensated by the super-Keplerian motion in this region.

dissipation (discussed later in §4.3). This dissipation par-
tially cancels the angular momentum of colliding gas parcels,
leading to the formation of low-angular momentum streams
of gas that then fall radially inwards. We refer to these as
‘streamers’ and they are an important feature of the inner ac-
cretion flow. To better examine the flow in this region, we
will define the following diagnostics.

First, we split the mass flow into inward and outward com-
ponents,

Ṁin(r,θ′)≡
∫
√

−gρurΘ(ur)dϕ′ (4)

Ṁout(r,θ′)≡
∫
√

−gρurΘ(−ur)dϕ′ (5)

We also define the average temperature of the flow as,

T̂ (r,θ′) = 〈pg〉θ
′,ϕ′

/〈ρ〉θ
′,ϕ′

, (6)

where we have used a ‘̂ ′ as a reminder that the units of T̂ are
non-physical. This expression also assumes that the flow is
gas-pressure dominated. We expect this is true for the coro-
nal regions, which are generally optically thin, but not for
the disk. In Figure 4, we depict Ṁin, Ṁout, and T̂ in the R′ − z′

plane (where R′ is the cylindrical radius in tilted coordinates)
at time t = 78854.3rg/c. We have chosen this time because
this is when the inner sub-disk is transiently aligned with the
BH spin. The inner sub-disk then has zero warp and thus no
scale height oscillations, allowing us to isolate the effects of
the streamers from the tear on the inner sub-disk.

In Fig. 4 (a), we can see that Ṁin is uniformly distributed
about the tearing radius rtear ≈ 10rg. This is because most

of the angular momentum at this radius is dissipated, causing
the gas distribution to spread more evenly over a spherical
shell, instead of being confined to an annulus. This low an-
gular momentum gas then forms streamers that rain down
onto the inner sub-disk, seen as radially-extended filamen-
tary structures that sandwich the inner sub-disk. Fig. 4 (b)
shows that Ṁout follows the structure of Ṁin at the tearing
radius. This is a consequence of angular momentum conser-
vation; since low angular momentum streams fall inwards,
there must also be an outward transport of angular momen-
tum. Since transport by magnetic fields is subdominant (dis-
cussed later in §4.1), angular momentum must be carried out-
wards by mass. Inside the tear, where there are free-falling
streamers, there is essentially zero outwardly flowing gas, as
expected. In Fig. 4 (c), we see that the streamer-populated
regions within the tear are roughly two orders of magnitude
hotter than the outer disk. This is essentially because they
evolve on a dynamical timescale, making it difficult for them
to cool. They also collide with the inner disk, causing them
to shock, heating this region further. The hot, streamer-filled
atmosphere is reminiscent of the usual corona that surrounds
many accretion disks, suggesting that streamers may lead to
hard X-ray emission.

Moving on to the remaining panels of Fig. 4, we first de-
fine the specific angular momentum of a particle on a circular
orbit at r = rc in a Kerr metric as (Shapiro & Teukolsky 1983),

`c ≈
r2

c − 2a
√

rc + a2

√
rc(r2

c − 3rc + 2a
√

rc)1/2 (7)
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At every radius, we calculate the BH spin aligned specific
angular momentum of the gas, 〈uϕ〉θ

′,ϕ′

ρ , and numerically in-
vert Eq. 7 to find the corresponding circularization radius of
the gas. We express this dimensionlessly as rc/r and plot it
as a function of radius in Fig. 4 (d). At most radii, rc/r ≈ 1,
and the orbital motion is approximately circular. However,
at rtear ∼ 10rg (shown in red), rc drops substantially. This is
caused by the cancellation of misaligned angular momenta.
The gas at this radius can fall inwards until it reaches its local
value of rc and form streamers in the process.

Figure 4 also shows that just outside rtear, we have rcirc/r>
1; this means the gas there is super-Keplerian. We can under-
stand why by turning to Fig. 4 (e), where we depict the gas
pressure in the disk, 〈pg〉θ

′,ϕ′

ρ , as a function of radius. The de-
pletion of gas at rtear causes a dip in pressure, which results
in a positive pressure gradient at radii & rtear. This results in
a pressure force that is pointed inwards, which is what com-
pensates the super-Keplerian centrifugal force of the gas.

4. ACCRETION MECHANISMS

4.1. Why do highly tilted accretion disks accrete so rapidly?

In the previous section, we focused on the structure of the
warped accretion flow in our simulations. Now, we will study
how this structure determines the accretion mechanisms in
our disk. In aligned disks, angular momentum transport is
usually parameterized by the α parameter, which sets the
strength of an effective viscosity and is, in reality, thought
to represent magnetized turbulence driven by the magnetoro-
tational instability (MRI, Balbus & Hawley 1991). It is theo-
retically expected that α < 1. This is because the turbulence
should be subsonic and confined by the scale height of the
disk; i.e., viscosity is v ≈ leddyveddy ≈ αHcs where leddy < H
and veddy < cs are the characteristic length and velocity scales
of the eddies (Pringle 1981).

Highly tilted and warped accretion disks can, however, ac-
crete at much higher rates (see the reported effective α pa-
rameters in Liska et al. 2021, or the dynamically driven ac-
cretion reported in Nixon et al. 2012). Figure 5 shows the
radial profiles of the effective α parameter, αeff, and the
α parameter derived from the Maxwell’s stress, αM. Both
quantities are averaged over the duration of a tearing event,
t ∼ 72 − 90× 104 rg/c. It is instructive to first look at αeff,
which is the effective α parameter that results when assum-
ing mass accretion is fully driven by local viscous processes,

αeff =
〈ρur〉θ′,ϕ′,t〈uϕ′〉θ′,ϕ′,t

ρ

r〈pg〉θ
′,ϕ′,t
ρ

(8)

We can interpret αeff as the α parameter associated with lo-
cal turbulent stresses if accretion is, in fact, driven by local
turbulent stresses. However, as we can see from Fig. 5, αeff

is ≈ 1 − 100 through much of the disk, which is much larger
than the α≤ 1 theoretical limit imposed on turbulent stresses.

Figure 5. The effective α parameter far exceeds both unity and the
magnetic α parameter, suggesting that accretion is neither driven by
local turbulence (where α . 1) nor magnetic fields. We show this
by plotting radial profiles of the effective α parameter, αeff (Eq. 8),
and the α parameter associated with the Maxwell’s stress, αM (Eq.
9). These profiles are averaged from times ∼ 72 − 90 × 104 rg/c.
For both quantities, we also plot their instantaneous profiles at each
time, which are depicted in lighter colors. Our time-averages are not
true steady-state measures of α because disk tearing makes the ac-
cretion flow is inherently transient. The imprint of disk tearing can
be seen in the instantaneous αeff curves, where we have labeled the
radius of the tear, which moves inwards as the inner disk is accreted.

Additionally, we can compare αeff to αM, which is defined as,

αM =
−〈brbϕ′〉θ′,ϕ′,t

ρ

r〈pg〉θ
′,ϕ′,t
ρ

(9)

where bµ is the four-vector of the fluid frame magnetic field.
Here, αM represents angular momentum transport driven by
magnetized turbulence, thought to be seeded by the MRI, and
Fig. 5 shows that it is bounded below unity as expected.
However, since αM is 2 − 3 orders of magnitude below αeff,
we can definitively say that magnetic stresses do not drive
accretion in our simulation.1

The main takeaways from Fig. 5 are: (i) mass accretion
occurs much faster in warped accretion disks than in equa-
torial accretion disks, (ii) the transport is likely non-local in
nature, since αeff� 1, and (iii) accretion must occur mainly
via non-magnetic stresses, since αM� αeff. In the following
subsections, we identify the two main accretion mechanisms
in our simulation.

1 We note the absence of an α parameter associated with Reynolds’
stresses in Fig. 5; this was an intentional choice. The oscillating flow struc-
tures in our warped disk break the ergodicity of the disk in the ϕ̂′ direction
and would merit a spectral Reynolds’ decomposition of the flow into its
Fourier modes, which is beyond the scope of this work.
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Figure 6. The vertical compressions of the warped disk lead to
‘nozzle shocks’ twice an orbit, where significant dissipation occurs.
Panel (a). Here, we depict the fluid frame entropy (κg), at radius
r = 21rg and time t = 115923.3rg/c in the θ′ −ϕ′ plane. We see
that the entropy spikes at ϕ′ ≈ 0 (or 2π) and π, where the disk is
most compressed. Panel (b). We plot the cumulative fraction of
dissipated energy along the annulus (Eq. 11 and following text),
normalized to the orbital energy of the annulus. Across the ϕ′ = π
nozzle shock, ≈ 1.8% of the orbital energy is dissipated.

4.2. Nozzle Shocks

In Section §3.2 we identified extreme scale height vari-
ations that occur twice an orbit. We will now show that
these compressions lead to the formation of shocks that dis-
sipate orbital energy. These ‘nozzle shocks’ are conceptually
similar to those that occur in tidal disruption events (TDEs,
Rees 1988; Kochanek 1994). They were also seen in the
thicker tilted disk simulations of Fragile & Blaes (2008), who
dubbed them ‘standing shocks’. More recently, Fairbairn &
Ogilvie (2021a) also suggested nozzle shocks may form in
warped disks.

Figure 6 shows the specific entropy, κg = pg/ρ
γ , in the

θ′−ϕ′ plane at radius r = 21rg and time t = 115,923.3rg/c. In
a steady, laminar flow, κg should be conserved along stream-
lines. However, if the gas shocks, then κg will increase, mak-
ing it a useful quantity for tracking dissipation. We can see
that throughout most of the depicted annulus, κg is roughly
constant, suggesting that the compressions are mostly adia-
batic. We say ‘mostly’, however, because at the points of
maximum compression, there is in fact dissipation occurring.
To ascertain this, we start by expressing the heating rate per
unit volume of a fluid parcel by its the change in entropy2

2 Entropy is also lost via our cooling function. However, we don’t need
to consider it in this expression, as we are only concerned with the entropy
dissipated in shocks - not the entropy that’s removed by the cooling function.

(Ressler et al. 2015),

Q = ργ(γ − 1)−1uµ∂µkg, (10)

In practice, we use only positive values of Q, since negative
values result in a decrease in entropy along a streamline and
are unphysical in a steady flow3. While this is a somewhat
crude fix, a more precise treatment would require a dedicated
heating scheme, i.e. Section 3.2 of Ressler et al. (2015). To
analyze dissipation in our nozzles, we are concerned only
with the dissipation of the ϕ̂′ velocity components, so we will
also define Qϕ′ ≡ ργ(γ −1)−1uϕ

′
∂ϕ′κg. We then integrate the

azimuthal heating rate vertically,

Fϕ′ =
∫ π

0

√
gθ′θ′Qϕ′dθ′ (11)

Then, we perform a cumulative integral of this quantity in
azimuth,

∫ ϕ′

0 Fϕ′dϕ′. We plot this in the bottom panel of
Fig. 2, where we have normalized our integral to the esti-
mated orbital energy per unit area, Σ〈ut〉θ

′,ϕ′

ρ , where Σ ≡∫ π
0
√

gθ′θ′ρdθ′ is the surface density of the disk. We can then
see a very sharp discontinuity almost exactly at ϕ′ = π of
scale ≈ 0.018, indicating that about 1.8% of orbital energy
is lost in the nozzle shock. Extrapolating, this would sug-
gest that ∼ 3.6% of orbital energy is lost every orbit, since
there are two nozzle shocks. This is a significant dissipation
rate, which we will now show is enough to power the rapid
accretion that we reported in §4.1.

We would like to isolate the dissipation associated with the
nozzle shocks, so we will use a criterion to select compressed
regions in our integration defined in Eq. 11. To do this, we
use our sinusoidal fit to Hpg (r,ϕ′), defined in Eq. 3. Then,
we only consider the energy dissipation where Hpg < A( f ),
where A( f ) ≡ H̃ (mean)

pg
− f H̃(amp)

pg and 0 ≤ f ≤ 1. For the spe-
cific choice of f = 1√

2
, A is one standard deviation below the

mean of Eq. 3. We then rewrite Eq. 11 with our A( f ) crite-
rion,

FNZ(r) =
∫ π

0

√
gθ′θ′Qϕ′Θ(A( f ) − Hpg )dθ′ (12)

Next, we would like to relate this to a predicted mass accre-
tion rate that we can compare with the true mass accretion
rate. To do this, we treat FNZ as an axisymmetric, Newto-
nian dissipation rate associated with a shear viscosity. We
can then relate FNZ to a predicted accretion rate (for details
see Pringle 1981) by writing,

ṀNZ ≈
4πr3FNZ

3GM
(13)

3 While our flow is generally transient, this is a fine assumption in the ϕ̂′
direction since the orbital timescale is generally much shorter than any other
timescale.
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Figure 7. Dissipation in nozzle shocks can mostly account for the measured mass accretion rate everywhere except the innermost regions of the
disk. Panel (a). Here, we compare Ṁ to the estimated mass accretion rate due to nozzle shocks, ṀNZ (Eq. 13). We do this for multiple values of
f (Eq. 12), where higher f indicates a stricter cutoff for the degree of compression. Each quantity is averaged from times ∼ 72 − 90×104 rg/c.
Panel (b). Here, we show what percentage of a given annulus passes our compression criterion when calculating ṀNZ, for each value of f .
Panel (c). Here, we show our fits for the dimensionless mean (H̃ (mean)

pg /r) and amplitude (H̃ (amp)
pg /r) of the scale height oscillations (Eq. 3). The

quantities are time-averaged over the same period as the other panels, with the corresponding instantaneous curves depicted in lighter colors.

In Figure 7 (a), we compare ṀNZ to the simulated Ṁ for
various values of f . Here, we have time-averaged ṀNZ over
the period ∼ 72 − 90×104 rg/c (same as Fig. 5). Higher val-
ues of f indicate a stricter criterion for selecting compressed
regions along an annulus. We can see that for f = 0 − 0.75,
ṀNZ matches Ṁ within an order-unity factor everywhere ex-
cept the innermost regions. At f = 1, ṀNZ starts departing
farther from Ṁ because our criterion for selecting the dissi-
pation region becomes too strict. To aid our intuition for the
‘strictness’ of our criterion, Fig. 7 (b) shows the percentage
of the disk used in our integration at every radius for each f .
We see that when f = 0.75, for which ṀNZ largely accounts
for Ṁ at most radii, we only select roughly ∼ 20% of an an-
nulus at any given radius, which is an already rather small
fraction of the disk. Note that ṀNZ underestimates Ṁ in the
inner regions. This is because the streamers discussed in §3.3
can additionally drive accretion, which we explore further in
§4.3.

Fig. 7 (c) shows our time-averaged estimates for the
dimensionless scale height mean, H̃ (mean)

pg
, and amplitude,

H̃ (amp)
pg . For both, we also plot instantaneous curves in lighter

colors to give the reader a better sense of the time-variability
of the scale height. At all radii, the mean exceeds the ampli-
tude. In general, the mean tends to be larger than our target
scale height H/r = 0.02. The reason for this is twofold; first,
the enhanced dissipation rate makes cooling to target thick-
ness more difficult, and second the cooling prescription does
not account for the vertical oscillations which also inflate the
scale height. Both the mean and the amplitude, however, be-

come small at r . 5rgbecause the inner region aligns with the
BH spin during the phase we have time-averaged, removing
the warp.

4.3. Streamers

In §3.3, we showed than when our disk tears in two, the
sub-disks can interact and lead to dissipation. This dissi-
pation results in the formation of low-angular momentum
streamers that rain down onto the inner sub-disk. In this
subsection we will study how this process can enhance ac-
cretion in the inner region, as we saw in Fig. 4. We follow
our approach in §3.3 where we focused on a tearing cycle in
which the inner sub-disk transiently aligns with the BH spin
axis. During this aligned phase, the inner disk is unwarped
and thus has no nozzle shocks. This allows us to isolate the
effects of streamers on the accretion process.

We would like to first qualitatively depict the impact of
streamers on the inner sub-disk. We do this in Figure 8 (a),
where we have plotted the entropy density ρκg in the θ′ −ϕ′

plane at radius r = 6rg. This is aided by Fig 8 (c), which
shows a three-dimensional rendering of ρκg, where we have
excised gas at radii r > 20rg to focus on the inner regions.
Both snapshots are at time t = 81,062rg/c when the tear is
at rtear = 7.8rg. We find entropy density, rather than specific
entropy, a useful quantity to plot as it encodes both dissipa-
tion in shocks and adiabatic compression. In both two- and
three-dimensional renderings, we see that the streamers col-
lide with the sub-disk, resulting in an increase of ρκg. After
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Figure 8. Low-angular momentum streamers produced at the tear crash into the inner sub-disk, shocking it and leading to significant dissipation.
Panel (a). We depict the fluid frame entropy density (ρκg) at radius r = 6rg and time t = 81,062rg/c. Streamers that originated at rtear = 7.8rg

rain down onto a transiently aligned, unwarped inner sub-disk, shocking and dissipating their kinetic energy. Panel (c). We depict a three-
dimensional rendering of ρκg at the same time. Here, we have excised gas at radii > 20rg to focus on the inner regions. We can see that
streamers from the outer sub-disk rain down onto the inner sub-disk from either side, and then ‘spill’ over the top. Panel (b). We depict the
cumulative dissipation, analogous to Fig. 6 (b), except we show the dissipation in each direction (r,θ′,ϕ′). We see that we get dissipation of
a similar strength to a nozzle shock, except the dissipation is more spread out on the inner disk. The dissipation is still centered at two points
along the annulus, but is no longer located at ϕ′ ≈ 0 and π.

they collide, some of the material from the streamers ‘spills’
over the inner sub-disk.

In Fig. 8 (b), we depict the cumulative dissipation along
the azimuthal direction. This is analogous to our calcula-
tion in Fig. 6 (see also Eq. 11 and following text), except
we show dissipation rates for each direction (r, θ′, and ϕ′).
We do this because the streamer trajectories are significantly
altered from the mean flow of the disk. We see that as a
streamer crashes into the disk, it shocks, leading to signifi-
cant dissipation. If we compare this to the nozzle shock dis-
sipation in Fig. 2 (b), the dissipation is still concentrated at
two points along the annulus, because at each radius stream-
ers will make landfall both above and below the inner sub-
disk. However, the dissipation is less ‘peaked’ than in a noz-
zle shock, more spread in azimuth, and not concentrated near
ϕ′ = 0 and π.

To make this analysis more quantitative, we will invoke the
conservation of mass and BH-aligned angular momentum,
and track the fluxes of each entering and leaving the inner
sub-disk. We start by writing down the mass of the inner
sub-disk,

Minner =
∫

r<rtear

ρ
√

−gdrdθdϕ′ (14)

We also track the mass and (BH spin aligned) angular mo-
mentum accreted by the inner sub-disk from the outer sub-

disk,

Ṁtear =
∫

r=rtear

ρurdAθϕ (15)

L̇tear =
∫

r=rtear

ρuruϕdAθϕ (16)

We also will use the mass accreted by the BH,

ṀBH =
∫

event horizon
ρurdAθϕ (17)

Finally, we define use the specific angular momentum of the
gas accreted onto the inner sub-disk as,

`accr ≡ L̇tear/Ṁtear (18)

In Figure 9 (a), we plot a time series `accr normalized to the
specific angular momentum of a circular orbit at r = rtear,
≡ `c (Eq. 7). The time series is plotted over the course of
the same tearing cycle depicted in Figs. 4 and 8, where the
inner sub-disk transiently aligns with the BH spin. This is
depicted in Fig. 9 (c), where we plot a space-time diagram
of the tilt angle, T . Here, the discontinuity between T ≈ 0◦

and 65◦ indicates the tear. At all times during this phase,
`accr/`c ≈ 0.5 − 0.7. This means that all the gas the inner
sub-disk accretes will try to circularize at smaller and smaller
radii. If the mass of the accreted low-angular momentum gas
becomes comparable to the mass of the inner sub-disk, then
this will cause the inner sub-disk to shrink.
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In Fig. 9 (b), we plot three masses normalized to the
mass of the inner sub-disk at the beginning of the depicted
phase, Mdisk,0. We show the mass of the inner sub-disk, Mdisk,
the total mass the inner sub-disk accretes during the phase,∫

dMtear =
∫

Ṁteardt, and the total mass the BH accretes
from the inner sub-disk,

∫
dMBH =

∫
ṀBHdt. Before about

t ≈ 83,000rg/c, the BH accretion rate essentially traces the
tear accretion rate, suggesting the inner sub-disk acts as a
‘conveyor belt’ of material. Since the accreted gas from the
tear has low specific-angular momentum, the inner sub-disk
begins to shrink during this phase. At t ≈ 83000rg/c, each
curve intersects; the inner sub-disk has been depleted of it‘s
initial mass by the black hole but has also been replenished
by the tear. Since all of this replenished material will try
to circularize at smaller radii at the time of accretion, the
sub-disk must shrink. After this transition, the inner sub-disk
rapidly plunges into the BH, marking the end of the tearing
cycle.

Dissipation must be happening for the rapid accretion of
the inner sub-disk to occur. We know that some of this dissi-
pation occurs at the tear, since streamlines that pass through
it lose a large fraction of their angular momentum. However,
as we showed in Fig. 8, dissipation is also occurring where
these streamers merge with the inner sub-disk. To get a better
sense of the positional dependence of the the dissipation rate,
we show a space-time diagram of

∫
QdAθϕ in Fig. 9 (d). We

can see that along the tear, there is generally a peak in the dis-
sipation rate, but this peak can vary in strength by about 1−2
orders of magnitude. Correlated with this peak is a spread in
the dissipation rate at radii . 5rg; these are due to the stream-
ers. In the final stages of the tearing cycle, the streamer dis-
sipation rate is particularly enhanced. Together, this suggests
that dissipation at the tear and where the streamers collide
with the inner sub-disks are comparably important. We also
argue that this effect is the cause for the discrepancy between
Ṁ and ṀNZ seen at radii . 5 − 10rg in Fig. 7 (a), indicat-
ing that streamer- and tear- induced dissipation are essential
contributors to accretion in torn disks.

5. DISCUSSION

5.1. Expanding the standard model of accretion disks

The results of Section §4 have profound implications for
the understanding of accretion disks. For decades, the stan-
dard picture has been that thin, magnetized disks are subject
to the MRI which systematically drives angular momentum
outward and mass inwards, thus enabling accretion (Balbus
& Hawley 1991). Although we have demonstrated that mag-
netic stresses do contribute to accretion (αM curve in Fig.
5), they are highly subdominant to the warp-induced dissi-
pation from nozzle shocks (§4.2, disk tearing and stream-
ers (§4.3). This is not to say the MRI can be neglected in
our simulations; were there no magnetized turbulence at all,

Figure 9. Dissipation at the tearing radius causes the formation
of low-angular momentum streams of gas (‘streamers’) that plunge
onto the inner sub-disk, causing it to rapidly reduce in size. Panel
(a). We depict a time-series of the specific angular momentum of
gas accreted at the tear (`accr, Eq. 18) normalized to the specific
angular momentum of a circular orbit at the tearing radius (`c, Eq.
7). At all times during the depicted tearing cycle, `accr < `c, in-
dicating that the gas will try to circularize at smaller and smaller
radii. Panel (b). We show a time-series of the mass of the inner
sub-disk (Mdisk), the mass accreted by the BH (

∫
dMBH, Eq. 17),

and the mass accreted by the inner sub-disk from the tear (
∫

dMtear,
Eq. 15). Each is normalized to the initial mass of the inner sub-disk
during the depicted phase (Mdisk,0). At t ≈ 83000rg/c, there is a
transition, when low-angular momentum gas from the tear fully re-
plenishes the initial mass of the inner sub-disk. Panel (c). Here, we
plot a corresponding space-time diagram of the tilt angle. The tear
is delineated by the discontinuity between red and blue regions. By
t ≈ 77500rg/c, the inner sub-disk fully aligns with BH spin. The
inner sub-disk is consumed by the BH at the end of the depicted
phase and is quickly replaced by outer disk material that has tilt an-
gle ≈ 60◦ − 65◦. Panel (d). We show a space-time diagram of the
shell-integrated dissipation rate (

∫
QdAθϕ). There is generally dis-

sipation at the tear and at radii r . 5 − 6rg, where streamers crash
into the inner sub-disk. Dissipation in these regions is correlated,
since dissipation in the tear is associated with an increased forma-
tion rate of streamers.
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we expect that the disk would immediately shred because
there would be nothing to initially withstand the differen-
tial Lense-Thirring torques induced by the BH (as discussed
in §3.1). Furthermore, the accretion mechanisms studied
here are strongest in the inner regions of the disk, as ev-
idenced by the steep radial dependence in Fig. 5. Most
astrophysical disks are, in reality, much larger in radial ex-
tent than the one we have simulated. Active galactic nuclei
(AGN) can harbor Novikov & Thorne (1973) disks up to radii
∼ 103 − 106 rg (depending on the mass accretion rate) before
becoming Toomre-unstable (Toomre 1964; Sirko & Good-
man 2003; Thompson et al. 2005). XRB disks are fundamen-
tally limited in size by their Hill radius, which is for instance
∼ 105 − 106 rg for estimated orbital parameters of Cygnus X-
1 (Miller-Jones et al. 2021), although the accretion flow will
likely circularize at much smaller radii. So, in misaligned
disks hosted by black holes across the mass spectrum, it may
be that the MRI drives accretion through most of the disk
while the warp drives accretion in the inner regions.

A difficulty of Novikov & Thorne (1973) disks is that
their radiation-dominated inner regions are both thermally
(Pringle et al. 1973) and viscously (Lightman & Eardley
1974) unstable. This is essentially because any increase (de-
crease) in temperature results in an increase (decrease) in vis-
cous heating, thus triggering a runaway process. This insta-
bility is specific to α-disks, since it is assumed that the the
viscous stress is ∼ αPtot which is ∝ T 4 for a radiation pres-
sure dominated gas. Yet, there is little observational evidence
of the thermal-viscous instability of thin disks, which appear
to be stable up to significant fractions of the Eddington lu-
minosity (Done et al. 2004). We suggest that nozzle shock
driven accretion is unlikely to be subject to this instability.
We expect this because thinner disks are more compressible
and thus more susceptible to dissipation in nozzle shocks. If
dissipation increases, then the disk will puff up, increasing
the scale height and thus decreasing the nozzle shock dissi-
pation rate and maintaining stability. We are unable to probe
the stabilizing effect of nozzle shocks in this work since we
employ a predefined cooling rate. However, in L22 where we
re-run our simulation using an M1 closure scheme for radia-
tion, we find that our disk is in fact thermally stable.

It is important to recognize that we have analyzed a sin-
gle simulation in this work. Paired with the results of Fragile
& Blaes (2008), Nixon et al. (2012) and Liska et al. (2021),
it does appear that rapid accretion may be a generic feature
of warped disks, but the parameter dependence must be ex-
plored before we can ascertain this. One of the most impor-
tant parameters is the tilt angle. However, if accretion hap-
pens at random angles (this is the case if the BH spin and the
gas supply have no prior knowledge of one another), then the
average tilt angle is 60◦. This is only 5◦ shy of the tilt angle

used here, so the accretion mechanisms we have studied may
be quite general.

Another critical parameter is the scale height of the disk.
Thinner disks will be more strongly influenced by a warp,
both for geometric reasons and because their efficient cool-
ing makes them more compressible. So, if we increase the
aspect ratio of our disk, the disk will be harder to tear and
warps may be less efficient at driving accretion. It is possible
then that the mechanisms discussed in this work are correc-
tions to the accretion process rather than than the primary
drivers of accretion. The scale height is generally set by the
Eddington ratio (the ratio of the mass accretion rate of the BH
to its Eddington luminosity for a given radiative efficiency),
which provides us a more ‘astrophysical’ scale for examin-
ing the aspect ratio of the disk. Disks at Eddingtion ratios of
∼ 0.1−10% generally cool efficiently and thus lead to thinner
disks. At higher Eddington ratios, radiation pressure begins
dominating, puffing the disk up. At lower Eddington ratios,
cooling becomes inefficient, also puffing the disk up. So, the
degree to which warps can affect accretion can also be taken
as a function of Eddington ratio.

A particularly interesting laboratory for our accretion
mechanisms may be TDE debris disks. This is for a few
reasons. First, TDEs have randomly oriented inclinations
(and thus an average tilt angle of ∼ 60◦). Second, debris
disks are formed from material supplied between the stream
self-intersection point and the periastron of the tidal disrup-
tion, making them much smaller in radial extent than AGN
or XRBs (Dai et al. 2018; Andalman et al. 2022). Third, al-
though the accretion rate is initially highly super-Eddington,
it falls off as ∝ t−5/3 after its peak, leading to a sharp drop in
the scale height (Shen & Matzner 2014; Tchekhovskoy et al.
2014; Piran et al. 2015). These considerations suggest that
warps may be a primary driver of accretion in TDE debris
disks, meriting further study.

5.2. Observational implications

The accretion structure and mechanisms that we have de-
scribed in the preceding sections will necessarily alter the
emission of accreting black holes. One of those most interest-
ing effects of tearing and warp-driven accretion is the result-
ing variability. While the fractional (say, ∼ 20 − 40%) broad-
band variability of accretion disks (Gaskell 2004; Uttley et al.
2005; Uttley & McHardy 2005) can occur between viscous
and dynamical timescales (by, for instance, a stochastic dy-
namo action, e.g. Hogg & Reynolds 2016), larger structural
changes in an accretion disk are typically expected to occur
on a viscous timescale. This is, in turn, limited by the value
of α, which is thought to be . 0.1 − 1 in standard Novikov &
Thorne (1973) disks. However, there is a growing sample of
observations of active galactic nuclei (AGN) that exhibit ex-
treme luminosity variations on timescales of months to years,
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while the viscous timescale can be hundreds to thousands of
years. This extreme variability is also not rare; it is exhib-
ited in an estimated ∼ 30 − 50% of quasars (Rumbaugh et al.
2018). These so-called ‘Changing-look’ AGN (CL AGN,
Matt et al. 2003, see also ‘quasi-periodic eruptions’, Mini-
utti et al. 2019) are difficult to reconcile with theory, leading
some to proclaim a ‘viscosity crisis’ in AGN disks (Lawrence
2018). To explain CL AGN, it’s thought that there must be
some instability that leads to the catastrophic and rapid de-
struction of the inner accretion flow. Currently proposed the-
ories generally invoke a radiation pressure instability (Light-
man & Eardley 1974) acting on the inner disk (Janiuk et al.
2002; Sniegowska et al. 2020; Śniegowska et al. 2022a,b),
but others have suggested it is the result of a sudden mag-
netic flux inversion in the disk (Scepi et al. 2021). We argue
that the accretion mechanisms presented here may be a nat-
ural way of producing CL AGN. Firstly, as demonstrated in
Fig. 5, accretion in our simulation happens on timescales
that are at least 10 − 100 times shorter than the usual viscous
timescale. The repeated depletion of the inner sub-disk will
also cause a precipitous drop in the luminosity. This supports
the tantalizing hypothesis that some CL AGN may be the ob-
servational result of the tearing process (see also Nixon et al.
2012; Raj et al. 2021). We plan to perform a dedicated com-
parison of GRMHD disk tearing to CL AGN in an upcoming
work.

Quasi-periodic oscillations (QPOs) form another com-
monly observed, yet poorly understood, class of accretion
disk variability. QPOs are variable signals usually observed
in the power spectra of X-ray binaries (XRBs) (van der Klis
et al. 1985; Mucciarelli et al. 2006; Gierliński et al. 2008),
but have also been observed in TDEs and AGN as well
(Pasham et al. 2019; Smith et al. 2021). The underlying
cause of the various kinds of QPOs remains elusive, but pos-
sible explanations include the Lense-Thirring precession of
tilted disks (Stella & Vietri 1998; Stella et al. 1999; Fragile
et al. 2016) or trapped modes excited by warped or eccentric
disks (Okazaki et al. 1987; Kato 2004; Ferreira & Ogilvie
2008, 2009; Dewberry et al. 2020a,b). A recent work in
our collaboration, Musoke et al. (2022), has performed a
separate analysis on this same simulation and have found ev-
idence of both low-frequency (LF) and high-frequency (HF)
QPOs. The HFQPOs were associated with radial epicyclic
oscillations of the inner sub-disk (which were not analyzed
in this work) and the LFQPOs were associated with geo-
metric effects due to the precession of the inner sub-disk.
The variability associated with QPOs are related to, but sep-
arate from, any longer-term variability due to the recurrent
depletion of the inner sub-disk due to streamers from the tear.

Another consideration is the emission produced by stream-
ers. Streamers naturally produce hot, low-density features
that surround the inner sub-disk (Fig. 4). This is reminis-

cent of the usual accretion disk corona and may result in en-
hanced hard X-ray emission due to the up-scattering of ther-
mal photons emitted by the inner sub-disk. This may help
explain the rapid evolution of the X-ray corona observed in
some CL AGN (e.g., Ricci et al. 2020) or contribute to the
hard emission observed in XRB state transitions (Esin et al.
1997; Remillard & McClintock 2006), which merits a dedi-
cated study of coronal emission during tearing events.

5.3. Summary

We have performed an analysis of a 3D GRMHD simula-
tion of a highly tilted accretion disk around a rapidly rotating
black hole, performed at extremely high resolution. We have
focused mainly on how the warping and subsequent tearing
of the accretion disk impacts its geometry and introduces new
dissipation mechanisms that drive rapid accretion. Our main
findings in this work are as follows,

1. Warped accretion disks drive structural oscillations
both vertically and radially. The vertical oscillations
manifest as extreme expansions and compressions of
the scale height twice an orbit (§3.2). The radial os-
cillations manifest as eccentric streamlines above and
below the midplane of the disk. The argument of
periapsis for fluid parcels above and below the disk
midplane is out of phase by ≈ 180◦. This oscillat-
ing solution precesses rigidly with the disk at larger
distances (& 10 − 20rg), but becomes twisted in the
rapidly evolving inner sub-disk.

2. The oscillating scale height of the disk results in
nozzle shocks twice an orbit, dissipating orbital en-
ergy and driving rapid accretion. Extreme compres-
sions can shock the gas, leading to enhanced dissipa-
tion (§4.2). We refer to these as ‘nozzle shocks’ as they
are similar to those usually studied in tidal disruption
events. These nozzle shocks can lead to rapid accre-
tion, with αeff ∼ 10 − 100, well in excess of that pre-
dicted in standard thin disk models, where it is thought
that α. 0.1 − 1.

3. Disk tearing results in the formation of low angu-
lar momentum streamers which rain down on the
inner sub-disk and drive further accretion. When
the disk tears, it can lead to the rapid accretion of the
inner sub-disk at the tearing radius (§4.3). We have
attributed this to the cancellation of misaligned angu-
lar momentum. This causes low-angular momentum
‘streamers’ to form at the tear and rain down on the in-
ner sub-disk. The addition of low-angular momentum
gas to the inner sub-disk causes it shrink to conserve
total angular momentum. This can results in high ac-
cretion rates, even in the absence of nozzle shocks or a
warped inner disk.
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There are several future directions that we would like to con-
sider before concluding. Firstly, the evolution of warped
disks is governed by torques acting on both the parallel and
perpendicular components of angular momenta, which are
mainly determined by the local dissipation mechanisms in
the disk. While we have demonstrated that novel dissipa-
tion mechanisms (nozzle shocks, tearing and streamers) play
an important role in driving the evolution of our disk, we
have done so for a single simulation, and it is unknown how
these mechanisms depend on parameters such as the initial
tilt and thickness of the disk. Insight could be provided by
performing more simulations across the relevant parameter
space and by the expansion of existing analytic models to in-
clude these dissipation mechanisms. A major frontier to ex-
plore is also radiation physics. In this work, we use a prede-
fined cooling function, which simplifies the thermodynamics
of the disk. This merits the inclusion of dedicated radiation
schemes, which we do in L22. Finally, it is ultimately most
important to be able to connect our results to observations,
which can be accomplished by producing synthetic observa-
tions from simulation results such as those presented here.
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APPENDIX

A. ANALYZING MISALIGNED ACCRETION DISKS

The complicated geometry of warped accretion disks can make them difficult to visualize and analyze. To alleviate this, we
perform conversions from ‘true’ (r,θ,ϕ) to ‘tilted’ (r,θ′,ϕ′) coordinates. There are two parts to this conversion. First, we have
to convert the grid itself. To do this, we calculate radial profiles of the local angular momentum vector and use its orientation
to determine the corresponding tilt and precession angles, following Fragile & Anninos (2005). Then, we rotate a θ −ϕ grid at
each radius such that the precession angle is at ϕ′ = 0 and the tilt angle is = 0◦ (i.e., the disk midplane is at θ′ = π/2). We then
interpolate all relevant quantities to the rotated grid. This is visualized for the fluid frame gas density ρ in Fig. 10. In the top row,
we can see that an x − y slice in true coordinates becomes a face-down image of the disk in tilted coordinates. In the bottom row,
we see that a θ−ϕ slice in true coordinates shows an annulus rocking up and down due to its tilt angle, while in tilted coordinates
the annulus is flattened.

The second part of this conversion is the coordinate transformation of four-vectors from true to tilted coordinates, which for

instance reads uµ
′

= ∂χµ′

∂χµ uµ for the four-velocity. The specific matrix elements of the transformation are,

∂χµ
′

∂χµ
=


1 0 0 0
0 cos(T )cos(P) −cos(T )sin(P) −sin(T )
0 sin(P) cos(P) 0
0 sin(T )cos(P) −sin(T )sin(P) cos(T )

 (A1)

where T and P are the tilt and precession angles, respectively. This is a purely Newtonian rotation that leaves the time component
of our four-vectors unchanged. In tilted coordinates, the azimuthal velocity uϕ

′
is aligned with the rotation of its annulus in an

average sense. Correspondingly, the vertical velocity uθ
′

averaged over an annulus is approximately zero.
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Doğan, S., & Nixon, C. J. 2020, MNRAS, 495, 1148,

doi: 10.1093/mnras/staa1239
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