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ABSTRACT 

Adoption of lightweight composites for structural components is transforming the 
transportation industry in pursuit of improved performance and better fuel economy.  In 
Liquid Composite Molding (LCM), dry fabric deformation in the draping process gains 
lots of attention as it affects the fiber orientation, leading to variations in fabric 
permeability and the resulting final quality of the product due to the change in infusion 
and curing processes. The lack of robust modeling tools makes the composite 
manufacturers heavily reliant on trial-and-error approaches to minimize part variability, 
resulting in high manufacturing costs and limiting innovations for new process and part 
designs. The current study develops a modeling approach to predict the deformation for 
dry fabric. In the model, fabric is made of interlacing virtual fiber tows which are 
represented by Timoshenko beams joint by translational and rotational springs. 
Dashpots at intersections are used to capture energy dissipation. The proposed model 
features the simplicity and efficiency in the prediction of shear angle when fabric is 
subject to 3-dimensional loading. Another highlight of this study is the consideration of 
characterized relaxation behavior of fabric subject to in-plane shear loading. Cantilever 
beam bending tests and picture frame tests were carried out to characterize material 
properties, geometric characteristics, spring stiffness, and damping coefficients. The 
proposed model was applied to a hemisphere draping model implemented in Abaqus to 
demonstrate the predictive capability.  
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INTRODUCTION 

Manufacturing of lightweight composites involves complex deformation of fibers 
that inevitably causes part variability and unintended defects, such as fiber wrinkles, 
voids, residual stresses, and geometric distortions [1–15]. In Liquid Composite Molding 
(LCM), flat dry fabrics are draped onto a mold with complex geometries, which can 
affect the subsequent infusion process and induce fabric wrinkling [16]. Predicting 
fabric deformation with robust modeling tools makes fabric wrinkle reduction less 
reliant on trial-and-error approaches, saving manufacturing costs and improving part 
design.  

The state-of-the-art simulation approaches for fabric deformation can be divided 
into three main categories: (1) continuum mechanics-based models, (2) semi-discrete 
models, and (3) discrete models. Continuum mechanics-based models treat textile fabric 
as a piece of continuous material which is homogenized by Unit Cells (UC) [17–21]. 
Hyperelastic and hypoelastic constitutive models are commonly adopted for UC since 
fabrics usually undergo large deformation. Semi-discrete models incorporate the yarn 
structures into a user-defined finite element in a Finite Element Modeling (FEM) 
setting. Different deformation modes are considered to derive internal nodal loads [22–
24]. Even though continuous and semi-discrete models can predict fabric deformation 
accurately, they do not provide intuitive images of yarn deformation and promote the 
understanding of the mechanics of yarn deformation when fabric is subject to complex 
loading. Instead, they are based on the analysis in which yarn deformation cannot be 
directly seen. Therefore, an efficient and robust discrete model is necessary.  

In discrete models, fabric architecture is modeled explicitly. Commonly a textile 
fabric is decomposed into woven cells consisting of individual yarns. Digital fiber 
approach even breaks each yarn into a bundle of digital fibers made of cylinder bars 
connected by frictionless pin-joints [25,26]. Larger number of fibers per yarn can 
increase the modeling accuracy. The approach is able to capture inter-yarn and intra-
yarn deformation. There are also many studies in which a fiber yarn is continuous. 
Typically, the continuous yarns are treated as orthotropic solid material with circular, 
ellipse, or lenticular cross-sections [27–29]. Inter-yarn behavior is modeled through a 
master–slave contact and Coulomb friction. The complex yarn geometry brings vast 
degrees of freedom and result in high computational costs especially for a large 
modeling domain. To simplify the yarn geometry, Gatouillat et al. replaced the curve 
solid yarn with an artificial hypoelastic shell structure [30]. Each tow was modelled as 
a series of several flat shells, whose geometric parameters and material properties were 
characterized by uniaxial tension, bending, and picture frame tests. The penalty method 
and Coulomb law with a friction coefficient of 0.3 were the properties of contact pairs 
assigned at intersection area. Fiber tows can be further simplified into beam structures. 
Faccio Júnior simulated the plain-weave fabrics by constructing all the warp and weft 
yarns as beams with wavy mid-surfaces [31]. Isotropic material properties were used 
and bending stiffness was multiplied by a reduction factor. Contact pairs and the 
pointwise contact constitutive law were utilized to describe the contact behavior. Saito 
and Neto also used beam elements to model warp and weft yarns [32]. The Rayleigh 
damping rather than friction was adopted in the study to consider energy dissipation. 
However, a large number of contact pairs used in the above-mentioned studies could 
lead to high computational costs and possible convergence issues. Harrison’s model 
utilized hinge elements at the intersection of beams [33]. Sun and Pan regarded the 



contact points at the intersection as welded joints and used cantilever beams to represent 
fiber tows [34]. Even though energy dissipation was considered in the previous studies, 
there is no study to characterize the relaxation behavior of fabric itself during in-plane 
shear deformation, yet the relaxation has been clearly observed in experiments. 

This paper puts forward a discrete textile architecture-based model for woven 
fabrics. In the proposed approach, a sheet of fabric consists of interwoven virtual fiber 
tows modeled by Timoshenko beams. The contacts between fiber tows are modeled 
using translational and rotational springs at the joint of the beams. Energy dissipates 
through a dashpot rather than friction at the contact surface. The material properties 
were characterized by cantilever bending and picture frame tests. The model was 
validated by conducting hemisphere draping tests. It is expected that the proposed 
approach can be applied to various types of weave patterns without drastically changing 
the configuration since the weave is not created explicitly. Due to the simple yarn 
geometry and inter-yarn connections, the model is able to predict the fabric deformation 
efficiently and show a clear view of the yarn deformation.  

The first part in this paper shows the modeling strategy including the geometry and 
materials along with the parameters to be characterized. The second section shows the 
characterization of geometric and material parameters through cantilever bending and 
picture frame tests. Finally, the modeling approach is applied to a hemisphere draping 
example to demonstrate the predictive capability. 

MODELING APPROACH 

In this section, the modeling strategy is elaborated with a focus on the in-plane shear 
behavior of a textile fabric. The constitutive model of each fiber tow is provided and the 
required parameters that should be experimentally characterized are summarized.  

Model description 

      In the present paper, a piece of fabric is made of interlacing virtual fiber tows, 
modeled by beam structures. The in-plane bending behavior of yarn is relatively harder 
than out-of-plane bending behavior because in-plane bending is hindered by adjacent 
yarns in a single ply of fabric. To incorporate this effect, a rectangular cross-section was 
adopted so that the bending stiffness within the plane and out of the plane could be 
mainly controlled by 𝑏 and 𝑎, respectively, as shown in Figure 1. Since the virtual fibers 
are straight and in the same plane, the model can be applied to multiple types of weave 
patterns without fully reconstructing the model. Different from Euler-Bernoulli beams, 
Timoshenko beams allow for shearing strain (i.e., the rotation of the cross-section does 
not equal to that of mid-surface). Therefore, the Timoshenko beam theory is more 
suitable for the present model because the shear strain within each tow represents intra-
tow shear, which is a mechanism observed in the experiment. Rotational and 
translational springs are added at each intersection of the virtual fiber tows. The 
translational spring just connects the virtual fiber tows to avoid their separation, 
therefore, a linear spring is sufficient. The rotational spring controls the change of in-
plane shear angle. The nonlinear characteristic of in-plane shear behavior requires a 
highly nonlinear spring. The stiffness of the spring is defined as 
 



𝑘 =
𝑑𝐹
𝑑𝑥

(1) 

 
where 𝐹 is the force or moment, and 𝑥 is the relative displacement or rotation angle. 
The energy dissipates through dashpots at the intersections. The damping coefficient is 
defined as 
 

𝑑 =
𝑑𝐹
𝑑𝑣

(2) 

 
where v is the relative velocity (𝑣 = 𝑥̇).  

 

 
 

Figure 1. The proposed textile architecture-based modeling approach. 

Nonlinear in-plane shear deformation 

      In order to set the rotational spring correctly, it is crucial to understand the in-plane 
shear behavior. A typical shear force vs. shear angle relation is shown in Figure 2 when 
a layer of fabric is subject to in-plane shear loading. Shear angle is an important 
parameter that describes the shear behavior which is commonly defined as the change 
of the angle between warp and weft yarns [29,34–43]. At the initial stage of in-plane 
shear, as the inter-yarn friction is overcome, it is generally believed that the rotation of 
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warp and weft yarns dominates the deformation mode. The space between fiber tows is 
gradually decreasing and the fiber bundles become closer to each other. Fiber sliding 
might also happen. No lateral compaction exists at this stage. The negligible shear force 
is mainly caused by friction between the yarns which is affected by the normal pressure 
exerted at the intersection [29,34–38,41]. Experiments conducted by Taha et al. show 
that the shear force at this stage does not differ a lot for various kind of fabrics [35]. 
With the fiber tows further rotating, the contact force grows even before lateral 
compaction, resulting in the increase of effective shear modulus of fabric [29]. As shear 
deformation further increases, fiber rotation is limited, and the fiber tows are 
compressed against each other at the side. Once the compressive load is too large, the 
out-of-plane wrinkling will happen as a result of buckling of fibers. The onset of 
wrinkling is shearing locking and the locking angle is the shearing angle at the locking 
point [36,40,43]. Transverse compression dominates the drastically increased shear 
force as the shear angle further increases. To match the nonlinear shear force, the 
stiffness of the rotational spring also needs to be nonlinear. 

 
Figure 2. Shear force vs. shear angle for in-plane shear behavior. 

Constitutive model of a virtual fiber 

Since virtual fiber undergoes large deformation during draping process, a 
hyperelastic model should be adopted. In this paper, isotropic Neo-Hookean model was 
used to describe the constitutive law of virtual fiber tow. The strain energy density 
function is 

 
𝑊 = 𝐶ଵ(𝐼ଵഥ − 3) + 𝐷ଵ(𝐽 − 1)ଶ (3) 

 
An anisotropic model was not required due to that deformation mode remains the 

same with sufficiently large in-plane shear modulus and longitudinal modulus of the 
fiber tow. The results are not influenced by changing from an anisotropic constitutive 
model to an isotropic constitutive model. In total, there are six parameters to be 
characterized as listed in Table I. Note that they are only for virtual fiber tows and are 
not the same as those of real fiber tows. 
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TABLE I. PARAMETERS OF THE PROPOSED MODEL. 
Parameters Meaning 

𝑎 Cross-section dimension in the out-of-plane direction 
𝑏 Cross-section dimension in the in-plane direction 
𝜌 Density of the fiber tow 
𝐶ଵ Parameter of the Neo-Hookean model 
𝐷ଵ Parameter of the Neo-Hookean model 
𝑦 Yarn spacing 

PARAMETER CHARACTERIZATION 

The characterization of material properties of T300 carbon fiber plain weave fabric 
is shown in this section. The bending properties were obtained through cantilever beam 
bending tests, and the in-plane shearing properties were characterized by conducting 
picture frame tests. 

Bending behavior 

Four specimens of 18’’ long and 3’’ wide were prepared. White lines were marked 
at 3’’, 6’’, and 9’’ away from one end as shown in Figure 3 (a). The region to the left of 
the mark was clamped between two metal blocks and the right part was suspended. So, 
the hanging length is 3’’, 6’’, and 9’’ and each length was tested four times. Average 
deflection was recorded by a camera as indicated in Figure 3 (b).  

  
Figure 3. (a) The specimen of cantilever bending tests; (b) the deformed fabric during tests. 

A corresponding bending model was built in Abaqus (in Figure 4 (a)). The fabric in 
the model consists of many virtual fibers which were modelled by Timoshenko beams. 
The left end of the fabric was fixed. To characterize the bending properties, the weight 
of the model should equal to the weight of the real fabric 𝑚. The weight of model was 
computed from cross-section dimensions 𝑎 and 𝑏, length of virtual fiber tow along the 
warp direction 𝑙ଵ and the weft direction 𝑙ଶ, the number of warp tows 𝑛ଵ and the number 

3’’           6’’             9’’ 

(a) (b) 



of weft tows 𝑛ଶ. Weight of real fabric is the product of the area 𝐴 and the weight per 
area which is 0.21894 kg/m2 as measured in experiments. 

 
𝑎𝑏𝜌(𝑙ଵ𝑛ଵ + 𝑙ଶ𝑛ଶ) = 𝑚 (4) 

 
The deformed shapes obtained from the simulation and the experiment are shown in 
Figure 4 (b). 

 
Figure 4. (a) The configuration of the proposed discrete model; 

(b) the deflections from the experiments and simulations. 

In-plane shear behavior 

Parameters cannot be fully characterized only by bending test. The behavior of 
fabric under in-plane shear was studied by picture frame tests and the corresponding 
numerical model.  

PICTURE FRAME TEST 

In the picture frame test, a piece of carbon fabric with materials cut at the corners 
was clamped by a set of metal frame (in Figure 5 (a)). The frame was mounted on an 
MTS tensile machine. The bottom crosshead first moved downwards at 35 mm/min for 
96 mm. Then, it stayed still for 3 minutes and finally moved back at 35 mm/min to the 
initial position. Force, time and displacement were recorded, and the initial force and 
displacement were both set to zero. Shear angle 𝛾 illustrated in Figure 5 (b) can be 
computed from displacement according to the following expressions: 
 

𝛾 =
𝜋
2

− 2𝜃 (5) 
 

𝛾 = acos(
√2𝐿௙௥௔௠௘ + 𝑑

2𝐿௙௥௔௠௘
) (6) 

(a) (b) 



 
where 𝐿௙௥௔௠௘ is the length of frame and 𝑑 is the displacement of the crosshead. The 
normalized shear force 𝐹௡௢௥௠௔௟௜௭௘ௗ is related to the measured force 𝐹௠௘௔௦௨௥௘ௗ and a 
half of the angle between the weft and warp tows 𝜃 [42]. The calculation excludes the 
effect of frame size and fabric size and makes the results more representative for T300 
carbon fiber reinforced plain weave fabric [44]. 
 

𝐹௡௢௥௠௔௟௜௭௘ௗ = 𝐹௦௛௘௔௥ ×
𝐿௙௥௔௠௘

𝐿௙௔௕௥௜௖
ଶ (7) 

 

𝐹௦௛௘௔௥ =
𝐹௠௘௔௦௨௥௘ௗ

2 cos 𝜃
(8) 

 

 
Figure 5. (a) The setup of picture frame test; (b) Illustration of the movement of the picture frame. 

The normalized shear force vs. shear angle obtained from the test is shown in Figure 
6 together with the deformed shape of the fabric. Initially, the normalized shear force is 
very small and there are large channels between fiber tows. As the channels gradually 
close, the force increases almost linearly with shear angle. Then, the shear force 
suddenly increases around shear locking point due to compaction of neighboring yarns. 
After locking, shear force increases linearly again with an increased shear angle but with 
large stiffness. Wrinkles can be observed during this stage. The normalized shear force 
is also plotted against time in Figure 7 to show the viscous behavior of fabric. Once the 
crosshead stops to move, the normalized shear force decreases from the maxima first 
greatly within a few seconds. Then, the force steadily decreases with small rate till the 
return of the crosshead. 

(a) (b) 



 
Figure 6. The shear force vs. shear angle responses obtained from the experiment and simulation. 

 
Figure 7. The normalized shear force vs. time responses obtained from the experiment and simulation. 

IN-PLANE SHEAR MODEL 

An FEM model for the picture frame test was built in Abaqus. Fibers were created 
as wire parts meshed by 2-node linear beams in space (B31). The beam section was 
integrated during the analysis. Frames were modelled as isotropic beams with linear 
elastic material properties and circular cross-sections. The modulus of the frame bar was 
set to 107 MPa which is much larger than the modulus of fiber. The ends of frame bars 
were pinned together. The virtual fibers were also pinned to the frame. Relative rotation 
at each pin-joint was allowed. The bottom left corner of the frame was fixed, and top 
right corner was moved at 35 mm/min (the same as the speed in experiment) at 45° with 
respect to the x-axis for 2.62 minutes. The length of frame 𝐿௙௥௔௠௘ is 192mm, and the 
length of fabric at the center 𝐿௙௔௕௥௜௖ is 96mm. The dimensions are not required to equal 
to those in the real experiment, as the shear force is normalized.  



  
Figure 8. (a) The picture frame test model; (b) the boundary conditions. 

To characterize the material and interaction properties, analyses were conducted 
with and without dashpots. At first, the dashpots were not added, and the material 
properties and spring stiffness were found by comparing the 𝐹௡௢௥௠௔௟௜௭௘ௗ vs. 𝛾 from 
experiment and simulation results. It is required that the predicted 𝐹௡௢௥௠௔௟௜௭௘ௗ at the 
largest 𝛾 (around 55°) should equal to the measured 𝐹௡௢௥௠௔௟௜௭௘ௗ after relaxation. The 
dashpot was then added and the coefficient was adjusted until the history of simulated 
𝐹௡௢௥௠௔௟௜௭௘ௗ gets close to that obtained from experiment. The simulation results are 
shown in Figures 6 and 7. The characterized material and geometric properties are 
shown in Table II. The stiffness of nonlinear rotational spring 𝑘ଷ is the slope of the plot 
of moment along the z-direction 𝑀ଷ vs. shear angle in the x-y plane 𝛾 in Figure 9. A 
nonlinear damping coefficient for the x-y rotation 𝑑ଷ is the slope of 𝑀ଷ vs. shear rate in 
the x-y plane 𝛾̇ in Figure 10.  

TABLE II. THE CHARACTERIZED PARAMETERS OF THE MODEL. 
Parameters Value Unit 

𝑎 0.04 mm 
𝑏 4.57 mm 
𝜌 7 × 10ି଺ kg/mm3 
𝐶ଵ 60000 MPa 
𝐷ଵ 0 MPa-1 
𝑦 12 mm 

  
Figure 9. The moment along the z-direction, 𝑀ଷ vs. shear angle in the x-y plane, 𝛾. 
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Figure 10. The moment along the z-direction, 𝑀ଷ vs. shear rate in the x-y plane, 𝛾̇. 

VALIDATION 

The proposed model was validated by predicting the fabric deformation during a 
hemisphere draping test. The shear angles predicted from simulation were compared to 
those of the deformed fabric measured in the experiment.  
 

Draping experiment 

Figure 11 shows the hemisphere draping tool made of an acrylic blank holder, 
aluminum die support, and steel punch from top to bottom mounted on the MTS load 
frame. The outer diameter of the punch is 152.4 mm (6’’). A hole with a diameter of 
160 mm was cut in the center of the die support and blank holder to enable the punch to 
go though. All the surfaces in contact with fabrics were polished and treated with 
lubricant to reduce friction.  

  
Figure 11. The setup of the hemisphere draping test. 
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Prior to testing, gridlines were drawn on a piece of T300 carbon fiber reinforced 
plain-weave fabric ply. The ply was then placed on top of the die support and pressed 
by the blank holder. To begin with the experiment, the punch was raised to touch the 
fabric. Then, the fabric was draped upwards for 65 mm in 1 minute. Photos were taken 
from the top view through the transparent blank holder to record the deformed shape 
and particularly the shear angle.  

The deformed shape is shown in Figure 12. No wrinkle was clearly observed. Fiber 
sliding slightly happened on the hemisphere. Shear angle tends to be large along 
diagonal line (±45°) and it reaches the maximum value near the end of dome. It remains 
zero at the apex of dome and gradually increases along the diagonal line from apex to 
the end of the dome. Shear angle decreases as the position moves from the end of dome 
to the corner of fabric. The angles between the warp and weft tows at five selected points 
(see Figure 12(b)) are measured and recorded in Table III.  

   
Figure 12. (a) The draped fabric; (b) the five points where the angles between 

the warp and weft tows are measured. 

TABLE III. THE ANGLE BETWEEN THE WEFT AND WARP TOWS FROM THE 
EXPERIMENTS AND SIMULATION. 

Point 1 2 3 4 5 
Experiment 53.6° 71.2° 87.2° 71.4° 74.8° 
Simulation 

(𝑦 = 12 mm) 53.1° 76.9° 81.6° 68.1° 72.7° 

Simulation 
(𝑦 = 10 mm) 54.4° 75.8° 85.9° 69.6° 74.7° 

 

Draping simulation 

A hemisphere draping simulation was conducted for T300 carbon fiber reinforced 
plain-weave fabric in ABAQUS using dynamic implicit solver. Figure 13 shows the 
setup. The blank holder, die support and punch were all created as rigid bodies mastered 
by reference points. Different from the real experiment, the blank holder also pushed 
towards the fabric when the punch moved along the z-direction for 65 mm to solve 
convergence issue caused by the contact. Only a quarter of fabric was included in the 
model and symmetric boundary conditions were added at the bottom points (where y=0) 
and left points (where x=0). Fibers were created as wire parts meshed by 2-node linear 

(a) 
(b) 



beam elements (B31). The beam section was integrated during the analysis. All the 
characterized material and geometric properties are summarized in Table II.  

Figure 14 (a) shows the deformed shape. Generally, the predicted deformation of 
the fabric is very similar to the experimental measurement. Similar to the experimental 
results, the shear angle first increases from the apex to the end of dome and then 
decreases at the flat region as the position moves along the diagonal of fabric piece. No 
out-of-plane wrinkle was observed. However, unexpected slight in-plane waviness 
appears. A possible reason is that the compression of the blank holder creates a 
compressive axial load, causing slight in-plane buckling. The shear angles were also 
measured at the same five points and recorded in Table III. It can be concluded that the 
simulation can accurately predict the shear angle of the deformed fabric by comparing 
simulation results to experiment results.  

 
Figure 13. The setup of the hemisphere draping simulation. 

In order to show that the yarn spacing is not too large to cause inaccuracy, the 
characterization and validation were performed again with a yarn spacing of 10 mm, 
and the predicted draping results are shown in Figure 14 (b). The predicted angles 
between the warp and weft tows are summarized in Table III. Clearly, the 10 mm case 
is very close to the 12 mm one. Hence, the value of yarn spacing is appropriate. 

   
Figure 14. The predicted shape of the hemisphere draping simulation by using 

(a) 𝑦 = 12 mm; (b) 𝑦 = 10 mm. 
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CONCLUSION 

The present paper proposes a modeling methodology for dry fabrics which was 
modelled as interwoven Timoshenko beam structures connected by springs and 
dashpots. The bending and in-plane shear properties were characterized by cantilever 
beam bending test and picture frame test, respectively. The relaxation behavior was 
successfully captured and characterized by adjusting the damping coefficients. The 
proposed method was implemented in commercial software Abaqus and applied to 
simulate the hemisphere draping process. The agreement between deformation of fabric 
in simulation and that of draped fabric in experiment demonstrates that the model can 
capture fabric deformation under complex 3-dimensional loading and predict shear 
angle accurately, even though little in-plane waviness observed in the simulation due to 
the compaction boundary condition induced by the blank holder. The prediction can be 
completed efficiently without sacrificing too much accuracy (each job typically finished 
within 1 hour with only 1 cpu processor). Therefore, the proposed approach can be 
adopted to simulate fabric draping during LCM and design fabric architecture to achieve 
target deformation response.  
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