:') Available online at www.sciencedirect.com
e H H Computer methods
s ScienceDirect in applied
mechanics and
engineering

Comput. Methods Appl. Mech. Engrg. 404 (2023) 115767

www.elsevier.com/locate/cma

A novel hybrid IGA-EIEQ numerical method for the
Allen—Cahn/Cahn—Hilliard equations on complex curved surfaces

Qing Pan®, Chong Chen", Yongjie Jessica Zhang®, Xiaofeng Yang®*

2 School of Computer and Communication Engineering, Changsha University of Science & Technology, Changsha, 410114, China
b LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
¢ Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
d Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

Received 30 August 2022; received in revised form 3 November 2022; accepted 6 November 2022
Available online xxxx

Abstract

We present an efficient fully discrete algorithm for solving the Allen—Cahn and Cahn—Hilliard equations on complex curved
surfaces. The spatial discretization employs the recently developed IGA (isogeometric analysis) framework, where we adopt
the strategy of Loop subdivision with the superior adaptability of any topological structure, and the basis functions are quartic
box-splines used to define the subdivided surface. The time discretization is based on the so-called EIEQ (explicit-Invariant
Energy Quadratization) approach, which applies multiple newly defined variables to linearize the nonlinear potential and realize
the efficient decoupled type computation. The combination of these two methods can help us to gain a linear, second-order
time accurate scheme with the property of unconditional energy stability, whose rigorous proof is given. We also develop a
nonlocal splitting technique such that we only need to solve decoupled, constant-coefficient elliptic equations at each time step.
Finally, the effectiveness of the developed numerical algorithm is verified by various numerical experiments on the complex
benchmark curved surfaces such as bunny, splayed, and head surfaces.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

As representative equations of the phase-field (diffusive interface) approach, the Allen—Cahn and Cahn—Hilliard
equations, originally introduced by Allen and Cahn in [1] to describe the motion of the anti-phase boundaries
in crystalline solids, and Cahn and Hilliard in [2] to simulate the complicated phase separation and coarsening
phenomena in a solid, respectively, have been extensively studied and widely used in many complicated moving
interface problems in various science and engineering fields, such as computational biology, materials science,
and fluid dynamics. It is very challenging to develop accurate and efficient numerical schemes to solve these two
equations. Noting that some special phase separation or fluid flow dynamics may appear on static and dynamic
surfaces, such as phase separation on lipid bilayer membranes [3-5] and dendritic crystal growth on curved
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surfaces [6], therefore, numerical study of the interface dynamics of the Allen-Cahn and Cahn-Hilliard equations
on complex curved surfaces is of great significance and practical applications.

For numerical analysis of partial differential equations (PDEs) on surfaces, there are many successful numerical
algorithms such as finite difference method [7], spectral method [8,9] and finite element method (FEM) [10].
Although the first two methods have made significant progress in recent years, most of the problems they deal
with are still limited to simple domains, e.g., rectangular, circular, or spherical regions. The latter one, FEM, can
efficiently deal with various irregular surfaces in practical engineering, see [11-13] for theoretical/numerical studies
of phase transition-related models on surfaces. However, it is remarkable that the FEM involves the approximation of
surface differential geometric operators, which may introduce additional errors caused by numerical approximation
schemes. We can see that the variation of the Laplacian operator on the surface requires integrating the derivative
product of the surface itself. Traditional FEM requires costly and time-consuming human intervention, and
encounters great difficulties in the refining process, especially for complex geometries. Therefore, for the spatial
discretization of surfaces, this paper adopts the IGA method, see [14,15].

The IGA method uses the non-uniform Rational B-Splines (NURBS) [16—18] or T-splines [19,20], where the
same set of basis functions is used to represent the solution region and conduct the numerical simulation of
PDEs. The framework of IGA is proposed to develop the seamless integration between FEM and computer-
aided design (CAD). Not only that, but it also has higher numerical accuracy than FEM, where we can easily
implement the p-refinement, h-refinement, and even k-refinement by the technique of the knot insertion and/or
order elevation. Therefore we can improve the accuracy of the numerical simulation without destroying the original
geometric properties, which removes the interactive communication with the CAD system. Subdivision technology
is compatible with NURBS, which has the capability of the refineability of B-spline techniques. Surface subdivision
can construct smooth surfaces from arbitrary topological meshes by designing a set of simple and efficient refinement
schemes [21,22]. Subdivision technology not only conveniently handles complicated geometric forms but also
maintains original characteristics near boundaries through straightforward extensions, such as concave/convex
angles and sharp/smooth creases. The discretization with single-patch NURBS-based IGA and implicit backward
differentiation formula schemes was proposed to solve mean curvature (second-order) and Willmore (fourth-order)
flows in [23]. Both Loop subdivision [24-27] and Catmull-Clark subdivision [28-30] have been utilized in IGA.
Local refinement and convergence rate [31,32] are investigated in Catmull-Clark subdivision-based IGA. The
subdivision-based IGA methodology can be viewed as the natural choice for higher-order FEM in engineering
practice, see [26,27,33,34] as well.

Since this article aims to develop an accurate and efficient fully discrete strategy for solving the Allen—Cahn and
Cahn-Hilliard models on curved surfaces with complex geometry. Hence, after we adopt the efficient subdivision-
based IGA method for the spatial discretization, the remaining challenge becomes which method to use for time
discretization. So far, we know that many successful methods exist to deal with the Allen—Cahn and Cahn—Hilliard
equation, see [35—40]. However, as everyone knows, for the Allen—Cahn and Cahn—Hilliard equations, fully-implicit
or explicit type discretization methods for the nonlinear terms will inevitably impose rigorous stable limitations for
the time step due to the stiffness issue embedded in these equations, so they are inefficient in practice. To obtain
an efficient fully discrete scheme on the surface that is not only easy to implement, but also has relatively high
temporal accuracy, we adopt the subdivision-based IGA method for the space on the one hand, and the IEQ method,
which is an efficient approach to construct the linear and energy stable scheme for phase-field models, see [39—44],
for the time discretization on the other hand. We expect the combination of these two approaches will give us a
satisfactory fully discrete numerical scheme on the complex curved surface.

We also note that when the IEQ method was originally developed in [35], it requires solving a linear system with
variable coefficients at each time step. It is well-known that solving a system with variable coefficients takes more
time than a linear system with only constant coefficients. Therefore, to reduce the disadvantage that the original IEQ
method leads to higher computational cost, in this paper, we modify the IEQ method to the so-called explicit-IEQ
(EIEQ, for short) method by introducing an auxiliary nonlocal variable and design a special type but trivial ODE for
it, see also [45] for its application to different models. The new EIEQ method only requires us to solve some linear
constant-coefficient equations with a completely decoupled structure, so it possesses very high efficiency in practice.
We not only rigorously prove that our schemes possess the property of the unconditional energy stability, but also
propose a decoupling strategy that only requires solving some constant-coefficient elliptic equations at each time
step. Furthermore, in addition to some stability and accuracy tests, we implement several complex surface-based
examples to illustrate the flexibility and robustness of the proposed scheme.
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We organize the rest of this paper in the following way. In Section 2, we give a brief introduction to notations of
surfaces, the Allen—Cahn and Cahn—Hilliard models on surfaces. In Section 3, the subdivision-based IGA method
is introduced and a fully discrete scheme based on the EIEQ time advancing strategy is developed. The proof of
unconditional energy stability is given, along with a strategy for how to realize the decoupled implementation. We
provide various numerical examples to illustrate the accuracy and efficiency of the proposed scheme in Section 4.
Section 5 gives some concluding remarks.

2. Model systems on the surfaces

2.1. Surface differential geometry

We first briefly introduce a mathematical framework of the surface which includes the parameterization and some
differential geometric operators.

Let S = {x(u',u?) € R?® : (u',u?) € 2 C R?} be a sufficiently smooth and orientable surface. Now we
can parameterize it. Denote go,p = (X,o,X,s) and b,g = (n, X,«,s) be the coefficients of the first and the second
fundamental forms of S with

ox 9%x

X, o = X = — =1,2
U 81,{“’ uauﬁ 8uaauﬂ7 a!ﬁ 9~y
n=(x, xx.2)/|x; xx.|,
where (-, -), || - || and - x - stand for the usual inner product, Euclidean norm and cross product in R respectively.

Then we introduce some notations as

(871 = [gup] ™", g = detlgap], D] = [bupl™', b= detlbyg].
The matrix form of the Weingarten map is denoted as

b1182 — bi2g12 bi1ogii — b11gn2 i|

1
S = [bopllg™1 = —
[baplle™] g |: b1282n — bngin bngu —bngn
which is a self-adjoint linear map on the tangent space 7yS := span{x,i, x,2}. Then the eigenvalues k; and k;
of S are the principal curvatures of S, whose arithmetic average and product are the mean curvature H and the

Gaussian curvature K, namely,

ki +ky t(S)  buigon —2bingin + bngn
2 2 2g ’

respectively. The mean curvature normal is referred to H = Hn. Some differential geometric operators of surface

need to be introduced.

byby — bi,

H = K = kik, = det(S) = ————=,
8

2.1.1. Tangential gradient operator
Denote C!(S) be a function space composing of C' smooth functions of S. Considering f € C!(S), the tangential
gradient operator V; acting on f is defined as

Vof =X, %2008 fr, f,2]" € R, (2.1)
For a vector-valued function f =[f;, ..., fi]7 € C(S), the gradient V; acting on f is defined as

Vif = [V, fi, ..., Vs fi] € R¥>K,

2.1.2. Divergence operator
Let v € [C'(S)]® be a smooth vector field on surface S. Then the divergence operator div, acting on v is defined
as

1 Ta o
i = | T, —= E(/S 1 r . .
diviv) = —2 [aul’ a:ﬂ] [@[g 1%, X,2] v] 2.2)
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2.1.3. Laplace—Beltrami operator
Let f € C*(S). Then the Laplace-Beltrami operator (LBO) A, acting on f is defined as

A f = divg (Vi f).

With the definitions of A, and div,, we derive
1
Af = E(gzzfll + g11.f22 — 2812 f12)s (2.3)

where fup = flop — (Vs f )Txuauﬂ, a, B = 1,2. The second-order differential operator A; relates to the mean
curvature vector, i.e., A;x = 2H.

2.2. Allen—Cahn and Cahn—Hilliard equations on the surface

Assuming that S is a sufficiently smooth surface, for a given constant k£ and a function f € C*(S), we denote
V¥ f the kth order covariant derivative of function f, with the convention V° f = f. Let

Ci(S) = {f e Cx(S): /|ij|2dx§ 00 forj:O,...,k}. (2.4)

It is obvious that C;(S) = C*®(S) C C*(S) C H*(S). The Sobolev space H*(S) on the surface S is denoted as
Definition 2.1.

Definition 2.1. Let S be a compact surface with at least kth order smoothness. Sobolev space HX(S) is the
completion of Ci(S) in the sense of norm

k 1
If N arksy = (Z/IV"flde)z- 2.5)
j=0""

Two inner products on surface need to be introduced as

(u,v) = /uv dx, and (Vsu, Vyv) = /Vsu - Vv dx.

s

The Allen—Cahn and Cahn—Hilliard equations can be represented as L? and H~! gradient flows of the following
Liapunov energy functional respectively,

2
H@=/<%W@V+H@>M, 2.6)

where ¢(x, ) is to be solved scalar function on the surface S, x € S, € < 1 representing the interface width, and
F(¢) is the nonlinear Ginzburg—Landau double-well type potential F(¢) = %(qbz — 1%
The variation of the total free energy (2.6) in L*(S) results in the Allen—Cahn equation, that reads as:

¢ =€*Ap — f(P), (x,1) €S x(0,T], 2.7)

where f(¢) = F'(¢). The initial condition is ¢|;—o = ¢o, and we only consider closed surface domains without
any boundary conditions.
The variation of the total free energy (2.6) in H~!(S) results in the Cahn—Hilliard equation, that reads as:

¢ — Asw = 0, 2.8)

w=—e2Ap+ f(p), x,1)eSx(0,T], (2.9)

where w is the chemical potential. The initial condition is ¢|;—o = ¢o. Similarly, we only consider closed surface
domains without the boundary conditions.
It is well known that the Allen—Cahn and Cahn—Hilliard equations satisfy the following energy dissipation law,

d
E@) <0, (2.10)
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Fig. 3.1. (a) Vertex refinement rule @« = 1 — np, where g = % [% - (% + % cos 27”)2] and n is the valence of the control vertex; and (b)

edge refinement rule.

3. IGA-EIEQ scheme on the surface

In this section, we aim to construct a fully discrete scheme to solve the Allen—Cahn Eq. (2.7) and the Cahn-
Hilliard Eq. (2.8)—(2.9) on the surface. The method combines the recently developed IGA approach based on Loop
subdivision [24,26,27] for the spatial discretization and the second-order EIEQ method as a time advancing strategy.

3.1. Subdivision-based IGA method

‘We now introduce the subdivision-based IGA method. Considering an initial control mesh with arbitrary topology,
subdivision technology creates a smooth surface through an infinite refinement process, which includes the rules of
recalculation of old vertex position and generation of new edge points (or face points). Considering the flexibility of
triangular meshes, we adopt the Loop subdivision technique, which generalizes the quartic box splines for manifold
triangle meshes. Any initial rough mesh can be used as a control mesh to define a subdivision limit surface. This
initial control mesh is repeatedly refined by specified subdivision rules so that a series of increasingly refined meshes
can be generated. The limit of this refinement process is a limit surface with C' smoothness. The limit surface is
used to represent physical domains and perform numerical simulations to achieve a unified discretization of the
PDEs on surfaces.

3.1.1. Loop subdivision schemes

A Loop subdivision scheme was proposed by Loop [22] for triangular control meshes. We can achieve a C?
smooth surface by use of the Loop refinement process where the surface is C' smooth at a finite number of
extraordinary control points on the initial rough mesh. It only needs two subdivision rules, including the recalculation
of old points and the generation of new edge points, which can cause a triangle patch to be divided into four small
triangle patches. The old control point with n valence is updated for itself with weight « = 1 — nf and its 1-ring

1[s (3,1

surrounding neighborhood points with weight 8 = - [g — (§ + zcos 27”)2] (see Fig. 3.1(a)). A new point on each

edge is created through a simple weighted average algorithm shown in Fig. 3.1(b).

3.1.2. Evaluation of subdivision surfaces

An important element in the numerical treatments is the reliable and accurate evaluation of the limit surface to
finish the finite element integrals which need to compute the Loop basis functions, derivatives of basis functions and
inner products between them. Loop subdivision surface with any topology structure has no explicit formulation so
that the computation at any point on Loop limit surface is a non-trivial work. Loop limit surface can be parameterized
over its corresponding triangulation of control mesh, which implies a decomposition of the surface into triangular

5
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(b)

Fig. 3.2. (a) Computation of a regular Loop subdivision patch. The shaded domain is a quartic box-spline patch with its surrounding twelve
control points; and (b) computation of an irregular Loop subdivision patch. The control point denoted as “1” is an extraordinary control
point. Subdividing this patch once can generate three small quartic box-spline patches and one uncomputable patch. This uncomputable patch
can be repeatedly subdivided to generate more quartic box-spline patches.

patches called limit patches. Each triangular limit patch on the control mesh can be used as a parametric region of
triangular surface nesting on the limit surface. We have an explicit expression for the triangular loop surface patch
with regular topology structure, which means the valence of the three control points for this patch must be six.
Then a quartic box-spline expression can be used to compute the regular Loop subdivision surface patch, described
as

12
Sx(u,v)) =Y Bi(u, v)xf, (3.1)

i=1

where we use (u, v, | —u — v) as the barycentric coordinates of the parametric limit patch, Xf are the corresponding
2-ring surrounding neighbor control points of the control mesh (See Fig. 3.2 (a)), and B; are the quartic box-spline
(See their analytic expression in [46]). We have no explicitly computable formula for the triangular loop surface
patch with an irregular topology structure, which means the valence of at least one control point for this patch is
not six. Fortunately, we can still use the quartic box-spline form (3.1) to calculate the resulting limit surface patch
through a fast algorithm proposed by Stam [46]. The core idea is to subdivide repeatedly this patch until the position
you need to calculate is included in a quartic box-spline patch (See Fig. 3.2(b)).

The Loop basis functions have the 2-ring of triangles surrounding the given control points as its natural support
set. The evaluation of the limit surface can be performed at some fixed parameter points (Gauss points) within every
limit patch. In the context of finite element simulations, we only need to ensure that the quadratures are computed
to arrive at the necessary precision. Therefore, we only need to perform very limited subdivision steps to make all
of the hierarchical limit patches become computable quartic box-splines patches. To reduce the computation cost,
we develop a simplified and generalized approach for adaptive discretization subdivision, whose basic idea is to
replace the refinement of mesh patches with the refinement of basis functions (see [27]).

3.1.3. Finite element space of loop subdivision

Based on an initial control mesh .Q}? of Loop subdivision, the hierarchical control meshes are denoted as
.Q,’l‘ , k = 0,...,00, where k denotes the subdivision level. We use S to denote the limit surface after doing
the infinite subdivision process k — o00. As described in Section 3.1.1, considering a control point x’(j of the
mesh Q,f whose valence is n, we denote its 1-ring neighboring control points as x’;, j = 12,...,n. We can
recalculate it by the formula xﬁ“ =(1 —nﬂ)x’(§+ﬂ Z?:l x’; which is converged under the condition of the parameter
B € (=3/8n,13/8n). There exists an explicit expression about the limit position of each point on the control mesh
described in Lemma 3.1.
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Lemma 3.1. Consider a control point X{‘) of the triangular mesh .Q,’; where its valence is n, and denote Xl;-, j=

1,...,n, be its 1-ring neighboring control points. All these control points converge to a single position
n
1
Ro=0—nhxg+1)y x5, I=—c—0, 3.2
0= (1 —nbx; ;, YT (32)

as the subdivision step k — oo (see [22] for the proof).

Our finite element function space is defined by the limit process based on the Loop subdivision approach. This
function space is used to describe the solution surface area with any topology structure and perform the evolution
of the phase-field functions defined on the solution surface area. The methodology of using loop subdivision to
represent the solution surface area with any topology structure is consistent with the concept of the IGA strategy.
The triangulation form of the limit surface S is denoted as S, where & denotes the mesh size. The triangular mesh
Sy = U’;:l ey, 8y [ ép = 0 for @ # B, where é, is within the triangular patch e,. About each patch e,, it needs
to be parameterized as

Xo: €— ey (u,v) — Xu(u,v),

where the parametric element € = {(#,v) : 0 <u < 1,0 < v < 1}, u and v are its barycentric coordinates. The
domain area ¢, of S;, can always be calculated by the explicit formula of the quartic box-spline.

We denote the set of basis functions ¢y, ..., ¢, for the finite element function space H>(S;,) where the control
mesh S, has n control points xi, - -+, X,. As described above, our basis functions result from the limit process
based on Loop subdivision approach. The solution surface S is exactly represented as the limit form through the
Loop subdivision scheme,

n
Sx(u, v)) = Sx(u, v), y(u, v), z(u, v)) = Z(])j(u, V)X;. 3.3)
j=1

This kind of the basis functions also have the superior properties of classical finite elements. Firstly, they are
nonnegative everywhere and positive around their corresponding control point because the weight coefficients of the
subdivision schemes are positive. Secondly, because the limit value at each control point X; is a linear summation
of itself and its one-ring neighboring control points, the support of each basis function has two-ring neighborhoods.

Finally, the weight coefficients of all subdivision schemes are summed to one, therefore we have Z’};O ¢ =1.

3.2. EIEQ time advancing strategy

The goal of the time-advance strategy is to develop a linear, easy-to-implement, unconditionally energy stable
scheme for the PDE system. Although the second-order Allen—Cahn system (2.7) and the fourth-order Cahn—Hilliard
system (2.8)—(2.9) have different forms, it is well known that the challenge to achieve this goal is the same, that
is, find an appropriate discrete format about the nonlinear term f(¢). The procedure of using the EIEQ method is
to design some new auxiliary variables, where one variable is used to “quadratize” the nonlinear functional F(¢),
and the other is used to realize the decoupling type calculation. In this way, a linear and second-order time accurate
scheme with the property of unconditional energy stability can be obtained and one only needs to solve a few
elliptic constant-coefficient models with the decoupled structure at each time step, thus achieving very efficient
computation. We present the details as follows.

Since the double-well functional F(¢) is bounded from below, we define the first auxiliary variable U(¢) by the
following formulation

S
U(p) =/ F(¢) - §¢2+B, (3.4)

where S, B > 0 are two fixed constants. Note that the negative quadratic term related to S can be always bounded
by F(¢) from below since F(¢) is a fourth-order polynomial with a positive leading coefficient. The benefit of
adding the positive constant B is to guarantee the term in the square root is always positive. We denote

sziU(¢)= f(9)—S¢

@ Jre)-se v B

(3.5)
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We further define the second nonlocal auxiliary variable Q(¢), and a special ODE for it, that reads as

Qt =(HU, ¢t) - (H¢z» U),
Q|z:0 =1
Obviously @, = 0 and Q|;=g) = 1, so that Q(t) = 1.

Using these two newly defined terms U and @, taking the time derivative of (3.4) and merging (3.6), the
Allen—Cahn system (2.7) is rewritten as:

(3.6)

¢ =€ Ap — Sp — QHU, (3.7)
U = %QH@, (3.8)
Ql = (HU’ ¢t) - (Hd)t’ U)v (39)

where the initial condition ¢|,—9 = ¢g, U|;=0 = \/F(qﬁo) — gqﬁg + B.

The new transformation system (3.7)—(3.9) is actually completely equivalent to the original system. This can be
easily deduced by integrating the ODE (3.8) over time and noting that Q0 = 1. This new system also retains the
law of energy dissipation described in Theorem 3.1.

Theorem 3.1. The transformed equivalent system (3.7)—(3.9) holds the law of the energy dissipation as

d
E@.0.0)=—l, I* <0, (3.10)

where

£, 0.0 = [ (9.0 + S0P+ U2 - B ) dx+ Liop — 1 311
(¢, 0, )—[<E| @ +5|¢| +1U|* — >X+§|Q| 3 (3.11)

Proof. By taking the L? inner product of (3.7) with ¢,, of (3.8) with 2U, of (3.9) with Q, and perform the
integration by parts, we get

(Pr, ) = —€*(Vsop, Vi) — S(p, ¢) — Q(HU, ¢,), (3.12)
j—t/wfdx = Q(H¢,, U), (3.13)
d Sl 2 -

o (§|Q| ) = Q(HU, ¢;) — Q(H¢,;, U). (3.14)

Combining (3.12)—(3.14), we gain the law of the energy dissipation (3.10). [

For the Cahn-Hilliard system (2.8)—(2.9), we implement the similar procedure, thus it can be rewritten as:

¢ — Asw =0, (3.15)
w=—€Ap+Sp+ QHU, (3.16)
U = %QH@, (3.17)
0, =HU,¢)— (He, U), (3.18)

where H and Q are defined as in (3.5) and (3.6) respectively, and the initial condition ¢, = ¢g, Ul=0 =
JF@0) - 363 + B.

The new transformed system (3.15)—(3.18) also follows the law of the energy dissipation, which is given as
follows.

Theorem 3.2. The transformed equivalent system (3.15)—(3.18) holds the law of the energy dissipation as

d
—E@.0.0)= —IV,w|? <0, (3.19)
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where
€2 N 1 1
E($,Q.U) = / (5|vs<z>|2 + 161+ IUP - B) de+ 210 = 5. (3.20)
Proof. By taking the L? inner product of (3.15) with w, of (3.16) with —¢;,, of (3.17) with 2U, of (3.18) with Q,
and performing the integration by parts, we get

(@, w) = —(Vyw, Vyw), (3.21)
—(w, ¢) = —€*(Vsd, Vi) — S(¢, ¢:) — Q(HU, &), (3.22)
% / |UI*dx = Q(Hé,, U), (3.23)
d (1 .\

o (EIQI ) = Q(HU, ¢;) — Q(H¢,;, U). (3.24)

Combining (3.21)—(3.24), we obtain the law of the energy dissipation (3.19). [
3.3. Fully discrete schemes

In this subsection, the fully discrete schemes for solving the Allen—Cahn system (3.7)—(3.9) and the Cahn-
Hilliard system (3.15)—(3.17) are given. We also prove their unconditional energy stability, and also design a
decoupling implementation process for them. In what follows, denote the time step size as 8¢ > 0 and " = nét
for 0 < n < N = [T/8t]. Take the test functions 6y, ¥, and ¢, € H?(S;), which is our IGA finite element space
induced by the limit form of Loop subdivision as described in Section 3.1.

3.3.1. Allen—Cahn system
Assuming that ¢, U;}, Q" and ¢Z_1, U,;’_', 0"~ are known, we compute ¢Z+1, U,Z”Ll, Q"1 by the following
fully-discrete, second-order backward difference formula (BDF2) numerical scheme:

3¢it —4ep + ¢! ] . ntlyppaye
( A 2&’ b0, ) = =X (Vs Vi) — S(op T, 6y) — QTN HUS, 6y, (3.25)
3UITLL+1 - 4U}:l + UZ_I 1 n+1 * g%
2(St ’ é‘h = EQ (Hh ¢ht’ é‘h) ) (326)
30" 40"+ 0" 3T ZAG A BT s e
> = (H; U}, 5 ) — (Hy¢r,, U, (3.27)
where

or =20 — ¢, Uy =20, — U,

. 5¢" — 8¢ 4+ 3¢r 2 (3.28)
Hif = H(@}), ¢ = ——————

The unconditional energy stability of the scheme (3.25)—(3.27) is shown as below.

Theorem 3.3. The second-order scheme (3.25)—(3.27) is unconditionally energy stable, i.e., satisfies the following
discrete energy dissipation law:

3¢i" —4g+ o o

E'Y — EM < =5t , (3.29)
26t
where, for an integer k > 0, the discrete energy EX_ is defined as
€? B S _
Ef = Z(||vs¢,’:||2+ I12Vspf — Vgy 1P + Z(||¢>’,;||2+ I12¢F — ¢y "1I%) 530,
1 _ 1 2 2 1 ’
+ 5<||U/:||2 +120f = U1 + Z(IQ"I + 120" — 0 ') — BIS| - 5

9
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Proof. By taking 6, =

3gp T —dgl+gr! . 395) and performine the i ion b deri
—t——5/—"— 1in (3.25) and performing the integration by parts, we derive

S 4o+

2
€
oy =— Z(IIV@Z“ I = IVspll* + 12V, — Vi1

— 12Vy¢; — Vi) 1P + IVi0p T = 2V,0p + Vi D)
S n n n n
— Z(Il¢h“llz — g1 + 1129 — 112 (3.31)

— 1207 — &y 1P+ Ngpt =297 + 671D

3¢ — gy +p !
2

ot |l

_ QnJrl(H}TU}T’

),
where the following identity is used:
2(3a —4b + ¢, a) = a* — b* + (2a — b)* — 2b — ¢)* + (a — 2b + ¢)*. (3.32)

By taking ¢, = 28tU;™" in (3.26) and using (3.32), we have

1 _
§<||U,;”‘||2 —UI* + 120t = up > = 20y — Ut

(3.33)
+ Ut =20 + UPP) = st Q" (H ), UM,
By multiplying (3.27) with §t Q"*! and using (3.32), we have
1 n+1,2 n,2 n+1 n2 n n—1,2 n+1 n n—1,2
(O™ = 1Q""+ 20" = Q" = 120" = Q" +1Q" =20"+ Q")
4 (3.34)

3¢Z+1 _4¢Z +¢Z—l
2
By combining (3.31), (3.33) and (3.34), we get

= Q""\(H, Uy, ) — 8t Q" (Hy gy, Upth.

2
6 n n n—
Z(HWJ‘ 12 = Vs 11> + 12V, — Vi 1> — 12Vi9) — Vg 12
+HIVspp ! —2Vigr + Vg2
S n n n n n n— n n n—
+Z<n¢,,“||2 — NIl + 1290+ — 1> — 1205 — & 12 + Nop ! — 297 + 1D

1 —_ n n n—
+§<||U;;“||2 — 1P + 11207 = U = 120y — U P + ot =208 + U1

1 n 2 n n n
+700™ = 10" + 120" - 0
3¢p —4dh + o o
25t
which implies the energy stability (3.29) after we ignore some positive terms. [

2
|

— 20" = 0" 10" =207+ 0"

= st

El

3.3.2. Cahn-Hilliard system
Assuming that ¢}, wj, UJ, Q" and q)Z_l, wZ_l, U,;’_l, Q"' are known, we compute ¢,’1’+1, wZH, U:H, ortl

by the following fully-discrete scheme:

3¢t — 4y + ¢ "
( h 28;‘ b0y ) = —(Voupt, Vo), (3.35)
Wit o) = E(Vup ™ Von) + S ) + Q" (H UYL 0, (3.36)
3U —auy + Uyt ! o
( h 25;1 h o) = EQn+1 (Hh o Ch), (3.37)

10
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30 40" 1 0" 30T A o)
26t heh 26t

where ¢, H; and ¢, are the same definition as (3.28).
The unconditional energy stability is shown below.

) — (Hy¢r,, U, (3.38)

Theorem 3.4. The second-order scheme (3.35)—(3.38) is unconditionally energy stable, i.e., satisfies the following
discrete energy dissipation law:

ENTY— BN < =8t Vowi T2, (3.39)

ch

where, for an integer k > 0, the discrete energy th is defined as

Eg, = %nw’guz + 12V, = Vot~ 17 + %(quﬁn2 + 1265 — ¢ 1) 5.40)
+ %(nv,i‘n2 +120f - U D) + 3—‘<|Q"|2 +120" — ') - BIS| - % |
Proof. By taking ), = —8th+l in (3.35) and performing the integration by parts, we get
_ <3¢Z+1 - 42¢Z + ‘P;zl_l ’ w;ﬂ) _ 5t||vsw}rll+l”2' (3.41)
By taking 9, = w in (3.36) and using (3.32), we derive
(w;‘“, 30! — 42¢>Z +¢Zl> _ %(IIV@ZHHZ VIR £ 12V, — Vgl

— 112Vegy — Vi I + Vs = 2Vigy + Vi 1P
N
+ U = I + 1207 = 71 (342)

— 1207 — & 1P+ llgpt =207 + 671D

30— 40 + oy

+ Q"' (H; U}, 5

By taking ¢, = 28tU,:’+' in (3.37) and using (3.32), we get

1 n n n n n n—

SUUIE = IR + 1203 = U1 = 120 = U 1P (3.43)
+ U —20r + U = 81Q M (H 9, U,

By multiplying (3.38) with §t0"*! and using (3.32), we obtain

1 n+l n n—1 n+l _ An+l k% 3¢Z+1_4¢Z+¢]’:71
5(3Q —40"+ 0" )Q" =0"" (H, Uy, > ) (3.44)

— 810" (Hji 9}, U™,
By combining (3.41), (3.42), (3.43) and (3.44), and using (3.32), we deduce

2
E n n n n n n—
Z(IIV@h“IIZ — IV I + 112Vt — Vi I> — 112V, — Vg ' |12
+IVepp ™ = 2Vigr + Vi 12

S n U n n — n —
+Z(||¢;:+‘ 12 = llgpI® + 1205 — @pll* — 1297 — ¢ 11 + Nt — 267 + &1

1 — n n n—
+=(NUP = WU+ 1207 = Upll? = 11207 = U2+ ot =207 + U

2
11
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1 n 2 n n n 2 n n— 2 n n n— 2
+,09 =10 P+ 120 = Q" - 20" = Q"+ 1@ =207 + 07
= 81| Vw2,
which implies the energy stability (3.39) after we ignore some positive terms. [

3.3.3. Decoupled scheme by the nonlocal splitting skill
The two developed schemes, (3.25)—(3.27) and (3.35)—(3.38), appear to be fully coupled. However, we can
achieve fully decoupled type computation through a non-local splitting approach, which is described below.

Allen—Cahn system
Step 1: We split ¢/ ™' and U;""" into a linear combination form as

¢VL+1 ¢n+1 + Qn+l¢£l;l|>l’ U;;H—l — U]n}:_l + Qn-‘r]U;lI:-l (345)

then we solve ¢"+l and Ul"h“, i = 1,2 as follows.
Using (3.45), we replace qb”“ in the system (3.25)—(3.26), and decompose the obtained equations according to
Q"*! into the following four systems:

3¢n+l _4¢Z +¢Z—1

( o ,On) = —2(Vspli, Vi) — S@ 6n), (3.46)
3 ;l-H 1 1

(g O =€ 2V, Vo) — S(@5, 0n) — (HFUS, 6)), (3.47)
3yt 4ur —up!

(S ¢>—<—t,ch>, (3.48)
3u;H!

(5! ,¢h>=§<H;¢;,,;h). (3.49)

All the above equations are completely independent. (3.46) and (3.47) can be easily solved because they are linear
elliptic with constant coefficients, and (3.48) and (3.49) are just algebraic equations thus they can also easily be
solved.

Step 2: By use of the known ¢} ™! and Ut obtained by solving (3.46)—(3.49), we update Q""" in (3.38) through

i _ n+l __ L n _ on-—l1
(2& m ) 0" = (40"~ Q")+, (3.50)

where 7 and 1, are given as

n+1
—4
UL g, )
28t
(3.51)
) = (Hy ¢y Uz,
and H;, Uy and ¢;, are given in (3.28).

We need to prove the solvability of (3.50) through showing the coefficient % — np # 0. Firstly by taking
O, = %qb;;“] in (3.47), we get

m = (H, Uy,

n+1
¢2h

= (H];k Uh

st | o . iy
Vo4 — |93 —(H U}, —=— 3.52
we then choose ¢, = 2U2”; "in (3.49) to achieve
2
3U”1+l * g% n
| = e v, (353

We can get —n, > 0 by combining (3.52) and (3.53). Thus (3.50) is always solvable.
12
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Cahn-Hilliard system:
Step 1: We split ¢7 ™', wi*! and U™ into a linear combination form as

¢Z+l — d);’l}jl + Qn+l¢£ll;‘rl’ wZ+l — wl]l];l»l + Qn+1 wlzlljl’ U;:+l — Ulnl;‘rl + Qn+1U2n};‘1jl (354)

then we solve ¢!, wi and UM, i = 1,2 as follows.
Using (3.54), we replace qﬁ,’j“, wZ+1 and U,’:H in the system (3.35)—(3.37), and decompose the obtained

equations according to Q"*! into the following four systems:

30 — 4o+

_ n+1
( 287 s 0n) = —(Vswy,, Vibp), (3.55)
Win' ) = (Vs Vitn) + S o),
3¢n+1
(2—;’;, On) = —(Vywy', Vi), (3.56)
Wi, ) = €Yoy Vi) + Sy 0n) + (Hy U, 90,
3u;,! aup —u;!
o) — ), 3.57
( T &) =( 251 n) (3.57)
3Un+1 1
(2 6 = 5 (97 329

It can be seen the above systems are all independent, and (3.55)—(3.56) are linear elliptic and only have constant
coefficients.

Step 2: We update Q"*! in (3.38) through the same Step 2 of solving the Allen—-Cahn system.

Similarly, we need to prove the solvability of Q in (3.50) through showing the coefficient % —1ny # 0. By

taking 6, = w;’,'l"l and ¥, = %q);,fl in (3.56), we get

3¢? 23S 2 3¢+t
Vs n+1 2 o Vs n+1 sl n+1 - _ H*U*, “72h , 3.59
” Wy, ” +28t ” b ” +26t ”¢2h “ (H, U, 281 ) ( )
then choosing ¢, = 2U§’;rl in (3.58), we obtain
2
3Un+1
82: = (H; ¢}, Up™. (3.60)

We can get —n, > 0 by combining (3.59) and (3.60). Thus (3.50) is always solvable.
Through the above decoupling process, the calculation of all variables are fully decoupled, and all schemes only
have constant coefficients, yielding very efficient computations in practice.

4. Numerical implementation

In this section, we carry out some numerical simulations to validate the accuracy, efficiency, and energy stability
of the proposed schemes. The solution surface regions for numerical experiments result from the limit process of
the proposed Loop subdivision. Similar to the classical FEM, the Gaussian integral calculation is carried out on
each patch of the triangular discretization for the limit surface. The linear systems of the full discretization schemes
for these two equations are highly sparse, we need a robust iterative method to solve them. In this paper, we adopt
the GMRES solver, where we set the number of the iterative steps long enough to obtain proper convergence of
the proposed schemes.

4.1. Convergence test

In the first numerical test, we verify the convergence rates of the developed numerical schemes. We consider the
surface of a unit sphere, i.e.,

S={x,y,2):V/x2+y2+22=1}. 4.1
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(a) Allen-Cahn. (b) Cahn-Hilliard.

Fig. 4.1. (a) Convergence rate of our scheme for the Allen—Cahn system; and (b) Convergence rate of our scheme for the Cahn—Hilliard
system.

We define the set of parameters B = le4, ¢ = le—4, S = 4, and the initial condition ¢9 = 0.1 cos(2x)+0.2 cos(y).
To obtain the convergence rate, a series of uniform meshes Sy, from coarse to refined are performed, where the
numbers of the vertex valence are in [4, 6], and h; is the mesh size. Since the subdivision-based IGA method is
second-order accurate (cf. [26]), we set the time step sizes 8f; = Ch; for the ith level surface mesh &, where
C is a given constant between 0 and 1. Because the exact solution is unknown for us, we choose the solution
obtained with a very fine mesh size computed as the benchmark solution which is treated approximately as the
exact solution to compute the numerical errors. The L? numerical errors of two schemes are plotted in Fig. 4.1
when t = 2.56e—1, where the total numbers of patches/vertices for these surface models are 512/258, 2048/1026,
8192/4098, 32768/16386, and the corresponding mesh sizes h; = 0.2543, 0.1169, 0.0622, 0.0326, respectively.
We observe that both schemes possess the second-order accuracy for space.

4.2. Phase separation dynamics on curved complex surfaces

In this section, we carry out the phase separation (spinodal decomposition) simulations for both of the Allen—Cahn
system and the Cahn-Hilliard system. The initial conditions are set as

¢o = 0.001rand(x, y, 2), 4.2)

where the term rand(x, y, z) is the random number in [—1, 1] with zero mean.

4.2.1. Allen—Cahn system

We first implement the scheme (3.45)—(3.49) for the Allen—Cahn system by setting the computation domain as
a sphere, ie., S| = {(x, y, z) : V/x% + y? + z2 = 10}. This surface is discretized with 32768 Loop limit subdivision
patches by use of 16386 control vertices in Fig. 4.2, where the span of the vertex valence is 4 to 6. We set the
model parameters 6t = 3e—2, B = 7e3,¢ = 3e—2, and § = 4. We present the snapshots of the profile for the
phase-field variable ¢ at the computational time steps of 10, 20, 40, 70, 100, 200, and 8000, where the phase
separation dynamics evolve over time, and the final steady-state solution presents a two-layer pattern.

We further change the computational domain to an annular region, which is inside the domain S; = {(x, y,z) :
x € [—4.98,498], y € [—4.98,4.98], z € [—1.32,1.32]}. The surface is discretized with 51200 Loop limit
subdivision patches by use of 25600 control vertices, and the span of the vertex valence is 4 to 6. The model
parameters are taken as §t = le—2, B = 8e3, € = 6e—3, and S = 4. In Fig. 4.3, we plot the snapshots of the
numerical solution ¢ at the computational time steps of 10, 20, 50, 100, 200, 280, and 6000. The final steady state
solution also appears to be a two-layer mode, however, since the Allen—Cahn system is not volume-conserving, we
can see that the blue region (¢ = —1) expands, the red region (¢ = 1) shrinks slightly.

14
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Fig. 4.2. The Allen—Cahn system for a closed sphere S;, where the first subfigure is the profile of the initial value ¢p, and all other
subfigures correspond to the computation time steps of 10, 20, 40, 70, 100, 200 and 8000, respectively.

We continue to carry out simulation on a more complex “bunny” surface, which is within the domain &3 =
{(x,y,2) 1 x €[-9.12,6.27], y € [-3.38, 18.72], z € [—6.49, 6.08]}. The surface is discretized with 144046 Loop
subdivision patches by use of 72047 control points, and the span of the vertex valence is [3, 10]. We set the model
parameters 6t = 4e—3, B = 9e3, € = 5e—3, and S = 4. Snapshots of the profile for the phase-field variable ¢ are
taken at the computational time steps of 20, 40, 60, 100, 200, 400 and 6000 in Fig. 4.4 respectively.

Finally, we verify the energy stability of the developed scheme. For the numerical test in Fig. 4.3, we choose
three different time step sizes §t+ = le—2, 5e—3 and 2.5e—3 and plot the evolution of the energy curves in Fig. 4.5.
The energy curves show the decays for the different time step sizes, which confirm our algorithm is unconditional
energy stable.

4.2.2. Cahn—Hilliard system

To verify the effectiveness of the proposed scheme (3.54)—(3.58) for the Cahn-Hilliard equation, in this
subsection, we carry out phase separation simulations on a number of complex surfaces. The first one is on the
concave surface model within the domain Sy = {(x, y, z) : x € [—3.08, 3.08], y € [—3.08, 3.08], z € [—0.69, 0.69]},
shown in Fig. 4.6. The surface is discretized with 32768 Loop subdivision patches by using 16386 control vertices,
and the span of the vertex valence is 4 to 6. The model parameters are set as 6t = 2e—3, B = le4, € = 2e—3, and
S = 4. In Fig. 4.6, the snapshots of the phase-field variable ¢ are presented at the computational time steps of 20,
30, 100, 300, 500, 1500, and 8000, where the final equilibrium solution presents a striped pattern on the concave
surface.

In Fig. 4.7, the phase separation simulation is carried out on a splayed surface model S5 = {(x,y,z) : x €
[-0.61,0.61], y € [—1.27, 1.27],z € [—0.26, 0.26]}, which is discretized with 24576 Loop subdivision patches
using 12286 control vertices, and the span of the vertex valence is 4 to 8. We choose the time step size §t = 2e—4
and the parameters B = le4, € = 1.8e—4, and S = 4. The snapshots of the phase-field variable ¢ are taken at the
computation time steps of 30, 50, 100, 500, 1200, 2400, and 8000, where the steady state is achieved after around
3000 time steps.

We continue to carry out the phase separation simulation on a more complex human head surface model within
the domain Sg = {(x, y,z) : x € [-3.46,3.46], y € [—4.97, 4.97],z € [—4.96, 4.96] in Fig. 4.8. The surface of
the human head is discretized with 268686 Loop subdivision patches using 134,345 control vertices, and the span
of the vertex valence is 3 to 12. We use the time step size 6t = le—3 and the parameters B = le4, € = 1.2e—3,
and S = 4. In Fig. 4.8, snapshots of the profiles for the phase-field variable ¢ are taken at the time steps of 30,
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Fig. 4.3. The Allen—Cahn system for a ring Sy, where the first subfigure is the profile of the initial value ¢p, and all other subfigures
correspond to the computation time steps of 10, 20, 50, 100, 200, 280, and 6000, respectively.
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Fig. 4.4. The Allen—Cahn system for a bunny model Sz, where the first subfigure is the profile of the initial value ¢, and all other subfigures
correspond to the computation time steps of 20, 40, 60, 100, 200, 400 and 6000, respectively.

100, 300, 500, 1000, 2000, and 8000, respectively, where the final equilibrium solution is observed after around
3000 time steps.

Finally, to show the energy stability, we choose three different time step sizes §t = 2e—3, le—3 and 5e—4 to
test the energy evolution of the numerical example given in Fig. 4.6. In Fig. 4.9, we plot the evolution of the energy
curves that show the energy monotonically decays with respect to time. We can observe that the energy decrease
decays very fast in the early stage of evolution, and tends to be flat in the later stage. The energy curves show the
decays for the different time step sizes, which confirm our algorithm is unconditional energy stable.
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Fig. 4.5. The Allen—Cahn system for the ring in Fig. 4.3: Time evolution of the free energy for three different time step sizes 8t = le—2, 5e—3
and 2.5e—3 which are shown in (a), (b) and (c) respectively. The energy curves show the decays for the different time step sizes, that
confirm our algorithm is unconditionally stable.

Fig. 4.6. The Cahn-Hilliard system for a concave surface S4, where the first subfigure is the profile of the initial value ¢p, and all other
subfigures correspond to the computation time steps of 20, 30, 100, 300, 500, 1500 and 8000, respectively.

5. Conclusions

In this paper, we develop a fully discrete numerical strategy for solving the Allen—Cahn equation and the Cahn-
Hilliard equation on complex curved surfaces. The scheme combines the subdivision-based IGA method for spatial
discretization and the EIEQ method for time discretization. The advantages of the subdivision-based IGA method
include the flexibility for complex surfaces with arbitrary topology structures and exactly expressible properties for
geometries which can be remained unchanged throughout the k-refinement process. Its combination with the EIEQ
method enables us to possess a linear, second-order accurate in time, decoupled, and unconditionally energy stable
scheme. The high efficiency of the developed algorithm is shown by transforming the original highly nonlinear
system into a few independent elliptic equations with only constant coefficients that only need to be solved at
each time step. We also demonstrate unconditional energy stability and develop a decoupling-type implementation
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Fig. 4.7. The Cahn-Hilliard system for a splayed surface model Ss, where the first subfigure is the profile of the initial value ¢, and all
other subfigures correspond to the computation time steps of 30, 50, 100, 500, 1200, 2400 and 8000, respectively.

strategy, and demonstrate the accuracy and stability of the developed numerical approach by simulating various
numerical examples on the complex benchmark curved surfaces such as bunny, splayed, and head surfaces.
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Fig. 4.9. The Cahn-Hilliard system for the concave surface model of Fig. 4.6: Time evolution of the free functional for three different time

step sizes 6t = 2e—3, le—3 and Se—4 which are shown in (a), (b) and (c) respectively. The energy curves show the decays for the different
time step sizes, which confirm our algorithm is unconditionally stable.
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