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Abstract

We present an efficient fully discrete algorithm for solving the Allen±Cahn and Cahn±Hilliard equations on complex curved

surfaces. The spatial discretization employs the recently developed IGA (isogeometric analysis) framework, where we adopt

the strategy of Loop subdivision with the superior adaptability of any topological structure, and the basis functions are quartic

box-splines used to define the subdivided surface. The time discretization is based on the so-called EIEQ (explicit-Invariant

Energy Quadratization) approach, which applies multiple newly defined variables to linearize the nonlinear potential and realize

the efficient decoupled type computation. The combination of these two methods can help us to gain a linear, second-order

time accurate scheme with the property of unconditional energy stability, whose rigorous proof is given. We also develop a

nonlocal splitting technique such that we only need to solve decoupled, constant-coefficient elliptic equations at each time step.

Finally, the effectiveness of the developed numerical algorithm is verified by various numerical experiments on the complex

benchmark curved surfaces such as bunny, splayed, and head surfaces.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

As representative equations of the phase-field (diffusive interface) approach, the Allen±Cahn and Cahn±Hilliard

equations, originally introduced by Allen and Cahn in [1] to describe the motion of the anti-phase boundaries

in crystalline solids, and Cahn and Hilliard in [2] to simulate the complicated phase separation and coarsening

phenomena in a solid, respectively, have been extensively studied and widely used in many complicated moving

interface problems in various science and engineering fields, such as computational biology, materials science,

and fluid dynamics. It is very challenging to develop accurate and efficient numerical schemes to solve these two

equations. Noting that some special phase separation or fluid flow dynamics may appear on static and dynamic

surfaces, such as phase separation on lipid bilayer membranes [3±5] and dendritic crystal growth on curved
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surfaces [6], therefore, numerical study of the interface dynamics of the Allen±Cahn and Cahn±Hilliard equations

on complex curved surfaces is of great significance and practical applications.

For numerical analysis of partial differential equations (PDEs) on surfaces, there are many successful numerical

algorithms such as finite difference method [7], spectral method [8,9] and finite element method (FEM) [10].

Although the first two methods have made significant progress in recent years, most of the problems they deal

with are still limited to simple domains, e.g., rectangular, circular, or spherical regions. The latter one, FEM, can

efficiently deal with various irregular surfaces in practical engineering, see [11±13] for theoretical/numerical studies

of phase transition-related models on surfaces. However, it is remarkable that the FEM involves the approximation of

surface differential geometric operators, which may introduce additional errors caused by numerical approximation

schemes. We can see that the variation of the Laplacian operator on the surface requires integrating the derivative

product of the surface itself. Traditional FEM requires costly and time-consuming human intervention, and

encounters great difficulties in the refining process, especially for complex geometries. Therefore, for the spatial

discretization of surfaces, this paper adopts the IGA method, see [14,15].

The IGA method uses the non-uniform Rational B-Splines (NURBS) [16±18] or T-splines [19,20], where the

same set of basis functions is used to represent the solution region and conduct the numerical simulation of

PDEs. The framework of IGA is proposed to develop the seamless integration between FEM and computer-

aided design (CAD). Not only that, but it also has higher numerical accuracy than FEM, where we can easily

implement the p-refinement, h-refinement, and even k-refinement by the technique of the knot insertion and/or

order elevation. Therefore we can improve the accuracy of the numerical simulation without destroying the original

geometric properties, which removes the interactive communication with the CAD system. Subdivision technology

is compatible with NURBS, which has the capability of the refineability of B-spline techniques. Surface subdivision

can construct smooth surfaces from arbitrary topological meshes by designing a set of simple and efficient refinement

schemes [21,22]. Subdivision technology not only conveniently handles complicated geometric forms but also

maintains original characteristics near boundaries through straightforward extensions, such as concave/convex

angles and sharp/smooth creases. The discretization with single-patch NURBS-based IGA and implicit backward

differentiation formula schemes was proposed to solve mean curvature (second-order) and Willmore (fourth-order)

flows in [23]. Both Loop subdivision [24±27] and Catmull±Clark subdivision [28±30] have been utilized in IGA.

Local refinement and convergence rate [31,32] are investigated in Catmull±Clark subdivision-based IGA. The

subdivision-based IGA methodology can be viewed as the natural choice for higher-order FEM in engineering

practice, see [26,27,33,34] as well.

Since this article aims to develop an accurate and efficient fully discrete strategy for solving the Allen±Cahn and

Cahn±Hilliard models on curved surfaces with complex geometry. Hence, after we adopt the efficient subdivision-

based IGA method for the spatial discretization, the remaining challenge becomes which method to use for time

discretization. So far, we know that many successful methods exist to deal with the Allen±Cahn and Cahn±Hilliard

equation, see [35±40]. However, as everyone knows, for the Allen±Cahn and Cahn±Hilliard equations, fully-implicit

or explicit type discretization methods for the nonlinear terms will inevitably impose rigorous stable limitations for

the time step due to the stiffness issue embedded in these equations, so they are inefficient in practice. To obtain

an efficient fully discrete scheme on the surface that is not only easy to implement, but also has relatively high

temporal accuracy, we adopt the subdivision-based IGA method for the space on the one hand, and the IEQ method,

which is an efficient approach to construct the linear and energy stable scheme for phase-field models, see [39±44],

for the time discretization on the other hand. We expect the combination of these two approaches will give us a

satisfactory fully discrete numerical scheme on the complex curved surface.

We also note that when the IEQ method was originally developed in [35], it requires solving a linear system with

variable coefficients at each time step. It is well-known that solving a system with variable coefficients takes more

time than a linear system with only constant coefficients. Therefore, to reduce the disadvantage that the original IEQ

method leads to higher computational cost, in this paper, we modify the IEQ method to the so-called explicit-IEQ

(EIEQ, for short) method by introducing an auxiliary nonlocal variable and design a special type but trivial ODE for

it, see also [45] for its application to different models. The new EIEQ method only requires us to solve some linear

constant-coefficient equations with a completely decoupled structure, so it possesses very high efficiency in practice.

We not only rigorously prove that our schemes possess the property of the unconditional energy stability, but also

propose a decoupling strategy that only requires solving some constant-coefficient elliptic equations at each time

step. Furthermore, in addition to some stability and accuracy tests, we implement several complex surface-based

examples to illustrate the flexibility and robustness of the proposed scheme.
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We organize the rest of this paper in the following way. In Section 2, we give a brief introduction to notations of

surfaces, the Allen±Cahn and Cahn±Hilliard models on surfaces. In Section 3, the subdivision-based IGA method

is introduced and a fully discrete scheme based on the EIEQ time advancing strategy is developed. The proof of

unconditional energy stability is given, along with a strategy for how to realize the decoupled implementation. We

provide various numerical examples to illustrate the accuracy and efficiency of the proposed scheme in Section 4.

Section 5 gives some concluding remarks.

2. Model systems on the surfaces

2.1. Surface differential geometry

We first briefly introduce a mathematical framework of the surface which includes the parameterization and some

differential geometric operators.

Let S := {x(u1, u2) ∈ R
3 : (u1, u2) ∈ D ⊂ R

2} be a sufficiently smooth and orientable surface. Now we

can parameterize it. Denote gαβ = ⟨xuα , xuβ ⟩ and bαβ = ⟨n, xuαuβ ⟩ be the coefficients of the first and the second

fundamental forms of S with

xuα = ∂x

∂uα
, xuαuβ = ∂2x

∂uα∂uβ
, α, β = 1, 2,

n = (xu1 × xu2 )/∥xu1 × xu2∥,

where ⟨·, ·⟩, ∥ · ∥ and · × · stand for the usual inner product, Euclidean norm and cross product in R
3 respectively.

Then we introduce some notations as

[gαβ] = [gαβ]−1, g = det[gαβ], [bαβ] = [bαβ]−1, b = det[bαβ].

The matrix form of the Weingarten map is denoted as

S = [bαβ][gαβ] = 1

g

[

b11g22 − b12g12 b12g11 − b11g12

b12g22 − b22g12 b22g11 − b12g12

]

,

which is a self-adjoint linear map on the tangent space TxS := span{xu1 , xu2}. Then the eigenvalues k1 and k2

of S are the principal curvatures of S , whose arithmetic average and product are the mean curvature H and the

Gaussian curvature K , namely,

H = k1 + k2

2
= tr(S)

2
= b11g22 − 2b12g12 + b22g11

2g
, K = k1k2 = det(S) = b11b22 − b2

12

g
,

respectively. The mean curvature normal is referred to H = Hn. Some differential geometric operators of surface

need to be introduced.

2.1.1. Tangential gradient operator

Denote C1(S) be a function space composing of C1 smooth functions of S . Considering f ∈ C1(S), the tangential

gradient operator ∇s acting on f is defined as

∇s f = [xu1 , xu2 ][gαβ][ fu1 , fu2 ]T ∈ R
3. (2.1)

For a vector-valued function f = [ f1, . . . , fk]T ∈ C1(S)k , the gradient ∇s acting on f is defined as

∇sf = [∇s f1, . . . ,∇s fk] ∈ R
3×k .

2.1.2. Divergence operator

Let v ∈ [C1(S)]3 be a smooth vector field on surface S . Then the divergence operator divs acting on v is defined

as

divs(v) = 1
√

g

[

∂

∂u1
,

∂

∂u2

]

[√
g[gαβ][xu1 , xu2 ]T v

]

. (2.2)
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2.1.3. Laplace±Beltrami operator

Let f ∈ C2(S). Then the Laplace±Beltrami operator (LBO) ∆s acting on f is defined as

∆s f = divs(∇s f ).

With the definitions of ∆s and divs , we derive

∆s f = 1

g
(g22 f11 + g11 f22 − 2g12 f12), (2.3)

where fαβ = fuαuβ − (∇s f )Txuαuβ , α, β = 1, 2. The second-order differential operator ∆s relates to the mean

curvature vector, i.e., ∆sx = 2H.

2.2. Allen±Cahn and Cahn±Hilliard equations on the surface

Assuming that S is a sufficiently smooth surface, for a given constant k and a function f ∈ C∞(S), we denote

∇k f the kth order covariant derivative of function f , with the convention ∇0 f = f . Let

Ck(S) =
{

f ∈ C∞(S) :
∫

s

|∇ j f |2dx ≤ ∞ for j = 0, . . . , k

}

. (2.4)

It is obvious that Ck(S) = C∞(S) ⊂ Ck(S) ⊂ H k(S). The Sobolev space H k(S) on the surface S is denoted as

Definition 2.1.

Definition 2.1. Let S be a compact surface with at least kth order smoothness. Sobolev space H k(S) is the

completion of Ck(S) in the sense of norm

∥ f ∥Hk (S) :=
(

k
∑

j=0

∫

s

|∇ j f |2dx
)

1
2
. (2.5)

Two inner products on surface need to be introduced as

(u, v) =
∫

s

uv dx, and (∇su, ∇sv) =
∫

s

∇su · ∇sv dx.

The Allen±Cahn and Cahn±Hilliard equations can be represented as L2 and H−1 gradient flows of the following

Liapunov energy functional respectively,

E(φ) =
∫

s

(

ϵ2

2
|∇sφ|2 + F(φ)

)

dx, (2.6)

where φ(x, t) is to be solved scalar function on the surface S , x ∈ S , ϵ ≪ 1 representing the interface width, and

F(φ) is the nonlinear Ginzburg±Landau double-well type potential F(φ) = 1
4
(φ2 − 1)2.

The variation of the total free energy (2.6) in L2(S) results in the Allen±Cahn equation, that reads as:

φt = ϵ2
∆sφ − f (φ), (x, t) ∈ S × (0, T ], (2.7)

where f (φ) = F ′(φ). The initial condition is φ|t=0 = φ0, and we only consider closed surface domains without

any boundary conditions.

The variation of the total free energy (2.6) in H−1(S) results in the Cahn±Hilliard equation, that reads as:

φt − ∆sw = 0, (2.8)

w = −ϵ2
∆sφ + f (φ), (x, t) ∈ S × (0, T ], (2.9)

where w is the chemical potential. The initial condition is φ|t=0 = φ0. Similarly, we only consider closed surface

domains without the boundary conditions.

It is well known that the Allen±Cahn and Cahn±Hilliard equations satisfy the following energy dissipation law,

d

dt
E(φ) ≤ 0. (2.10)

4



Q. Pan, C. Chen, Y.J. Zhang et al. Computer Methods in Applied Mechanics and Engineering 404 (2023) 115767

Fig. 3.1. (a) Vertex refinement rule α = 1 − nβ, where β = 1
n

[

5
8

−
(

3
8

+ 1
4

cos 2π
n

)2
]

and n is the valence of the control vertex; and (b)

edge refinement rule.

3. IGA-EIEQ scheme on the surface

In this section, we aim to construct a fully discrete scheme to solve the Allen±Cahn Eq. (2.7) and the Cahn±

Hilliard Eq. (2.8)±(2.9) on the surface. The method combines the recently developed IGA approach based on Loop

subdivision [24,26,27] for the spatial discretization and the second-order EIEQ method as a time advancing strategy.

3.1. Subdivision-based IGA method

We now introduce the subdivision-based IGA method. Considering an initial control mesh with arbitrary topology,

subdivision technology creates a smooth surface through an infinite refinement process, which includes the rules of

recalculation of old vertex position and generation of new edge points (or face points). Considering the flexibility of

triangular meshes, we adopt the Loop subdivision technique, which generalizes the quartic box splines for manifold

triangle meshes. Any initial rough mesh can be used as a control mesh to define a subdivision limit surface. This

initial control mesh is repeatedly refined by specified subdivision rules so that a series of increasingly refined meshes

can be generated. The limit of this refinement process is a limit surface with C1 smoothness. The limit surface is

used to represent physical domains and perform numerical simulations to achieve a unified discretization of the

PDEs on surfaces.

3.1.1. Loop subdivision schemes

A Loop subdivision scheme was proposed by Loop [22] for triangular control meshes. We can achieve a C2

smooth surface by use of the Loop refinement process where the surface is C1 smooth at a finite number of

extraordinary control points on the initial rough mesh. It only needs two subdivision rules, including the recalculation

of old points and the generation of new edge points, which can cause a triangle patch to be divided into four small

triangle patches. The old control point with n valence is updated for itself with weight α = 1 − nβ and its 1-ring

surrounding neighborhood points with weight β = 1
n

[

5
8

−
(

3
8

+ 1
4

cos 2π
n

)2
]

(see Fig. 3.1(a)). A new point on each

edge is created through a simple weighted average algorithm shown in Fig. 3.1(b).

3.1.2. Evaluation of subdivision surfaces

An important element in the numerical treatments is the reliable and accurate evaluation of the limit surface to

finish the finite element integrals which need to compute the Loop basis functions, derivatives of basis functions and

inner products between them. Loop subdivision surface with any topology structure has no explicit formulation so

that the computation at any point on Loop limit surface is a non-trivial work. Loop limit surface can be parameterized

over its corresponding triangulation of control mesh, which implies a decomposition of the surface into triangular

5
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Fig. 3.2. (a) Computation of a regular Loop subdivision patch. The shaded domain is a quartic box-spline patch with its surrounding twelve

control points; and (b) computation of an irregular Loop subdivision patch. The control point denoted as ª1º is an extraordinary control

point. Subdividing this patch once can generate three small quartic box-spline patches and one uncomputable patch. This uncomputable patch

can be repeatedly subdivided to generate more quartic box-spline patches.

patches called limit patches. Each triangular limit patch on the control mesh can be used as a parametric region of

triangular surface nesting on the limit surface. We have an explicit expression for the triangular loop surface patch

with regular topology structure, which means the valence of the three control points for this patch must be six.

Then a quartic box-spline expression can be used to compute the regular Loop subdivision surface patch, described

as

S(x(u, v)) =
12
∑

i=1

Bi (u, v)xk
i , (3.1)

where we use (u, v, 1−u −v) as the barycentric coordinates of the parametric limit patch, xk
i are the corresponding

2-ring surrounding neighbor control points of the control mesh (See Fig. 3.2 (a)), and Bi are the quartic box-spline

(See their analytic expression in [46]). We have no explicitly computable formula for the triangular loop surface

patch with an irregular topology structure, which means the valence of at least one control point for this patch is

not six. Fortunately, we can still use the quartic box-spline form (3.1) to calculate the resulting limit surface patch

through a fast algorithm proposed by Stam [46]. The core idea is to subdivide repeatedly this patch until the position

you need to calculate is included in a quartic box-spline patch (See Fig. 3.2(b)).

The Loop basis functions have the 2-ring of triangles surrounding the given control points as its natural support

set. The evaluation of the limit surface can be performed at some fixed parameter points (Gauss points) within every

limit patch. In the context of finite element simulations, we only need to ensure that the quadratures are computed

to arrive at the necessary precision. Therefore, we only need to perform very limited subdivision steps to make all

of the hierarchical limit patches become computable quartic box-splines patches. To reduce the computation cost,

we develop a simplified and generalized approach for adaptive discretization subdivision, whose basic idea is to

replace the refinement of mesh patches with the refinement of basis functions (see [27]).

3.1.3. Finite element space of loop subdivision

Based on an initial control mesh Ω
0
h of Loop subdivision, the hierarchical control meshes are denoted as

Ω
k
h , k = 0, . . . ,∞, where k denotes the subdivision level. We use S to denote the limit surface after doing

the infinite subdivision process k → ∞. As described in Section 3.1.1, considering a control point xk
0 of the

mesh Ω
k
h whose valence is n, we denote its 1-ring neighboring control points as xk

j , j = 1, 2, . . . , n. We can

recalculate it by the formula xk+1
0 = (1−nβ)xk

0+β
∑n

j=1 xk
j which is converged under the condition of the parameter

β ∈ (−3/8n, 13/8n). There exists an explicit expression about the limit position of each point on the control mesh

described in Lemma 3.1.

6
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Lemma 3.1. Consider a control point xk
0 of the triangular mesh Ω

k
h , where its valence is n, and denote xk

j , j =
1, . . . , n, be its 1-ring neighboring control points. All these control points converge to a single position

x̂0 = (1 − nl)xk
0 + l

n
∑

j=1

xk
j , l = 1

n + 3/(8β)
, (3.2)

as the subdivision step k → ∞ (see [22] for the proof).

Our finite element function space is defined by the limit process based on the Loop subdivision approach. This

function space is used to describe the solution surface area with any topology structure and perform the evolution

of the phase-field functions defined on the solution surface area. The methodology of using loop subdivision to

represent the solution surface area with any topology structure is consistent with the concept of the IGA strategy.

The triangulation form of the limit surface S is denoted as Sh where h denotes the mesh size. The triangular mesh

Sh =
⋃k

α=1 eα, e̊α

⋂

e̊β = ∅ for α ̸= β, where e̊α is within the triangular patch eα . About each patch eα , it needs

to be parameterized as

xα : e → eα; (u, v) ↦→ xα(u, v),

where the parametric element e = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}, u and v are its barycentric coordinates. The

domain area eα of Sh can always be calculated by the explicit formula of the quartic box-spline.

We denote the set of basis functions φ1, . . . , φn for the finite element function space H 2(Sh) where the control

mesh Sh has n control points x1, · · · , xn . As described above, our basis functions result from the limit process

based on Loop subdivision approach. The solution surface S is exactly represented as the limit form through the

Loop subdivision scheme,

S(x(u, v)) = S(x(u, v), y(u, v), z(u, v)) =
n
∑

j=1

φ j (u, v)x j . (3.3)

This kind of the basis functions also have the superior properties of classical finite elements. Firstly, they are

nonnegative everywhere and positive around their corresponding control point because the weight coefficients of the

subdivision schemes are positive. Secondly, because the limit value at each control point x j is a linear summation

of itself and its one-ring neighboring control points, the support of each basis function has two-ring neighborhoods.

Finally, the weight coefficients of all subdivision schemes are summed to one, therefore we have
∑m

j=0 φ j = 1.

3.2. EIEQ time advancing strategy

The goal of the time-advance strategy is to develop a linear, easy-to-implement, unconditionally energy stable

scheme for the PDE system. Although the second-order Allen±Cahn system (2.7) and the fourth-order Cahn±Hilliard

system (2.8)±(2.9) have different forms, it is well known that the challenge to achieve this goal is the same, that

is, find an appropriate discrete format about the nonlinear term f (φ). The procedure of using the EIEQ method is

to design some new auxiliary variables, where one variable is used to ªquadratizeº the nonlinear functional F(φ),

and the other is used to realize the decoupling type calculation. In this way, a linear and second-order time accurate

scheme with the property of unconditional energy stability can be obtained and one only needs to solve a few

elliptic constant-coefficient models with the decoupled structure at each time step, thus achieving very efficient

computation. We present the details as follows.

Since the double-well functional F(φ) is bounded from below, we define the first auxiliary variable U (φ) by the

following formulation

U (φ) =
√

F(φ) − S

2
φ2 + B, (3.4)

where S, B > 0 are two fixed constants. Note that the negative quadratic term related to S can be always bounded

by F(φ) from below since F(φ) is a fourth-order polynomial with a positive leading coefficient. The benefit of

adding the positive constant B is to guarantee the term in the square root is always positive. We denote

H = 2
d

dφ
U (φ) = f (φ) − Sφ

√

F(φ) − S
2
φ2 + B

. (3.5)

7
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We further define the second nonlocal auxiliary variable Q(t), and a special ODE for it, that reads as
{

Qt = (HU, φt ) − (Hφt , U ),

Q|t=0 = 1.
(3.6)

Obviously Qt = 0 and Q|(t=0) = 1, so that Q(t) = 1.

Using these two newly defined terms U and Q, taking the time derivative of (3.4) and merging (3.6), the

Allen±Cahn system (2.7) is rewritten as:

φt = ϵ2
∆sφ − Sφ − Q HU, (3.7)

Ut = 1

2
Q Hφt , (3.8)

Qt = (HU, φt ) − (Hφt , U ), (3.9)

where the initial condition φ|t=0 = φ0, U |t=0 =
√

F(φ0) − S
2
φ2

0 + B.

The new transformation system (3.7)±(3.9) is actually completely equivalent to the original system. This can be

easily deduced by integrating the ODE (3.8) over time and noting that Q = 1. This new system also retains the

law of energy dissipation described in Theorem 3.1.

Theorem 3.1. The transformed equivalent system (3.7)±(3.9) holds the law of the energy dissipation as

d

dt
E(φ, Q, U ) = −∥φt∥2 ≤ 0, (3.10)

where

E(φ, Q, U ) =
∫

s

(

ϵ2

2
|∇sφ|2 + S

2
|φ|2 + |U |2 − B

)

dx + 1

2
|Q|2 − 1

2
. (3.11)

Proof. By taking the L2 inner product of (3.7) with φt , of (3.8) with 2U , of (3.9) with Q, and perform the

integration by parts, we get

(φt , φt ) = −ϵ2(∇sφ, ∇sφt ) − S(φ, φt ) − Q(HU, φt ), (3.12)

d

dt

∫

s

|U |2dx = Q(Hφt , U ), (3.13)

d

dt

(

1

2
|Q|2

)

= Q(HU, φt ) − Q(Hφt , U ). (3.14)

Combining (3.12)±(3.14), we gain the law of the energy dissipation (3.10). □

For the Cahn±Hilliard system (2.8)±(2.9), we implement the similar procedure, thus it can be rewritten as:

φt − ∆sw = 0, (3.15)

w = −ϵ2
∆sφ + Sφ + Q HU, (3.16)

Ut = 1

2
Q Hφt , (3.17)

Qt = (HU, φt ) − (Hφt , U ), (3.18)

where H and Q are defined as in (3.5) and (3.6) respectively, and the initial condition φ|t=0 = φ0, U |t=0 =
√

F(φ0) − S
2
φ2

0 + B.

The new transformed system (3.15)±(3.18) also follows the law of the energy dissipation, which is given as

follows.

Theorem 3.2. The transformed equivalent system (3.15)±(3.18) holds the law of the energy dissipation as

d

dt
E(φ, Q, U ) = −∥∇sw∥2 ≤ 0, (3.19)

8
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where

E(φ, Q, U ) =
∫

s

(

ϵ2

2
|∇sφ|2 + S

2
|φ|2 + |U |2 − B

)

dx + 1

2
|Q|2 − 1

2
. (3.20)

Proof. By taking the L2 inner product of (3.15) with w, of (3.16) with −φt , of (3.17) with 2U , of (3.18) with Q,

and performing the integration by parts, we get

(φt , w) = −(∇sw, ∇sw), (3.21)

−(w, φt ) = −ϵ2(∇sφ, ∇sφt ) − S(φ, φt ) − Q(HU, φt ), (3.22)

d

dt

∫

s

|U |2dx = Q(Hφt , U ), (3.23)

d

dt

(

1

2
|Q|2

)

= Q(HU, φt ) − Q(Hφt , U ). (3.24)

Combining (3.21)±(3.24), we obtain the law of the energy dissipation (3.19). □

3.3. Fully discrete schemes

In this subsection, the fully discrete schemes for solving the Allen±Cahn system (3.7)±(3.9) and the Cahn±

Hilliard system (3.15)±(3.17) are given. We also prove their unconditional energy stability, and also design a

decoupling implementation process for them. In what follows, denote the time step size as δt > 0 and tn = nδt

for 0 ≤ n ≤ N = [T/δt]. Take the test functions θh, ϑh and ζh ∈ H 2(Sh), which is our IGA finite element space

induced by the limit form of Loop subdivision as described in Section 3.1.

3.3.1. Allen±Cahn system

Assuming that φn
h , U n

h , Qn and φn−1
h , U n−1

h , Qn−1 are known, we compute φn+1
h , U n+1

h , Qn+1 by the following

fully-discrete, second-order backward difference formula (BDF2) numerical scheme:
(

3φn+1
h − 4φn

h + φn−1
h

2δt
, θh

)

= −ϵ2(∇sφ
n+1
h , ∇sθh) − S(φn+1

h , θh) − Qn+1(H∗
h U ∗

h , θh), (3.25)

(

3U n+1
h − 4U n

h + U n−1
h

2δt
, ζh

)

= 1

2
Qn+1

(

H∗
h φ∗

ht , ζh

)

, (3.26)

3Qn+1 − 4Qn + Qn−1

2δt
= (H∗

h U ∗
h ,

3φn+1
h − 4φn

h + φn−1
h

2δt
) − (H∗

h φ∗
ht , U n+1

h ), (3.27)

where
⎧

⎨

⎩

φ∗
h = 2φn

h − φn−1
h , U ∗

h = 2U n
h − U n−1

h ,

H∗
h = H (φ∗

h ), φ∗
ht = 5φn

h − 8φn−1
h + 3φn−2

h

2δt
.

(3.28)

The unconditional energy stability of the scheme (3.25)±(3.27) is shown as below.

Theorem 3.3. The second-order scheme (3.25)±(3.27) is unconditionally energy stable, i.e., satisfies the following

discrete energy dissipation law:

En+1
ac − En

ac ≤ −δt∥3φn+1
h − 4φn

h + φn−1
h

2δt
∥2, (3.29)

where, for an integer k ≥ 0, the discrete energy Ek
ac is defined as

Ek
ac = ϵ2

4
(∥∇sφ

k
h∥2 + ∥2∇sφ

k
h − ∇sφ

k−1
h ∥2) + S

4
(∥φk

h∥2 + ∥2φk
h − φk−1

h ∥2)

+ 1

2
(∥U k

h ∥2 + ∥2U k
h − U k−1

h ∥2) + 1

4
(|Qk |2 + |2Qk − Qk−1|2) − B|S| − 1

2
.

(3.30)

9
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Proof. By taking θh = 3φn+1
h

−4φn
h
+φn−1

h

2δt
in (3.25) and performing the integration by parts, we derive

δt∥3φn+1
h − 4φn

h + φn−1
h

2δt
∥2 = − ϵ2

4
(∥∇sφ

n+1
h ∥2 − ∥∇sφ

n
h ∥2 + ∥2∇sφ

n+1
h − ∇sφ

n
h ∥2

− ∥2∇sφ
n
h − ∇sφ

n−1
h ∥2 + ∥∇sφ

n+1
h − 2∇sφ

n
h + ∇sφ

n−1
h ∥2)

− S

4
(∥φn+1

h ∥2 − ∥φn
h ∥2 + ∥2φn+1

h − φn
h ∥2

− ∥2φn
h − φn−1

h ∥2 + ∥φn+1
h − 2φn

h + φn−1
h ∥2)

− Qn+1(H∗
h U ∗

h ,
3φn+1

h − 4φn
h + φn−1

h

2
),

(3.31)

where the following identity is used:

2(3a − 4b + c, a) = a2 − b2 + (2a − b)2 − (2b − c)2 + (a − 2b + c)2. (3.32)

By taking ζh = 2δtU n+1
h in (3.26) and using (3.32), we have

1

2
(∥U n+1

h ∥2 − ∥U n
h ∥2 + ∥2U n+1

h − U n
h ∥2 − ∥2U n

h − U n−1
h ∥2

+ ∥U n+1
h − 2U n

h + U n−1
h ∥2) = δt Qn+1(H∗

h φ∗
ht , U n+1

h ).

(3.33)

By multiplying (3.27) with δt Qn+1 and using (3.32), we have

1

4
(|Qn+1|2 − |Qn|2 + |2Qn+1 − Qn|2 − |2Qn − Qn−1|2 + |Qn+1 − 2Qn + Qn−1|2)

= Qn+1(H∗
h U ∗

h ,
3φn+1

h − 4φn
h + φn−1

h

2
) − δt Qn+1(H∗

h φ∗
ht , U n+1

h ).

(3.34)

By combining (3.31), (3.33) and (3.34), we get

ϵ2

4
(∥∇sφ

n+1
h ∥2 − ∥∇sφ

n
h ∥2 + ∥2∇sφ

n+1
h − ∇sφ

n
h ∥2 − ∥2∇sφ

n
h − ∇sφ

n−1
h ∥2

+∥∇sφ
n+1
h − 2∇sφ

n
h + ∇sφ

n−1
h ∥2)

+ S

4
(∥φn+1

h ∥2 − ∥φn
h ∥2 + ∥2φn+1

h − φn
h ∥2 − ∥2φn

h − φn−1
h ∥2 + ∥φn+1

h − 2φn
h + φn−1

h ∥2)

+1

2
(∥U n+1

h ∥2 − ∥U n
h ∥2 + ∥2U n+1

h − U n
h ∥2 − ∥2U n

h − U n−1
h ∥2 + ∥U n+1

h − 2U n
h + U n−1

h ∥2)

+1

4
(|Qn+1|2 − |Qn|2 + |2Qn+1 − Qn|2 − |2Qn − Qn−1|2 + |Qn+1 − 2Qn + Qn−1|2)

= −δt∥3φn+1
h − 4φn

h + φn−1
h

2δt
∥2,

which implies the energy stability (3.29) after we ignore some positive terms. □

3.3.2. Cahn±Hilliard system

Assuming that φn
h , wn

h , U n
h , Qn and φn−1

h , wn−1
h , U n−1

h , Qn−1 are known, we compute φn+1
h , wn+1

h , U n+1
h , Qn+1

by the following fully-discrete scheme:
(

3φn+1
h − 4φn

h + φn−1
h

2δt
, θh

)

= −(∇sw
n+1
h , ∇sθh), (3.35)

(wn+1
h , ϑh) = ϵ2(∇sφ

n+1
h , ∇sϑh) + S(φn+1

h , ϑh) + Qn+1(H∗
h U ∗

h , ϑh), (3.36)
(

3U n+1
h − 4U n

h + U n−1
h

2δt
, ζh

)

= 1

2
Qn+1

(

H∗
h φ∗

ht , ζh

)

, (3.37)

10
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3Qn+1 − 4Qn + Qn−1

2δt
= (H∗

h U ∗
h ,

3φn+1
h − 4φn

h + φn−1
h

2δt
) − (H∗

h φ∗
ht , U n+1

h ), (3.38)

where φ∗
h , H∗

h and φ∗
ht are the same definition as (3.28).

The unconditional energy stability is shown below.

Theorem 3.4. The second-order scheme (3.35)±(3.38) is unconditionally energy stable, i.e., satisfies the following

discrete energy dissipation law:

En+1
ch − En

ch ≤ −δt∥∇sw
n+1
h ∥2, (3.39)

where, for an integer k ≥ 0, the discrete energy Ek
ch is defined as

Ek
ch = ϵ2

4
(∥∇sφ

k
h∥2 + ∥2∇sφ

k
h − ∇sφ

k−1
h ∥2) + S

4
(∥φk

h∥2 + ∥2φk
h − φk−1

h ∥2)

+ 1

2
(∥U k

h ∥2 + ∥2U k
h − U k−1

h ∥2) + 1

4
(|Qk |2 + |2Qk − Qk−1|2) − B|S| − 1

2
.

(3.40)

Proof. By taking θh = −δtwn+1
h in (3.35) and performing the integration by parts, we get

−
(

3φn+1
h − 4φn

h + φn−1
h

2
, wn+1

h

)

= δt∥∇sw
n+1
h ∥2. (3.41)

By taking ϑh = 3φn+1
h

−4φn
h
+φn−1

h

2
in (3.36) and using (3.32), we derive

(

wn+1
h ,

3φn+1
h − 4φn

h + φn−1
h

2

)

= ϵ2

4
(∥∇sφ

n+1
h ∥2 − ∥∇sφ

n
h ∥2 + ∥2∇sφ

n+1
h − ∇sφ

n
h ∥2

− ∥2∇sφ
n
h − ∇sφ

n−1
h ∥2 + ∥∇sφ

n+1
h − 2∇sφ

n
h + ∇sφ

n−1
h ∥2)

+ S

4
(∥φn+1

h ∥2 − ∥φn
h ∥2 + ∥2φn+1

h − φn
h ∥2

− ∥2φn
h − φn−1

h ∥2 + ∥φn+1
h − 2φn

h + φn−1
h ∥2)

+ Qn+1(H∗
h U ∗

h ,
3φn+1

h − 4φn
h + φn−1

h

2
).

(3.42)

By taking ζh = 2δtU n+1
h in (3.37) and using (3.32), we get

1

2
(∥U n+1

h ∥2 − ∥U n
h ∥2 + ∥2U n+1

h − U n
h ∥2 − ∥2U n

h − U n−1
h ∥2

+ ∥U n+1
h − 2U n

h + U n−1
h ∥2) = δt Qn+1(H∗

h φ∗
ht , U n+1

h ).

(3.43)

By multiplying (3.38) with δt Qn+1 and using (3.32), we obtain

1

2
(3Qn+1 − 4Qn + Qn−1)Qn+1 =Qn+1(H∗

h U ∗
h ,

3φn+1
h − 4φn

h + φn−1
h

2
)

− δt Qn+1(H∗
h φ∗

ht , U n+1
h ).

(3.44)

By combining (3.41), (3.42), (3.43) and (3.44), and using (3.32), we deduce

ϵ2

4
(∥∇sφ

n+1
h ∥2 − ∥∇sφ

n
h ∥2 + ∥2∇sφ

n+1
h − ∇sφ

n
h ∥2 − ∥2∇sφ

n
h − ∇sφ

n−1
h ∥2

+∥∇sφ
n+1
h − 2∇sφ

n
h + ∇sφ

n−1
h ∥2)

+ S

4
(∥φn+1

h ∥2 − ∥φn
h ∥2 + ∥2φn+1

h − φn
h ∥2 − ∥2φn

h − φn−1
h ∥2 + ∥φn+1

h − 2φn
h + φn−1

h ∥2)

+1

2
(∥U n+1

h ∥2 − ∥U n
h ∥2 + ∥2U n+1

h − U n
h ∥2 − ∥2U n

h − U n−1
h ∥2 + ∥U n+1

h − 2U n
h + U n−1

h ∥2)

11
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+1

4
(|Qn+1|2 − |Qn|2 + |2Qn+1 − Qn|2 − |2Qn − Qn−1|2 + |Qn+1 − 2Qn + Qn−1|2)

= −δt∥∇sw
n+1
h ∥2,

which implies the energy stability (3.39) after we ignore some positive terms. □

3.3.3. Decoupled scheme by the nonlocal splitting skill

The two developed schemes, (3.25)±(3.27) and (3.35)±(3.38), appear to be fully coupled. However, we can

achieve fully decoupled type computation through a non-local splitting approach, which is described below.

Allen±Cahn system

Step 1: We split φn+1
h and U n+1

h into a linear combination form as

φn+1
h = φn+1

1h + Qn+1φn+1
2h , U n+1

h = U n+1
1h + Qn+1U n+1

2h, (3.45)

then we solve φn+1
ih and U n+1

ih , i = 1, 2 as follows.

Using (3.45), we replace φn+1
h in the system (3.25)±(3.26), and decompose the obtained equations according to

Qn+1 into the following four systems:

(
3φn+1

1h − 4φn
h + φn−1

h

2δt
, θh) = −ϵ2(∇sφ

n+1
1h , ∇sθh) − S(φn+1

1h , θh), (3.46)

(
3φn+1

2h

2δt
, θh) = −ϵ2(∇sφ

n+1
2h , ∇sθh) − S(φn+1

2h , θh) − (H∗
h U ∗

h , θh), (3.47)

(
3U n+1

1h

2δt
, ζh) = (

4U n
h − U n−1

h

2δt
, ζh), (3.48)

(
3U n+1

2h

2δt
, ζh) = 1

2
(H∗

h φ∗
ht , ζh). (3.49)

All the above equations are completely independent. (3.46) and (3.47) can be easily solved because they are linear

elliptic with constant coefficients, and (3.48) and (3.49) are just algebraic equations thus they can also easily be

solved.

Step 2: By use of the known φn+1
h and U n+1

h obtained by solving (3.46)±(3.49), we update Qn+1 in (3.38) through

(

3

2δt
− η2

)

Qn+1 = 1

2δt
(4Qn − Qn−1) + η1, (3.50)

where η1 and η2 are given as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

η1 = (H∗
h U ∗

h ,
3φn+1

1h − 4φn
h + φn−1

h

2δt
) − (H∗

h φ∗
ht , U n+1

1h ),

η2 = (H∗
h U ∗

h ,
3φn+1

2h

2δt
) − (H∗

h φ∗
ht , U n+1

2h ),

(3.51)

and H∗
h , U ∗

h and φ∗
ht are given in (3.28).

We need to prove the solvability of (3.50) through showing the coefficient 3
2δt

− η2 ̸= 0. Firstly by taking

θh = 3
2δt

φn+1
2h in (3.47), we get











3φn+1
2h

2δt











2

+ 3ϵ2

2δt



∇sφ
n+1
2h





2 + 3S

2δt



φn+1
2h





2 = −(H∗
h U ∗

h ,
3φn+1

2h

2δt
), (3.52)

we then choose ζh = 2U n+1
2h in (3.49) to achieve











3U n+1
2h

δt











2

= (H∗
h φ∗

h , U n+1
2h ). (3.53)

We can get −η2 ≥ 0 by combining (3.52) and (3.53). Thus (3.50) is always solvable.

12
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Cahn±Hilliard system:

Step 1: We split φn+1
h , wn+1

h and U n+1
h into a linear combination form as

φn+1
h = φn+1

1h + Qn+1φn+1
2h , wn+1

h = wn+1
1h + Qn+1wn+1

2h , U n+1
h = U n+1

1h + Qn+1U n+1
2h, (3.54)

then we solve φn+1
ih , wn+1

ih and U n+1
ih , i = 1, 2 as follows.

Using (3.54), we replace φn+1
h , wn+1

h and U n+1
h in the system (3.35)±(3.37), and decompose the obtained

equations according to Qn+1 into the following four systems:
⎧

⎨

⎩

(
3φn+1

1h − 4φn
h + φn−1

h

2δt
, θh) = −(∇sw

n+1
1h , ∇sθh),

(wn+1
1h , ϑh) = ϵ2(∇sφ

n+1
1h , ∇sϑh) + S(φn+1

1h , ϑh),

(3.55)

⎧

⎨

⎩

(
3φn+1

2h

2δt
, θh) = −(∇sw

n+1
2h , ∇sθh),

(wn+1
2h , ϑh) = ϵ2(∇sφ

n+1
2h , ∇sϑh) + S(φn+1

2h , ϑh) + (H∗
h U ∗

h , ϑh),

(3.56)

(
3U n+1

1h

2δt
, ζh) = (

4U n
h − U n−1

h

2δt
, ζh), (3.57)

(
3U n+1

2h

2δt
, ζh) = 1

2
(H∗

h φ∗
ht , ζh). (3.58)

It can be seen the above systems are all independent, and (3.55)±(3.56) are linear elliptic and only have constant

coefficients.

Step 2: We update Qn+1 in (3.38) through the same Step 2 of solving the Allen±Cahn system.

Similarly, we need to prove the solvability of Q in (3.50) through showing the coefficient 3
2δt

− η2 ̸= 0. By

taking θh = wn+1
2h and ϑh = 3

2δt
φn+1

2h in (3.56), we get



∇sw
n+1
2h





2 + 3ϵ2

2δt



∇sφ
n+1
2h





2 + 3S

2δt



φn+1
2h





2 = −(H∗
h U ∗

h ,
3φn+1

2h

2δt
), (3.59)

then choosing ζh = 2U n+1
2h in (3.58), we obtain











3U n+1
2h

δt











2

= (H∗
h φ∗

h , U n+1
2h ). (3.60)

We can get −η2 ≥ 0 by combining (3.59) and (3.60). Thus (3.50) is always solvable.

Through the above decoupling process, the calculation of all variables are fully decoupled, and all schemes only

have constant coefficients, yielding very efficient computations in practice.

4. Numerical implementation

In this section, we carry out some numerical simulations to validate the accuracy, efficiency, and energy stability

of the proposed schemes. The solution surface regions for numerical experiments result from the limit process of

the proposed Loop subdivision. Similar to the classical FEM, the Gaussian integral calculation is carried out on

each patch of the triangular discretization for the limit surface. The linear systems of the full discretization schemes

for these two equations are highly sparse, we need a robust iterative method to solve them. In this paper, we adopt

the GMRES solver, where we set the number of the iterative steps long enough to obtain proper convergence of

the proposed schemes.

4.1. Convergence test

In the first numerical test, we verify the convergence rates of the developed numerical schemes. We consider the

surface of a unit sphere, i.e.,

S = {(x, y, z) :
√

x2 + y2 + z2 = 1}. (4.1)

13
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Fig. 4.1. (a) Convergence rate of our scheme for the Allen±Cahn system; and (b) Convergence rate of our scheme for the Cahn±Hilliard

system.

We define the set of parameters B = 1e4, ϵ = 1e−4, S = 4, and the initial condition φ0 = 0.1 cos(2x)+0.2 cos(y).

To obtain the convergence rate, a series of uniform meshes Shi
from coarse to refined are performed, where the

numbers of the vertex valence are in [4, 6], and hi is the mesh size. Since the subdivision-based IGA method is

second-order accurate (cf. [26]), we set the time step sizes δti = Chi for the i th level surface mesh Shi
where

C is a given constant between 0 and 1. Because the exact solution is unknown for us, we choose the solution

obtained with a very fine mesh size computed as the benchmark solution which is treated approximately as the

exact solution to compute the numerical errors. The L2 numerical errors of two schemes are plotted in Fig. 4.1

when t = 2.56e−1, where the total numbers of patches/vertices for these surface models are 512/258, 2048/1026,

8192/4098, 32768/16386, and the corresponding mesh sizes hi = 0.2543, 0.1169, 0.0622, 0.0326, respectively.

We observe that both schemes possess the second-order accuracy for space.

4.2. Phase separation dynamics on curved complex surfaces

In this section, we carry out the phase separation (spinodal decomposition) simulations for both of the Allen±Cahn

system and the Cahn±Hilliard system. The initial conditions are set as

φ0 = 0.001rand(x, y, z), (4.2)

where the term rand(x, y, z) is the random number in [−1, 1] with zero mean.

4.2.1. Allen±Cahn system

We first implement the scheme (3.45)±(3.49) for the Allen±Cahn system by setting the computation domain as

a sphere, i.e., S1 = {(x, y, z) :
√

x2 + y2 + z2 = 10}. This surface is discretized with 32768 Loop limit subdivision

patches by use of 16386 control vertices in Fig. 4.2, where the span of the vertex valence is 4 to 6. We set the

model parameters δt = 3e−2, B = 7e3, ϵ = 3e−2, and S = 4. We present the snapshots of the profile for the

phase-field variable φ at the computational time steps of 10, 20, 40, 70, 100, 200, and 8000, where the phase

separation dynamics evolve over time, and the final steady-state solution presents a two-layer pattern.

We further change the computational domain to an annular region, which is inside the domain S2 = {(x, y, z) :
x ∈ [−4.98, 4.98], y ∈ [−4.98, 4.98], z ∈ [−1.32, 1.32]}. The surface is discretized with 51200 Loop limit

subdivision patches by use of 25600 control vertices, and the span of the vertex valence is 4 to 6. The model

parameters are taken as δt = 1e−2, B = 8e3, ϵ = 6e−3, and S = 4. In Fig. 4.3, we plot the snapshots of the

numerical solution φ at the computational time steps of 10, 20, 50, 100, 200, 280, and 6000. The final steady state

solution also appears to be a two-layer mode, however, since the Allen±Cahn system is not volume-conserving, we

can see that the blue region (φ = −1) expands, the red region (φ = 1) shrinks slightly.
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Fig. 4.2. The Allen±Cahn system for a closed sphere S1, where the first subfigure is the profile of the initial value φ0, and all other

subfigures correspond to the computation time steps of 10, 20, 40, 70, 100, 200 and 8000, respectively.

We continue to carry out simulation on a more complex ªbunnyº surface, which is within the domain S3 =
{(x, y, z) : x ∈ [−9.12, 6.27], y ∈ [−3.38, 18.72], z ∈ [−6.49, 6.08]}. The surface is discretized with 144046 Loop

subdivision patches by use of 72047 control points, and the span of the vertex valence is [3, 10]. We set the model

parameters δt = 4e−3, B = 9e3, ϵ = 5e−3, and S = 4. Snapshots of the profile for the phase-field variable φ are

taken at the computational time steps of 20, 40, 60, 100, 200, 400 and 6000 in Fig. 4.4 respectively.

Finally, we verify the energy stability of the developed scheme. For the numerical test in Fig. 4.3, we choose

three different time step sizes δt = 1e−2, 5e−3 and 2.5e−3 and plot the evolution of the energy curves in Fig. 4.5.

The energy curves show the decays for the different time step sizes, which confirm our algorithm is unconditional

energy stable.

4.2.2. Cahn±Hilliard system

To verify the effectiveness of the proposed scheme (3.54)±(3.58) for the Cahn±Hilliard equation, in this

subsection, we carry out phase separation simulations on a number of complex surfaces. The first one is on the

concave surface model within the domain S4 = {(x, y, z) : x ∈ [−3.08, 3.08], y ∈ [−3.08, 3.08], z ∈ [−0.69, 0.69]},
shown in Fig. 4.6. The surface is discretized with 32768 Loop subdivision patches by using 16386 control vertices,

and the span of the vertex valence is 4 to 6. The model parameters are set as δt = 2e−3, B = 1e4, ϵ = 2e−3, and

S = 4. In Fig. 4.6, the snapshots of the phase-field variable φ are presented at the computational time steps of 20,

30, 100, 300, 500, 1500, and 8000, where the final equilibrium solution presents a striped pattern on the concave

surface.

In Fig. 4.7, the phase separation simulation is carried out on a splayed surface model S5 = {(x, y, z) : x ∈
[−0.61, 0.61], y ∈ [−1.27, 1.27], z ∈ [−0.26, 0.26]}, which is discretized with 24576 Loop subdivision patches

using 12286 control vertices, and the span of the vertex valence is 4 to 8. We choose the time step size δt = 2e−4

and the parameters B = 1e4, ϵ = 1.8e−4, and S = 4. The snapshots of the phase-field variable φ are taken at the

computation time steps of 30, 50, 100, 500, 1200, 2400, and 8000, where the steady state is achieved after around

3000 time steps.

We continue to carry out the phase separation simulation on a more complex human head surface model within

the domain S6 = {(x, y, z) : x ∈ [−3.46, 3.46], y ∈ [−4.97, 4.97], z ∈ [−4.96, 4.96] in Fig. 4.8. The surface of

the human head is discretized with 268686 Loop subdivision patches using 134,345 control vertices, and the span

of the vertex valence is 3 to 12. We use the time step size δt = 1e−3 and the parameters B = 1e4, ϵ = 1.2e−3,

and S = 4. In Fig. 4.8, snapshots of the profiles for the phase-field variable φ are taken at the time steps of 30,
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Fig. 4.3. The Allen±Cahn system for a ring S2, where the first subfigure is the profile of the initial value φ0, and all other subfigures

correspond to the computation time steps of 10, 20, 50, 100, 200, 280, and 6000, respectively.

Fig. 4.4. The Allen±Cahn system for a bunny model S3, where the first subfigure is the profile of the initial value φ0, and all other subfigures

correspond to the computation time steps of 20, 40, 60, 100, 200, 400 and 6000, respectively.

100, 300, 500, 1000, 2000, and 8000, respectively, where the final equilibrium solution is observed after around

3000 time steps.

Finally, to show the energy stability, we choose three different time step sizes δt = 2e−3, 1e−3 and 5e−4 to

test the energy evolution of the numerical example given in Fig. 4.6. In Fig. 4.9, we plot the evolution of the energy

curves that show the energy monotonically decays with respect to time. We can observe that the energy decrease

decays very fast in the early stage of evolution, and tends to be flat in the later stage. The energy curves show the

decays for the different time step sizes, which confirm our algorithm is unconditional energy stable.
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Fig. 4.5. The Allen±Cahn system for the ring in Fig. 4.3: Time evolution of the free energy for three different time step sizes δt = 1e−2, 5e−3

and 2.5e−3 which are shown in (a), (b) and (c) respectively. The energy curves show the decays for the different time step sizes, that

confirm our algorithm is unconditionally stable.

Fig. 4.6. The Cahn±Hilliard system for a concave surface S4, where the first subfigure is the profile of the initial value φ0, and all other

subfigures correspond to the computation time steps of 20, 30, 100, 300, 500, 1500 and 8000, respectively.

5. Conclusions

In this paper, we develop a fully discrete numerical strategy for solving the Allen±Cahn equation and the Cahn±

Hilliard equation on complex curved surfaces. The scheme combines the subdivision-based IGA method for spatial

discretization and the EIEQ method for time discretization. The advantages of the subdivision-based IGA method

include the flexibility for complex surfaces with arbitrary topology structures and exactly expressible properties for

geometries which can be remained unchanged throughout the h-refinement process. Its combination with the EIEQ

method enables us to possess a linear, second-order accurate in time, decoupled, and unconditionally energy stable

scheme. The high efficiency of the developed algorithm is shown by transforming the original highly nonlinear

system into a few independent elliptic equations with only constant coefficients that only need to be solved at

each time step. We also demonstrate unconditional energy stability and develop a decoupling-type implementation
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Fig. 4.7. The Cahn±Hilliard system for a splayed surface model S5, where the first subfigure is the profile of the initial value φ0, and all

other subfigures correspond to the computation time steps of 30, 50, 100, 500, 1200, 2400 and 8000, respectively.

strategy, and demonstrate the accuracy and stability of the developed numerical approach by simulating various

numerical examples on the complex benchmark curved surfaces such as bunny, splayed, and head surfaces.
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Fig. 4.8. The Cahn±Hilliard system for a head surface S6, where the first subfigure is the profile of the initial value φ0, and all other

subfigures correspond to the computation time steps of 30, 100, 300, 500, 1000, 2000 and 8000, respectively.

Fig. 4.9. The Cahn±Hilliard system for the concave surface model of Fig. 4.6: Time evolution of the free functional for three different time

step sizes δt = 2e−3, 1e−3 and 5e−4 which are shown in (a), (b) and (c) respectively. The energy curves show the decays for the different

time step sizes, which confirm our algorithm is unconditionally stable.
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