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Abstract

We study nonparametric density estimation in
non-stationary drift settings. Given a sequence
of independent samples taken from a distribution
that gradually changes in time, the goal is to com-
pute the best estimate for the current distribution.
We prove tight minimax risk bounds for both dis-
crete and continuous smooth densities, where the
minimum is over all possible estimates and the
maximum is over all possible distributions that
satisfy the drift constraints. Our technique han-
dles a broad class of drift models and generalizes
previous results on agnostic learning under drift.

1. Introduction
Density estimation is a fundamental concept in statistics
with numerous applications in data analysis and machine
learning. Given a set of samples, the goal is to best estimate
the probability distribution that generated these samples,
often subject to some parametric or nonparametric assump-
tions on the family of candidate distributions. This problem
has been studied extensively, for both discrete and contin-
uous distribution functions, assuming that the samples are
independent and identically distributed according to the dis-
tribution that we aim to estimate (Devroye & Lugosi, 2001).

In many data analysis applications, ranging from customers’
preferences to weather conditions, the assumption that the
samples are identically distributed is unrealistic. The un-
derlying distribution is gradually changing over time, and
estimating the current distribution inevitably relies on past
data from related but not identical distributions. This work
presents the first tight bounds for density estimates of both
discrete and continuous smooth distributions from samples
that are independent but are generated by distributions that
drift in time.

Distribution drift has been studied in the context of agnostic
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learning with the assumption of equal bounded drift at each
step (Bartlett, 1992), i.e. there is a constant ∆ > 0, such that
the drift between two distribution i steps apart is bounded by
i∆. In this case, it has been shown that the minimax risk for
learning a family of binary classifiers with VC dimension ν
is Θ((ν∆)1/3) (Barve & Long, 1996; Long, 1999), where
the minimax risk characterizes the maximal expected error
of the best algorithm that solves the problem within the
specified drift assumptions. The minimax risk has not been
studied with other drift patterns in this context.

In this work, we study the more general problem of density
estimation, under a more detailed family of drift models. In
particular, our results apply to any regular drift sequence,
where the ith element of this sequence provides an upper
bound to the distance of the current distribution and the i
distribution in the sequence, and the regularity assumption
prevents any abrupt change in the drift (Definition 3.1). The
distance used depends on the specific estimation problem,
in particular, we will use the total variation distance in the
case of discrete densities, and the L2 distance in the case of
smooth densities. The bounded drift per step is one possible
model in our setting. However, when more information is
available, we obtain more informative tight bounds.

For the problem of estimating a discrete distribution with
support size k using n samples from a drifting distribution,
we show a minimax risk of Θ

(√
k/r
)

with respect to the
total variation distance, where r ≤ n is an integer that is
easily derived from the drift sequence. For the special case
of no drift, we retrieve the known minimax risk Θ(

√
k/n)

for the estimation of a discrete density with n independent
and identically distributed samples. Since the problem of
estimating a discrete density with support size k with re-
spect to the total variation distance can be reduced to the
problem of agnostic learning a family of binary classifiers
with VC dimension k, we also show that our results imply
a lower bound on the minimax risk for the latter problem.
In particular, our results generalize the previously known
lower bound that only holds for the case of bounded drift at
each step (Barve & Long, 1996).

The following simple example demonstrates the power of
our approach. Assume a sample space of size k, and a
distribution drift that follows this pattern: a probability mass
of 1 − ∆ is distributed between the k elements and does
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not change in time. The remaining ∆ probability mass is
redistributed between the k elements at each step. The drift
in each step is bounded by ∆ and based only on this bound
the best estimate can only guarantee a Θ((k∆)1/3) error.
However, the drift between the current distribution and any
past distribution is also bounded by ∆. Incorporating this
extra information, our technique provides a tighter Θ(∆)
error estimate. In Section 4.1, we show a similar gap for the
agnostic learning problem.

For the smooth density estimation problem, we seek to esti-
mate a probability density that is β-smooth (Definition 5.1).
We focus on the nonparametric case, i.e. we do not assume
any parametric assumption on the target density. We estab-
lish a minimax risk of Θ

(
r−2β/(2β+1)

)
with respect to the

integrated squared loss, where again r ≤ n depends on the
drift sequence. This results extends the known minimax
risk Θ

(
n−2β/(2β+1)

)
for estimating a density from n inde-

pendent and identically distributed samples (Van der Vaart,
2000).

The results we have discussed so far establish the minimax
risk for learning the current distribution at a given specific
time based on past data. However, we are also interested
in characterizing the minimax rate of the average risk for
the online version of those problems, where we are required
to provide an estimate of the current distribution at each
step. This is a more challenging problem, as in the lower
bound construction, we need to show that we frequently
incur a high estimation error. Nonetheless, we show that in
the case of a bounded drift ∆ at each step, the minimax rate
for the online estimation of a discrete density with support
size k is Θ((k∆)1/3). As previously discussed, this result
also applies to the problem of agnostic learning a family of
binary classifiers. This is the first work in the literature to
provide a characterization of the minimax rate for the online
version of these problems in a distribution drift setting.

Following previous work on this setting, our upper bounds
on the minimax risk are obtained by considering an estima-
tor over a window of recent samples of a properly chosen
size. The size of the window is chosen to minimize the
trade-off between the variance of the estimator and the error
introduced by considering samples from distributions that
are further away in time and exhibit a large drift. In the
literature, the only lower bound construction for drifting
distribution is specific to the problem of agnostic learning
of binary classifiers (Barve & Long, 1996), and it assumes a
bounded drift at each step. In our paper, we develop a novel
proof strategy that allows us to obtain tight lower bounds
for both the problems of discrete density estimation, and
smooth density estimation under any arbitrary regular drift
sequence. We believe that our method is of independent
interest, and can be possibly applied to other estimation
problems with drifting distributions.

1.1. Related Work

The distribution drift setting has been introduced in the con-
text of the supervised learning of binary predictors (Helm-
bold & Long, 1991; Bartlett, 1992; Helmbold & Long,
1994). In this line of work, it has been shown that there
exists an algorithm that finds a binary predictor whose ex-
pected prediction error with respect to the current distribu-
tion is at most O( 3

√
ν∆) larger than the expected error of the

best predictor in the family, where ν is the VC-dimension
of the considered family of binary predictors and ∆ is an
upper bound to the total variation distance of two consecu-
tive distributions (Long, 1999). This upper bound is tight
(Barve & Long, 1996). More recent work generalized this
analysis to provide upper bounds to learning any family
of predictors with bounded Rademacher complexity, and
introduced a finer measure of distance between consecutive
distributions (Mohri & Muñoz Medina, 2012): it uses tools
from transfer learning theory (Mansour et al., 2009), as we
can observe that learning with distribution drift is a special
case of learning with domain shift (Ben-David et al., 2010).

The problem of density estimation in the case of indepen-
dent and identically distributed samples has been extensively
studied in the literature, see (Silverman, 1986; Groeneboom
& Jongbloed, 2014; Scott, 2015) for an overview of old and
recent work in this topic. In the case of estimating a distri-
bution with finite support size k, it is folklore that we can
achieve an expected error O(

√
k/n) in total variation dis-

tance with n samples. This upper bound is tight (Anthony &
Bartlett, 2002), and the minimax risk bound has been com-
puted with exact constants (Kamath et al., 2015). Recent
work provided an analysis for the estimation of a discrete
distribution with infinite countable support (Berend & Kon-
torovich, 2013; Han et al., 2015), also using data-dependent
bounds (Cohen et al., 2020). In the case of the estimation of
a β-smooth density from n independent and identically dis-
tributed samples, it is possible to obtain an expected squared
error of O

(
n− 2β

2β+1

)
, and we refer to (Tsybakov, 2009) for

a recent book on the topic. This upper bound is achieved by
using different methods as kernel density estimation (e.g.,
see Van der Vaart (2000)), and it can be proven to be tight by
using information-theoretic methods from minimax theory
(Devroye & Györfi, 1987; Yu, 1997).

The problem of relaxing the independent and identically
distributed assumptions on the samples for density estima-
tion has been studied in the literature from a theoretical
perspective. However, these work significantly diverge from
our setting as they use different sets of assumptions. Mul-
tiple work addressed the problem of estimating the station-
ary distribution of a Markov process (Roussas, 1969; Wen
et al., 2020), even for arbitrary initial distribution (Gillert &
Wartenberg, 1984). In (Phillips & Park, 1998), the authors
developed an asymptotic theory for the kernel density esti-

2



Nonparametric Density Estimation under Distribution Drift

mate of a random walk and the kernel regression estimator
of a non-stationary first order autoregression. More similar
to our setting, recent work (Gokcesu & Kozat, 2017) pro-
vides parametric density estimation results for a family of
exponential distributions where the parameters of the dis-
tributions are allowed to slowly change at each step. Many
other algorithms have also been proposed for online learning
of densities (Kristan et al., 2011; Garcı́a-Treviño & Barria,
2012), however, they do not come with any theoretical anal-
ysis.

The problem of characterizing the minimax rate of the av-
erage risk for the online version of the density estimation
problems can also be related to recent work on online fore-
casting (Baby & Wang, 2019; 2020). In the online fore-
casting problem, the goal is to predict the current position
of a vector that moves over time, given a sequence of in-
dependent noisy observations of the past positions of this
vector. For this problem, they provide an adaptive algorithm
that achieves an optimal minimax regret (up-to-logarithmic
factors) with respect to the total variation of the position of
the vector over time. It is possible to use their algorithm
to adaptively estimate a discrete density over [k] in a non-
stationary setting. In fact, we can describe each discrete
density as a random vector over Rk, where coordinate i rep-
resents the probability of sampling the i-th element, and we
observe a noisy observation of this vector. However, their
approach estimates each coordinate independently, thus a
trivial application of their work does not achieve the opti-
mal dependency on k for the problem of discrete density
estimation with a bounded drift ∆ at each step.

1.2. Our Contributions

1. We introduce the concept of regular drift sequence - a
general framework for characterizing distribution drift
(Section 3).

2. We establish the minimax risk for discrete density es-
timation with respect to any regular drift sequence
(Section 4).

3. We show a generalization of previous lower bound for
the problem of agnostic learning a family of binary
classifier to any regular drift sequence (Section 4.1).

4. We establish the minimax rate for the online problem
of estimating a discrete density with a bounded drift at
each step (Section 4.4).

5. We establish the minimax risk for estimating a smooth
density with respect to any regular drift sequence (Sec-
tion 5)

2. Preliminary
Let [n] = {1, . . . , n} for n ∈ N. Consider a non-empty
sample space X equipped with a σ-algebra. Let (Xi)i∈N be

a an independent1 stochastic process defined over X , and
let Pi be the probability distribution of the random variable
Xi. Given n ∈ N, let Xn = (X1, . . . , Xn) be the random
vector of the first n elements of the random process. Since
the Xi’s are independent, the distribution of Xn, can be
written as a product distribution S = P1 × . . . × Pn over
Xn. Given i ≤ n, we denote with θi(S) = Pi the i-th
component of S.

Let Sn be a family of candidate probability distributions
for the (unknown) distribution S of the random vector Xn.
Given an observed Xn ∼ S, our goal is to estimate Pn =
θn(S). Let θ̂n = θ̂n(Xn) be an estimator of this property.
Given a suitable metric d(·, ·) that quantifies the error of the
estimation, the minimax risk at time n is

inf
θ̂n

sup
S∈Sn

E
Xn∼S

[
d
(
θ̂n(Xn), θn(S)

)]
, (1)

where we take the supremum (worst-case) over all the prod-
uct distributions S in Sn, and the infimum is over all possi-
ble estimators θ̂n. The minimax risk quantifies the largest
estimation error that the best estimator can possibly achieve
with respect to Sn at a given time n. We omit the subscript
n when it is clear from the context. For each estimation
problem, we will adopt the most used distance in the liter-
ature for the specific estimation problem, that is the total
variation distance for discrete densities (probability mass
function), and the L2 distance for smooth densities.

We are also interested in the minimax rate of the average
risk, which quantifies the average of the estimation errors of
a online algorithm that at each step observes a new random
variable, and outputs an estimate of its distribution based on
all the previous observations. Given i ≤ n, we let θ̂i(Xi) be
an estimator of θi(S) = Pi. Given a metric d, the minimax
rate of the average risk is defined as

inf
θ̂1,...,θ̂n

sup
S∈Sn

E
Xn∼S

[
1

n

n∑
i=1

d
(
θ̂i(Xi), θi(S)

)]
. (2)

Due to space constraints, some of the proofs are deferred to
the appendix.

3. Distribution Drift
The family of candidate probability distributions Sn is de-
fined by the assumptions on the distribution drift in the
stochastic process. The most widely used assumption in the
literature is a bound on the drift at each step (Bartlett, 1992).
In our setting, this is formally expressed as follows: there
exists ∆ > 0 such that d(Pi, Pi+1) ≤ ∆ for any i ≤ n− 1.
In the context of learning binary functions, minimax risk

1A stochastic process is independent iff every finite subset of
its random variables is mutually independent.
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lower bound are known under this setting (Barve & Long,
1996; Long, 1999). However, this is a very pessimistic
assumption, as in the worst case the distance from Pi to
Pn is (n− i)∆, since we can accumulate an additive error
∆ at each step. As an illustrative example that shows the
drawback of this assumption, let ∆ ∈ (0, 1) and consider
a sequence of distributions P1, . . . , Pn over N such that Pi

takes the value 0 with probability 1−∆, and the value i with
probability ∆. This sequence has bounded drift at each step,
i.e. the total variation distance between Pi and Pi+1 is equal
to ∆. However, the total variation distance between Pn and
Pi is also equal to ∆ rather than (n − i)∆. The minimax
risk subject to only the weak condition d(Pi, Pi+1) ≤ ∆
can be arbitrarily far from the best estimation error.

An alternative assumption is a polynomial drift (Hanneke
et al., 2015). That is, we assume that there exists a value
α ∈ [0, 1] such that d(Pi, Pn) ≤ (n − i)α∆. While this
assumption allows to obtain closed-formula upper bounds
on the error for the problem of agnostic learning, no lower
bounds are known in this setting.

In this work, we introduce and present upper and lower
bounds with a more detailed approach for defining drift.

Definition 3.1. A vector ∆n = (∆1, . . . ,∆n) ∈ Rn
≥0 is

a regular drift sequence for a product distribution S =
P1 × . . .× Pn with respect to a metric d(·, ·) if:

1. ∆i is an upper bound on the drift between Pi and Pn,
i.e. d(Pi, Pn) ≤ ∆i,

2. the sequence ∆1, . . . ,∆n is non-increasing,
3. there is no abrupt change in the drift: there is a constant

c such that ∆i−1/∆i ≤ c for any i = 2, . . . , n− 1,
4. ∆i = 0 ⇐⇒ i = n.

Comment. Our results also hold if we substitute in the
above definition the requirement that d(Pi, Pn) ≤ ∆i with
the requirement that d(Pi, Pi+1) ≤ ∆i − ∆i+1 for any
i ≤ n− 1. The latter property is stronger as it implies the
former, however our lower bound proof works with either
definition, and we will us them interchangeably.

In our work, we characterize the minimax risk of density es-
timation problems under an arbitrary regular drift sequence
∆n. Noticeably, this is the first work to provide lower
bound for estimation problems under such a general model
of drift, as the previous lower bound construction assumed
a bounded drift at each step (Barve & Long, 1996).

4. Discrete Density Estimation
In this section, we show the minimax risk and the minimax
rate of the average risk for the problem of estimating dis-
crete distributions with finite support under distribution drift.
Without loss of generality, we can let the sample space be
X = [k] where k denotes the support size. Since the sample

space is discrete, a distribution over X is a probability mass
function P , such that P (j) = PrX∼P (X = j) for j ∈ [k].

Following previous work on estimating discrete distribu-
tions, we evaluate the quality of the estimation by the total
variation distance metric. Given two distribution P and Q
over [k], their total variation distance is defined as

TV(P,Q)
.
=

1

2

∑
j∈[k]

|P (j)−Q(j)| .

We consider the following family of probability distributions
S(∆n, k) over Xn with regular drift ∆n.

Definition 4.1. Let X = [k]. Let ∆n ∈ Rn
≥0, and let k > 0.

A product distribution S = P1 × . . .×Pn over Xn belongs
to Sn(∆n, k) if and only if ∆n is a regular drift sequence
for S with respect to the metric TV.

We establish the following minimax risk in this setting:

Theorem 4.2. Let Sn(∆n, k) be defined as in Definition 4.1,
and let

r∗ = max

{
r ∈ [n] : ∆n−r+1 ≤

√
k

r

}
If r∗ is well-defined and r∗ > k, then:

inf
θ̂n

sup
S∈Sn(∆n,k)

E
Xn∼S

TV
(
θ̂n(Xn), θn(S)

)
= Θ

(√
k

r∗

)

This is the first work to characterize the minimax risk for the
discrete density estimation problem under distribution drift.
In Section 4.2, we analyze a simple algorithm that achieves
the upper bound of the theorem. Our results extend the
known minimax risk of Θ(

√
k/n) for estimating a discrete

distribution with n independent and identically distributed
samples. In fact, for ∆n → 0, we have that r∗ = n. No-
ticeably, Theorem 4.2 provides matching upper and lower
bound for any regular drift sequence ∆n, and this is the first
theoretical work within the distribution drift literature that
provides a lower bound in such a general drift setting. As a
simple corollary of this theorem, we can obtain the minimax
risk for more specific drift assumptions previously used in
the literature.

Bounded drift at each step. Assume that there exists a
constant ∆ > 0 such that for any S = P1×. . .×Pn, it holds
that TV(Pi, Pi+1) ≤ ∆. We can invoke Theorem 4.2 with
the regular drift sequence ∆n = (∆ ·(n−1), . . . ,∆, 0). As
r∗ = max

{
r ∈ [n] : (r − 1)∆ ≤

√
k/r
}

, we can observe

that for n ≳ (k/∆2)1/3, we have that r∗ = Θ
(
(k/∆2)1/3

)
,

and thus the minimax risk in this setting is Θ((k∆)1/3).

Polynomial drift. Assume that there exists a α ∈ (0, 1]
such that TV(Pi, Pn) ≤ (n − i)α∆ for all i ∈ [n]. We
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can invoke Theorem 4.2 with the regular drift sequence
∆n = (∆ · (n−1)α,∆ · (n−2)α . . . ,∆, 0), and we obtain
that for n ≳ (k/∆2)1/(2α+1), the minimax risk in this
setting is Θ

(
(k∆)1/(2α+1)

)
. This is the first work to show

a lower bound with this drift assumption.

4.1. Connection to Agnostic Learning

We can easily show that the lower bound of Theorem 4.2
also applies to the problem of agnostic learning a family of
binary functions with VC dimension k. In fact, consider
the family of binary functions F = {fA : A ⊆ [k]}, where
fA(j) = 1{j∈A} for any j ∈ [k], and observe that the VC-
dimension of F is k. Let P̂ be any estimator of Pn, and
let P̂ (A) =

∑
j∈A P̂ (j) for any A ⊆ [k]. By using the

definition of total variation distance, we have that

sup
fA∈F

∣∣∣∣ E
X∼Pn

fA(X)− P̂ (A)

∣∣∣∣ = TV(Pn, P̂ ) ,

which shows that the problem of estimating the distribution
Pn under total variation distance can be reduced to the
problem of agnostic learning the family F with respect
to the distribution Pn. We can conclude that the lower
bound of Theorem 4.2 applies to the problem of agnostic
learning a family of binary functions with VC dimension
k in a distribution drift setting. For the case of bounded
drift at each step, as observed in the previous subsection,
the lower bound is Ω((k∆)1/3) for sufficiently large n, and
we retrieve the result of Barve & Long (1996). Theorem 4.2
generalizes this lower bound to a more general model of
drift, giving tighter bounds when possible, as shown in the
example in the Introduction.

4.2. Upper Bound

To prove the upper bound of Theorem 4.2 fix a parameter
r ≤ n and consider the empirical distribution P̂ r over the
latest r ≤ n random variables:

P̂ r(j) =
1

r

n∑
i=n−r+1

1{Xi=j} ∀j ∈ [k] . (3)

Analogously, we define the average of the latest r distribu-
tions as P r = (1/r)

∑n
i=n−r+1 Pi. In order to evaluate the

expected error obtained by using P̂ r as an estimate, we use
the triangle inequality to decompose the error into two terms

ETV(Pn, P̂
r) ≤ ETV(P r, P̂ r) + TV(P r, Pn) . (4)

The first error term of this upper bound is the statistical
error of estimating the distribution P r by its empirical dis-
tribution P̂ r. This error is related to the variance of the
estimator which depends on the support size of the esti-
mated distributions.

Proposition 4.3. ETV(P r, P̂ r) ≤ (1/2)
√
k/r.

Proof. By definition ETV(P r, P̂ r) =
(1/2)

∑
j∈[k] E |P̂r(j) − Pr(j)|, and using Jensen’s

inequality we have that for any j ∈ N, E |P̂r(j)−Pr(j)| ≤√
V(P̂r(j)). Since P̂r(j) is the distribution of an average

of 0-1 random variables, we have

√
V(P̂r(j)) =

1

r

√√√√ n∑
i=n−r+1

Pi(j)(1− Pi(j))

≤ 1

r

√√√√ n∑
i=n−r+1

Pi(j) =

√
P r(j)

r

Thus, we have

ETV(P r, P̂ r) ≤ 1

2

∑
j∈[k]

√
V(P̂r(j)) ≤

1

2
√
r

∑
j∈[k]

√
P r(j)

We conclude the proof using Cauchy-Schwarz inequality:∑
j∈[k]

√
P r(j) ≤

√∑
j∈[k]

P r(j)

√∑
j∈[k]

1 =
√
k .

The second error term of the upper bound (4) is the drift
error, and describes how far the distribution P r is to Pn.
Observe that if the samples were identically distributed, this
error would be zero. The drift error can be upper bounded
by using the information on the drift sequence ∆n.

Proposition 4.4. TV(P r, Pn) ≤ ∆n−r+1.

Proof. We can rewrite the total variation distance as

TV(P r, Pn) =
1

2

k∑
j=1

n∑
i=n−r+1

|P r(j)− Pn(j)|

≤ 1

2

k∑
j=1

1

r

n∑
i=n−r+1

|Pi(j)− Pn(j)|

where in the last inequality we used the triangle inequal-
ity and the definition of P r. Therefore, we obtain that
TV(P r, Pn) ≤ (1/r)

∑n
i=n−r+1 TV(Pi, Pn). We con-

clude the proof by observing that by the monotonicity of
the drift sequence TV(Pi, Pn) ≤ ∆i ≤ ∆n−r+1 for any
i ≥ n− r + 1.

By using Proposition 4.3 and 4.4, we can upper bound
the estimation error (4) as ETV(Pn, P̂

r) ≤ (1/2)
√
k/r +

∆n−r+1. There is a trade-off: by choosing a larger r, we
obtain a smaller statistical error, but potentially a larger
drifting error. The value r∗ of Theorem 4.2 represents an
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optimal criterion (up to constants) to solve this trade-off
for any regular drift sequence ∆n. The upper bound of the
theorem follows by setting the parameter r equal to r∗, for
which ∆n−r∗+1 ≤

√
k/r∗.

4.3. Lower Bound

The lower bound of Theorem 4.2 is proven by using
information-theoretical tools from minimax theory (Yu,
1997). In particular, we select a particular family of prod-
uct probability distributions over Xn from S(∆n, k), and
obtain our lower bound by arguing that the observed values
do not provide enough information to distinguish among
those distributions (Lemma 4.5). This family of product
probability distributions is constructed as follows. Let r be
a parameter such that 1 ≤ r ≤ n. Each product probability
distribution in our family has the same distribution for the
first n− r random variables. That is, the first n− r random
variables provide no information to decide among the fam-
ily. For each product distribution in this family, the last r
random variables steadily drift in distribution in a distinct
direction subject to the constraint of the drift sequence ∆n.
We obtain a trade-off: if the value of r is large, it is easier to
decide among the family as we have more time to drift apart,
but we make a bigger error if we cannot decide correctly.
Conversely, if the value of r is small, it is harder to decide
among the family, but we make a smaller error as there is
less time to drift apart. Similarly to the upper bound, we
obtain a tight lower bound by setting the parameter r equal
to r∗ as defined in Theorem 4.2. This choice is adopted
throughout this subsection. We distinguish two cases: (a)
r∗ = n and (b) r∗ < n. In case (a), we argue that the min-
imax error is at least equal to the lower bound Ω(

√
k/r∗)

for discrete density estimation with n = r∗ independent
and identically distributed samples. In the remaining of this
subsection, we focus on case (b).

In order to establish the lower bound for the minimax risk
and the minimax cumulative risk, we use Assouad’s Lemma
as the main technical tool. This is the first work to use
this information-theoretic tool to provide lower bounds in a
drift setting. Assouad’s Lemma uses a family of probability
distribution {Sw : w ∈ {0, 1}m} indexed over a hypercube
{0, 1}m for some m ≥ 1. For two binary strings v, w ∈
{0, 1}m, their Hamming distance is defined as h(v, w) =∑m

i=1 1{vi ̸=wi}.

Lemma 4.5 (Assouad’s Lemma). Let θ(·) be a target prop-
erty to estimate. Let {Sw : w ∈ {0, 1}m} ⊆ S be a family
of probability distributions indexed by w. Let p ≥ 1. Then:

inf
θ̂

sup
S∈S

E
X∼S

[
2pdp

(
θ̂(X), θ(S)

)]
≥ m

4

(
min
v ̸=w

dp(θ(Sw), θ(Sv))

h(v, w)

)[
min
v,w:

∥w∥1>∥v∥1

h(v,w)=1

e−KL(Sw∥Sv)

]

where KL is the Kullback–Leibler divergence and θ̂ is any
estimator of θ(S).

Our statement of Assouad’s Lemma follows immediately by
adapting to our notation its classic statement as in (Van der
Vaart, 2000, Lemma 24.3). Differently from the latter state-
ment, we state it with the KL-divergence by using the known
inequality ∥P ∧Q∥ = ∥Q∧P∥ ≥ (1/2) exp(−KL(P ||Q))
that holds for any distributions P and Q. Our formulation
is more convenient for the computations of this paper.

Without loss of generality, assume that k is even. Our goal
is to properly construct a family of sequence of drifting
distributions and apply Assouad’s Lemma. We construct
a family of product distributions {Sw : w ∈ {0, 1}k/2}
as follows. For each w ∈ {0, 1}k/2, we have that Sw =
Pw,1 × . . .× Pw,n is the product distributions of n discrete
probability distributions over [k]. For any j ∈ [k] and
w ∈ {0, 1}k/2, we define

Pw,i(j) =

{
1
k if i ≤ n− r∗

1
k + (−1)jw⌈j/2⌉

∆n−r∗+1−∆i

k if i > n− r∗

Intuitively, for any i ≥ n − r∗ + 1, if wj = 1, then
the probabilities of the elements 2j − 1 and 2j change
as follows: Pw,i(2j − 1) decreases, while the probabil-
ity Pw,i(2j) increases of the same amount. The following
proposition shows that our family of product distributions is
well-defined.

Proposition 4.6. {Sw : w ∈ {0, 1}k/2} ⊆ Sn(∆n, k)

Proof. First, we have that each Pw,i is a well defined prob-
ability distribution for any w and i, as

∑
j∈[k] Pw,i(j) = 1

by construction, and 0 ≤ Pw,i(j) ≤ 1 for any j ∈ [k], since
∆n−r∗+1 ≤

√
k/r∗ < 1 by assumption of the theorem.

Second, Sw satisfies the assumptions on the drift sequence
∆n of Definition 4.1. In fact, for any i < n − r∗ + 1, we
have that TV(Pw,i, Pw,i+1) = 0 ≤ ∆i−∆i+1, and for any
i ≥ n− r∗ + 1, we have that

TV(Pw,i, Pw,i+1) =
1

2

∑
ℓ∈[k/2]:wℓ=1

2

k
|∆i −∆i+1|

= (∆i −∆i+1)
∥w∥1
k

≤ ∆i −∆i+1

By using the triangle inequality, this also implies that
TV(Pw,i, Pw,n) ≤ ∆i for any i ∈ [n].

Let θn(·) be defined as in Section 3. The next two technical
propositions show how to compute the quantities required
to apply Assouad’s Lemma in our setting.

Proposition 4.7. Given w,w′ ∈ {0, 1}k/2, we have that
TV(θn(Sw), θn(Sw′)) = (∆n−r∗+1/k) · h(w,w′).

6
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Proof. By definition of θn(·), we have that
TV(θn(Sw), θn(Sw′)) = TV(Pw,n, Pw′,n). Thus,

TV(Pw,n, Pw′,n) =
1

2

∆n−r∗+1 −∆n

k

k/2∑
ℓ=1

2|w′
ℓ − wℓ|,

and the statement follows by observing that ∆n = 0 and
that

∑
ℓ |w′

ℓ − wℓ| = h(w,w′).

Proposition 4.8. Let w,w′ ∈ {0, 1}k such that h(w,w′) =
1, and let wq ̸= w′

q be the bit in which they differ. Assume
that wq = 1. Then KL(Sw∥Sw′) ≤ 2.

Proof. By using the factorization property of the KL-
divergence (see Proposition A.1 in the appendix), we have
that KL(Sw∥Sw′) =

∑n
i=n−r∗+1 KL(Pw,i∥Pw′,i), since

Pw,i = Pw′,i for i < n− r∗ + 1. By using the definition of
KL, and the definition of Sw, we obtain

KL(Sw∥Sw′) =
n∑

i=n−r∗+1

[
Pw,i(2q) log

(
Pw,i(2q)

Pw′,i(2q)

)

+ Pw,i(2q − 1) log

(
Pw,i(2q − 1)

Pw′,i(2q − 1)

)]
,

as Pw,i and Pw′,i only differ on the elements 2q − 1 and 2q
for i ≥ n − r∗ + 1. If we expand the computation above,
we have

KL(Sw∥Sw′) =
1

k

r∑
i=n−r+1

{
(1 + ∆i) log (1 + ∆i)

+ (1−∆i) log (1−∆i)

}

For any i ≥ n− r∗ + 1, the following chain of inequality
holds ∆i ≤ ∆n−r∗+1 ≤

√
k/r∗ < 1. Thus, we can use the

inequality (1 + x) log(1 + x) + (1− x) log(1− x) ≤ 2x2

that holds for any |x| < 1 (see Proposition A.2). We obtain:

KL(Sw∥Sw′) ≤ 2

k

n∑
i=n−r∗+1

∆2
i ≤ (2r∗/k)∆2

n−r∗+1

where the last inequality follows from the assumption that
the sequence ∆1, . . . ,∆n is non-increasing. We can con-
clude the proof by observing that due to the definition of r∗,
it holds that ∆2

n−r∗+1 ≤ k/r∗.

We apply Assouad’s Lemma with the family of product
distributions {Sw : w ∈ {0, 1}k/2} ⊆ Sn(∆n, k), and
obtain the following lower bound to the minimax risk

k

16

(
min
v ̸=w

d(θ(Sw), θ(Sv))

h(v, w)

)(
min
v,w:

∥w∥1>∥v∥1

h(v,w)=1

e−KL(Sw∥Sv)

)

We use Propositions 4.7 and 4.8 to lower bound the above
expression, and obtain

inf
θ̂n

sup
S∈Sn(∆n,k)

E
Xn∼S

TV
(
θ̂n, θn(S)

)
≥ ∆n−r∗+1

16e2

Note that since r∗ < n, by using the definition of r∗, we
have that ∆n−r∗ >

√
k/(r∗ + 1). Due to the regularity

assumption of the drift sequence ∆n, there exists a constant
c such that ∆n−r∗/∆n−r∗+1 ≤ c. Therefore, we have that
∆n−r∗+1 ≥ 1

c∆n−r∗ = Ω(
√
k/r∗), and this concludes the

proof of the lower bound of Theorem 4.2.

4.4. Minimax Rate for the Average Risk

Theorem 4.2 provides the minimax risk for estimating a
distribution at a given time n. In this subsection, we want to
characterize the minimax rate of the average risk defined as
in (2) for the online version of this problem. In particular, we
want to show that the lower bound proven in Theorem 4.2
for a specific time n is not a rare event but can hold on
average for arbitrarily long sequence of estimates. We study
this problem for the case of bounded drift at each steps, i.e.
there exists a constant ∆ > 0 such that TV(Pi, Pi+1) ≤ ∆
for any i ≤ n − 1. Let Sn(∆, k) denote the family of
product distributions S = P1× . . .×Pn over Xn for which
this property holds. The minimax rate of the average risk
over n steps is

Πn(∆, k)
.
= inf

θ̂1,...,θ̂n

sup
S∈Sn(∆,k)

E
Xn∼S

n∑
i=1

TV(θ̂i(Xi), θt(S))

n

and we let Π(∆, k)
.
= limn→∞ Πn(∆, k). The value

Π(∆, k) represents the limit minimax rate over a arbitrarily
large number of steps for the online estimation of a discrete
density over [k] with the assumption that the distance of two
consecutive distribution is upper bounded by ∆. We can
show the following result.

Theorem 4.9. Let ∆ ∈ (0, 1/k). Then, we have that
Π(∆, k) = Θ((k∆)1/3)

As noted in Section 4.1, this result also applies for the online
problem of agnostic learning a family of binary classifiers
with VC dimension k in the setting of bounded drift at
each step. The upper bound is an obvious corollary of
Theorem 4.2. The difficulty is in obtaining the lower bound.
We note that the lower bound construction of Section 4.3
cannot be used to prove a lower bound of the minimax rate
for the average risk. In fact, that construction relies on the
fact that at a given time n, a drift has occurred only for the
latest r∗ distribution, and it does not provide a tight lower
bound for the estimation at all times i ≤ n.

In order to prove the lower bound of Theorem 4.9, we
adopt a different construction. We provide a sketch of the

7
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proof. Let n = mν. We consider product distributions
S = P1 × . . . × Pn that can be partitioned into m blocks
of length ν. Let Bi = P(ℓ−1)r × . . . × Pℓr be the product
distribution of the block ℓ, i.e. the distribution of the random
variables (X(ℓ−1)r, . . . , Xℓr). We let S exhibit a periodic
structure. In particular, we guarantee that the first distri-
bution and last distribution of each block Bℓ is a uniform
distribution over [k], i.e. P(ℓ−1)ν and Pℓν are both uniform
distributions for every ℓ ∈ [m]. This property plays a double
role: it allows us to construct S by considering a sequence
of blocks; and the estimation of each block is independent,
since samples outside of the block ℓ do not help to decide
for the distribution Bℓ due to the periodic structure of S.

The proof of the lower bound revolves around the fact that
estimating each individual block is hard. In particular, we
can show a lower bound of Ω

(
(k∆)1/3

)
to the average er-

ror of estimating a block Bℓ given Xν(ℓ+1). This result
is obtained by using Assouad’s Lemma on a properly de-
fined family of blocks B. For any sequence of estimators
θ̂1, . . . , θ̂n, we use this previous result to show how to itera-
tively construct a sequence of blocks B1, . . . , Bm from B
such that the the average risk of those estimators with respect
to the distribution S = B1 × . . .×Bm is Ω

(
(k∆)1/3

)
. By

taking m → ∞, this is sufficient to prove the lower bound.
The details of the full proof are deferred to the appendix.

5. Smooth Density Estimation
In this section, we establish the minimax risk for the prob-
lem of estimating smooth densities under distribution drift.
Let our sample space be any arbitrary interval I ⊆ R, i.e.
X = I . Given Xn, our goal is to estimate the density of the
distribution Pn. In this setting, we also use P (x) to refer to
the continuous density of a distribution P at x ∈ X . Fol-
lowing previous work on nonparametric density estimation,
we characterize the smoothness of a density in a Sobolev
sense (Tsybakov, 2009).

Definition 5.1. Let β ∈ N+. A probability density P over
X is β-smooth if P is differentiable β times, P (β−1) is
absolutely continuous and

∫ (
P (β)(x)

)2
dx < ∞.

In order to evaluate the error of our estimate, we use the
squared L2 distance between densities. Given two densities
f and g over X , their L2 distance is defined as

L2(f, g)
.
= ∥f − g∥ =

√∫
R
(f(x)− g(x))

2
.

In the density estimation literature, the quantity L2
2 is also

referred to as mean integrated squared error, and it is the
most commonly used measure of error. In our work, we con-
sider the following family of smooth probability measures
S(∆n, β) over Xn with regular drift ∆n.

Definition 5.2. Let ∆n ∈ Rn
≥0 be a regular drift sequence,

and let β > 0. A product distribution S = P1 × . . . × Pn

over Xn belongs to S(∆n, β) if and only if: (a) Pi is β-
smooth for i ∈ [n]; ∆n is a regular drift sequence for S
with the metric L2.

We can establish the following minimax risk in this setting.
Theorem 5.3. Let ∆n ∈ Rn

+ be a regular drift sequence
and let β > 0. Let Sn(∆n, β) be defined as in Defini-
tion 5.2, and let

r∗ = max

{
r ∈ [n] : ∆n−r+1 ≤

(
1

r

) β
2β+1

}
Let r∗ ≥ 1 be well-defined. We have:

inf
θ̂n

sup
S∈Sn(∆n,β)

E
Xn∼S

∥θn(S)− θ̂n(Xn)∥2 = Θ
(
(r∗)

−2β
2β+1

)
If ∆n → 0, we have that r∗ = n, and we retrieve the known
minimax rate Θ

(
n− 2β

2β+1

)
for estimating a β-smooth den-

sity from n independent and identically distributed samples.
We can achieve the upper bound of Theorem 5.3 with a prop-
erly constructed kernel density estimator. A kernel K is a
function K : R 7→ R such that

∫
K(u)du = 1. Given a ker-

nel K and a smoothing parameter h, the Parzen-Rosenblatt
kernel density estimator (Rosenblatt, 1956; Parzen, 1962)
over the previous r samples is defined as

P̂ r
K,h(x) =

1

rh

n∑
i=n−r+1

K

(
Xi − x

h

)
.

The parameter h is also referred to as bandwidth. In order
to obtain an accurate estimator for highly smooth function,
we need to define a special class of kernel functions.
Definition 5.4. Let β ≥ 1 be an integer. We say that K :
R 7→ R is a kernel of order β if the functions u 7→ ujK(u),
with j = 0, 1, . . . , β are integrable and satisfy∫

K(u)du = 1,

∫
ujK(u)du = 0 for j = 1, . . . , β∫

K2(u)du < ∞,

∫
|u|β |K(u)|du < ∞ .

We refer to the work of Tsybakov (2009) for a discussion
of kernel of order β > 1. It can be proven that a kernel
of order β ≥ 2 cannot be non-negative, and therefore we
could obtain an estimate of the density that is negative. This
problem can be addressed by taking only the positive part
of the estimate, as described in the previous reference.

If we let K be a kernel of order β, we can prove that for any
P1 × . . .× Pn = S ∈ S(∆n, β), it holds that

E
∥∥∥P̂ r

K,h − Pn

∥∥∥2 = O

(
∆2

n−r+1 +
1

r · h
+ h2β

)
.

8
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Observe that the optimal choice of the bandwidth h to min-
imize the above upper bound is independent of ∆n. By
choosing the value h = Θ

(
r−1/(2β+1)

)
, the previous upper

bound becomes

E
∥∥∥P̂ r

K,h − Pn

∥∥∥2 = O

(
∆2

n−r+1 +

(
1

r

) 2β
2β+1

)
.

This bound represents a trade-off between the drift error and
the statistical error of the estimation. If we choose r as r∗,
we obtain the upper bound of the theorem.

The lower bound of the theorem is proven by using a similar
strategy to the one used for discrete densities Section 4.3:
we construct a family of product distributions that satisfy the
assumption on the drift and use Assouad’s Lemma. We refer
the details of the proof to the appendix. We point out that
it is also possible to prove an average minimax risk result
similar to Theorem 4.9 for smooth densities by modifying
the proof of the discrete case.

6. Conclusion and Open Questions
We obtain tight minimax risk bounds for the discrete and
smooth density estimation problems under a general model
of distribution drift. We also present the first average min-
imax risk rate in the drift setting. Our results also apply
to the important problem of agnostic learning of a family
of binary classifiers, improving the known state-of-the-art
bounds in the drift setting.

In this work, we focus on the univariate case for smooth
density estimation. Univariate kernel density estimation
methods naturally extend to the multivariate setting with
similar assumptions (Ibragimov & Khas’ minskii, 1983). In
the i.i.d. case, the minimax rate becomes O(n−2β/(2β+d))
with n samples, where β is the smoothness of the density
and d is the dimensionality of the space. We believe our
framework for analysis with drift can provide a characteri-
zation of the minimax rate for the multivariate case and this
is an interesting future direction.

Another interesting open problem is to provide a competitive
algorithm that is oblivious to the drift sequence (Hanneke &
Yang, 2019). We refer to (Hanneke et al., 2015) for prelimi-
nary results in this direction for the problem of realizable
supervised learning under distribution drift.
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A. Technical Propositions
Definition of KL-divergence. Let P and Q be two distributions over X . In the continuous case (probability density function,
X = R), their Kullback–Leibler divergence is defined as

KL(P∥Q) =

∫
R
P (x) log

(
P (x)

Q(x)

)
dx .

In the discrete case (probability mass function, X is finite), their KL divergence is defined as

KL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
The following proposition on the KL-divergence is folklore.

Proposition A.1 (Factorization Property). Let P and Q two distributions over Rd×n such that the distributions can be
factorized, i.e. P = P1 × . . .× Pn and Q = Q1 × . . .×Qn. Then, we have that

KL(P∥Q) =
n∑

i=1

KL(Pi∥Qi)

The following relation will prove useful.

Proposition A.2. For any −1 < x < 1, we have that

(1 + x) log(1 + x) + (1− x) log(1− x) ≤ 2x2

B. Average minimax risk of online estimation of discrete densities (Theorem 4.9)
B.1. Proof of the upper bound

Since the supremum is a convex function, we have that

Πn(∆, k) ≤ inf
θ̂1,...,θ̂n

1

n

n∑
t=1

sup
S∈St(∆,k)

E
Xt∼S

TV(θ̂t, θt(S))

Let θ̃t(Xt) be the estimator described in Section 4.2 for the estimation at time t that achieves the upper bound of Theorem 4.2.
By using those estimators for t = 1, . . . , n, the above expression can be upper bounded as

Πn(∆, k) ≤ 1

n

n∑
t=1

sup
S∈St(∆,k)

E
Xt∼S

TV(θ̃t(Xt), θt(S))

As previously discussed, for any t ≳ (k/∆2)1/3, we have that the expected error of the estimator θ̃t(Xt) to estimate Pt

is upper bounded by O((k∆)1/3) in the case of a bounded drift ∆ at each step. By taking n → ∞, we can conclude that
Π(∆, k) = O((k∆)1/3).

B.2. Proof of the lower bound

Let n = νm, and let ν = 2(k/∆2)1/3. Let B = {Bw : w ∈ {0, 1}k/2} be a family of product distributions over X ν

constructed as follows. The set B represents the family of possible candidate block distributions that we will use to build our
lower bound. For any Bw = P ′

w,1 × . . .× P ′
w,ν and j ∈ [k], we let

P ′
w,i(j) =

{
1
k + (−1)jw⌈j/2⌉

∆(i−1)
k if i ≤ ν/2

P ′
w,ν−i+1(j) if i > ν/2

(5)

We can observe that the first ν/2 components of each product distribution share similarities with the family of product
distributions defined for the lower bound construction of Section 4.3 for the special case of bounded drift at each step.
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This is a properly defined family of product distributions. In fact, for any w and i, we have that
∑

j Pw,i(j) = 1. Moreover,
we have that |(−1)jw⌈j/2⌉∆(i − 1)/k| ≤ ∆ν/(2k) = ∆1/3k1/3/k ≤ 1/k due to the assumption ∆ ∈ (0, 1/k). Hence,
Pw,i(j) ∈ [0, 1].

We can also observe that B ⊆ Sν(∆, k). In fact, for any two consecutive distributions Pw,i and Pw,i+1, we have that

TV(Pw,i, Pw,i+1) ≤
1

2

k/2∑
j=1

2∆

k
1{wj=1} ≤ ∆

Observe that for any sequence of blocks B1, . . . , Bℓ ∈ B, the product distribution B1× . . .×Bℓ ∈ Sνℓ(∆, k). This property
will be exploited later in the proof.

The next lemma shows that estimating the last block of a distribution S = B1 × . . . × Bm is hard for any m ≥ 1. It is
proven by using Assouad’s Lemma, and it is the core technical result that enables the analysis.

Lemma B.1. Let ℓ ∈ [m]. Let B1, . . . , Bℓ−1 be any ℓ− 1 blocks from B, and let S′ = B1 × . . .×Bℓ−1. We have:

inf
θ̂ν(ℓ−1)+1,...,θ̂νℓ

max
S=S′×B:

B∈B

E
Xℓν∼S

 νℓ∑
i=ν(ℓ−1)+1

TV(θ̂i(Xi), θi(S))

ν

 = Ω
(
(k∆)1/3

)

Proof. It is convenient to rewrite the left-hand side of the equation of the lemma. Let V = V1 × . . . × Vν and W =
W1 × . . . × Wν be two product distributions. We define the distance db(V,W )

.
= (1/ν)

∑ν
i=1 TV(Wi, Vi). Given

a product distribution S = P1 × . . . × Pℓν , we define θ#(S) = P(ℓ−1)ν+1 × . . . × Pℓν as the product distribution
of the last ν components of S. Let θ(Xνℓ) be any estimator of the product distribution θ#(S) ∈ B. Observe that
θ(Xℓν) = θ̂ν(ℓ−1)+1(Xν(ℓ−1)+1)× . . .× θ̂νℓ(Xνℓ) is a possible estimator for θ#(S). Hence, we have that

inf
θ̂ν(ℓ−1)+1,...,θ̂νℓ

max
S=S′×B:

B∈B

E
Xℓν∼S

 νℓ∑
i=ν(ℓ−1)+1

TV(θ̂i(Xi), θi(S))

ν

 ≥ inf
θ

max
S=S′×B:

B∈B

E
Xℓν∼S

db(θ(Xνℓ), θ#(S)) (6)

Consider the family of product distributions {Sw = S′ ×Bw : w ∈ {0, 1}k/2} over the hypercube {0, 1}k/2, where S′ is
defined in the statement of the Lemma. We want to invoke Assouad’s Lemma on the estimation problem

inf
θ

max
Sw:w∈{0,1}k/2

E
Xℓν∼S

db(θ(Xνℓ), θ#(S))

that is equal to the right-hand side of (6).

Let w,w′ ∈ {0, 1}k. We want to compute db(θ#(Sw), θ#(Sw′)). By using the definition of θ#, we have that
db(θ#(Sw), θ#(Sw′)) = db(Bw, Bw′). Let Bw = P ′

w,1 × . . . × P ′
w,ν and Bw′ = P ′

w′,1 × . . . × P ′
w′,ν be defined as

in (5). We have that

db(θ#(Sw), θ#(Sw′)) =
1

ν

ν∑
i=1

TV(P ′
w,i, P

′
w′,i) =

2

ν

ν/2∑
i=1

TV(P ′
w,i, P

′
w′,i) =

1

ν

ν/2∑
i=1

2(i− 1)∆

k
h(w,w′)

≥ ν∆

2k
h(w,w′)

Let w,w′ ∈ {0, 1}k such that h(w,w′) = 1. Let q denote the bit in which w and w′ differ, and assume that wq = 1 and
w′

q = 0. We have that

KL(Sw∥Sw′) =
ν∑

i=1

KL(P ′
w,i∥P ′

w′,i)

12
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due to the factorization property of the KL-divergence Proposition A.1, and the fact that the first ν(ℓ− 1) components of the
product distributions Sw and Sw′ coincide by construction. We have that

ν∑
i=1

KL(P ′
w,i∥P ′

w′,i) =
ν∑

i=1

KL(P ′
w,i∥P ′

w′,i) = 2

ν/2∑
i=1

k∑
j=1

P ′
w,i(j) log

(
P ′
w,i(j)

P ′
w′,i(j)

)

Since w and w′ only differ on the bit q, we have P ′
w,i(j) ̸= P ′

w′,i(j) only if j = 2q or j = 2q − 1. By using the definition
of P ′

w,i and P ′
w′,i, we obtain

KL(Sw∥Sw′) = 2

ν/2−1∑
i=0

{(
1

k
+

∆i

k

)
log (1 + i∆) +

(
1

k
− ∆i

k

)
log (1− i∆)

}

=
2

k

ν/2−1∑
i=0

{(1 + ∆i) log (1 + i∆) + (1−∆i) log (1− i∆)}

≤ 4∆2

k

ν/2−1∑
i=0

i2 = O

(
∆2ν3

k

)
where in the first inequality we used Proposition A.2. By definition of ν, we have that ν3 = 8k/∆2, hence KL(Sw∥Sw′) =
O(1). Therefore, we can apply Assouad’s Lemma (Lemma 4.5), and obtain that

inf
θ

max
Sw:w∈{0,1}k/2

E
Xℓν∼S

db(θ(Xνℓ), θ#(S)) ≥
ν∆

16eO(1)
= Ω

(
(k∆)1/3

)
where the last equality follows by substituting the definition of ν.

The lower bound of Theorem 4.9 is obtained by iteratively applying Lemma B.1 to construct a hard distribution given any
sequence of estimators θ̂1, . . . θ̂n.

Proof of the lower bound of Theorem 4.9. Let n = νm, and let ν and B be defined as within this section. We want to show
a lower bound to

Πn(k,∆) = inf
θ̂1,...,θ̂n

sup
S∈Sn(∆,k)

E
Xn∼S

n∑
t=1

TV(θ̂t(Xt), θt(S))

n

We prove a lower bound as follows. For any sequence of estimators θ̂1, . . . , θ̂n, we show how to construct a sequence of
blocks S∗ = B∗

1 × . . .×B∗
m from B such that

E
Xn∼S∗

n∑
t=1

TV(θ̂t(Xt), θt(S
∗))

n
= Ω

(
(k∆)1/3

)
.

Since S∗ ∈ Sn(∆, k), this is sufficient to prove the lower bound of the theorem.

Fix a sequence of estimators θ̂1, . . . , θ̂n. We construct B∗
1 , . . . , B

∗
m iteratively as follows. We let

B∗
1 = argmax

B∈B
E

Xν∼B

[
ν∑

i=1

TV(θ̂i(Xi), θi(B))

ν

]

For any ℓ ∈ {2, . . . ,m}, we let S∗
(ℓ−1) = B∗

1 × . . .×B∗
ℓ−1 and

B∗
ℓ = argmax

B∈B
E

Xℓν∼S∗
(ℓ−1)

×B

 νℓ∑
i=ν(ℓ−1)+1

TV(θ̂i(Xi), θi(S
∗
(ℓ−1) ×B))

ν


13
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Let S∗ = S∗
(m) = B∗

1 × . . .×B∗
m. We have that due to the way that B∗

1 × . . .×B∗
ℓ−1 are defined, Lemma B.1 applies, and

for any ℓ ∈ [m], it holds

E
Xℓν∼S∗

(ℓ)

 νℓ∑
i=ν(ℓ−1)+1

TV(θ̂i(Xi), θi(S
∗
(ℓ)))

ν

 = Ω
(
(k∆)1/3

)
(7)

By using linearity of expectation, we have that

E
Xn∼S∗

n∑
t=1

TV(θ̂t(Xt), θt(S
∗))

n
=

1

m

m∑
ℓ=1

E
Xνℓ∼S∗

(ℓ)

1
ν

νℓ∑
i=(ℓ−1)ν+1

TV(θ̂i(Xi), θi(S
∗
(ℓ))

 =
1

m

m∑
ℓ=1

Ω
(
(k∆)1/3

)
= Ω

(
(k∆)1/3

)
.

C. Smooth Density Estimation under Distribution Drift
C.1. Upper Bound of Theorem 5.3

The structure of the proof of the upper bound uses technical ideas from the analysis of kernel density estimator in a non
drift setting (Tsybakov, 2009). Due to the length of the analysis, the proof is broken down into multiple lemmas. For
the remaining of this subsection, let P1 × . . . × Pn = S ∈ Sn(∆n, β), where S is defined as in Definition 5.2. For any
1 ≤ r ≤ n, let P[r] be the average of the densities Pn−r+1, . . . , Pn, i.e. P[r] = (1/r)

∑n
i=n−r+1 Pi.

For any x ∈ R, we define the following quantities

b(x) = E
Xn∼S

[
P̂ r
K,h(x)

]
− P[r](x) Bias of the estimator

σ2(x) = E
Xn∼S

(
P̂ r
K,h(x)− E

Xn∼S
P̂ r
K,h(x)

)2

Variance of the estimator

d2(x) =
(
P[r](x)− Pn(x)

)2
Drift error

We can obtain the following error decomposition based on the above quantities.

Proposition C.1 (Error Decomposition). We have that

E∥Pn − P̂ r
K,h∥2 = E

∫ (
P̂ r
K,h(x)− Pn(x)

)2
dx ≤ 2

∫
d2(x)dx+ 2

∫
b2(x)dx+ 2

∫
σ2(x)dx

Proof. By Tonelli-Fubini theorem, we can swap the integral and the expectation. We observe that

E
(
P̂ r
K,h(x)− Pn(x)

)2
= E

(
P̂ r
K,h(x)− P[r](x) + P[r](x)− Pn(x)

)2
≤ 2E(P̂ r

K,h(x)− P[r](x))
2 + 2(P[r](x)− Pn(x))

2

= 2E(P̂ r
K,h(x)− P[r](x))

2 + 2d2(x)

The first inequality is due to the fact that (x+ y)2 ≤ 2x2 + 2y2 for any x, y ∈ R. We can use bias-variance decomposition
and obtain that

E(P̂ r
K,h(x)− P[r](x))

2 = b2(x) + σ2(x) .

In the next three propositions, we will now individually upper bound each source of error.

14
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Proposition C.2 (Upper bound on drift error). ∫
d2(x)dx = O(∆2

n−r+1)

Proof. To prove the statement, we use Cauchy-Schwarz inequality:

[P[r](x)− Pn(x)]
2 =

[
n∑

i=n−r+1

1

r
(Pi(x)− Pn(x))

]2

=

[
n∑

i=n−r+1

√
1

r

√
1

r
(Pi(x)− Pn(x))

]2

≤

√√√√ n∑
i=n−r+1

1/r ·

√√√√ n∑
i=n−r+1

(1/r)(Pi(x)− Pn(x))2

2

=
n∑

i=n−r+1

1

r
|Pi(x)− Pn(x)|2

Therefore, we have that ∫
d2(x)dx ≤

∫ n∑
i=n−r+1

1

r
|Pi(x)− Pn(x)|2dx

=
n∑

i=n−r+1

1

r

∫
|Pi(x)− Pn(x)|2dx

≤
n∑

i=n−r+1

∆2
i

r

where the last inequality is due to the assumption on the regular drift ∆n. Since ∆n−r+1 ≤ ∆i for any i ≥ n− r + 1, we
can conclude that

∫
d2(x)dx ≤ ∆2

n−r+1 .

The next two propositions follow by a slight modification of the the proofs from Tsybakov (2009, Proposition 1.4 and
1.5), as we adapt those results in the setting where each random variable is sampled from a different distribution. For
completeness, we report the full proofs, and refer the reader to the previous reference for additional details.

Proposition C.3 (Upper bound on variance error). Suppose that the kernel K satisfies mK =
∫
K2(u)du < ∞. Then:∫

σ2(x)dx ≤ mK

r · h

Proof. For i ∈ [n] and x ∈ X , consider the random variables ηi(x) = K((Xi − x)/h)− EK((Xi − x)/h). The random
variables η1(x), . . . , ηn(x) are independent and have zero mean, and their variance can be upper bounded as

η2i (x) ≤ EK2

(
Xi − x

h

)
∀i ∈ [n] .

Therefore, we have that

σ2(x) = E

(
1

rh

n∑
i=n−r+1

ηi(x)

)2

=
1

r2h2

n∑
i=n−r+1

E η2i (x) ≤
1

r2h2

n∑
i=n−r+1

EK2

(
Xi − x

h

)
.

15



Nonparametric Density Estimation under Distribution Drift

By integrating the above expression, we obtain that∫
σ2(x)dx ≤ 1

r2h2

n∑
i=n−r+1

(∫
EK2

(
Xi − x

h

)
dx

)

=
1

r2h2

n∑
i=n−r+1

∫ [∫
K2

(
zi − x

h

)
Pi(zi)dzi

]
dx

=
1

r2h2

n∑
i=n−r+1

∫ [∫
K2

(
zi − x

h

)
dx

]
Pi(zi)dzi

=
1

r2 · h

n∑
i=n−r+1

∫
K2(u)du

=
mK

rh
.

We remind that the Taylor expansion of a function f on R that is differentiable β times in each point of its domain can be
written as follows. Let x ∈ R, u ∈ R, and h > 0, then

f(x+ uh) = f(x) + f ′(x)uh+ . . .+
(uh)β

(β − 1)!

∫ 1

0

(1− τ)β−1f (β)(x+ τuh)dτ

Proposition C.4 (Upper bound Bias Error). Let K be a kerner of order β. We have that∫
b2(x)dx = O

(
h2β
)

Proof. Consider the bias error term

b(x) = E
[
P̂ r
K,h(x)

]
− P[r](x)

The function b(x) can be rewritten as

b(x) =
1

h

n∑
i=n−r+1

1

r

{[∫
K

(
z − x

h

)
Pi(z)dz

]
− hPi(x)

}

=
n∑

i=n−r+1

1

r

∫
K(u) [Pi(x+ uh)− Pi(x)] du

By using the Taylor expansion of Pi and the fact that K is a kernel of order β, we obtain that

b(x) =

n∑
i=n−r+1

1

r

∫
K(u)

(uh)β

(β − 1)!

[∫ 1

0

(1− τ)β−1P
(β)
i (x+ τuh)dτ

]
du

Since the Kernel is of order β, we have that
∫
K(u)uβP (β)(x)du = 0 for any density P , therefore we have that

b(x) =
n∑

i=n−r+1

1

r

∫
K(u)

(uh)β

(β − 1)!

[∫ 1

0

(1− τ)β−1P
(β)
i (x+ τuh)dτ

]
du

=
n∑

i=n−r+1

1

r

∫
K(u)

(uh)β

(β − 1)!

[∫ 1

0

(1− τ)β−1
(
P

(β)
i (x+ τuh)− P

(β)
i (x)

)
dτ

]
du

16
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We use Cauchy-Schwarz inequality to separate the contribution of each Pi, and obtain that

b2(x) =

(
n∑

i=n−r+1

1

r

∫
K(u)

(uh)β

(β − 1)!

[∫ 1

0

(1− τ)β−1
(
P

(β)
i (x+ τuh)− P

(β)
i (x)

)
dτ

]
du

)2

≤
n∑

i=n−r+1

1

r

(∫
K(u)

(uh)β

(β − 1)!

[∫ 1

0

(1− τ)β−1
(
P

(β)
i (x+ τuh)− P

(β)
i (x)

)
dτ

]
du

)2

We use the above inequality to upper bound
∫
b2(x)dx as follows∫

b2(x)dx ≤
n∑

i=n−r+1

1

r

∫ (∫
K(u)

(uh)β

(β − 1)!

[∫ 1

0

(1− τ)β−1
∣∣∣P (β)

i (x+ τuh)− P
(β)
i (x)

∣∣∣ dτ] du)2

dx

Now, we can proceed as in Tsybakov (2009, Proposition 1.5) to show an upper bound of O(h2β) for each integral within the
sum over i. By doing so, we can conclude that∫

b2(x)dx = O

(
n∑

i=n−r+1

1

r
h2β

)
= O

(
h2β
)

C.1.1. PROOF OF THE UPPER BOUND OF THEOREM 5.3

Let S ∈ Sn(∆n, β). Let K be a Kernel of order β as in Definition 5.4, and let h > 0. We consider the estimator P̂ r
K,h

defined as in Section 5. We use Proposition C.1 and have that

E∥Pn − P̂ r
K,h∥2 ≤ 2

∫ (
d2(x) + b2(x) + σ2(x)

)
dx

We upper bound each term of the right-hand side of the above inequality with Propositions C.2, C.3 and C.4:

E∥Pn − P̂ r
K,h∥2 = O

(
h2β +

1

rh
+∆2

n−r+1

)
We choose the bandwidth as h = r−1/(2β+1). In this case, the above upper bound becomes

E∥Pn − P̂ r
K,h∥2 = O

(
r−2β/(β+1) +∆2

n−r+1

)
If we use as r the value r∗ defined as in the theorem statement, it holds that ∆2

n−r∗+1 ≤ (r∗)−2β/(2β+1). We can conclude
that E∥Pn − P̂ r

K,h∥2 = O
(
(1/r∗)2β/(2β+1)

)

C.2. Lower Bound of Theorem 5.3

Let K : R 7→ [0,∞) be a function such that K(x) > 0 only if x ∈ (−1/2, 1/2),
∫
K(x)dx = 0, K is infinitely

differentiable, K is β-smooth, ∥K∥∞ = supx |K(x)| ≤ 1, and ∥K∥2 =
√∫

K2(x)dx ≤ 1. By following the example of
Tsybakov (2009, p.93), we adopt the function

K(x) = K0(4x+ 1)−K0(4x− 1) (8)

where

K0(x) = exp

(
− 1

1− u2

)
1{−1<x<1} .

17
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Figure 1. Plots of the functions K(x) and K0(x)

The proof of the lower bound follows the same skeleton of the method described in Section 4.3 for discrete distributions.

We consider a sample space X = [0, 1]. Let m = (r∗)1/(2β+1) ≥ 1. Let xj = (2j − 1)/(2m) for j ∈ [m]. We construct a
family of product distributions {Sw = Pw,1 . . .× Pw,n : w ∈ {0, 1}m} over Xn defined as follows

Pw,i(x) =

{
1{0≤x≤1} if i < n− r∗ + 1

1{0≤x≤1} +
∑m

j=1 wj
(∆n−r∗+1−∆i)

mβ K(m(x− xj)) if i ≥ n− r∗ + 1

This construction exhibits the following crucial property. For every x ∈ [0, 1], there exists at most one value j ∈ [m] such
that K(m(x− xj)) > 0. This property will be used throughout this section.

In the next three propositions, we show that the family {Sw : w ∈ {0, 1}m} is well-defined, and we compute the quantities
required to apply Assouad’s Lemma.

Proposition C.5. We have that {Sw : w ∈ {0, 1}m} ⊆ Sn(∆n, β).

Proof. For any w ∈ w ∈ {0, 1}m and i < n− r∗+1, we have that Pw,i is trivially a well-defined density. If i ≥ n− r∗+1,
we have that ∫

Pw,i(x)dx =

∫
1{0≤x≤1}dx+

m∑
j=1

wj
(∆n−r∗+1 −∆i)

mβ

∫
K(m(x− xj))dx = 1

where the last equality is due to the fact that
∫
K(x)dx = 0. We also want to prove that Pw,i(x) ≥ 0 (the density is

non-negative). We can show that for any x ∈ [0, 1], we have that∣∣∣∣∣∣
m∑
j=1

wj
(∆n−r∗+1 −∆i)

mβ
K(m(x− xj))

∣∣∣∣∣∣ ≤ ∥K∥∞
∆n−r∗+1

mβ
≤ ∆n−r∗+1

mβ

where in the first inequality, we used the fact that for any x, there exists at most one j such that K(m(x − xj)) > 0.
By definition of m and r∗, we have that ∆n−r∗+1/m

β ≤ (1/r∗)2β/(2β+1) ≤ 1, and this is sufficient to prove that the
distributions Pw,i are non-negative.

We also need to show that we satisfy the condition on the regular drift ∆n. For any i < n − r∗ + 1, we have that

18



Nonparametric Density Estimation under Distribution Drift

∥Pw,i − Pw,i+1∥ = 0 ≤ ∆i −∆i+1. If i ≥ n− r∗ + 1, we have that

∥Pw,i − Pw,i+1∥ =

√
∥w∥1
mβ

|∆i −∆i+1|

√∫
K2(mx)dx =

√
∥w∥1∥K∥
mβ+1/2

(∆i −∆i+1) ≤ ∆i −∆i+1

where the last inequality is due to the fact that
√
∥w∥1 ≤ m1/2, ∥K∥ ≤ 1, and mβ ≥ 1 (as m ≥ 1).

Finally, we show that the distributions Pw,i are β-smooth over [0, 1]. For i ≤ n− r∗ + 1, this is trivially true. In order to
prove this for i > n− r∗ + 1, we consider

P
(β)
w,i (x) =

m∑
j=1

wj(∆n−r∗+1 −∆i)K
(β)(m(x− xj))

Therefore, by integrating the square of the above expression, we obtain that∫ (
P

(β)
w,i (x)

)2
dx = ∥w∥1(∆n−r∗+1 −∆i)

2

∫
K(β)(mx)2dx

= ∥w∥1(∆n−r∗+1 −∆i)
2 1

m

∫
K(β)(x)2dx

We have that ∥w∥1/m ≤ 1, and (∆n−r∗+1 − ∆i)
2 ≤ ∆2

n−r∗+1 ≤ 1 by assumption of the theorem (as r∗ ≥ 1). Since∫
K(β)(x)2dx < ∞ as K is β-smooth, we can conclude that

∫ (
P

(β)
w,i (x)

)2
dx < ∞, and Pw,i is β-smooth.

Proposition C.6. Let w,w′ ∈ {0, 1}m. We have that

∥θn(Sw)− θn(Sw′)∥ =
√

h(w,w′)
∥K∥∆n−r∗+1

mβ+1/2

Proof. We have that

∥θn(Sw)− θn(Sw′)∥ = ∥Pn,w − Pn,w′∥ =
∆n−r∗+1

mβ

√√√√ ∑
j:wj ̸=w′

j

∫
K2(m(x− xj))dx

=
√

h(w,w′)
∥K∥∆n−r∗+1

mβ+1/2

Proposition C.7. Let w,w′ ∈ {0, 1}m such that h(w,w′) = 1. Let q be the bit in which w and w′ differ, and assume that
wq = 1. We have that

KL(Sw∥Sw′) = O(1)

Proof. By using the factorization property of the KL-divergence (Proposition A.1), we have that

KL(Sw∥Sw′) =
n∑

i=1

KL(Pw,i∥Pw′,i)

=
n∑

i=n−r∗+1

{∫ (
1 +

(∆n−r∗+1 −∆i)K(m(x− xq))

mβ

)
log

(
1 +

(∆n−r∗+1 −∆i)K(m(x− xq))

mβ

)
dx

}
,

(9)

where in the last equality we used the definition of KL-divergence and the observation that Pw,i and Pw′,i can only differ
on the interval [(q − 1)/m, q/m]. By using the definition of K(·) of (8), for any i ≥ n− r∗ + 1 we can rewrite the above
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integral as ∫ (
1 +

(∆n−r∗+1 −∆i)K(m(x− xq))

mβ

)
log

(
1 +

(∆n−r∗+1 −∆i)K(m(x− xq))

mβ

)
dx

=

∫ [(
1 +

(∆n−r∗+1 −∆i)K0(4mx)

mβ

)
log

(
1 +

(∆n−r∗+1 −∆i)K0(4mx)

mβ

)
+

(
1− (∆n−r∗+1 −∆i)K0(4mx)

mβ

)
log

(
1− (∆n−r∗+1 −∆i)K0(4mx)

mβ

)]
dx

We can observe that for any x ∈ R, we have that∣∣∣∣∆n−r∗+1 −∆i

mβ
K0(4mx)

∣∣∣∣ ≤ ∣∣∣∣∆n−r∗+1

mβ

∣∣∣∣ ∥K∥∞ ≤ 1

where in the last inequality, we used ∆n−r∗+1/m
β ≤ (1/r∗)2β/(2β+1) ≤ 1, and the fact that ∥K∥∞ ≤ 1. Therefore, we

can use Proposition A.2 and show that

KL(Sw′∥Sw) ≤
2

m2β

n∑
i=n−r∗+1

(∆n−r∗+1 −∆i)
2

∫
K0(4mx)2dx

= O

(
r∗

m2β+1
∆2

n−r∗+1∥K0∥2
)

We have that ∥K0∥2 ≤ ∥K∥2 ≤ 1. Also, m2β+1 = r∗ by definition of m, and ∆2
n−r∗+1 ≤ 1. We can conclude that

KL(Sw′∥Sw) = O(1).

C.2.1. PROOF OF THE LOWER BOUND OF THEOREM 5.3

We can assume that r∗ < n. In fact, if r∗ = n, the lower bound immediately follows from the lower bound Ω
(
n−2β/(2β+1)

)
for learning a β-smooth density with n independent and identically distributed samples.

Let S∗ = {Sw : w ∈ {0, 1}m} be defined as at the beginning of Appendix C.2. Due to Proposition C.5, we have that

inf
θ̂n

sup
S∈Sn(∆n,β)

E
Xn∼S

∥θn(S)− θ̂n(Xn)∥2 ≥ inf
θ̂n

sup
S∈S∗

E
Xn∼S

∥θn(S)− θ̂n(Xn)∥2

We can lower bound the right-hand side of the above inequality by using Assouad’s Lemma (Lemma 4.5) with metric
d = L2 and p = 2. By using Proposition C.6 and C.7, we obtain that

inf
θ̂n

sup
S∈S∗

E
Xn∼S

∥θn(S)− θ̂n(Xn)∥2 = Ω

(
min
w ̸=w′

(
1/
√
h(w,w′)

) ∆n−r∗+1

mβ−1/2

1

eO(1)

)

We have that minw ̸=w′

(
1/
√

h(w,w′)
)
= 1/

√
m. By substituting the definition of m, we obtain that

inf
θ̂n

sup
S∈S∗

E
Xn∼S

∥θn(S)− θ̂n(Xn)∥2 = Ω
(
∆n−r∗+1r

−β/(2β+1)
)

By assumption, we have that r∗ < n, hence ∆n−r∗ = Ω
(
(r∗)−β/(2β+1)

)
. Using the definition of ∆n, we have that

∆n−r∗+1 ≥ 1
c∆n−r∗ = Ω

(
(r∗)−β/(2β+1)

)
. We can conclude that

inf
θ̂n

sup
S∈S∗

E
Xn∼S

∥θn(S)− θ̂n(Xn)∥2 = Ω
(
(r∗)−β/(2β+1)(r∗)−β/(2β+1)

)
= Ω

(
(r∗)−2β/(2β+1)

)

20


