“We Feel Like We’re Winging It:”
A Study on Navigating Open-Source Dependency Abandonment

Courtney Miller
courtneymiller@cmu.edu
Carnegie Mellon University
Pittsburgh, PA, USA

ABSTRACT

While lots of research has explored how to prevent maintainers from
abandoning the open-source projects that serve as our digital infras-
tructure, there are very few insights on addressing abandonment
when it occurs. We argue open-source sustainability research nitist
expand its focus beyond trying to keep particular projects alive, to
also cover the sustainable use of open source by supporting users
when they face potential or actual abandonment. We interviewed 33
developers who have experienced open-source dependency aban-
donment. Often, they used multiple strategies to cope with aban-
donment, for example, first reaching out to the community to find
potential alternatives, then switching to a community-accepted
alternative if one exists. We found many developers felt they had
little to no support or guidance when facing abandonment, leaving
them to figure out what to do through a trial-and-error process
on their own. Abandonment introduces cost for otherwise seem-
ingly free dependencies, but users can decide whether and how to
prepare for abandonment through a number of different strategies,
such as dependency monitoring, building abstraction layers, and
community involvement. In many cases, community members can
invest in resources that help others facing the same abandoned
dependency, but often do not because of the many other competing
demands on their time - a form of the volunteer’s dilemma. We dis-
cuss cost reduction strategies and ideas to overcome this volunteer’s
dilemma. Our findings can be used directly by open-source users
seeking resources on dealing with dependency abandonment, or
by researchers to motivate future work supporting the sustainable
use of open source.

CCS CONCEPTS

« Software and its engineering — Maintaining software; Open
source model; Software evolution.

KEYWORDS

Open Source Sustainability, Dependency Management, Human Fac-
tors in Software Engineering

ACM Reference Format:
Courtney Miller, Christian Kistner, and Bogdan Vasilescu. 2023. “We Feel
Like We’re Winging It:” A Study on Navigating Open-Source Dependency

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE °23, December 3-9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0327-0/23/12.

https://doi.org/10.1145/3611643.3616293

Christian Kastner
Carnegie Mellon University
Pittsburgh, PA, USA

Bogdan Vasilescu
vasilescu@cmu.edu
Carnegie Mellon University
Pittsburegh. PA. TISA

-

(a) Pre-Adoption
Considerations

(b) Preparations
Once Adopted

(c) Identifying (d) Dealing with
Abandonment Abandonment

Dependency
Identified
as Abandoned

| i _
>

Dependency
Adoption

Response to
Abandonment

time | : {

(e) Impacts of Abandonment

(a) Pre-Adoption - Num. Maintainers - Project Popularity - Update Frequency
Considerations - Commit Frequency - Response to Issues and PRs
(Sec. 6.1) - Maintainer Reputation and Response

(b) Preparations - Use High-Confidence Dependencies - Localize Dependency Use
Once Adopted - Monitor Dependency - Build Relationship w/ Maintainers
(Sec. 6.2) - Community Involvement - Minimize Num. Dependencies

- [Plan to] Fork Dependency

(c) Identifying
Abandonment
(Sec. 5)

- Notice of Abandonment or Archival - Project Activity
- Automated Warning or Flag

(d) Dealing with - Switch to Alternative - Fork/Vendor Code
Abandonment - Seek Support from Others - Create Workaround Independently
(Sec. 6.3) - Refactor Code Minimizing Use - Help Find New Maintainers

- [Try to] Contribute to Dependency

(e) Impacts of - Language Incompatibilities - Creating Roadblock

Abandonment - Performance Decreases - Security Concerns

(Sec. 4) - Concerns About Future Updates - Missing Needed Features
- Costing Time and Other Resources

L J

Figure 1: Dependency life cycle with the common stages
where dependency abandonment is addressed highlighted.

Abandonment. In Proceedings of the 31st ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE °23), December 3-9, 2023, San Francisco, CA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3611643.3616293

1 INTRODUCTION

Open-source digital infrastructure is heavily relied upon by billion-
dollar corporations, governments, startups, hobbyists, and pretty
much everyone else who builds software [33]. However, despite the
broad reliance on open source, the reliability and continued main-
tenance of many of these projects is no sure thing, especially since
much of the creation and maintenance effort comes from volunteer
maintainers who may stop contributing and disengage from the
project at any point [33, 39]. When open source maintainers dis-
engage, more often than not, nobody else steps up and the project
becomes abandoned [4]. This tension between the reliance on open
source and the uncertainty of future maintenance has fueled the
need to study, and improve, open-source sustainability.

In general, open-source sustainability research has so far focused
on keeping particular projects and ecosystems alive, i.e., maintained,

https://doi.org/10.1145/3611643.3616293
https://doi.org/10.1145/3611643.3616293

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

e.g., by improving onboarding processes [34, 49, 95], finding sus-
tainable funding models [92, 112], or preventing maintainer dis-
engagement [4, 13, 73]. Yet, maintainers often leave projects for
arguably sensible reasons [73], such as changing jobs, losing in-
terest, or starting a family. As such, there will always be a risk for
users of open-source infrastructure that some direct or indirect de-
pendencies become abandoned. Therefore, we argue that more time,
attention, and effort should be invested into supporting the users
of open source who face dependency abandonment. For example,
as we will show, there are many ways that developers can pre-
pare for abandonment either individually or collectively, and many
strategies that can help reduce reaction costs when abandonment
occurs. In this paper, we collect, curate, and contextualize the experi-
ences and practices of developers who have dealt with open-source
dependency abandonment. With the goal of understanding what
developers do when facing open-source dependency abandonment,
we explore this topic with two research questions (RQs):

RQ1 How do developers prepare for the risk of open-source de-
pendency abandonment?

RQ2 How do developers deal with open-source dependency aban-
donment, once it occurs?

We conducted semi-structured, in-depth interviews with 33 de-
velopers who have experienced open-source dependency abandon-
ment, which we will refer to as just abandonment moving forward
for brevity. We identified three stages during the dependency life
cycle where interviewees commonly took action to address the
risks and realities of dependency abandonment: before adoption,
while using a dependency that is still being maintained, and after a
dependency has become abandoned (see Figure 1). While we iden-
tified a wide range of philosophies surrounding preparing for and
dealing with abandonment, there was a common sentiment that
there are often very few resources on dealing with abandonment;
interviewees often had to figure it out by trial-and-error with little
guidance.

While not all interviewees believed it was worthwhile to invest
in preparing for abandonment, some did, and they prepared, e.g.,
by creating abstraction layers in their code base to localize depen-
dency use, and by monitoring the dependency and its surrounding
community to stay informed of any issues or potential signs of
abandonment. Once interviewees identified abandonment, they
often sought support and guidance from the community, switched
to alternative dependencies, and forked or vendored abandoned
dependency code. Overall, we suggest that there is a potential to
reduce the costs associated with abandonment through investments
into preparation, but it is often unclear whether that preparation
will pay off. In addition, there is often potential for community
members to invest in solutions that will benefit others facing the
same problem, such as creating a migration guide, we call these
community-oriented solutions. However, developers often have lit-
tle incentive to create such community-oriented solutions — an
instance of the volunteer’s dilemma [30]. We survey solutions to the
volunteer’s dilemma from fields like social psychology and game
theory, and discuss how they can be applied to this context.

In summary, this paper makes the following contributions: (1) a
list of stages in the dependency life cycle where the risks and
realities of dependency abandonment are commonly addressed; (2) a

Courtney Miller, Christian Kastner, and Bogdan Vasilescu

taxonomy of common strategies developers use to prepare for and
deal with dependency abandonment which can serve as a reference
to both practitioners and researchers; (3) a theoretical framework
for the costs associated with abandonment as well as suggested cost-
reduction strategies; and (4) the concept of community-oriented
solutions and evidence-based strategies to overcome the volunteer’s
dilemma to collectively address abandonment.

2 RELATED WORK

Dependency Management. Open-source dependencies can pro-
vide free reusable functionality to developers. By building on these
resources, developers can turn ideas into prototypes and prototypes
into deployment code in a fraction of the time and at a fraction
of the cost previously possible. However, there is a notable down-
side to dependencies, namely dependency management. Due to both
internal and external evolutionary pressures to enhance features,
fix bugs, and patch vulnerabilities, dependencies and their appli-
cation programming interfaces (APIs) change over time [63, 81],
sometimes becoming incompatible with old versions or other de-
pendencies a project may have [8, 54, 82]. Such pressures often
make coordinating dependency updates and maintaining compati-
bility between dependency requirements a complex task, especially
when lots of dependencies are used or when breaking changes occur,
i.e., changes that require users to refactor their code. Additionally,
projects can face security vulnerabilities through their dependency
supply chain, including transitive dependencies where dependen-
cies have dependencies of their own [61]. Cross-ecosystem studies
of the presence of vulnerable dependencies have highlighted the
importance of managing and updating dependencies [85, 111]. Be-
cause of the complexities of dependency management, there have
been calls for documenting all dependencies in a software bill of
materials (SBOM), including a US executive order signed in May
2021.! In short, dependency management is a complex ongoing
problem that has been studied in different ways.

When developers switch dependencies or update after a break-
ing change, they often face nontrivial migration work in their own
code base. Researchers have attempted to address the many chal-
lenges surrounding dependency migration by trying to understand
how developers migrate between libraries [2, 23, 98, 99], and by
creating numerous tools supporting migration [3, 15, 108]. Even so,
attempts to support migration thus far have generally supported
limited varieties of API evolution, giving them a limited scope of
applicability [16, 31, 80], and limited success in practice [23].

Because keeping up to date with dependency updates can be
challenging, research has studied how developers approach and
manage dependency updates [6, 26, 27]. Despite common concerns
about the continued maintenance of dependencies [33], developers
tend to either be slow about updating dependencies or not update
them at all [28, 29, 89], raising questions about whether abandon-
ment is actually a problem if many projects rely on old versions
anyway. A study of 4,600 GitHub projects found that developers
tend not to update dependencies even when security vulnerabilities
are involved, with 81.5% of projects having outdated dependen-
cies [60]. In addition to studying how updates are managed at large,

Uhttps://whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-
order-on-improving- the-nations-cybersecurity/

https://whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

A Study on Navigating Open-Source Dependency Abandonment

particular focus has been directed towards studying how breaking
changes are dealt with [8]. However, to the best of our knowledge,
little research has studied the opposite problem, dealing with de-
pendencies that have been abandoned and that are therefore no
longer receiving updates. Because dependency abandonment can
be a costly and complex issue for dependents [33], this study pro-
vides detailed information on how dependents can prepare for and
address dependency abandonment.

Open-Source Sustainability. Nearly everything we do on screens
from checking email and stock prices to online shopping and read-
ing the news relies on and could not function without open-source
software [33]. In 2018, npm, Inc. estimated that, on average, 97%
of the code on modern web applications comes from npm [79].
While difficult to quantify, the economic value of open source is
also significant; some estimate that in 2010 open-source software
produced 342 billion Euros of economic value in Europe alone [25].
Nonetheless, despite the widespread reliance on open source, the re-
liability and continued maintenance of many of these projects is no
sure thing — this is a key motivation for open-source sustainability
research.

Prior research argues that a project’s maintainers are a crucial
part of its success [17], and that it is vital to attract new contributors,
support their onboarding, and retain core maintainers. Each of these
parts of the contributor life cycle have been studied thoroughly.

In terms of attracting new contributors, researchers have stud-
ied the barriers faced by new contributors [83, 94-96, 106], the
project characteristics associated with greater attractiveness to new
contributors [10, 42, 87], and even the role of social media [35].
Research supporting the onboarding of contributors has studied
the onboarding process [24, 32, 55, 106], the role of scaffolding,
mentoring, and social ties [34, 52, 56, 97, 103, 109], and the char-
acteristics of contributors who succeeded in becoming part of the
core team [44, 104, 113]. Research on retaining core contributors
focused on why they disengage [13, 57, 73], the role of maintain-
ing a healthy community to reduce that risk [38, 72, 86], and the
impact of disengagement on the health and survival probability of
a project [37, 40, 58, 67, 76, 88, 105].

Research has also studied the impacts of project and ecosys-
tem characteristics and organizational structures on open-source
projects including the effect of codes of conduct [93, 101], how
badges can be used as a signal to attract new contributors [102],
how project and ecosystem characteristics impact maintainer re-
tention and project activity [19, 51, 105], the maintainability and
sustainability of projects [18, 51, 91, 110, 114], and the impact of
commercial involvement on open-source development [14].

Taking a step back, we can observe that almost all sustainabil-
ity research focuses on studying various factors, characteristics,
and phenomena that support the goal of keeping particular projects
or ecosystems alive and actively maintained. However, because of
the self-organized and volunteer-based nature of much of open
source, we likely cannot stop all projects from being abandoned
or ensure their ongoing maintenance. Many popular open-source
projects hosted on GitHub rely on one or two core maintainers who
are often volunteers to keep the project running [5, 33], and core
maintainers sometimes disengage for various reasons that occur
normally in life, such as starting a family, switching jobs, no longer

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Identify & Run Perform Perform
Recruit »| Interviews »| Qualitative »| Validity
Participants Analysis Check

Figure 2: Research Methodology Flow Chart

having enough time, or simply losing interest [73]. Maintainers
losing interest or no longer having enough time to contribute are
two common reasons open-source projects fail [17]. One study
of popular projects on GitHub found that 16% were abandoned
by maintainers, and in 59% of those abandoned projects, nobody
stepped up to take over maintenance efforts leaving the project fully
abandoned [4]. Therefore, since open source is depended on by “our
economy and society, from multi-million dollar companies to govern-
ment websites” [33] to support the rapid and efficient development
of modern software, we argue open-source sustainability research
must expand its focus to include supporting the sustainable use of
open source by helping developers better prepare for and deal with
dependency abandonment and its consequences when it occurs.
This general direction, which we pursue in this paper, has received
relatively little attention in the literature, with a few exceptions of
prior works measuring and communicating library and community
health to potential users to help them avoid selecting packages to
depend on which may be in decline or otherwise have indicators
of being unsustainable [75, 105].

3 RESEARCH DESIGN

Because, as far as we know, there has been little research studying
how developers prepare for (RQ1) and deal with (RQ2) dependency
abandonment, we used an iterative research process and qualitative
research methods. Specifically, we performed semi-structured inter-
views with interwoven analysis and exploration, as we illustrate in
Figure 2. As is often recommended, we did not compartmentalize
the interviews and the analysis into separate discrete phases, but
instead iteratively built our understanding and adjusted our inter-
view guide and codebook in tandem throughout the interviews [66].
We will now discuss study design, analysis, and limitations.

3.1 Identifying and Recruiting Participants

Because we wanted to talk to people who had experience deal-
ing with open source dependency abandonment, for our interview
study we specifically targeted people who had depended on an open
source project that then became abandoned recently. To identify
such maintainers, we worked backward: First, we identified aban-
doned projects, then we identified projects that depend on each
abandoned project, i.e., the dependents, and finally, we identified
the maintainers of those dependents.

Defining and Identifying Abandoned Projects. Because cus-
toms and behaviors surrounding dependency management can
vary widely by ecosystem [8], we searched for abandoned projects

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

in three package manager ecosystems to collect a diverse pool of ex-
periences: npm? (Javascript), PyPi® (Python), and Composer* (PHP).
Using data cross-linked between GHTorrent [47] and each ecosys-
tem’s respective package manager website (matching packages to
their corresponding GitHub repositories, when mentioned explic-
itly in the package manager metadata), we heuristically searched
for projects with signs of abandonment. Concretely, we identified
all projects with at least ten commits a month for two consecutive
years and less than three commits total in the following year, i.e.,
the year in which the project is presumed abandoned; the three-
commits threshold allows for some residual activity (e.g., posting
warnings about abandonment in the README file) and mirrors
prior work [73, 105]. Once we had a pool of potentially abandoned
projects, we randomly sampled and manually evaluated whether
each project seemed indeed abandoned by investigating the activity
patterns on each project’s GitHub repository until we had 10-20
high-confidence abandoned projects per ecosystem. For this we
looked at the most recent period we could observe at the time —
the first six months of 2022, regardless of the year we suspected
the project was abandoned based on the automated heuristic — and
manually checked if the project either (1) did not have any signifi-
cant commit activity;® or (2) had an explicit label or notice that it
was abandoned, archived, or simply no longer maintained.

Identifying Dependent Projects and Maintainers. We then used
GitHub’s dependency graph feature to get the list of dependents
for each abandoned project [45], and collected the data using the
github-to-sqlite library.® We ensured the dependent projects were
active by considering only dependents that had, on average, at least
ten commits a month in the first half of 2022. We then identified
each dependent project’s top maintainers by commit counts during
the first half of 2022, collected their publicly available email from
their GitHub profiles, and sent out 412 interview invitations in total
in staggered batches of 10-20. Our study design was approved by
our Institutional Review Board.”

3.2 Interview Protocol

Interviews began with introductions and verbal consent. The main
topics of the semi-structured interview guide included (1) how inter-
viewees identified abandonment; (2) the impact of abandonment on
their project; (3) how they dealt with the abandonment and what
solutions they used; (4) whether they prepared for the risk of the
dependency becoming abandoned before identifying abandonment;

2Node.js Package Manager, https://npmjs.com

3The Python Package Index, https://pypi.org

4PHP Dependency Manager, https://getcomposer.org

5Since abandonment need not align with calendar year boundaries, we still considered
as abandoned projects with a few trailing commits at the beginning of the six-month
window but no commits thereafter.

Shttps://github.com/dogsheep/github-to-sqlite

"We sent a small number of targeted emails, based on information our participants
posted publicly in their profile. In terms of research ethics, especially the Belmont
report’s principles of respect for persons and beneficence, we consider that the costs (e.g.,
potentially unwanted emails) and risks (e.g., releasing confidential information) to
potential participants are low, and insights gained in better dependency management
benefit all open source contributors. We considered alternative sampling strategies
and concluded that because we were interested in speaking to a specific group of open
source maintainers, that it seems unlikely that we could have recruited people in a
different (less targeted way) without increasing the general cost to the community by
engaging with large groups of maintainers.

Courtney Miller, Christian Kastner, and Bogdan Vasilescu

and (5) whether they considered or evaluated the risk of the de-
pendency becoming abandoned before adoption. Since the goal of
the interviews was to understand how interviewees prepared for
and dealt with the abandonment, during interviews where time
permitted we identified additional abandoned dependencies to dis-
cuss, in addition to the original dependencies that were identified,
by asking “have there been other instances of any of your project’s
open-source dependencies becoming unmaintained or abandoned by
maintainers?” We typically were able to discuss two abandoned
dependencies per interview, and we kept discussions focused on
those specific cases to get concrete insights.

3.3 Data Collection and Analysis

The interviews took place over Zoom and lasted 25 minutes on
average. In total we conducted 32 interviews (P1-32) where one
interview was with two developers (P2a, P2b). We qualitatively
analyzed the interview transcripts using iterative thematic analy-
sis [9]. The process followed Lincoln and Guba’s trustworthiness
criteria [48], as discussed by Nowell et al. [77]. During this process,
we were perpetually switching between the stages of exploring
the rich transcripts, engaging with and analytically memoing the
data [71], coding, searching for themes, and refining the codes and
coding framework, as is recommended [66].

The analysis began with the first author performing open-ended
inductive coding of each interview as we went. After the first eleven
interviews, all the authors came together and performed an in-depth
analysis of the codes and coding frame. Iterative adjustments to the
coding frame and interview guide were made as necessary. Once
a coding frame was settled on, the first author re-coded all the
transcripts, with any uncertain cases being reviewed by another
author. We stopped running interviews once we reached our satu-
ration criterion, which we defined as three consecutive interviews
without learning any new major insights [41]. A later participant
discussed a dependency that was marked abandoned but still re-
ceived security updates, and we explored this further by identifying
and interviewing developers who faced this type of dependency
abandonment. We quickly reached saturation and did not find any
new major insights.

3.4 Validity Check

To validate and check for fit and applicability of our findings as
defined by Corbin and Strauss [22], we performed a validity check
by sharing our findings and results with interviewees. We confirmed
our interpretations of the rich interview data aligned with the
interviewees’ experiences by getting interviewees’ thoughts and
feedback. We sent all interviewees summaries and the complete
drafts of Secs. 4, 5, 6, and 7. We also sent a list of prompts and
questions asking interviewees to look through the documents for
areas of agreement or disagreement, general correctness, and any
additional insights they gained after reading through the findings
as well as the experiences and strategies of other developers.

Six interviewees responded, all six confirmed that they largely
agree with our findings, e.g., T think your paper is a well-considered
analysis of the subject that fits with my experience, fwiw” (P11). One
interviewee pushed back on augments made by other interviewees
suggesting that abandonment was not always a problem because

https://npmjs.com
https://pypi.org
https://getcomposer.org
https://github.com/dogsheep/github-to-sqlite

A Study on Navigating Open-Source Dependency Abandonment

there are not always impacts. They argued that “abandonment is al-
ways problematic and always has an impact, even if the software itself
is not broken, because abandonment still forces a consumer to act as
if it is abandoned, i.e. to prepare for breakage or vulnerabilities” (P4).

3.5 Limitations

The findings of our qualitative interview study suffer from the
same limitations commonly found in work of this kind. Generaliza-
tion beyond the pool of interviewees should be made with caution.
Self-selection bias could influence the transferability of the results
because there could be differences in the personalities and beliefs in
the sample and the subset that chose to participate [70, 90]. We tried
to reduce this risk by streamlining the enrollment process and keep-
ing interviews short. There is also a question of authenticity in how
we defined ‘abandoned’ dependencies since the definition may not
fully represent the concept of project abandonment [68], although
during the discussions with interviewees there was agreement with
our definition.

4 IMPACTS OF ABANDONMENT

Unlike breaking changes which by definition break things, it is not
obvious that dependency abandonment in and of itself is problem-
atic. If a dependency worked last year and has not been changed,
there is no inherent reason why its abandonment would cause
problems. However, Lehman argues that software either “undergoes
continual changes or becomes progressively less useful” [64]. We start
by exploring if and how abandonment impacted interviewees. We
provide a summary of the types of impacts experienced in Figure 1.

Concrete Problems. We define concrete problems as technical prob-
lems that impact a dependent project. Language Incompatibili-
ties (P11, 17, 23) occurred when interviewees were trying to update
other parts of the project but could not, because the unmaintained
dependency caused a language incompatibility between itself and
other dependencies or the rest of the project. For example, “we were
trying to upgrade our Saas platform from Python 2 to Python 3, and it
was a core dependency, so we needed it to work [with Python 3], and
it didn’t. So we ended up having to move to another library” (P17).

Some interviewees described experiencing performance de-
creases (P13, 32) as a result of dependency abandonment. One
interviewee described how they had to depend on multiple versions
of their core libraries because the unmaintained dependency relied
on older versions but their other dependencies relied on newer
versions as they were released, which increased compile times and
binary size for end users (P32).

Some dependencies were missing needed features (P14, 20,
23) or features that interviewees believed may be necessary in the
future, which they no longer expected because of the abandonment.

Anticipated Problems. Anticipated problems are problems inter-
viewees are concerned may impact the project in the future but
have yet to materialize. Some interviewees had concerns about
future updates (P16, 22, 29) and worried there could be problems
down the line due to the lack of maintenance, such as incompatibil-
ity issues when updating other dependencies. For example, ‘T was
not facing any problem in particular, but I was concerned because the
library didn’t get any updates” (P16).

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Some had security concerns (P4, 22, 28, 29) about potential
future vulnerabilities or other security-related issues. However, no
interviewees reported experiencing an actual security vulnerability
associated with an abandoned dependency. For example, “we’ve
never had a security incident related to an abandoned dependency,
but that’s always a concern— that there could be a security vulnera-
bility” (P4).

General Impacts. In many cases, interviewees described general
impacts of abandonment rather than specific problems, so we distin-
guish this discussion from the discussions above. Dealing with de-
pendency abandonment often costs time and other resources (P4-
7,9, 10, 20, 21, 23, 25), which was often related to replacing the
dependency or creating a workaround to deal with abandonment.
For example, “right now, we’re working through the fact that the [de-
pendency] is no longer being actively worked on. Which means that we
need to switch to something else. We’re looking at [alternative depen-
dency], but there’s really no way to replace that dependency without
rewriting huge portions of the project, and so that’s just something
we have to put effort into and work through” (P7). Sometimes aban-
donment created a roadblock (P10, 16, 21, 27, 29, 30) or notable
problem that stopped or significantly impacted project progress,
and required a workaround or solution to be employed quickly.

Some interviewees reported the abandonment had no mean-
ingful impact (P6, 7, 9, 11, 16, 25, 29) and argued that just because
a dependency was abandoned does not necessarily mean there is
a problem (in contrast to the interviewees that mentioned antici-
pated problems, who were at least concerned about possible future
problems). They explained that if the software is complete, does
not interact with other software, and does not become insecure
itself, then the abandonment is not necessarily problematic. For
example, “it was recognized within the organization that [...] one of
the dependencies that the business runs on is totally unsupported for
years [...], and because it wasn’t a cause of many problems it wasn’t
necessarily an issue” (P11).

Overall, interviewees rarely mentioned concrete problems when
discussing how dependency abandonment impacted them. Most of
the impacts described were concerns about anticipated problems or
general impacts whose problems of origin were not mentioned. It
appears some interviewees had expectations of their dependencies
regarding ongoing maintenance, feature creation, or support. When
abandonment occurred, those expectations were no longer being
met, making them feel like they were impacted even though no
concrete problems like an unfixed bug, unpatched security vulnera-
bility, or dependency version incompatibility had occurred yet. This
leads to questions about dependent projects’ exact expectations
and how they interact with and relate to the concrete technical
problems caused by abandonment.

Distinctions in Impact Between Dependencies. The impact of
abandonment can vary widely depending on the type of dependency
in question. There was often much more concern about dependen-
cies used at runtime, for security, or for other user-impacting tasks
compared to dependencies used in development environments or
as infrastructure during testing and deployment, which were com-
monly seen as less impactful and concerning. For example, “if we
have a runtime dependency that is abandoned or not maintained or
has security issues, we either typically contribute to that project to

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

bring it up to speed and fix those vulnerabilities or look for an alternate,
so we’re really specific and careful about runtime dependencies” (P2a).

Key Insights: Most impacts were not concrete technical
issues but broad concerns about potential future issues or
general impacts like costing time. While some interview-
ees were concerned about possible future security vulnera-
bilities, no interviewees reported experiencing a security
vulnerability associated with an abandoned dependency.

5 IDENTIFYING ABANDONMENT

It is important to understand how abandonment is identified, be-
cause in cases where identification happens after a concrete prob-
lem has occurred, immediate action is frequently needed which can
be disruptive to projects. Thus many developers want to identify
abandonment before it causes a concrete problem, so they can react
without immediate time pressures. Interviewees used a wide range
of information to identify abandonment. This information varied
along two dimensions, first how visible the information was, and
second how the information was discovered. We now catalog the
information used to identify abandonment and discuss how it varies
across the aforementioned dimensions. We provide a summary of
the codes in Figure 1.

Manually-Identified Information. Abandonment was often man-
ually identified by observing various project characteristics like
commit frequency (P8, 21), lack of updates (P4, 6-8, 12, 29, 30,
32), and lack of progress resolving issues or pull requests
(PRs) (P2a, 16, 17, 21, 29). These forms of information often have
high visibility since they are easily observed during a quick inspec-
tion of the project.

Many participants identified abandonment by observing a no-
tice of abandonment/archival (P3, 4, 7, 13, 17, 20, 29, 30). The
notices were often posted somewhere on the abandoned depen-
dency’s repository page, but there was a wide variation in visibility
depending on the particular location. Sometimes the information
was highly visible, being posted as a flag/warning at the top of
the page, a message at the top of the README, or as a note in an
issue tracker thread explicitly discussing the maintenance status
of the project. For example “my colleague saw as he was looking
at issues [...] that there was this issue saying ‘this will no longer be
maintained” (P3). The project inspection that led to the discovery
of this information often occurred because the interviewee traced
an error back to the dependency or because they were using the de-
pendency as a reference when doing something like implementing
anew feature. Other times, the information had low visibility, mean-
ing it was possible to find but required more effort to locate (e.g., an
unrelated issue or PR that a maintainer responded to announcing
they no longer plan to maintain the project).

Tool-Supported Identified Information. Some interviewees used
information from observing an automated warning or flag (P4,
6,7, 13, 22, 25, 27, 29, 31, 32) which often provided highly visible in-
formation. Often these warnings occurred because the dependency
maintainers had explicitly marked the project as abandoned/depre-
cated or because the unmaintained dependency was causing some
sort of incompatibility error, such as those described in Sec. 4.

Courtney Miller, Christian Kastner, and Bogdan Vasilescu

Flags for abandoned/deprecated packages are a recent feature of
several package managers, allowing maintainers to explicitly signal
that a package is abandoned/deprecated. These flags generate warn-
ings when users either install, update, or use said package (with
specifics depending on the package manager). In 2015, Composer
incorporated the ability to add a flag to a package indicating it has
been abandoned which is used to generate warnings when users in-
stall or update flagged packages.® Similarly, ‘since 2020 npm as had
the npm-deprecate command, which allows maintainers to add a
deprecation flag to a package’s npm registry entry, producing a dep-
recation warning whenever someone installs the package [78]. We
could not identify an equivalent PyPi feature, but found community
discussions that proposed creating one and cited the npm-deprecate
function as an example.” GitHub also has an platform-wide archive
flag for repositories.'?

Key Insights: Manually-identified information like
project characteristics were often used to identify abandon-
ment, such as commit frequency and progress resolving
issues or PRs. Some package managers like npm and
Composer provide abandoned/deprecated project flags,
which can be used to automatically detect abandonment in
projects that have been explicitly flagged as such.

6 PREPARING FOR AND ADDRESSING
ABANDONMENT

Through our qualitative analysis, we identified several stages in
the timeline of an interviewee’s experience with a dependency
where they frequently took action to prepare for or deal with de-
pendency abandonment. In Figure 1, we present these key stages,
which are (1) considerations before adoption regarding current or
future dependency maintenance, (2) strategies used during or after
adoption to prepare for the risk of abandonment, and (3) solutions
to address abandonment once identified. We now discuss each stage
chronologically to mirror interviewees’ experiences.

6.1 Considerations Before Adoption

When deciding whether to adopt a dependency, interviewees of-
ten reported evaluating the current maintenance status and the
expected risk of future abandonment by examining project and
maintainer characteristics. Essentially all mentioned factors mir-
ror those discussed in literature about general dependency selec-
tion [8, 62, 74, 87]. However, we distinguish these considerations
from those for general dependency selection because we specifically
asked if and how they evaluate the risk of a potential dependency
becoming unmaintained or abandoned before adopting it. For the
sake of completeness, we present the considerations discussed by
interviewees.

Project popularity (P2a, 6, 9, 10, 12, 13, 16, 17, 19, 21, 23-25,
27, 30, 31) was often operationalized by looking at the number
of stars, forks, or users. The update frequency or time of the

8https://github.com/composer/composer/issues/4610
“https://github.com/pypi/warehouse/issues/345
WOhttps://docs.github.com/en/repositories/archiving-a- github-repository/archiving-
repositories

https://github.com/composer/composer/issues/4610
https://github.com/pypi/warehouse/issues/345
https://docs.github.com/en/repositories/archiving-a-github-repository/archiving-repositories
https://docs.github.com/en/repositories/archiving-a-github-repository/archiving-repositories

A Study on Navigating Open-Source Dependency Abandonment

last update (P5, 6, 10, 11, 13, 17, 20, 22, 27-30) and the commit
frequency or time of the last commit (P4, 5, 8-13, 16, 24, 28)
often gave insights into the regularity and recency of general project
activity and progress. Interviewees used these highly-visible project
metrics to make quick judgments and predictions about current and
future maintenance status. The response to issues and PRs (P4,
9-12, 16, 21, 28, 30) provided insights into whether there were
(1) a lot of bugs or problems with the project; and (2) whether the
maintainers were still actively participating.

The number of maintainers (P2b, 7, 13, 16, 19, 28, 30, 31)
often impacted expectations for future maintenance; projects with
fewer maintainers were often seen as less desirable since maintainer
disengagement may have a more considerable impact on project
maintenance.

Some also considered the content and tone of the response
or reaction of dependency maintainers (P2a, 2b, 4, 9-12, 21)
when deciding whether to trust the project. Maintainers who were
helpful, friendly, and welcoming often gave interviewees more
confidence that they would be cooperative and helpful if something
were to occur. Some used the reputation, status, or previous
experience of the potential dependency maintainers (P4, 8,
10, 11, 17, 19) as an important metric when deciding whether to
trust a potential dependency. Having experienced maintainers with
positive, long-standing reputations was reported to be a good sign.

Choosing Between Dependencies. Several interviewees discussed
factors they use when deciding between multiple potential depen-
dencies. In general, they reported preferring projects that seemed
more reliable and maintainable over projects with better perfor-
mance or more cutting-edge features. This often appeared to come
from being burned by an abandoned dependency previously, and
wanting to avoid experiencing another similar situation.

Key Insights: A project’s popularity, activity, and main-
tainer reputation were often used when considering the risk
of a potential dependency becoming abandoned, mirroring
factors used in general dependency selection [8, 62, 74, 87].

6.2 Preparations Once Adopted

Between when a project decides to adopt a maintained dependency
and when that dependency is identified as abandoned, some inter-
viewees prepared for the risk of abandonment occurring. Interview-
ees engaged in many different kinds of preparation. Some forms of
preparation focus on making it easier to identify abandonment and
others focus on making it easier to deal with abandonment when
it occurs. Additionally, some forms of preparation are one-time
actions whereas others are reoccurring actions.

A method of preparation that was highly regarded and seemed to
be relatively successful was minimizing/localizing dependency
use (P2a, 6,7, 16, 27, 32) in the project’s code base. This often meant
explicitly designing the implementation at the time of dependency
adoption in a way that made dependency replacement easier by
minimizing the points of contact using an abstraction layer. For
example, “as much as possible, we try to buffer dependencies with
abstractions so that specific implementation details of a third-party

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

library aren’t scattered through the whole application in difficult
ways” (P7).

Some interviewees prepared by directly monitoring the depen-
dency (P2a, 4, 10, 13, 27) to keep an eye on how things are going,
often by looking at project characteristics similar to those described
in Sec. 5. For example, “we are always conscious of the dependencies
and looking closely at them” (P2a). By remaining aware of the state
of the dependency and its community, interviewees place them-
selves in a better position to identify early signals of abandonment
which gives them an opportunity to act before abandonment and
any resulting concrete problems occur, if they so choose. Some
also prepared by being active and informed members of the
community (P2b, 16, 17, 31) and building relationships with
dependency maintainers (P1), often so they could notice issues
earlier or have people to reach out to if abandonment occurs. This
often involves at least semi-frequent interactions with dependency
maintainers or other community members to stay informed of the
goings-on in the project and aware of any potential issues or warn-
ing signs of something like abandonment being on the horizon.
For example, ‘T suppose I engaged pretty actively in the open source
community, particularly around Python, so I would hope I would
have a feeling for what was going on. I think it’s partly about being
aware” (P17).

Some interviewees report only using high-confidence depen-
dencies (P6, 7, 11, 18, 19, 21, 25, 27) in the first place, which they
believed were sufficiently unlikely to be abandoned. Similarly, some
minimize the number of dependencies (P2a, 9, 11, 24, 27) they
use by actively going through and removing unnecessary depen-
dencies to reduce their surface area of exposure. For example, T
think [we] removed a couple dependencies that we didn’t need, there
were small use cases, and [we] just authored code to replace the depen-
dencies” (P2a). One interviewee reported that their development
team has a specific role called the Sustainability Engineer (a.k.a., the
’sus’ role) whose responsibilities each sprint include, among other
things, managing dependencies by looking through their code base
and finding parts that can be cleaned up by removing unnecessary
dependencies. This allows their team to slowly and incrementally
manage and remove unnecessary dependencies, making it less of
a large and daunting task. Some prepared by creating plans for
dealing with particularly important dependencies if they become
abandoned, e.g., forking or planning to fork dependency (P2a,
5,9, 11, 20) so they have a backup if something happens.

Whether to Prepare or Not. For various reasons, interviewees
often did no preparation (P3, 4, 6, 9, 10, 14, 16, 17, 19, 20, 22-
25, 29). In some cases, preparation was something they had yet
to consider. Others reported that it would be nice if they had the
time, but that ultimately preparing sounds like an overwhelming
or difficult task given how many dependencies they have. Others
subscribe to the philosophy that ‘it is not a problem until it is a
problem,” meaning they do not concern themselves with potential
future issues. These interviewees did not believe it was necessarily
worthwhile to prepare for the risk of abandonment because they did
not believe abandonment is in and of itself always problematic or
impactful, as discussed in Sec. 4. For example, “unmaintained doesn’t
necessarily mean that there is any problem with the library” (P32).
They instead wait until there is a concrete problem, at which point

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

they deal with it. Another interviewee said the decision of how
and whether to prepare for dependency abandonment points to
a long-standing perpetual balance in software engineering. They
explained, for example, that abstraction layers increase project
robustness but can also increase code complexity making it harder
to maintain, which can also act as a roadblock when introducing
and onboarding new contributors (P4).

Key Insights: Interviewees who prepared for the risk of
dependency abandonment often did so by localizing the
use of dependencies in their code base by building abstrac-
tion layers or by remaining aware of the goings-on in the
dependency itself and the broader community.

6.3 Solutions to Abandonment

Once dependency abandonment was identified, nearly all interview-
ees deployed some sort of solution to deal with abandonment. The
most common solution was switching to a better maintained
alternative (P1-4, 6, 7, 10, 12-14, 16, 17, 20, 23, 27, 29, 31, 32). Inter-
viewees found these alternatives in various ways. Sometimes, an
issue or PR on the abandoned project included a discussion recom-
mending an alternative. For example, “actually, I can see now on
the ‘is the project dead’ issue there’s someone saying use [alternative
project], which was the alternative that we ended up going to” (P17). In
other cases, interviewees used search engines such as DuckDuckGo,
forum websites such as Reddit or StackOverflow, package managers
such as PyPi, or even specialized open-source library recommenda-
tion websites such as libhunt.com to find pointers to alternatives.
Another interviewee described how an automated warning about
an abandoned dependency included a list of alternatives, which
was used to select a replacement (P32).

Often the goal was not just to find another project that had the
same functionality, but that also has a similar API to make migration
easier and minimize disruption to their code base. For example, one
interviewee found an alternative with essentially the same API so
the migration entailed “basically just changing the namespace on
what we import that functionality from” (P32).

Another common solution was to fork or vendor code (P1-2b,
4,5,7,10, 12-14, 16, 20, 23, 30, 32) from the abandoned dependency;
vendoring means incorporating 3rd party software directly into
a code base [100]. For example, “sometimes we vendor some code,
which means we’ll just directly copy the code and re-license it into
the package itself” (P1). A drawback of this solution is that it can
increase the amount of code a developer is responsible for main-
taining over time. As one interviewee put it 7 think that’s like the
last thing that anyone wants to do, just develop it yourself, because
then you would have to become the one that maintains it” (P31).

Most of the time, when interviewees forked a project, it was
used as a personal fork, acting as their own stable version with
which they could control and maintain compatibility. Only one
interviewee explicitly discussed making a hard fork that they ad-
vertised as an alternative for others to use (P30).

Seeking support from others (P4, 5, 7, 10, 12-14, 17, 21, 23,
25, 30, 32) by reaching out to the maintainers or others in the
community provided insights into the situation and what potential

Courtney Miller, Christian Kastner, and Bogdan Vasilescu

solutions or next steps could be. In several cases fellow community
members had already posted bug fixes or pointers to alternative
dependencies in the abandoned dependency or created blog posts
explaining how to migrate to an alternative. For example, “The first
[strategy] we figured out is, you know, go through the issue list and
see what kind of issues people are having, and if it’s similar issues, I
try to talk to them to figure out what the exact fixes are and stuff like
that” (P10).

Others [tried to] contribute to the dependency (P2a, 3, 5,
13, 23, 30) by reaching out to the maintainer about helping or pro-
viding maintenance support. In some cases, the old maintainers
would respond after several months, and in other cases this was
not a successful solution because they did not receive a response.
For example, ‘T and others were reaching out to the original main-
tainer trying to see if we could take it over, and he was basically
non-responsive. He had originally posted on Twitter; if you look at
that discussion, he was looking for a maintainer. But he just dropped
off the map” (P30).

Another solution used by some was trying to help find new
maintainers (P4, 5, 7, 12, 25) by supporting community efforts to
recruit new maintainers to take over. This was often accomplished
through discussions on the abandoned project’s issue tracker. For
example, “I'd say my strategy has been to reach out to folks in the issue
tracker and encourage them to rename the project and get something
up and running, and offer myself for testing if somebody works on
it. So at this point, I'm just monitoring the situation and trying to
encourage others to step up and work on it” (P25).

Key Insights: Seeking support from the community and
switching to an alternative dependency can be effective and
low-effort solutions assuming the required infrastructure
is present. Given a deficiency of such, forking or vendoring
the abandoned dependency can be a quick fix but can also
increase the maintenance effort required over time.

7 DISCUSSION: TOWARDS MORE
SUSTAINABLE USE OF OPEN SOURCE

Our research has catalogued a diversity of practices to prepare for or
deal with open-source dependency abandonment. Reflecting on the
costs and potential benefits of all these practices, we now discuss
higher-level emerging themes, drawing also from the theory of the
volunteer’s dilemma.

7.1 The Cost of Dependency Abandonment

From interviewees, we heard about the costs associated with aban-
donment throughout our study: We showed the sometimes disrup-
tive impacts of abandonment (Sec. 4) and showed the various, often
costly actions developers used to deal with abandonment (Sec. 6.3).
When a dependency becomes abandoned, it shifts at a high level
from being a free and easy to use software artifact to a potential
liability and source of unexpected disruptions, costs, and concerns.
One way to think about the total anticipated cost of abandonment
is as a product of the probability of abandonment occurring and
impacting the dependent project (impact probability) and the effort
required to react to the abandonment once it happens (reaction

libhunt.com

A Study on Navigating Open-Source Dependency Abandonment

effort):
anticipated cost of aband. = impact probability X reaction effort

With this framing, almost all the actions that we see developers
take to prepare serve as investments to reduce the anticipated cost
of abandonment by trying to reduce either the impact probability
or the reaction effort, for example:

e Only using high-confidence dependencies and minimizing
the number of dependencies (Sec. 6.1) both reduce the impact
probability but require investment both in terms of necessary
research effort and accepting potential opportunity costs
from not using certain dependencies.

e Minimizing/localizing dependency use (Sec. 6.2) can reduce
the reaction effort post abandonment with some upfront
investment in terms of designing an abstraction layer.

e Monitoring the dependency (Sec. 6.2) can be seen as an in-
vestment to notice dependency abandonment before it be-
comes an urgent problem - this gives developers an oppor-
tunity to act on their own time with lower reaction effort
compared to when they are forced to react in an emergency
situation to a roadblock or other concrete problem.

o Although outside the scope of this paper, any investments
to keep projects alive, such as by improving funding (Sec. 2),
can reduce impact probability.

This cost framing highlights how developers can consider invest-
ing in preparation to reduce the anticipated cost of abandonment.
Whether that investment is prudent is often not obvious in practice
and depends on both the risk aversion of the developer and the
relative investment costs and cost reduction benefits:

reduction of anticipated cost of aband.

return on investment = - -
investment cost for preparation

7.2 Aspirational Cost Reduction Strategies

Beyond the preparation strategies discussed earlier, the software
engineering literature as well as some interviewees suggest possi-
ble solutions to reduce impact probability or reaction effort or the
investment cost for preparation — each making such investments
more efficient. While most are not widely adopted, we discuss them
here as aspirational strategies and promising directions for future
work.

Proactive Warnings for Unmaintained Dependencies (Identi-
fying Abandonment). Often identifying whether a dependency is
abandoned requires manual effort (e.g., observing commit frequency
or looking for notices of abandonment/archival, see Sec. 5). To re-
duce the investment required, automated tools can provide proac-
tive warnings for unmaintained dependencies. For example, one
interviewee expressed how they wished they had a tool that would
notify them when one of their dependencies has been unmaintained
for a given period of time. They described how a Dependabot-like
tool could indicate “if there are no updates to this package in, say,
six months, eight months, a year” (P23)., which “would give an idea
of what kind of things I'm depending on that are starting to go out of
style” (P23). Only one interviewee (P20) reported using a tool that
does just that- the beta Risk Intelligence service by FOSSA notifies
users when a dependency has not been updated in the past two
years [84]. Future work could explore how to design such tools

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

without overwhelming developers with configuration work and
alerts causing notification fatigue.

Increasing Transparency about Expected Project Maintenance
(Preparing for Risk of Abandonment). While many prepared
by only relying on high-confidence dependencies (Sec. 6.2), deter-
mining whether a dependency is high-confidence was often done
with non-trivial manual evaluations of project characteristics like
responses to issues and PRs. Transparency mechanisms frequently
studied in software engineering and collaborative work [102], such
as badges in READMESs, can make it easier to assess the status of a
project. One interviewee (P22) explained how their company has
started putting badges in their public projects’ READMEs showing
their intended support status (e.g., Bl e)-
Such transparency mechanisms can be used to declare maintenance
intention (e.g., beta phase, hobby project, actively maintained, com-
mercial support available) but can also be used to automatically
summarize information, e.g., the last activity of the maintainer or
the typical recent issue response latency. Beyond shield.io’s tem-
plate for a maintained badge (JuERELERENEECFIPPN, not widely
used), we are not aware of any more advanced transparency mecha-
nisms regarding maintenance status or abandonment risk, although
efforts seem underway at least as part of the CHAOSS project [46].

Supporting the Construction of Abstraction Layers (Prepar-
ing for Risk of Abandonment). The building and deploying of
abstraction layers (Sec. 6.2) was widely credited with significantly
reducing the reaction effort, but building abstraction layers was
often a time-intensive process that did not scale well to a large
number of dependencies. As an alternative to the vast amount of
research on API migration (see Sec. 2), refactoring tools could be
enhanced to provide direct support for creating abstraction layers.
Additionally, developers could write reusable abstraction layers for
certain libraries that can be shared with other developers to make
subsequent migration between libraries easier (similar to how JDBC
abstracts from individual database protocols).

Advertising Alternatives (Addressing Abandonment). Switch-
ing to an alternative dependency (Sec. 6.3) is a common solution
when faced with abandonment, but finding a suitable one can be
challenging, as it is not always clear where to look. Also finding
actively maintained forks can be difficult in projects with many
forks. Making suitable alternatives easier to find can reduce reac-
tion efforts. Interviewees mentioned several specific strategies for
advertising alternatives: (1) posting pointers to alternatives on the
abandoned dependency’s repository page (e.g., notes in an issue
thread about abandonment); (2) promoting alternatives on relevant
online forums (one interviewee (P30) reports creating posts on
relevant Subreddits like r/python when they have a new release
celebrating it and giving an overview of the project and its features);
and (3) creating blog posts discussing alternatives. Platforms could
highlight posts for alternatives, curate links to external resources,
and highlight active forks. They could also gather a lot of informa-
tion automatically, for example, by scraping what other projects
have migrated to in the past.

Supporting Dependency Migration (Addressing Abandonment).
Some interviewees expressed how each time they face dependency
abandonment, it feels like there is no existing game plan or guid-
ance to refer to, and that they have to figure out how to move

http://shields.io

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

forward on their own. For example, “we really do need rubrics or
tools or something because every time a project becomes abandoned,
or we think it might be abandoned, we feel like we’re winging it. We
feel like we’re dealing with it for the first time and we don’t have a
run book for that, and I doubt anybody really does” (P4). Beyond just
suggesting possible alternatives, platforms, tools, and community
initiatives can provide support for how to deal with an abandoned
dependency, such as creating a migration guide, showing examples
of how to use alternative APIs, or even to attempt API migration
(semi-)automatically. Such information can be curated with com-
munity inputs or generated from activities in other repositories,
which could help reduce developers’ reaction efforts by minimizing
the amount of trial-and-error and manual work required to address
a given dependency’s abandonment.

7.3 The Volunteer’s Dilemma and Reducing
Community Effort

The previous two sections discuss the various actions used by de-
velopers to reduce the anticipated cost of abandonment, each at
some investment cost. However, the person who makes the invest-
ment and the person who benefits from said investment does not
necessarily have to be the same. The actions of one developer can
benefit many others. For example, tool builders and platforms like
GitHub can invest in making it easier to find and migrate to alterna-
tives, which can benefit all the developers who use such platforms.
Similarly, many interviewees benefited from the actions of other in-
dividual developers when figuring out how to address dependency
abandonment, including finding pointers to forks or alternatives,
learning about abandonment early through community channels,
finding blog posts explaining migration, benefiting from posted bug
fixes, and receiving help finding new maintainers (Sec. 6.2-6.3).

We call these investments designed to benefit others community-
oriented solutions. They reduce the redundant reaction effort ex-
pended by subsequent projects facing the same abandoned depen-
dency, as we illustrate in Figure 3. Creating community-oriented
solutions requires additional effort on top of the reaction effort re-
quired for a developer to address the abandonment in their own
project, for example, by writing a blog post after fixing their own
problem.

However, beyond the small handful of interviewees who reported
doing so (P2a, 2b, 13, 30), interviewees did not typically consider
creating community-oriented solutions, because they had many
competing demands, no incentive to invest the additional effort,
or simply had not considered it. This situation is an example of
the volunteer’s dilemma [30], which is canonically formalized as a
game with a group of members, where each member can decide
whether to volunteer and incur the associated cost of producing a
public good that all group members benefit from collectively, and
if nobody volunteers, the entire community loses [107].

The volunteer’s dilemma has been studied both theoretically
and empirically in fields like economics, social psychology, orga-
nizational behavior, and game theory for decades. Surveying this
wealth of knowledge, we collected some practical solutions that
we suspect may encourage the creation of community-oriented
solutions for dependency abandonment:

Courtney Miller, Christian Kastner, and Bogdan Vasilescu

Dependents Everybody migrates Developer A writes
individually migration guide

W@ 1d 2d

1d 5d

Abandoned ‘/_’@ 1d 5d
Dependency (‘/\ 14 54
\® 1d 5d

5d 4d

Figure 3: Illustration of the volunteers dilemma for dealing
with abandoned dependencies: A developer who invests extra
effort in writing a migration guide can save all other devel-
opers migration effort (measured in days of effort). Writing a
migration guide is efficient for the entire community, though
more expensive for the developer creating it.

Reducing the Cost of Creating Community-Oriented Solutions.
Increasing volunteering costs reduces the individual likelihood of
each group member volunteering and the overall likelihood that the
public good will be produced [53, 59]. This suggests that one of the
most straightforward ways to support the creation of community-
oriented solutions is by decreasing the additional effort required
to do so. For example, creating a uniform and visible place on
abandoned projects to discuss solutions can make it easier for com-
munity members to post about alternatives or share advice. We
conjecture that tools, especially platform features in GitHub, have
substantial potential to facilitate and streamline the sharing of in-
formation about how to deal with specific abandoned dependencies.

Nudging Potential Volunteers. Where relevant characteristics
of group members are visible, nudging [11] people who are in a
better position to volunteer and have lower volunteering costs can
be an effective way to encourage creating the public good [65].
For example, a bot could nudge developers who already created
an active fork by suggesting they advertise it on the abandoned
dependency project. More research is needed to determine who is
in a ‘favorable’ position and to design nudges that fit into existing
workflows and practices.

Priming Potential Volunteers and Re-framing Volunteering.
Priming potential volunteers to be in a charitable or competitive
mindset can impact the likelihood of an individual volunteering [69].
This suggests that framing the creation of community-oriented so-
lutions as a deliberate act to benefit the larger open-source commu-
nity could encourage such creation and normalize it as a common
action. Also estimating the possible impact of creating a community-
oriented solution could be motivating for some. More research on
the attitudes of developers toward various community-oriented
actions and how actions for abandoned dependencies fit in could
help design a supportive framing.

Rewarding Volunteers. Research studying the effects of rewards
and punishments on the volunteer’s dilemma found that rewarding
volunteers who step up can be more effective than punishing poten-
tial volunteers who do not, suggesting that shaming strategies are
less effective than positive reinforcement [65]. For example, since
many developers are motivated by helping others and supporting

A Study on Navigating Open-Source Dependency Abandonment

their community [43], highlighting the estimated community-wide
benefit of creating a community-oriented solution could illustrate
the good volunteering does and how such actions align with their
motivations. Public recognition for community-oriented solutions,
such as awards at community events or even just listing them as part
of a GitHub profile, could provide further incentives and highlight
positive role models. Gamification approaches could be deliber-
ately used, such as awarding badges or points, but they also come
with risks [50]. More research is needed to understand which re-
ward mechanisms are effective in encouraging community-oriented
solutions.

Facilitating and Encouraging Group Discussion. In general,
incorporating communication into coordination games tends to
improve outcomes and facilitate coordination [7, 12, 20, 21, 36].
Facilitating and encouraging communication between agents in-
creases transparency and awareness of the choices others are mak-
ing, giving potential volunteers more complete information, thus
allowing them to make more educated decisions about whether
to volunteer [36]. This suggests that by improving transparency
about what others who face the same abandoned dependency have
done or plan to do, developers are able to make more informed
decisions themselves. For example, providing discussion forums
on abandoned projects could help with highlighting demand (or
lack thereof) for solutions. Tooling that creates transparency about
how others have or have not already dealt with the abandoned
dependency (see Sec. 7.2) can provide insights about the scope
of the problem and assurance about the usefulness of a proposed
community-oriented solution. More research in communication
patterns, information needs, and automated identification of how
others dealt with abandonment can help to deliberately design
communication spaces and transparency mechanisms.

8 CONCLUSION

Assuming that not all projects will be maintained forever, we refo-
cus sustainability research on how to sustainably use open-source
software given the risks and realities users face today. We conducted
interviews to study how developers prepare for and deal with open-
source dependency abandonment. We catalogued the varying be-
liefs and philosophies surrounding dealing with dependency aban-
donment, preparations and considerations used to mitigate risk
proactively, and solutions used to deal with abandonment. Develop-
ers generally navigate the tradeoff between proactive preparation
and later potential reaction costs, with little information about the
actual costs involved. We particularly highlight that sharing solu-
tions can benefit many others facing the same problem, but that
such sharing is not common. Looking at this problem through the
lense of the volunteer’s dilemma, we suggested future research di-
rections inspired by findings in game theory and social psychology.
We hope the strategies and insights can be helpful to the many
developers who navigate abandoned dependencies daily.

9 DATA AVAILABILITY

The complete interview guide along with a table with anonymized

summary statistics for the 33 interview participants are available
on Zenodo [1]. EENEEIEEETT

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

ACKNOWLEDGMENTS

Firstly, special thanks and deep gratitude are given to Chanel i

for continuing her integral work as a brilliant world-class canine
researcher and for always being there to support, encourage, and
inspire the team. We would like to thank all our interview partici-
pants for sharing their time, expertise, and wisdom with us, with-
out them this project would not have been possible. This material
is based upon work supported by the National Science Founda-
tion Graduate Research Fellowship Program under Grant Number
DGE2140739. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation. Kaestner and Vasilescu’s work was supported in part
by the National Science Foundation (awards 2106853, 2131477 and
2206859) and the Sloan Foundation. This work was also supported
in part by a Google Faculty Research Award and a Google Award
for Inclusion Research.

REFERENCES

[1] 2023. Supplementary Material for "We Feel Like We’re Winging It:" A Study on
Navigating Open-Source Dependency Abandonment. Zenodo. https://doi.org/10.
5281/zenodo.8102547

[2] Hussein Alrubaye et al. 2020. How does library migration impact software
quality and comprehension? an empirical study. In Proc. Int’l Conf. Software
Reuse (ICSR). Springer, 245-260.

[3] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. 2019. Migration-
miner: An automated detection tool of third-party java library migration at the
method level. In Proc. Int’l Conf. Software Maintenance and Evolution (ICSME).

[4] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander
Serebrenik. 2019. On the abandonment and survival of open source projects: an
empirical investigation. In Proc. Int’l Symp. Empirical Software Engineering and
Measurement (ESEM). ACM Press, 1-12.

[5] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente.
2016. A novel approach for estimating truck factors. In Proc. Int’l Conf. Program
Comprehension (ICPC). IEEE, 1-10.

[6] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. 2013. The evolution of project inter-dependencies in a
software ecosystem: The case of apache. In Proc. Int’l Conf. Software Maintenance
(ICSM). IEEE, 280-289.

[7] Andreas Blume and Andreas Ortmann. 2007. The effects of costless pre-play
communication: Experimental evidence from games with Pareto-ranked equi-
libria. Journal of Economic theory 132, 1 (2007), 274-290.

[8] Christopher Bogart, Christian Késtner, James Herbsleb, and Ferdian Thung. 2016.
How to break an API: cost negotiation and community values in three software
ecosystems. In Proc. Int’l Symposium Foundations of Software Engineering (FSE).
109-120.

[9] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.

Qualitative research in psychology 3, 2 (2006), 77-101.

Scott Brisson, Ehsan Noei, and Kelly Lyons. 2020. We are family: analyzing

communication in GitHub software repositories and their forks. In Proc. Int’l

Conf. Software Analysis, Evolution, and Reengineering (SANER).

Chris Brown and Chris Parnin. 2019. Sorry to bother you: Designing bots for

effective recommendations. In Int’l Workshop on Bots in Software Engineering.

Anthony Burton and Martin Sefton. 2004. Risk, pre-play communication and

equilibrium. Games and economic behavior 46, 1 (2004), 23-40.

Fabio Calefato, Marco Aurelio Gerosa, Giuseppe Iaffaldano, Filippo Lanubile,

and Igor Steinmacher. 2022. Will you come back to contribute? Investigating

the inactivity of OSS core developers in GitHub. Empirical Software Engineering

(2022).

Andrea Capiluppi, Klaas-Jan Stol, and Cornelia Boldyreff. 2012. Exploring the

role of commercial stakeholders in open source software evolution. In IFIP Int’

Conf. on Open Source Systems. Springer, 178-200.

Chunyang Chen. 2020. Similarapi: mining analogical apis for library migration.

In Comp. Int’l Conf. Software Engineering (ICSE). IEEE, 37-40.

[16] Kingsum Chow and David Notkin. 1996. Semi-automatic update of applications

in response to library changes. In Proc. Int’l Conf. Software Maintenance (ICSM),
Vol. 96. 359.

[17] Jailton Coelho and Marco Tulio Valente. 2017. Why modern open source projects

fail. In Proc. Int’l Symposium Foundations of Software Engineering (FSE).

[10

[11

[12

[13

[14

[15

https://doi.org/10.5281/zenodo.8102547
https://doi.org/10.5281/zenodo.8102547

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

(18]

[19]

[20

[21

~
&,

[23

[24]

[25

[26

&
3

™
0,

'
B

[35

[36

[37

'@
&

[39

[40

[41

[42

[43

(44

(45

Jailton Coelho, Marco Tulio Valente, Luciano Milen, and Luciana L Silva. 2020.
Is this GitHub project maintained? Measuring the level of maintenance activity
of open-source projects. Information and Software Technology (IST) (2020).
Eleni Constantinou and Tom Mens. 2017. An empirical comparison of developer
retention in the RubyGems and npm software ecosystems. Innovations in Systems
and Software Engineering 13, 2 (2017), 101-115.

Russell Cooper, Douglas V DeJong, Robert Forsythe, and Thomas W Ross. 1989.
Communication in the battle of the sexes game: some experimental results. The
RAND Journal of Economics (1989), 568-587.

Russell Cooper, Douglas V DeJong, Robert Forsythe, and Thomas W Ross. 1992.
Communication in coordination games. The Quarterly Jrnl. of Econ. (1992).
Juliet Corbin and Anselm Strauss. 2014. Basics of qualitative research: Techniques
and procedures for developing grounded theory. Sage publications.

Bradley E Cossette and Robert] Walker. 2012. Seeking the ground truth: a
retroactive study on the evolution and migration of software libraries. In Proc.
Int’l Symposium Foundations of Software Engineering (FSE). 1-11.

Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins. 2008.
Free/Libre open-source software development: What we know and what we do
not know. ACM Computing Surveys (CSUR) 44, 2 (2008), 1-35.

Carlo Daffara. 2012. Estimating the economic contribution of open source
software to the European economy. In Proc. Openforum Academy Conf.
Cleidson RB de Souza and David F Redmiles. 2008. An empirical study of
software developers’ management of dependencies and changes. In Proc. Int’l
Conf. Software Engineering (ICSE). 241-250.

Alexandre Decan, Tom Mens, Maélick Claes, and Philippe Grosjean. 2016. When
GitHub meets CRAN: An analysis of inter-repository package dependency
problems. In Proc. Int’l Conf. Software Analysis, Evolution, and Reengineering
(SANER).

Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the evolution
of technical lag in the npm package dependency network. In Proc. Int’l Conf.
Software Maintenance and Evolution (ICSME). IEEE, 404-414.

Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of
security vulnerabilities in the npm package dependency network. In Proc. Conf.
Mining Software Repositories (MSR). 181-191.

Andreas Diekmann. 1985. Volunteer’s dilemma. Jrnl of conflict resolution (1985).
Danny Dig and Ralph Johnson. 2006. How do APIs evolve? A story of refactoring.
Journal of Software Maintenance and Evolution: Research and Practice (2006).
Nicolas Ducheneaut. 2005. Socialization in an open source software community:
A socio-technical analysis. Proc. Conf. Computer Supported Cooperative Work
(CSCW) 14, 4 (2005), 323-368.

Nadia Eghbal. 2016. Roads and bridges: The unseen labor behind our digital
infrastructure. Ford Foundation.

Fabian Fagerholm, Alejandro S Guinea, Jiirgen Miinch, and Jay Borenstein.
2014. The role of mentoring and project characteristics for onboarding in open
source software projects. In Proc. Int’l Symp. Empirical Software Engineering and
Measurement (ESEM). 1-10.

Hongbo Fang, Hemank Lamba, James Herbsleb, and Bogdan Vasilescu. 2022.
“This is damn slick!” Estimating the impact of tweets on open source project
popularity and new contributors. In Proc. Int’l Conf. Software Engineering (ICSE).
Christoph Feldhaus and Julia Stauf. 2016. More than words: the effects of cheap
talk in a volunteer’s dilemma. Experimental Economics 19, 2 (2016), 342-359.
Fabio Ferreira, Luciana Lourdes Silva, and Marco Tulio Valente. 2020. Turnover
in Open-Source Projects: The Case of Core Developers. In Proc. of Brazilian
Symp. on Software Engineering. 447-456.

Isabella Ferreira, Jinghui Cheng, and Bram Adams. 2021. The “shut the f**k up”
phenomenon: Characterizing incivility in open source code review discussions.
Proc. of the ACM on Human-Computer Interaction 5, CSCW2 (2021).

Nicole Forsgren et al. 2021. 2020 State of the Octoverse: Securing the World’s
Software. arXiv preprint arXiv:2110.10246 (2021).

Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C Murphy, and Jean-Rémy
Falleri. 2015. Impact of developer turnover on quality in open-source software.
In Proc. Europ. Software Engineering Conf./Foundations of Software Engineering
(ESEC/FSE). 829-841.

Jill J Francis et al. 2010. What is an adequate sample size? Operationalising data
saturation for theory-based interview studies. Psychology and Health (2010).
Felipe Fronchetti, Igor Wiese, Gustavo Pinto, and Igor Steinmacher. 2019. What
attracts newcomers to onboard on OSS projects? tl;dr: Popularity. In IFIP Inter-
national Conference on Open Source Systems (OSS).

Marco Gerosa et al. 2021. The shifting sands of motivation: Revisiting what
drives contributors in open source. In Proc. Int’l Conf. Software Engineering
(ICSE). IEEE, 1046-1058.

Mohammad Gharehyazie, Daryl Posnett, Bogdan Vasilescu, and Vladimir Filkov.
2015. Developer initiation and social interactions in OSS: A case study of
the Apache Software Foundation. Empirical Software Engineering 20, 5 (2015),
1318-1353.

GitHub. 2022. Exploring the dependencies of a repository. https:
//docs.github.com/en/code-security/supply-chain-security/understanding-
your-software-supply-chain/exploring-the-dependencies-of-a-repository.

[46

[47

[48

[49

[50

[51

[52]

[53

[54]

[55

[56

[57

[58

[59

[60

[61

[62]

[63

[64

[65

[66]

[67

[68
[69

[70]

[71

[72

[73

Courtney Miller, Christian Kastner, and Bogdan Vasilescu

Accessed: 2022-09-23.

Sean P Goggins, Matt Germonprez, and Kevin Lumbard. 2021. Making open
source project health transparent. Computer 54, 8 (2021), 104-111.

Georgios Gousios. 2013. The GHTorent dataset and tool suite. In Proc. Conf.
Mining Software Repositories (MSR). IEEE, 233-236.

Egon Guba. 1979. Naturalistic inquiry. Improving Human Performance Qtrly.
(1979).

Mariam Guizani, Thomas Zimmermann, Anita Sarma, and Denae Ford. 2022.
Attracting and retaining oss contributors with a maintainer dashboard. In Int’l
Conf. on Software Engineering: Software Engineering in Society (ICSE-SEIS).
Reza Hadi Mogavi, Ehsan-Ul Hagq, Sujit Gujar, Pan Hui, and Xiaojuan Ma. 2022.
More Gamification Is Not Always Better: A Case Study of Promotional Gamifica-
tion in a Question Answering Website. Proc. of the Human-Computer Interaction
(2022).

Hideaki Hata, Taiki Todo, Saya Onoue, and Kenichi Matsumoto. 2015. Charac-
teristics of sustainable oss projects: A theoretical and empirical study. In Proc.
Workshop Cooperative and Human Aspects of Software Engineering (CHASE).
IEEE.

Hao He, Haonan Su, Wenxin Xiao, Runzhi He, and Minghui Zhou. 2022. GFI-bot:
automated good first issue recommendation on GitHub. In Proc. Int’l Symposium
Foundations of Software Engineering (FSE). ACM, 1751-1755.

A Healy and] Pate. 2009. Asymmetry and incomplete information in an experi-
mental volunteer’s dilemma. In Int’l Congress on Modelling and Simulation.
Johannes Henkel and Amer Diwan. 2005. CatchUp! Capturing and replaying
refactorings to support API evolution. In Proc. Int’l Conf. Software Engineering
(ICSE). 274-283.

Qiaona Hong, Sunghun Kim, Shing Chi Cheung, and Christian Bird. 2011. Un-
derstanding a developer social network and its evolution. In Proc. Int’l Conf.
Software Maintenance (ICSM). IEEE, 323-332.

Yuekai Huang, Junjie Wang, Song Wang, Zhe Liu, Dandan Wang, and Qing
Wang. 2021. Characterizing and Predicting Good First Issues. In Proc. Int’l Symp.
Empirical Software Engineering and Measurement (ESEM). 1-12.

Giuseppe Iaffaldano, Igor Steinmacher, Fabio Calefato, Marco Gerosa, and Filippo
Lanubile. 2019. Why do developers take breaks from contributing to OSS
projects? A preliminary analysis. arXiv preprint arXiv:1903.09528 (2019).
Daniel Izquierdo-Cortazar, Gregorio Robles, Felipe Ortega, and Jesus M
Gonzalez-Barahona. 2009. Using software archaeology to measure knowledge
loss in software projects due to developer turnover. In Proc. Hawaii Int’l Conf.
System Sciences (HICSS). IEEE, 1-10.

Anita Kopanyi-Peuker. 2019. Yes, I'll do it: A large-scale experiment on the
volunteer’s dilemma. Journal of Behavioral and Experimental Economics 80
(2019), 211-218.

Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? Empirical
Software Engineering 23, 1 (2018), 384-417.

Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. 2022.
Taxonomy of attacks on open-source software supply chains. arXiv preprint
arXiv:2204.04008 (2022).

Enrique Larios Vargas, Mauricio Aniche, Christoph Treude, Magiel Bruntink,
and Georgios Gousios. 2020. Selecting third-party libraries: The practitioners’
perspective. In Proc. Int’l Symposium Foundations of Software Engineering (FSE).
ACM, 245-256.

Meir M Lehman. 1980. Programs, life cycles, and laws of software evolution.
Proc. IEEE 68, 9 (1980), 1060-1076.

Manny M Lehman. 1996. Laws of software evolution revisited. In European
Workshop on Software Process Technology. Springer, 108-124.

Shmuel Leshem and Avraham Tabbach. 2016. Solving the Volunteer’s Dilemma:
The Efficiency of Rewards Versus Punishments. American Law and Econ. Rev.
(2016).

Sarah Lewis. 2015. Qualitative inquiry and research design: Choosing among
five approaches. Health promotion practice 16, 4 (2015), 473-475.

Bin Lin, Gregorio Robles, and Alexander Serebrenik. 2017. Developer turnover in
global, industrial open source projects: Insights from applying survival analysis.
In Proc. Int’l Conf. Global Software Engineering (ICGSE). IEEE, 66-75.

Yvonna S Lincoln and Egon G Guba. 1985. Naturalistic inquiry. sage.

Shakun D Mago and Jennifer Pate. 2022. Greed and fear: Competitive and
charitable priming in a threshold volunteer’s dilemma. Economic Inquiry (2022).
Bernd Marcus and Astrid Schiitz. 2005. Who are the people reluctant to partici-
pate in research? Personality correlates of four different types of nonresponse
as inferred from self-and observer ratings. Journal of personality (2005).
Matthew B Miles, A Michael Huberman, and Johnny Saldana. 2014. Fundamen-
tals of Qualitative Data Analysis. Sage Los Angeles, CA.

Courtney Miller, Sophie Cohen, Daniel Klug, Bogdan Vasilescu, and Christian
KaUstner. 2022. “Did you miss my comment or what?” Understanding toxicity
in open source discussions. In Proc. Int’l Conf. Software Engineering (ICSE).
Courtney Miller, David Gray Widder, Christian Késtner, and Bogdan Vasilescu.
2019. Why do people give up flossing? a study of contributor disengagement in
open source. In IFIP International Conference on Open Source Systems.

https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/exploring-the-dependencies-of-a-repository
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/exploring-the-dependencies-of-a-repository
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/exploring-the-dependencies-of-a-repository

A Study on Navigating Open-Source Dependency Abandonment

(74]

[75

[76

=
o

(78]

[79

(80

[81

(82]

oo
&

(84

(85

(86

[87

%0
&

(89

[90

[91

[92

2
3

[94

Suhaib Mujahid, Rabe Abdalkareem, and Emad Shihab. 2022. What are the
characteristics of highly-selected packages? A case study on the npm ecosystem.
arXiv preprint arXiv:2204.04562 (2022).

Suhaib Mujahid, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, Mo-
hamed Aymen Saied, and Bram Adams. 2021. Toward using package centrality
trend to identify packages in decline. IEEE Transactions on Engineering Mgmt.
(2021).

Mathieu Nassif and Martin P Robillard. 2017. Revisiting turnover-induced
knowledge loss in software projects. In Proc. Int’l Conf. Software Maintenance
and Evolution (ICSME). IEEE, 261-272.

Lorelli S Nowell, Jill M Norris, Deborah E White, and Nancy J Moules. 2017.
Thematic analysis: Striving to meet the trustworthiness criteria. International
Jjournal of qualitative methods 16, 1 (2017), 1609406917733847.

npm Docs. 2022. npm-deprecate. https://docs.npmjs.com/cli/v6/commands/
npm-deprecate#synopsis. Accessed: 2022-07-07.

npm Inc. 2018. This year in JavaScript: 2018 in review and npm’s predictions for
2019. https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-
and-npms-predictions-for-2019-3a3d7e5298ef. Accessed: 2022-08-19.

Rick Ossendrijver, Stephan Schroevers, and Clemens Grelck. 2022. Towards
automated library migrations with error prone and refaster. In Proc. Symp.
Applied Computing (SAC). 1598-1606.

David Lorge Parnas. 1994. Software aging. In Proc. Int’l Conf. Software Engineer-
ing (ICSE).

Jeff H Perkins. 2005. Automatically generating refactorings to support API
evolution. In Proc. Workshop on Program Analysis for Software Tools and Engi-
neering.

Gustavo Pinto, Igor Steinmacher, and Marco Aurélio Gerosa. 2016. More com-
mon than you think: An in-depth study of casual contributors. In Proc. Int’l
Conf. Software Analysis, Evolution, and Reengineering (SANER). IEEE.
Gauthami Polasani. 2022. Announcing the private beta of FOSSA Risk Intelli-
gence. https://fossa.com/blog/announcing- private-beta-risk-intelligence/.
Gede Artha Azriadi Prana et al. 2021. Out of sight, out of mind? How vulnerable
dependencies affect open-source projects. Empirical Software Engineering (2021).
Huilian Sophie Qiu et al. 2019. Going farther together: The impact of social
capital on sustained participation in open source. In Proc. Int’l Conf. Software
Engineering (ICSE). IEEE, 688-699.

Huilian Sophie Qiu, Yucen Lily Li, Susmita Padala, Anita Sarma, and Bogdan
Vasilescu. 2019. The signals that potential contributors look for when choosing
open-source projects. Proc. of the ACM on Human-Computer Interaction (2019).
Peter C Rigby, Yue Cai Zhu, Samuel M Donadelli, and Audris Mockus. 2016.
Quantifying and mitigating turnover-induced knowledge loss: case studies of
Chrome and a project at Avaya. In Proc. Int’l Conf. Software Engineering (ICSE).
Romain Robbes, Mircea Lungu, and David Réthlisberger. 2012. How do devel-
opers react to API deprecation? The case of a Smalltalk ecosystem. In Proc. Int’l
Symposium Foundations of Software Engineering (FSE). 1-11.

Steven G Rogelberg et al. 2003. Profiling active and passive nonrespondents to
an organizational survey. Jrnl. of Applied Psych. (2003).

Stephen R. Schach, Bo Jin, David R. Wright, Gillian Z. Heller, and A. Jefferson
Offutt. 2002. Maintainability of the Linux kernel. IEE Proceedings-Software
(2002).

Naomichi Shimada, Tao Xiao, Hideaki Hata, Christoph Treude, and Kenichi
Matsumoto. 2022. GitHub Sponsors: exploring a new way to contribute to open
source. In Proc. Int’l Conf. Software Engineering (ICSE). ACM, 1058-1069.
Vandana Singh, Brice Bongiovanni, and William Brandon. 2022. Codes of
conduct in Open Source Software—for warm and fuzzy feelings or equality in
community? Software Quality Journal 30, 2 (2022), 581-620.

Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social barriers faced by newcomers placing their first contribution in
open source software projects. In Proc. Conf. Computer Supported Cooperative

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Work (CSCW). 1379-1392.

Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio
Gerosa. 2016. Overcoming open source project entry barriers with a portal for
newcomers. In Proc. Int’l Conf. Software Engineering (ICSE).

Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and
David Redmiles. 2015. A systematic literature review on the barriers faced by
newcomers to open source software projects. Information and Software Tech.
(2015).

Igor Steinmacher, Christoph Treude, and Marco Aurelio Gerosa. 2018. Let me in:
Guidelines for the successful onboarding of newcomers to open source projects.
IEEE Software 36, 4 (2018), 41-49.

Cedric Teyton, Jean-Remy Falleri, and Xavier Blanc. 2012. Mining library
migration graphs. In Conf. on Reverse Engineering. IEEE, 289-298.

Cédric Teyton, Jean-Rémy Falleri, Marc Palyart, and Xavier Blanc. 2014. A study
of library migrations in java. Journal of Software: Evolution and Process (2014).
Martin Thoma. 2021. Dependency vendoring. https://medium.com/plain-and-
simple/dependency-vendoring-dd765be75655. Accessed: 2022-08-04.
Parastou Tourani, Bram Adams, and Alexander Serebrenik. 2017. Code of

conduct in open source projects. In Proc. Int’l Conf. Software Analysis, Evolution,
and Reengineering (SA R}. IEEE, 24-33.

Asher Trockman, Shurui Zhou, Christian Kastner, and Bogdan Vasilescu. 2018.
Adding sparkle to social coding: an empirical study of repository badges in the
npm ecosystem. In Proc. Int’l Conf. Software Engineering (ICSE). 511-522.
Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and
technical factors for evaluating contribution in GitHub. In Proc. Int’l Conf. Soft-
ware Engineering (ICSE).

Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s talk about it: eval-
uating contributions through discussion in GitHub. In Proc. Int’l Symposium
Foundations of Software Engineering (FSE). 144-154.

Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level
determinants of sustained activity in open-source projects: A case study of
the PyPI ecosystem. In Proc. Europ. Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE). 644-655.

Georg Von Krogh, Sebastian Spaeth, and Karim Lakhani. 2003. Community,
joining, and specialization in open source software innovation: a case study.
Research Policy (2003).

Wikipedia. 2022. Volunteer’s Dilemma. https://en.wikipedia.org/wiki/Volunteer’
s_dilemma. Accessed: 2022-09-11.

Ling Wu, Qian Wu, Guangtai Liang, Qianxiang Wang, and Zhi Jin. 2015. Trans-
forming code with compositional mappings for API-library switching. In Conf.
Computer Software and Applications, Vol. 2. IEEE, 316-325.

Wenxin Xiao et al. 2022. Recommending good first issues in GitHub OSS projects.
In Proc. Int’l Conf. Software Engineering (ICSE).

Liguo Yu, Stephen R Schach, and Kai Chen. 2005. Measuring the maintainability
of open-source software. In Empirical Software Engineering. IEEE.

Nusrat Zahan et al. 2022. What are weak links in the NPM supply chain?. In Proc.
Int’l Conf. Software Engineering: Software Engineering in Practice (ICSE-SEIP).
Xunhui Zhang et al. 2022. Who, what, why and how? towards the monetary
incentive in crowd collaboration: A case study of GiHhub’s sponsor mechanism.
In Proc. Conf. Human Factors in Computing Systems (CHI). ACM, 1-18.
Minghui Zhou and Audris Mockus. 2014. Who will stay in the FLOSS com-
munity? Modeling participant’s initial behavior. IEEE Trans. Softw. Eng. (TSE)
(2014).

Yuming Zhou and Baowen Xu. 2008. Predicting the maintainability of open
source software using design metrics. Wuhan University Jrnl. of Natural Sciences
(2008).

Received 2023-02-02; accepted 2023-07-27

https://docs.npmjs.com/cli/v6/commands/npm-deprecate#synopsis
https://docs.npmjs.com/cli/v6/commands/npm-deprecate#synopsis
https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef
https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef
https://fossa.com/blog/announcing-private-beta-risk-intelligence/
https://medium.com/plain-and-simple/dependency-vendoring-dd765be75655
https://medium.com/plain-and-simple/dependency-vendoring-dd765be75655
https://en.wikipedia.org/wiki/Volunteer's_dilemma
https://en.wikipedia.org/wiki/Volunteer's_dilemma

	Abstract
	1 Introduction
	2 Related Work
	3 Research Design
	3.1 Identifying and Recruiting Participants
	3.2 Interview Protocol
	3.3 Data Collection and Analysis
	3.4 Validity Check
	3.5 Limitations

	4 Impacts of Abandonment
	5 Identifying Abandonment
	6 Preparing for and Addressing Abandonment
	6.1 Considerations Before Adoption
	6.2 Preparations Once Adopted
	6.3 Solutions to Abandonment

	7 Discussion: Towards More Sustainable Use of Open Source
	7.1 The Cost of Dependency Abandonment
	7.2 Aspirational Cost Reduction Strategies
	7.3 The Volunteer's Dilemma and Reducing Community Effort

	8 Conclusion
	9 Data Availability
	Acknowledgments
	References

