MSDBench: Understanding the Performance
Impact of Isolation Domains on
Microservice-based IoT Deployments

Sierra Wang, Fatih Bakir, Tyler Ekaireb, Jack Pearson, Chandra Krintz, and
Rich Wolski

Computer Science Dept.
Univ. of California, Santa Barbara
sierrawang@ucsb.edu

Abstract. We present MSDBench — a set of benchmarks designed to
illuminate the effects of deployment choices and operating system ab-
stractions on microservices performance in IoT settings. The microser-
vices architecture has emerged as a mainstay set of design principles
for cloud-hosted, network-facing applications. Their utility as a design
pattern for “The Internet of Things” (IoT) is less well understood.

We use MSDBench to show the performance impacts of different deploy-
ment choices and isolation domain assignments for Linux and Ambience,
an experimental operating system specifically designed to support mi-
croservices for IoT. These results indicate that deployment choices can
have a dramatic impact on microservices performance, and thus, MSD-
Bench is a useful tool for developers and researchers in this space.

1 Introduction

As web service technologies have improved in performance and usability, the de-
sign of web/cloud service applications (often user-facing web venues) has evolved
to make use of internal purpose-built web services as composable application
components. This approach is often termed a microservices design or architec-
ture, and the internal services themselves are called microservices.

Software architects find microservices attractive from a software engineering
perspective because they promote software reuse [12}/13)33], they naturally admit
heterogeneous software languages and runtimes [12}|16}/35], and they improve the
performance of software quality assurance mechanisms such as unit testing |12
40]. They also enhance software robustness and facilitate distributed placement
flexibility by incorporating modularity and service isolation into the internal
design of the overall application [31,/33}/44].

The cost associated with these benefits, compared with monolithic applica-
tion design in which the internal functionality is not a decomposition of mi-
croservices, is execution performance. Performance, in this context, refers (i) to
the latency a user of the application observes when making individual requests
to the application, (ii) to the computational and storage capacity that is neces-
sary to support the application’s functionality, and (iii) to the communication
overhead of sending and processing network requests to/from other microser-
vices and across isolation boundaries. As such, microservice designs tend to in-

2 Wang et al

crease user-experienced request latency and application capacity requirements
compared with their monolithic counterparts [16,/41].

These costs are especially acute for applications designed to implement the
“Internet of Things” (IoT). Microservices, as a fundamental design principle, is
endemic in large-scale application hosting (e.g. cloud computing) contexts where
web service technologies are well supported both from a performance and also a
security perspective. Furthermore, many IoT applications use cloud-based ser-
vices for scalable analysis, visualization, and user interactions. Thus, microser-
vices have become a key architectural approach to building IoT applications due
largely to the facility with which they can be deployed in the cloud.

However, the latency and capacity requirements for IoT applications differ
considerably from other web service applications (e.g. e-commerce, social net-
working, web-content delivery, etc.). IoT applications almost always include data
acquisition deadlines that arise from sensor duty cycles (e.g. a sensor produces a
measurement with a periodicity measured in milliseconds to seconds) and some-
times include near real-time response deadlines (e.g. to operate an appliance
as an automated response to analysis of sensor data). Thus, a careful under-
standing of application response latency is important to IoT application design,
particularly when the design is microservice based.

For these reasons, IoT deployments are increasingly incorporating “edge”
computing capabilities that augment cloud-based processing. By processing IoT
data in situ, before traversing a long-haul network to a cloud, IoT applications
can reduce response latency, decrease the needed long-haul bandwidth (e.g., by
performing data aggregations at the edge), and improve scale. The edge re-
sources, however, are typically not full-scale cloud resources but smaller, more
resource restricted, single board computers or microcontrollers that can be inex-
pensively deployed near the “Things” in the Internet of Things. Therefore, the
capacity requirements of microservices located at the edge must be considered.

The task of determining what each microservice does in an application (i.e.,
the service decomposition “boundaries”) is typically a manual process that falls
to the software architect. As such, the choices are design-time choices, and not
deployment-time choices. In a cloud context, where computational, storage, net-
work, and security topologies can be understood to be relatively static, design-
time decomposition is effective. In an IoT context, the same application may
be deployed to many different infrastructures, each with its own unique set of
performance and security characteristics. Thus, it is critical for the designer to
be able to anticipate the costs associated with service decomposition decisions
for different IoT deployments.

To enable this, we present MSDBench — a set of microservice benchmarks
specifically designed to capture the relevant performance characteristics for IoT
applications. Our work is distinct from previous microservice benchmarking ef-
forts [16,[26,41] in that we focus specifically on the impact of using different
isolation alternatives and placement decisions that consider devices, “the edge”,
and the cloud as possible execution sites. In particular, our benchmarks do not
assume that the edge and device resources can run a common commodity oper-

MSDBench 3

ating system (e.g. Linux or Windows) since IoT deployments often incorporate
devices requiring lightweight or real-time operating systems.

The benchmarks, described in Section [3] comprise a set of microbenchmarks
that exercise cross-domain functionality and an end-to-end application bench-
mark based on the popular publish-subscribe IoT design pattern. To illustrate
the diagnostic power of the benchmark suite, in Section 4] we compare the perfor-
mance of the benchmarks using Linux as a host operating system to Ambience,
an operating system specifically designed to support IoT microservices |3]. These
results show the importance of different deployment decisions with respect to iso-
lation domains and network connectivity. We also show (using Ambience) how
the choice of isolation domain decomposition affects performance on devices that
include only microcontrollers.

2 Related Work

Microservices is an application architecture that composes loosely coupled com-
ponents that communicate using inter-/remote procedure calls or other REST
APIs. Their loose coupling facilitates fault tolerance, scaling, and automatic
orchestration [6}/11,/29] which enables independent development and enhanced
software engineering benefits. As a result, microservices are widely used for de-
velopment of web/cloud applications [8}|14,29}[32], and more recently for appli-
cations deployed across the cloud-edge continuum [24}28].

Given this widespread use, multiple benchmarking systems have emerged to
help developers understand and reason about the performance implications of
Linux-based microservices applications. DeathStarBench is a suite designed to
explore how well the cloud system stack supports microservices, from the hard-
ware to the application implementation [16]. The DeathStarBench applications
were designed to be representative of large, language- and library-heterogeneous,
end to end microservices applications that run primarily in the cloud. Their
work compares microservices applications against monolithic applications and
analyzes how well the cloud platform supports each application type.

Several benchmarking suites analyze the resource demands of specific applica-
tion types, including scale out workloads, latency critical applications, and online
data intensive microservices applications |15,/20,(2512634}/41/43}/45//48]. Ppbench
examines how different languages, containerization, and a software defined net-
working affect microservices performance [26]. Other work explores techniques
for benchmarking microservices and how to use this information to inform de-
ployment decisions [1}[17,[18}/21}[23//47]. While several other benchmarking efforts
describe IoT benchmarking suites for evaluating IoT architectures, IoT Gateway
systems, IoT hardware devices, loT database systems, [oT sensor and analytics
platforms, and distributed stream processing platforms [5,{19}27./30,3638|, these
latter suites are not designed for or tailored to the microservices architecture.

MSDBench differs from this prior work in both its focus and its content. It
is unique in that it targets how runtime systems support microservices applica-
tions with regards to deployment options common to IoT settings (placement,

4 Wang et al

isolation, cross-service optimization). To show its utility, we use the suite to eval-
uate and empirically compare the impact of different operating systems, RPC
frameworks, hardware, and isolation domains across deployments that span the
IoT cloud-edge continuum.

3 Benchmark Design

Microservices are useful for IoT because

— Microservices can be sized/decomposed to match the heterogeneous set of
computing capacities in a target IoT deployment (e.g. one consisting of a
resource constrained microcontroller, capacity limited edge device or edge
cloud virtual machine (VM), or resource rich VM in a public or private cloud
interconnected by low-power radio networks, WiFi, and wired networking).

— Microservices can be assigned to separate isolation domains (e.g. process- or
service-level virtualization technologies) to implement site-specific security
policies and to improve fault isolation.

— Microservices are decoupled from the operating system and other microser-
vices, enabling independent development, distributed deployment, and use
of a wide range of isolation options (e.g. IPC/RPC communication, process
virtualization, or system virtualization); and

— Operating and build systems that are microservices-aware can exploit static
information associated with deployments (e.g., co-location, service depen-
dencies) to automatically optimize away various overheads associated with
isolation and decoupling [3}22].

These features facilitate portability, rapid development, improved performance,
and low maintenance. Moreover, this design enables horizontal scaling with little
involvement from programmers, since a particular dependency of a service can
be transparently replicated.

Developers must also face a number of new challenges when using microser-
vices in distributed and heterogeneous IoT settings. In particular, service prox-
imity can have a significant impact on overall application performance. For exam-
ple, co-locating microservices on a single node (e.g. as a Kubernetes “pod” [29])
can enhance the inter-service communication, but also introduce security and/or
fault isolation vulnerabilities. Further, in an IoT context where some of the ser-
vices implement data acquisition, moving a microservice away from the data
acquisition site to improve its inter-service messaging performance may degrade
data acquisition latency. Moreover, these performance-impacting factors can be
deployment specific meaning that the developer must code the microservices
without knowing how they will ultimately be deployed.

To address these challenges, we have developed MSDBench, a pair of bench-
mark suites for exploring the performance implications of different operating
system, isolation, and placement alternatives for microservices applications de-
ployed across the multi-tier IoT resources (microcontrollers, edge systems, and
public/private clouds). MSDBench is unique in that it facilitates the study of

MSDBench 5

different operating systems, devices, system-level virtualization, and isolation
domains in combination. As described in the previous section, existing microser-
vice benchmarking approaches [16,26,41,|43] focus on resource-rich, relatively
homogeneous cloud deployments and devices that run Linux. By addressing this
gap, MSDBench enables developers to reason about the performance of emerg-
ing IoT deployments end-to-end and to interrogate the performance impact from
using different isolation domains and operating systems.

MSDBench consists of a microbenchmark suite and A >A
end-to-end application suite. Both suites separate the
client from the rest of the application (which we refer to
as the server-side services) to allow for separate perfor-
mance analysis (end-to-end versus server-side). We write Fig.1: MSDBench
microservices in C++ for device portability and imple- microbenchmark
ment them to be as efficient as possible. The microbench- structure.
mark suite consists of an application with two microser-
vices depicted as triangles in Figure 1l The client service makes requests to the
poll service (dashed arrow in the figure). The poll service simply returns. The call
benchmark includes a request payload, the size of which is parameterizable. This
suite enables us to understand the overhead associated with calls and returns
(local or remote) and any use of payload serialization.

The end-to-end application suite is a “Best Effort Pub/Sub (BEPS)” appli-
cation consisting of six unique microservices. We provide a graphic of BEPS
in Figure The microservices are triangles, and their dependencies are ar-
rows. The dashed arrow is used by the client for requests to the BEPS entry
point. The client service (C) makes requests to the server-side services which
comprise the suite’s benchmarks. The server-side services consist of a load bal-
ancer microservice (LB), 14+ workers (W), a user database service (DB), a
payload database service (PDB), and a read endpoint (R). The client makes
create_user, subscribe, publish, unsubscribe, and delete_user requests
to the load balancer. Each request type benchmarks a different aggregate func-
tionality from the microservice mesh. The load balancer distributes requests
using round-robin among the workers. Each worker uses the payload database
and the user database to service each request and publishes updates to the read
endpoint as necessary. The number of workers is parameterizable; we use five in
the evaluation herein.

Microservices
We designed BEPS to represent Aﬁ C = client

several common microservices de- + LB = load balancer

: W = worker(s)

sign patterns [2}|9} |46]. The load DB = database

balancer is an “API Gateway (or PBD = payload database
Proxy)” as it provides a uniform in- ¥+¥ R = read endpoint
terface to make requests to differ- m A --pp-clientrequests
ent services. Each worker is an “Ag- =P service dependencies
gregator” since it combines informa-
tion from both databases to update
a user’s feed in the read endpoint.

C = client service
P = poll service

Fig.2: MSDBench end-to-end applica-
tion structure.

6 Wang et al

BEPS employs the “Data Sharing” pattern since all of the workers share the
same two database instances. When the OS supports asynchrony (e.g. Ambi-
ence does so via coroutines), all communication implements the “Asynchronous
messaging” pattern.

In this paper, we use MSDBench with Linux and Ambience [3]; the latter is an
experimental operating system specifically designed for IoT microservices. The
benchmark suites are coded as generically as possible to facilitate their porting
to other operating systems and software ecosystems. We choose these two exam-
ples to illustrate how the benchmarks allow a developer to assess the trade-off
between performance and technology risk. The MSDBench Linux benchmarks
use Thrift [39,42] for RPC and argument serialization. They use Docker con-
tainers [10] for process-level isolation. MSDBench can use KVM VMs or physical
hosts for these deployments.

Ambience uses a “group” abstraction to isolate and co-locate microservices.
Microservices in the same group share an address space, are not isolated from
each other, and can be optimized together. Microservices in different groups are
isolated via protected address space regions. Ambience uses lidl, an interface de-
scription language (IDL), to describe inter-service communication. 1id1l trans-
parently specializes these interfaces as direct function calls, zero-copy shared
memory for calls across address spaces, or serialization for cross-machine calls.
Ambience is also more resource-scale independent than Linux. It is possible to
run Ambience on resource-restricted microcontrollers that do not have sufficient
functionality (e.g. an MMU) or resource capacity to run Linux. At the same
time, Ambience runs natively on the x86 and ARM architectures and on the
KVM hypervisor. Thus, it is possible to run Ambience as a single operating sys-
tem on microcontrollers, single board computers at the edge, and cloud-based
VMs in a tiered IoT deployment. It is, however, highly experimental and sup-
ports a unique and potentially unfamiliar set of operating system abstractions
specifically for optimized microservices.

MSDBench is also unique in that it decouples the mapping of microservices
to isolation domain from the mapping of isolation domains to hosts. We distin-
guish the two because developers and operators typically have control over the
former (isolation domain assignment, i.e. containerization). The infrastructure
provider (e.g. cloud vendor) may demand an additional level of isolation to facil-
itate resource apportionment, decommissioning, and sharing of resources. Thus,
MSDBench allows different combinations of these two mappings to be explored
empirically. We refer to isolation domains when discussing operating-system im-
plemented protection domains and deployments when discussing the assignment
of microservices to isolation domains and the assignment of isolation domains to
hosts. That is, a developer or application operator may decide on the assignment
of microservices to isolation domains, and those isolation domains may either be
implemented natively or placed in infrastructure-provided containers.

Mapping Microservices to Isolation Domains — We depict the three isolation
domain configurations (co-located, tiered, and isolated) that we consider in our
evaluation using the BEPS suite in Figure [3| (the microbenchmark suite is sim-

MSDBench 7

Co-located Tiered Isolated

C Y B -
Sa L 8
AA Va!

Fig. 3: BEPS Mapping of Microservices to Isolation Domains. An isolation do-
main provides process-level isolation (cylinders) for microservices (triangles).
The letters in each triangle identify the BEPS microservice. For a Linux OS,
the isolation domain is a Linux or Docker container. Ambience uses lightweight
groups. MSDBench enables empirical evaluation and comparison for alternative
isolation domain configurations, including those shown here: all co-located, tiered
isolation (grouped), and full isolation.

ilar). An isolation domain for the Linux OS is a Linux or Docker container; for
Ambience, it is an Ambience group. In the co-located configuration, the load
balancer, workers, databases, and read endpoint are all in the same isolation
domain. In the tiered configuration, the load balancer and the workers are in an
isolation domain, the databases are in an isolation domain, and the read end-
point is in an isolation domain. In the isolated configuration, every microservice
is in its own isolation domain.

Deployments: Mapping Isolation Domains to Hosts — We depict the five deploy-
ments for the BEPS suite that we consider in our evaluation in Figure 4| (we use
the same deployments for the microbenchmark suite). For each deployment, we
will evaluate the three isolation domain configurations above (co-located, tiered,
and isolated). We represent these in the figures as a cloud icon marked “server-
side.” In deployment 1, we place the client within the load balancer’s (LB’s)
isolation domain. All isolation domains in this deployment are co-located within
a single VM on the same physical host. In deployment 2, we place the client in
its own isolation domain, and co-locate that domain within the same VM and
and on the same physical host. In deployment 3, we modify deployment 2 so
that the client and its isolation domain are in a separate VM but on the same
physical host as the server-side VM. In deployment 4, we modify deployment 3
so that the client VM is on a separate physical host from that of the server-side
microservices. Deployment 5 is the same as deployment 4 only the client service
is executed directly on the physical host instead of in a VM.

MSDBench Configuration — MSDBench configuration uses a combination of
scripting and deployment manifests to implement its benchmark deployments.
Deployment configuration however, is currently manual (we are working on au-
tomation as part of future work). Linux VMs can be configured and deployed
using any one of the many configuration management tools to automate server
provisioning (e.g. puppet , ansible , chef , etc.). Moreover, Ambience

8 Wang et al

Test #1 Test #2 Test #3 Test #4 Test #5
VM

server.
é side

VM

server
side

server side

Fig. 4: BEPS Mapping of Isolation Domains to Hosts (MSDBench deployment
alternatives). MSDBench enables evaluation of different deployment options by
mapping isolation domain configurations to infrastructure options (e.g. sensors,
edge, cloud). We consider 5 common deployments (shown here) in our empirical
evaluation. The server side configurations that we consider are shown in Fig.

has deployment support based on deployment manifests in which service inter-
faces and implementations are specified. It combines these with service manifests
which specify service dependencies and hosts, to create an application deploy-
ment. We use gemu to instantiate virtual machines for both Linux and Ambience
VM on KVM systems. For the microcontroller, we manually flash the devices
with the Ambience images once they have been built. MSDBench leverages these
tools for basic benchmark deployment scripting.

4 Empirical Evaluation

To generate informative results with minimal external noise, we run our experi-
ments in a controlled environment. Our IoT setting consists of microcontrollers,
edge devices, and a private cloud. In this study, we use the Nordic Semicon-
ductor nRF52840 which has a 64MHz Arm Cortex-M4 CPI with FPU. It has
1MB of flash memory plus 256KB of RAM. It communicates via Bluetooth 5.3
and zigbee (IEEE 802.15.4). The multi-host microcontroller deployments use
zigbee for communication. Our edge and cloud servers are Intel NUCS8i7THNK
systems (NUCs) with 8 Core i7 CPUs (3.1 GHz), 32GB of Memory, and 1TB of
disk. The multi-host edge/cloud experiments use a dedicated, isolated Ethernet
network between hosts for communication. All devices run Ambience v1.0
which runs on all devices that we consider herein. All devices except the micro-
controllers are capable of supporting Linux. We use Fedora 35 and Fedora 36,
KVM for virtualization, and Thrift for RPC on the Linux systems. Ambience
integrates virtualization internally (running directly on KVM or within a Linux
process/container) and uses lidl for IPC/RPC.

We refer to the deployments that use the Intel NUCs as “edge/cloud” deploy-
ments, and the deployments that use the ARM devices as the “microcontroller”
deployments in the evaluation that follows. Note that the nRF52840 microcon-
troller is not a Linux-capable single board computer (e.g. a device similar to
a Raspberry Pi which also uses an ARM processor) but is a severely resource-
restricted embedded device without an MMU.

For the microbenchmark edge/cloud deployments, the client makes 10,000
requests to the poll service per experiment. Our experiments evaluate different

MSDBench 9

request payload sizes (0, 512, 1024, 2048, 4096, and 8192 bytes). Each request
returns a 64-bit response payload. For the microcontroller deployments (due to
resource constraints), the client makes 100 requests and we experiment with
request payloads of 0 and 64 bytes.

For the edge/cloud deployments of the end-to-end benchmarks, we use MS-
DBench to measure the round trip request latency for BEPS by timing 10,000
create_user, 10,000 subscribe, 10,000 publish, 10,000 unsubscribe, and
10,000 delete_user requests from the client. The BEPS user names are 10
characters and the messages are 280 bytes. For the microcontroller deployments,
we perform 10 requests each and use user names and messages of length 5 and
20 bytes, respectively. MSDBench can be used to measure both the internal
(server-side) time and the end-to-end time experienced by the clients. We report
the end-to-end times experienced by the client herein.

We use these benchmark suites to evaluate five deployments and three isola-
tion domain configurations described in the previous section for our edge/cloud
experiments (Section . We consider deployments 1, 2, and 4 and isolation do-
mains co-located and tiered for the microcontroller deployments. All results,
unless otherwise specified (e.g. for the throughput study), are in microseconds.

4.1 Microbenchmark Results

The MSDBench microbenchmark suite is useful for determining the performance
impact associated with the microservice interface boundaries. Microservices typ-
ically communicate with each other through remote procedure call (RPC) or
remote invocation mechanisms across their exported interfaces. The benchmark
uses a single poll service that accepts a request via RPC and returns a timestamp
to enable measurement of the RPC call and return performance. To evaluate the
utility of this suite, we compare the overhead of RPC calls using different request
payloads. Note that because RPC mechanisms are language level abstractions,
they often convey typed data which must be serialized for transfer and then
deserialized upon receipt. The benchmark includes serialization overhead.

For all experiments, the client and poll services are on the same machine and
VM. Figure[f]and Figure[6]show the average inter-service latency in microseconds
for different payload sizes when deployed on the edge/cloud; Figure m similarly
shows the average inter-service latency when deployed on the microcontroller.
We use MSDBench to explore the performance differences of the no-isolation
(co-located) and fully isolated isolation domains.

For the edge/cloud study, co-location reveals the impact of any optimiza-
tion performed by the OS and/or microservices hosting framework. Note that
Ambience uses compile and link time optimizations to automatically remove
the messaging and serialization/deserialization code when microservices are co-
located. In Linux, microservices use the same serialization and messaging code
regardless of co-location. However, when co-located, Linux uses a “fast-path” for
local network communication.

Ambience co-located thus achieves 73x better performance than fully iso-
lated versus 1.3x for Linux. Ambience’s group abstraction enables 6x better call

10 Wang et al

performance (isolated configuration) compared to Linux because it is able to
optimize across groups (using zero copy shared memory), a feature not avail-
able for Linux containers. Note that Ambience performs similarly regardless of
the amount of data passed. This is because Ambience requires a deployment
manifest that shows the location of microservices in a deployment so it can
“compile-away” serialization and data copies when microservices share an ad-
dress space. Each system runs an image that is compiled using the manifest
and relocation of microservices requires new images to be created and deployed.
For Linux, serialization (via Thrift) and messaging cause the microservices to
slow as the payload size increases. However, Linux microservices do not need
to be recompiled when they are moved between compatible architectures, and
they may not need to be relinked (depending on the degree of software version
compatibility between potential execution sites).

For the microcontroller, Ambience co-located outperforms isolated by 20x
(versus 73x for edge/cloud). This is due to the slower clock rate (compared to
the x86-based NUC) and the limited resources of the device. As noted previously,
the microcontroller does not support Linux so we do not report results for Linux.

Microbenchmark Results
The following graphs show the average time for the client service to call the poll
service (y-axis), with different payloads (x-axis), under different deployment
configurations.

35
e e 2500, — Linux Co-Located

rrrrr Linux Isolated

w
o

2000

Y
n

b
o

1500
—— Ambience Co-Located
""" Ambience Isolated

I
w

Call Time (microseconds)
=
S
3
5

Call Time (microseconds)

[
)

500

e
@

°
°

0 5121024 2048 4096 8192 0 5121024 2048 8192

Buffer Size

Buffer Size

Fig.5: Latency when isolating Fig. 6: Latency when isolating
and co-locating Ambience ser- and co-locating Linux services
vices for edge/cloud. for edge/cloud.

70

60

50

40 —— Co-Located
————— Isolated

Call Time (microseconds)

Buffer Size

Fig. 7: Latency when isolating and co-locating the
Ambience services for microcontrollers.

MSDBench 11

1400

1200 BN Co-Located, Deployment 1
W= Tiered, Deployment 1
I |solated, Deployment 1
1000 Co-Located, Deployment 2
B Tiered, Deployment 2
B |solated, Deployment 2
800 Co-Located, Deployment 3
B Tiered, Deployment 3
B |solated, Deployment 3
600 Co-Located, Deployment 4
Tiered, Deployment 4

B |solated, Deployment 4
400 N Co-Located, Deployment 5
mmm Tiered, Deployment 5
B |solated, Deployment 5
200 ‘
N r I | | I I

create_user follow publish unfollow delete_user

Round Trip Time (microseconds)

Fig. 8: End-to-End Benchmarking Results for Ambience on the Edge/Cloud
deployments. The graph shows average round trip latency in microseconds for
each request type, for each mapping of microservices to isolation domains (Co-
Located, Tiered, and Isolated, see Fig. [3)) and mapping of isolation domains to
hosts (Deployments 1-5, see Fig. .

4.2 End to End Benchmark Results

We next use MSDBench to investigate a number of deployment related research
questions using BEPS, the end-to-end benchmark suite. For these experiments,
we consider the five deployments in Figure |4 and the three isolation (ISO) do-
main configurations (co-located, tiered, and isolated) shown in Figure |3l We
benchmark both Ambience (Amb) and Linux (Lin) and report latency in mi-
croseconds observed by the client in terms of the average and standard deviation
across 10,000 requests to each benchmark service function. The service functions
are create_user, subscribe, publish, unsubscribe, and delete_user. Fig-
ure [§] shows the round trip times for each service function for all deployment
configurations of Ambience. Figure [9] shows the corresponding results for Linux.
The data provides a number of different insights. First, the suite includes
benchmarks with different resource requirements. For example, publish requires
more server-side processing than the others, unsubscribe and delete_user are
impacted by network overhead (e.g. for cross-VM and machine deployments). As
a result, publish takes 11-15x longer on average than create_user on Linux
when within the same VM but this difference is reduced to 50-70% when the
client is placed on a different machine (because the networking and isolation
overhead plays a much larger role). These differences enable developers to make
informed decisions about workload mix, service replication, and placement.
Next, the data shows the potential for performance optimization for co-
located microservices. In every case, both Linux and Ambience show signifi-
cantly better performance for co-located versus tiered (approximately 30-70%
slower for Ambience, and 20% slower for Linux) or isolated (approximately 20-
70% slower for Ambience, and 10-40% slower for Linux). Third, it enables us to
understand the performance differences between the use of a general and special
purpose operating system. On average, Ambience is at least an order of magni-

12 Wang et al

2500 BN Co-Located, Deployment 1
W= Tiered, Deployment 1
I |solated, Deployment 1
2000 Co-Located, Deployment 2
= Tiered, Deployment 2
B |solated, Deployment 2
Co-Located, Deployment 3
1500 s Tiered, Deployment 3
B |solated, Deployment 3
Co-Located, Deployment 4
Tiered, Deployment 4
B |solated, Deployment 4
BN Co-Located, Deployment 5
mmm Tiered, Deployment 5
500 B solated, Deployment 5

1000

Round Trip Time (microseconds)

create_user follow publish unfollow delete_user

Fig.9: End-to-End Benchmarking Results for Linux on the Edge/Cloud de-
ployments. The graph shows average round trip latency in microseconds for
each request type, for each mapping of microservices to isolation domains (Co-
Located, Tiered, and Isolated, see Fig. |3) and mapping of isolation domains to
hosts (Deployments 1-5, see Fig. El[)

tude faster than Linux for all equivalent deployments, and the slowest Ambience
experiment across deployments 4 and 5 (which traverse a network connection)
is faster than the fastest Linux experiment in deployments 4 and 5 across all
experiments, regardless of isolation domain assignment and service request type.
We were surprised by these results, given the relatively highly optimized nature
of the Linux networking stack and the maturity of its isolation implementations.

The differences per deployment are also interesting. Deployment 1 enables
us to remove client interaction. Although this would not be used in an actual
deployment (clients are typically separated and isolated from the server-side
services for fault resiliency), it allows us (as developers) to focus on the server side
performance of our deployments. This deployment with co-located isolation is the
configuration with the best possible performance because maximal optimization
is possible and minimal overhead is introduced to provide limited isolation. The
data across deployments shows that a large portion of the performance overhead
end-to-end comes from separating the client from the server side.

Deployment 2 represents a more realistic edge case in which the microservices
are co-located on the same device with the client isolated using only process-
level virtualization (i.e. Linux containers or Ambience groups) and the server-
side microservices isolated in various ways (all co-located, all isolated, or some
combination (e.g. tiered)). Using deployment 2 as a baseline, Linux deployment
3 (isolating the client in its own VM) is 14-16x slower, and Linux deployment
4 (placing client and VM on a different host) is 65-68x slower. When we place
the client on a different host without a VM (deployment 5), the end-to-end
performance is only 45-56x slower. This latter result represents the overhead
of system level virtualization (e.g. cloud use). For Ambience, deployment 3 and
deployment 4 are 3-4x slower and 13-23x slower than deployment 2, respectively.
The Ambience performance is also impacted by placing the client in a VM —

MSDBench 13

30000

@ 25000

Emm Co-Located, Deployment 1
B Tiered, Deployment 1
Co-Located, Deployment 2
15000 Tiered, Deployment 2
Co-Located, Deployment 4
Tiered, Deployment 4

20000

10000

Round Trip Time (microsecond:

5000

[— — - — —
create_user follow publish unfollow delete_user

Fig. 10: End-to-End Benchmarking Results for Ambience on the microcontroller
deployments. The graph shows round trip latency in microseconds for each map-
ping of microservices to isolation domains and a subset of the mappings of iso-
lation domains to hosts (deployments 1, 2, and 4, see Fig. .

deployment 5 is only 6-8x slower when the client is placed on bare metal vs
13-23x slower in an VM (deployment 4).

Figure [I0] shows the end-to-end results for running Ambience on microcon-
trollers. In these experiments, we use deployments 1, 2, and 4 and the co-located
and tiered isolation domains. The trends are similar, however, the differences are
less stark due to the slower clock speed and severe resource constraints of the
devices. Separating out the client (deployment 2 vs 1) introduces about 2x over-
head across benchmarks. The performance for co-located and tiered is similar
when the client is separated. Using deployment 2 as a baseline, the total average
time across all benchmarks is approximately 134x slower for deployment 4 when
co-located. Another interesting aspect revealed by this benchmark suite is the
relative performance between microcontroller and edge/cloud deployments. For
example, due to the limited capability of the microcontrollers, microcontroller
deployment 1 exhibits performance that is similar to that of edge/cloud deploy-
ment 3 (which adds VM-level isolation to the client) for co-located isolation.

4.3 Throughput Results

We next use MSDBench on the edge/cloud deployment 5 to test how the iso-
lation domain configuration and platform supports different client workloads.
In particular, we show how MSDBench can be used to support capacity plan-
ning for hosts in an IoT deployment. Capacity planning enables developers and
deployment administrators to understand what the hosts in a deployment are
capable of in terms of servicing microservice load.

To enable this, we use MSDBench to measure the performance of concurrent
requests issued by multiple client processes simultaneously. For this study, we
used an MSDBench client that is written in Python; Python simplifies the script-
ing of benchmark harnesses but adds considerable client-side latency (which is
why we did not use it for the microbenchmark and end-to-end experiments). Our

14 Wang et al

60000

50000
B 40000
30000

20000
—— Ambience Co-Located

Ambience Tiered
—— Ambience Isolated
—— Linux Co-Located
—— Linux Tiered
—— Linux Isolated

Requests per Secon

10000

0 5 10 15 20 25 30 35 40
Number of Clients

Fig.11: MSDBench Throughput Experiments. This benchmark uses the
edge/cloud deployment 5 to evaluate and compare three isolation domains co-
located, tiered, and isolated for Ambience and Linux. The graphs show the aver-
age number of requests per second as the number of clients increases. The Linux
system was unable to run workloads with more 15-20 clients for any configura-
tion. Ambience achieves its peak throughput at 25 clients, Linux does so at 13.
Such studies are a key component of capacity planning for IoT deployments.

Python client is the same for Linux and Ambience except in its use of Thrift
versus lidl for the respective RPC implementations. We invoke the clients con-
currently. Each client “warms” the application by executing 50 create_user and
delete_user requests each. It then times 105,000 requests of each type (210,000
total requests), then computes and outputs the throughput number. We repeat
the experiment for an increasing number of clients until the number of requests
per second stops increasing, indicating the host’s saturation point for this bench-
mark. The resulting throughput “curve” indicates how microservices consume
capacity as a function of offered request load for a given mix of service requests.
A similar throughput curve can be generated for any individual or combination
of the MSDBench microservices and target device.

Figure [11]shows the throughput in requests per second (rps) for each OS and
isolation domain configuration as the number of clients increases. We use this
benchmark to compare the co-located, tiered, and isolated configurations and
the two OS’s we consider (Ambience and Linux). The Linux system consistently
crashed (we were unable to determine why) for client counts higher than 15 for
co-located and tiered, and 20 for isolated. The throughput of the Linux system
achieves a maximum throughput of 7587 rps with 13 clients for co-located, 7594
rps with 13 clients for tiered, and 6613 rps with 10 clients for isolated. At 5 clients,
Ambience achieves 2.7x more throughput than Linux. Ambience saturates the
capacity of the server-side host at 25 clients achieving a maximum throughput
of 57083 rps for co-located, 57193 rps for tiered, and 55508 rps for isolated.

MSDBench 15

Note that all of the throughput experiments are for deployment 5, where the
clients are executed on a separate host and communicate with the microservices
over a 1GB dedicated Ethernet network. Surprisingly, the throughput rate for
Linux is not network dominated (it may be for Ambience, but we were unable to
determine that it was conclusively). Indeed, the Linux networking stack is highly
optimized compared to the nascent networking stack included in the Ambience
runtime. Further, because requests are traversing the network, the Ambience
requests include all serialization/deserialization and messaging overheads (the
Ambience image compiler could not optimize these away). We expected that both
Ambience and Linux would achieve the same saturation throughput (perhaps
for different client counts) with the network as the performance bottleneck. This
result illustrates both the impact of OS abstractions other than the networking
abstractions on microservices as well as the relative capacity consumption of the
two hosting operating systems.

5 Conclusion

We present MSDBench, a benchmarking suite for exploring the possibilities of
deploying microservices in an IoT setting and understanding how deployment de-
cisions impact microservices application performance. In our analysis, we study
the effect of isolation domains, the assignment of isolation domains to hosts,
operating systems abstractions, RPC Frameworks, and device types, revealing
the strengths and weaknesses of each. We also investigate the performance asso-
ciated with running microservices on resource-restricted devices (such as micro-
controllers) that cannot host commodity service operating systems (e.g. Linux).
The results indicate that the various deployment and operating system choices
can have a dramatic effect of eventual application performance. This work en-
ables us to understand how IoT technology supports microservices in terms of
what is possible and what is optimal, informing future research and development
on using microservices in an IoT setting.

References

1. Aderaldo, C.M., Mendonga, N.C., Pahl, C., Jamshidi, P.: Benchmark requirements
for microservices architecture research. In: 2017 IEEE/ACM 1st International
Workshop on Establishing the Community-Wide Infrastructure for Architecture-
Based Software Engineering (ECASE). pp. 8-13. IEEE (2017)

2. Akbulut, A., Perros, H.G.: Performance analysis of microservice design patterns.
In: IEEE Internet Computing, vol. 23, no. 6. pp. 19-27 (2019)

3. Ambience Microservices OS (May 2022), https://github.com/MAYHEM-Lab/
ambience| [Online; accessed 20-May-2022]

4. Ansible Configuration Management. https://www.ansible.com, [Online; accessed
20-July-2022]

5. Arlitt, M., Marwah, M., Bellala, G., Shah, A., Healey, J., Vandiver, B.: Iotabench:
an internet of things analytics benchmark. In: Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering. pp. 133-144 (2015)

https://github.com/MAYHEM-Lab/ambience
https://github.com/MAYHEM-Lab/ambience
https://www.ansible.com

16

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Wang et al

AWS Elastic Container Service. https://aws.amazon.com/ecs/, [Online; accessed
20-July-2022]

Chef Configuration Management. https://www.chef.io, [Online; accessed 20-
July-2022]

Decomposing Twitter: Adventures in Service-Oriented
Architecture. https://www.slideshare.net/InfoQ/
decomposing-twitter-adventures-in-serviceoriented-architecture, [On-

line; accessed 19-July-2022]

. Everything You Need To Know About Microservices Design Patterns. https:

//www .edureka.co/blog/microservices-design-patterns, [Online; accessed 20-
July-2022]

Docker, https://www.docker.com [Online; accessed 12-Sep-2017]

Docker Swarm. https://docs.docker.com/engine/swarm/, [Online; accessed 20-
July-2022]

Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin,
R., Safina, L.: Microservices: yesterday, today, and tomorrow. Present and ulterior
software engineering pp. 195-216 (2017)

Dragoni, N., Lanese, 1., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.: Mi-
croservices: How to make your application scale. In: International Andrei Ershov
Memorial Conference on Perspectives of System Informatics. pp. 95-104. Springer

(2017)
The Evolution of Microservices. https://www.slideshare.net/
adriancockcroft/evolution-of-microservices-craft-conference, [Online;

accessed 19-July-2022]

Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D.,
Kaynak, C., Popescu, A.D., Ailamaki, A., Falsafi, B.: Clearing the clouds: a study
of emerging scale-out workloads on modern hardware. Acm sigplan notices 47(4),
37-48 (2012)

Gan, Y., Zhang, Y., Cheng, D., Shetty, A., Rathi, P., Katarki, N., Bruno, A.,
Hu, J., Ritchken, B., Jackson, B., et al.: An open-source benchmark suite for
microservices and their hardware-software implications for cloud & edge systems.
In: International Conference on Architectural Support for Programming Languages
and Operating Systems (2019)

Grambow, M., Meusel, L., Wittern, E., Bermbach, D.: Benchmarking microservice
performance: a pattern-based approach. In: Proceedings of the 35th Annual ACM
Symposium on Applied Computing. pp. 232-241 (2020)

Grambow, M., Wittern, E., Bermbach, D.: Benchmarking the performance of mi-
croservice applications. ACM SIGAPP Applied Computing Review 20(3), 20-34
(2020)

Gupta, P., Carey, M.J., Mehrotra, S., Yus, o.: Smartbench: a benchmark for data
management in smart spaces. Proceedings of the VLDB Endowment 13(12), 1807—
1820 (2020)

Hauswald, J., Laurenzano, M.A., Zhang, Y., Li, C., Rovinski, A., Khurana, A.,
Dreslinski, R.G., Mudge, T., Petrucci, V., Tang, L., Mars, J.: Sirius: An open
end-to-end voice and vision personal assistant and its implications for future ware-
house scale computers. In: International Conference on Architectural Support for
Programming Languages and Operating Systems. p. 223-238 (2015)

Henning, S., Hasselbring, W.: Theodolite: Scalability benchmarking of distributed
stream processing engines in microservice architectures. Big Data Research 25,
100209 (2021)

https://aws.amazon.com/ecs/
https://www.chef.io
https://www.slideshare.net/InfoQ/%20decomposing-%20twitter-%20adventures-%20in-%20serviceoriented-%20architecture
https://www.slideshare.net/InfoQ/%20decomposing-%20twitter-%20adventures-%20in-%20serviceoriented-%20architecture
https://www.edureka.co/blog/microservices-design-patterns
https://www.edureka.co/blog/microservices-design-patterns
https://www.docker.com
https://docs.docker.com/engine/swarm/
https://www.slideshare.net/%20adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/%20adriancockcroft/evolution-of-microservices-craft-conference

22.

23.

24.
25.

26.

27.

28.
29.
30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

MSDBench 17

Jia, Z., Witchel, E.: Nightcore: efficient and scalable serverless computing for
latency-sensitive, interactive microservices. In: International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. pp. 152—-166
(2021)

Jindal, A., Podolskiy, V., Gerndt, M.: Performance modeling for cloud microservice
applications. In: Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering. pp. 25-32 (2019)

K3S. https://k3s.io, [Online; accessed 19-July-2022]

Kasture, H., Sanchez, D.: Tailbench: A benchmark suite and evaluation method-
ology for latency-critical applications. In: International Symposium on Workload
Characterization (2016)

Kratzke, N., Quint, P.C.: Investigation of impacts on network performance in the
advance of a microservice design. In: International Conference on Cloud Computing
and Services Science - Volume 1 and 2. p. 223-231 (2016)

Kruger, C.P., Hancke, G.P.: Benchmarking internet of things devices. In: 2014 12th
IEEE International Conference on Industrial Informatics (INDIN). pp. 611-616.
IEEE (2014)

KubeEdge. https://kubeedge.io, [Online; accessed 19-July-2022]

Kubernetes. https://kubernetes.iol [Online; accessed 19-July-2022]

Kumar, H.A., Rakshith, J., Shetty, R., Roy, S., Sitaram, D.: Comparison of iot
architectures using a smart city benchmark. Procedia Computer Science 171, 1507—
1516 (2020)

Microservices, "https://martinfowler.com/articles/microservices.html”
Microservices Workshop: Why, what, and how to
get there. http://www.slideshare.net/adriancockcroft/
microservices-workshop-craft-conference, [Online; accessed 19-July-2022]
Newman, S.: Building microservices. 7 O’Reilly Media, Inc.” (2021)
Papapanagiotou, 1., Chella, V.: Ndbench: Benchmarking microservices at scale.
arXiv preprint arXiv:1807.10792 (2018)

Paul, S.K., Jana, S., Bhaumik, P.: On solving heterogeneous tasks with microser-
vices. Journal of The Institution of Engineers (India): Series B 103(2), 557565
(2022)

Poess, M., Nambiar, R., Kulkarni, K., Narasimhadevara, C., Rabl, T., Jacobsen,
H.A.: Analysis of tpcx-iot: The first industry standard benchmark for iot gate-
way systems. In: 2018 IEEE 34th International Conference on Data Engineering
(ICDE). pp. 1519-1530. IEEE (2018)

Puppet Configuration Management. https://puppet.com, [Online; accessed 20-
July-2022]

Shukla, A., Chaturvedi, S., Simmbhan, Y.: Riotbench: A real-time iot benchmark for
distributed stream processing platforms. arXiv preprint arXiv:1701.08530 (2017)
Slee, M., Agarwal, A., Kwiatkowski, M.: Thrift: Scalable Cross-Language Services
Implementation (Apr 2007), facebook White Paper

Soldani, J., Tamburri, D.A., Van Den Heuvel, W.J.: The pains and gains of mi-
croservices: A systematic grey literature review. Journal of Systems and Software
146, 215-232 (2018)

Sriraman, A., Wenisch, T.F.: usuite: A benchmark suite for microservices. In: In-
ternational Symposium on Workload Characterization. p. 1-12 (2018)

Thrift Software Framework, |"http://wiki.apache.org/thrift/”

Ueda, T., Nakaike, T., Ohara, M.: Workload characterization for microservices. In:
International Symposium on Workload Characterization (2016)

https://k3s.io
https://kubeedge.io
https://kubernetes.io
http://www.slideshare.net/adriancockcroft/%20microservices-workshop-craft-conference
http://www.slideshare.net/adriancockcroft/%20microservices-workshop-craft-conference
https://puppet.com

18

44.

45.

46.

47.

48.

Wang et al

Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Casallas, R., Gil,
S.: Evaluating the monolithic and the microservice architecture pattern to deploy
web applications in the cloud. In: 2015 10th Computing Colombian Conference
(10CCC). pp. 583-590. IEEE (2015)

Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia, Z., Shi, Y.,
Zhang, S., Zheng, C., Lu, G., Zhan, K., Li, X., Qiu, B.: Bigdatabench: A big data
benchmark suite from internet services. In: Proceedings of the First International
Symposium on High-Performance Computer Architecture. p. 488-499 (2014)
Yeung, A.: The Six Most Common Microservice Architecture De-
sign Pattern (Mar 2020), https://medium.com/analytics-vidhya/

the-six-most-common-microservice-architecture-design-pattern-1038299dc396

[Online; accessed 20-July-2022]

Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Li, W., Ding, D.: Fault analysis and
debugging of microservice systems: Industrial survey, benchmark system, and em-
pirical study. IEEE Transactions on Software Engineering 47(2), 243-260 (2018)
Zhou, X., Peng, X., Xie, T., Sun, J., Xu, C., Ji, C., Zhao, W.: Benchmarking mi-
croservice systems for software engineering research. In: International Conference
on Software Engineering. p. 323-324 (2018)

https://medium.com/analytics-vidhya/the-six-most-common-microservice-architecture-design-pattern-1038299dc396
https://medium.com/analytics-vidhya/the-six-most-common-microservice-architecture-design-pattern-1038299dc396

