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Abstract

We describe a general formalism for quantum dynamics and show how this for-

malism subsumes several quantum algorithms including the Deutsch, Deutsch-Jozsa,

Bernstein-Vazirani, Simon, and Shor algorithms as well as the conventional approach

to quantum dynamics based on tensor networks. The common framework exposes sim-

ilarities among quantum algorithms and natural quantum phenomena: we illustrate

this connection by showing how the correlated behavior of protons in water wire sys-

tems that are common in many biological and materials systems parallels the structure

of Shor’s algorithm.

1 Introduction

The promise of solving complex problems efficiently using quantum computing hardware and

associated software is a rapidly evolving research frontier.1–4 While we are in the very early

stages of this upcoming quantum revolution, there are a diverse set of important scientific
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and technological areas that may greatly benefit from such developments. One key quantum

algorithm that started this entire debate approximately 25 years ago is Shor’s algorithm. 5,6

Here, a quantum system can, in principle, factorize large integers into prime factors using

O((logN)2(log logN)(log log logN)) fast multiplications.5 Since this is exponentially faster

than the traditional classical approach which requires O
(
e1.9(logN)1/3(log logN)2/3

)
operations,

the promise of a second quantum revolution was born.

Orthogonally, the sister fields of atomic and molecular physics and quantum chemistry

have learned to wonder if atoms and molecules store and propagate quantum information.

While it has been known that such “information” indeed evolves in time as per the laws

of quantum theory, one may also ask if chemical reactions and chemical transformations

are, indeed, algebraic transformations that “compute” new information not dissimilar from

quantum algorithms. That is, is the time-evolution of a molecular processes to be interpreted

as a computational protocol that is “programmed” by nature, or through clever use of

synthetic techniques? However, the study of molecular dynamics is complicated by the fact

that molecules contain many correlated degrees of freedom. For example, with D degrees of

freedom and N basis representation per degree of freedom, the complexity of information

grows approximately as ND. As a result, quantum chemical dynamics is thought to be

exponentially hard.

To alleviate this rather catastrophic situation, tensor networks 7,8 have recently become

popular. Tensor Networks (TN) have roots in the tensor decomposition field of multi-linear

algebra,9,10 are a general framework for data compression,11–14 and have proven to be ef-

fective for efficient representation of many-body quantum states in strongly correlated sys-

tems.7,15–25 While a tensor network treatment adaptively truncates the Hilbert space based

on the intrinsic entanglement within the problem, given the advent of novel quantum com-

puting algorithms, tensor networks have also proved to be a natural resource for develop-

ing new quantum algorithms.26–29 The approach has been shown to have applications for

low-energy states of local, gapped Hamiltonians which are characterized by satisfying a so
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called area-law of entanglement.7,30,31 The introduction of the density matrix renormalization

group (DMRG),32–35 was perhaps the catalyst for the excitement in the TN methodology;

proving to be very useful for the simulation of one-dimensional quantum lattices,36–39 elec-

tronic structure calculations,40–48 approximations to vibrational states,49–57 open-quantum

systems25,58,59 and image processing,11–14,60 and even machine learning applications.61–63

In this paper, we cast the basic structure present in a family of quantum algorithms that

includes Shor’s algorithm in an abstract fashion using the language of tensor networks. 7

This presentation exposes parallels to more general quantum processes that occur in multi-

dimensional quantum dynamics64–72 and in quantum dynamics of open systems58,73–83 that

are of significance to many chemical, biological and materials problems. Hence, we will

then show how such an abstraction applies directly to many natural and synthetic chemical

processes thus drawing a connection between existing quantum algorithms and chemical and

natural processes.84–88 At the end of this exposition, we are forced to ask if natural processes

exist that may represent mathematically-constructed, number-theoretic, algorithms.

Given this overarching theme, the paper is organized as follows. In Sec. 2, we review the

textbook presentation of Shor’s algorithm and generalize it in Sec. 3, using tensor networks,

to arbitrary multi-partite systems. The formalism used in that generalization leads to our

central result in Sec. 4, which derives the correspondence to generalized Shor-like circuits

applicable to general quantum chemical dynamics problems. In Sec. 5, we exploit it to

show that multi-dimensional quantum dynamics in protonated water clusters such as wire

systems that are present in many biological ion channels and enzyme active sites and are also

the subject of several state-of-the-art experimental89–92 and multi-dimensional correlated

quantum dynamics studies,93–95 can be mapped to the circuit model exhibiting the same

structure as the family of quantum algorithms under study. Sec. 6 concludes.
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Figure 1: Template circuit for hidden subgroup problems.
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Figure 2: Quantum circuit for Shor’s algorithm.

2 Quantum Algorithms

Most quantum algorithms that are thought to be exponentially faster than their best known

classical counterpart are algorithms for solving instances of hidden subgroup problems. This

family of algorithms includes the textbook quantum algorithms of Deutsch, Deutsch-Jozsa,

Bernstein-Vazirani, Simon, and Shor96–103 and are all solved using the same approach illus-

trated in Fig. 1. All the algorithms start by creating an equal superposition of all relevant

possibilities, apply the Uf block to the superposition, and analyze the result using the Quan-

tum Fourier Transform (QFT). The Uf block, often called the “oracle,” is uniformly defined

as:

Uf (|x⟩ |y⟩) = |x⟩ |f(x)⊕ y⟩ , (1)

for the specific function f of interest. The circuit template uses the QFT uniformly as

the last step although—with the notable exception of Shor’s algorithm—the low precision

approximation of QFT (which is the Hadamard gate104) is often sufficient.
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2.1 Shor’s Algorithm

To be concrete, Fig. 2 instantiates the general template to the quantum circuit for an instance

of Shor’s algorithm for factoring the number N . In Stage (1), two registers are prepared:

the top (input) register of q qubits is initialized to an equal superposition 1√
2q

∑2q−1
i=0 |i⟩. In

the bottom (output) register of m qubits, each qubit is initialized to |0⟩. In Stage (2), the

initial state,

{
1√
2q

2q−1∑
i=0

|i⟩

}
⊗ |0⟩ , (2)

is evolved through a reversible circuit that computes [ax (mod N)]. The resulting state is

1√
2q

2q−1∑
i=0

|i⟩ ⊗
∣∣ai (mod N)

〉
. (3)

Equation (3) represents a highly entangled state. The degree to which the two sets of

registers above is entangled, is probed by computing the Schmidt number from a tensor

network decomposition of the unitary evolution operations that lead to Eq. (3), as detailed

in Ref.105

At Stage (3), a measurement of the output register produces some value w; this measure-

ment collapses the input register to a superposition of these states |i⟩ where ai (mod N) = w.

Let the number of those states be W ; the input register state is then 1√
W

∑W−1
i=0 |i⟩ for those

states |i⟩ whose mapping by the function ax (mod N) produces the same value w. Since the

function ax (mod N) is periodic, all these states are guaranteed to be of form |a+ ks⟩ for

some starting offset a and some multiple k of the period s. Put differently, the state of the

input register is

√
s

W

(W/s)−1∑
k=0

|a+ ks⟩ . (4)

It is important to note that a different measurement w′ of the output register would only
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change the starting offset a and the total number of states W in the superposition, but it

would not change the period s. Critically, the QFT is largely insensitive to the starting

offset and to the total number of states in the superposition. Its main effect is to transform

a superposition of periodic states |a+ ks⟩ to states in the Fourier basis |ṽ⟩ such that v is

close to a multiple ofW/s. When the period s is a power of 2, the Fourier states are perfectly

aligned with the multiple of W/s as shown by the formula below:

QFT

√
s

W

(W/s)−1∑
k=0

|a+ ks⟩

 =
1√
s

s−1∑
m=0

ei(2π/s)ma
∣∣∣m̃W/s〉 (5)

When the period is not a power of 2, the Fourier states with the largest probabilities are the

ones close to a multiple of W/s. From such a measurement, some classical post-processing

succeeds—with high probability—in determining the period s and hence the factors of the

number N .

2.2 Factoring Examples

We illustrate the algorithm for N = 15 and N = 21. In the first simpler example of factoring

N = 15 we proceed as follows. In a classical preprocessing step, we choose a value for a

that is coprime with 15 (say 2), calculate the needed number of qubits q = 4 and m = 4,

and generate the modular exponentiation circuit for f(x) = 2x mod 15 using adders and

multipliers.106 The execution of the quantum circuit proceeds as follows. The input register

is initialized to the (unnormalized) equal superposition of |0⟩ + |1⟩ + · · · + |15⟩. At barrier

(2), the two registers are entangled producing the (unnormalized) state |0⟩ |1⟩ + |1⟩ |2⟩ +

|2⟩ |4⟩+ |3⟩ |8⟩+ |4⟩ |1⟩+ · · ·+ |15⟩ |8⟩. A measurement of the output register may produce 1,

2, 4, or 8 with equal probability. Say we measure 4. The input register then collapses to the

(unnormalized) state |2⟩+ |6⟩+ |10⟩+ |14⟩. The QFT of this state is
∣∣∣0̃〉+

∣∣∣4̃〉+
∣∣∣8̃〉+

∣∣∣1̃2〉.
Say we measure

∣∣∣1̃2〉. By properties of the QFT, we know that 12 is a multiple m of 16/s

where s is the period we seek, i.e., 12m = 16/s or 12/16 = m/s. The idea is that m/s is
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guaranteed to be a small irreducible fraction that approximates 12/16. In this case, we get

the exact approximation 3/4 from which we infer that the period is 4. From the period we

calculate the two factors of 15 using gcd(15, as/2 ± 1) i.e., gcd(15, 3) = 3 and gcd(15, 5) = 5.

We follow the previous development with N = 21, a = 10, q = 5, and m = 5. At barrier

(2), the (unnormalized) state is |0⟩ |1⟩+|1⟩ |10⟩+|2⟩ |16⟩+|3⟩ |13⟩+|4⟩ |4⟩+|5⟩ |19⟩+|6⟩ |1⟩+

· · ·+ |31⟩ |10⟩. Say we measure 13 at the output register. The input register collapses to the

(unnormalized) state |3⟩+ |9⟩+ · · ·+ |27⟩. The QFT is not as perfect this time. We get the

following distribution:

•
∣∣∣0̃〉 , ∣∣∣1̃6〉 with probability 16%

•
∣∣∣5̃〉 , ∣∣∣1̃1〉 , ∣∣∣2̃1〉 , ∣∣∣2̃7〉 with prob. 11%

• other states with negligible probabilities.

Say we measure
∣∣∣2̃7〉. We know 27m is close to 32/s. Equivalently we are looking for a small

irreducible fraction close to 27/32. A classical calculation produces the approximation 5/6

yielding the period 6. From the period, we calculate gcd(21, 103 + 1) = 7 and gcd(21, 103 −

1) = 3.

3 Multipartite Quantum Dynamics as Tensor Networks

The quantum algorithms of Sec. 2 and the tensor networks approach share some apparent

similarities. In both cases, the systems are composed of multiple correlated parts that evolve

quantum mechanically in a system-dependent manner and that are interrogated using sce-

narios that measure one part of the system. This measurement affects the remaining parts of

the system whose spectral properties can then be inferred using the QFT. In this section, we

make this intuitive correspondence precise, opening the door for richer connections between

mathematically-constructed algorithms and systems occurring in nature.
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3.1 Multipartite Quantum Systems

We begin by considering a multi-dimensional quantum system represented as A⊕B composed

of two correlated parts, A and B. Here A and B can be multiple parts of a complex correlated

quantum system,64 or alternately A⊕B can together represent a complex condensed phase

quantum dynamics problem78,79 where it may be more appropriate to refer to these as

system and bath variables. The development here includes both descriptions. Such a system

can be modeled in the tensor network formalism using a family of orthogonal states that

represent sub-system A, referred to as
{∣∣ψA

i

〉}
, that may be correlated to (or entangled with)

a family of mutually orthogonal states representing B and referred to as
{∣∣ψB

i

〉}
. The overall

wavefunction is then written as a tensor product, or correlated sum, of the two components,

namely,

|ψ⟩ =
∑
i,j

Ci,j

∣∣ψA
i

〉 ∣∣ψB
j

〉
(6)

The coefficients Ci,j capture the degree to which the parts, A and B, are correlated to each

other. For example, when Ci,j is zero for all but one value of i and j, then A and B are

completely decoupled and a product approximation suffices. However, when this is not the

case, the degree to which A and B influence each other is often important in physical systems.

Another popular example of Eq. (6) are the well known Bell states6 for two qubit systems,

that are a sum of product states,

∣∣ψ1
Bell

〉
=

1√
2
[|0⟩ |1⟩ ± |1⟩ |0⟩] (7)

or

∣∣ψ2
Bell

〉
=

1√
2
[|0⟩ |0⟩ ± |1⟩ |1⟩] (8)
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Equation (6), may also be rewritten using Schmidt decomposition7 as,

|ψ⟩ =
∑
i

αi

∣∣ψA
i

〉 ∣∣ψB
i

〉
(9)

which is essentially a bipartite Matrix Product State (MPS)33 type tensor network7,32 de-

composition, and is usually obtained by applying a sequence of singular value decomposition

steps on the Tucker-form7,107 of the entangled states in Eq. (6). Such states are common in

quantum dynamics,43,49,56,57,69,108 electronic structure,32–35,43,109 and more recently in quan-

tum computing,26 where the degree of correlation or entanglement between parts A and B

are gauged using the {αi}-values. For the so-called maximally entangled states (such as

Bell-states and the Greenberger-Horne-Zeilinger (GHZ) states), αi is a constant value for

all i. (Compare Eq. (9) with Eq. (7) and (8).) In quantum chemical dynamics such highly

correlated states are not common and in general the αi-values may decay in some fashion

when the sets of states
{∣∣ψA

i

〉}
and

{∣∣ψB
i

〉}
are appropriately ordered.

For a system containing D separate parts labeled as Aγ, γ = 1 · · · D, one may write the

overall wavefunction in a form similar to Eq. (6):

|ψ⟩ =
∑
i,j,···

Ci,j,··· ,D
∣∣ψA1

i

〉 ∣∣ψA2
j

〉
· · ·

∣∣ψAD
D

〉
(10)

where Ci,j,··· ,D is a rank-D tensor and encodes the correlations between the constituents,

{Aγ}. In fact Eq. (10) is the starting point for the well-known multi-configurational time-

dependent Hartree (MCTDH) approach commonly used in multi-dimensional quantum dy-

namics68,71,108 and vibrational spectroscopy.71,93 The matrix product state representation of

Eq (10), obtained from a sequence of bipartite singular value decomposition steps, yields the
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MPS state,

|ψ⟩ =
∑
ī

∣∣ψA1
i1

〉
βi1

∣∣ψA2
i1,i2

〉
βi2 · · · βiD−1

∣∣∣ψAD
iD−1

〉
=

∑
ī

[
D−1∏
γ=1

βiγ

] ∣∣ψA1
i1

〉{D−2∏
γ=1

∣∣∣ψAγ

iγ ,iγ+1

〉} ∣∣∣ψAD
iD−1

〉
(11)

where the coefficients,
{
βiγ

}
take on a generalization of the αi in Eq. (9) and capture

entanglement in a system with D parts.

3.2 Time Evolution of Multipartite Quantum Systems

In A ⊕ B systems occurring in quantum dynamics and electron-nuclear dynamics, we are

often interested in learning about the influence of each part on the other. Towards this goal,

without loss of generality, we begin by introducing an initial state of the A⊕B system that

is an uncorrelated bipartite simplification of Eq. (9), that is,

|ψ0⟩ =
∣∣ψA

0

〉 ∣∣ψB
0

〉
(12)

The time-evolution of the state |ψ0⟩ is given using a unitary evolution operator,

U |ψ0⟩ = U
∣∣ψA

0

〉 ∣∣ψB
0

〉
(13)

which may be further explicated by writing the time-evolution operator, U ≡ exp{−ıHt/h̄}

as a correlated matrix product operator,7,41,110,111 or a tensor product operator,

U =
∑
α

UA
α UB

α (14)
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where, again, the multiple parts of the system are coupled by the overall Hamiltonian (and

the time-evolution operator). Thus,

U |ψ0⟩ =
∑
α

[
UA
α

∣∣ψA
0

〉] [
UB
α

∣∣ψB
0

〉]
=

∑
α

∣∣ϕA
α

〉 ∣∣ϕB
α

〉
(15)

The structure of the Hamiltonian and the associated time-evolution operator result in the

system correlations that are captured within the time-evolution process. This is represented

by the sum of product states on the right side of Eq. (15). It must be noted here that

while U is required to be unitary, in general, no such restrictions are present on
{
UA
α ;UB

α

}
.

This implies that while
∣∣ϕA

α

〉
and

∣∣ϕB
α

〉
may not, in general, be normalized, the overall

propagated state is always normalized. For most physical systems U has an explicit time-

dependence and is given by the exponential of a Hermitian operator as noted above, and

hence
(∣∣ϕA

α

〉
;
∣∣ϕB

α

〉)
→

(∣∣ϕA
α (t)

〉
;
∣∣ϕB

α (t)
〉)
. In such cases the non-unitary nature of

{
UA
α ;UB

α

}
,

combined with the unitary nature of U , yields a flow of probability between parts A and

B. When only one term is present on the right side of Eq. (14), the two parts, A and B

are uncorrelated and in such cases
∣∣ϕA

α (t)
〉
and

∣∣ϕB
α (t)

〉
remain individually normalized and

there is no flow of information between the two parts.

Since the input states for each part of the system may be chosen from a complete set of

states,
{∣∣ψA

i

〉}
and

{∣∣ψB
i

〉}
, we may expand the final states,

∣∣ϕA
α

〉
and

∣∣ϕB
α

〉
, using these as

basis functions to obtain the general form of the composite state after time-evolution as

U |ψ0⟩ =
∑
α

[∑
j

cA,α
j

∣∣ψA
j

〉] [∑
j′

cB,α
j′

∣∣ψB
j′

〉]

=
∑
j,j′

[∑
α

cA,α
j cB,α

j′

] ∣∣ψA
j

〉 ∣∣ψB
j′

〉
(16)

where cA,α
j =

〈
ψA
j

∣∣UA
α

∣∣ψA
0

〉
, and similarly for cB,α

j . Thus it is the coefficient tensor,
∑

α c
A,α
j cB,α

j′

that builds in the correlations in Eq. (6) and is obtained here through time-evolution by U .

At this stage, the two parts of the system are completely correlated to the extent allowed by
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the propagator U . In fact, the extent of such a correlation may be precisely defined by the

number of elements in the summation in Eqs. (14) and (16).

3.3 Final State Analysis

At this stage in quantum chemical dynamics,112 there are several analysis techniques available

to gauge correlations within Eq. (16). There are two basic types of questions asked of the

propagated state in Eq. (16). In one case, it is of interest to directly Fourier transform

Eq. (16) in the time-domain since these now provide the spectroscopic signatures of the

Hamiltonian, and hence the eigenspectrum of the Hamiltonian that governs the dynamics.

This is common when only a few degrees of freedom are involved and tends to become

prohibitive when the number of dimensions grow. Secondly, along the lines of the topic here,

one is often interested in how the subsystem A, evolves and is coupled to the properties

of subsystem B. In a system-bath context, subsystem B may be considered as the bath

degrees of freedom, whereas in a multi-dimensional quantum system, or a reactive problem

subsystem B may contain modes that facilitate a chemical process or transition. This is a

general problem and includes both condensed phase quantum dynamics as well as electron-

nuclear dynamics. It may also include chemical and biological sensing phenomena as signified

by molecular binding processes.

Correspondingly, we project Eq. (16) onto a specific bath state
∣∣ψB

k

〉
, which is akin to

performing a measurement on the bath state, to yield,

〈
ψB
k

∣∣U |ψ0⟩ =
∑
j

[∑
α

cA,α
j cB,α

k

] ∣∣ψA
j

〉
=
∑
α

cB,α
k

∣∣ϕA
α

〉
(17)
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which represents the state after measurement on the bath state, with measurement outcome,

Tr
[∣∣ψB

k

〉 〈
ψB
k

∣∣ {U |ψ0⟩ ⟨ψ0| U †}] = Tr
[∣∣〈ψB

k

∣∣U |ψ0⟩
∣∣2]

= Tr

[∑
j,j′

[∑
α,α′

cA,α
j cA,α′

j′
∗
cB,α
k cB,α′

k

∗
]{∣∣ψA

j

〉 〈
ψA
j′

∣∣}]

= Tr

[∑
α,α′

cB,α
k cB,α′

k

∗ ∣∣ϕA
α

〉 〈
ϕA
α′

∣∣]

=
∑
α

∣∣∣cB,α
k

∣∣∣2 (18)

Thus while the result of measurement is the net probability of Eq. (16) along
∣∣ψB

k

〉
, that is

Eq. (18), the remaining state is as in Eq. (17). A large number of such measurements on the

bath state will yield various outcomes

{
Tr

[∣∣〈ψB
j

∣∣U |ψ0⟩
∣∣2] ; ∣∣ψB

j

〉}
, (19)

where each outcome,
∣∣〈ψB

j

∣∣U |ψ0⟩
∣∣2, for bath state,

∣∣ψB
j

〉
, is accompanied by the system

remaining in the state given in Eq. (17). In this manner multiple measurements of B, yield

multiple states for A. Fourier transform of each of these yield,

FT

{∑
j

[∑
α

cA,α
j cB,α

k

] ∣∣ψA
j

〉}
= FT

{∑
α

cB,α
k

∣∣ϕA
α

〉}
(20)

essentially the state of A, and the degree of coupling, or entanglement, between the system

(A) and bath (B) state as originally captured by Eq. (9). Equations (19) and (20) are

critical to multiple areas of metrology in physical and biological sciences. In each case the

interpretation of systems A and B may be different. In sensing, an analyte might bind to

system B, which collapses the system and its Fourier transform (or a linear transform) may

provide information about the analyte binding to B. Similar aspects exist in condensed

phase quantum dynamics and chemical catalysis as well.
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3.4 Generalized Phase Kickback

In Eq. (18), part B is measured by using the same basis
{∣∣ψB

k

〉}
, as that used for the original

propagation. Suppose this was not the case and the measurement was done using a specific

ket,
∣∣χB

k

〉
from within a different basis

{∣∣χB
i

〉}
where

∣∣χB
i

〉
=

∑
j

dBi,j
∣∣ψB

j

〉
(21)

and dBi,j =
〈
ψB
j

∣∣χB
i

〉
. In that case, Eq. (17), takes on a more general form:

〈
χB
k

∣∣U |ψ0⟩ =
∑
j,j′

[∑
α

cA,α
j cB,α

j′

] ∣∣ψA
j

〉 〈
χB
k

∣∣ψB
j′

〉
=
∑
j,j′

dBk,j′
∗
[∑

α

cA,α
j cB,α

j′

] ∣∣ψA
j

〉
(22)

=
∑
j′,α

dBk,j′
∗
cB,α
j′

∣∣ϕA
α

〉
(23)

Equation (23), as we show below, represents a generalized form of the phase kickback prop-

erty which is commonly seen in quantum information.6 This can be illustrated by considering

Eqs. (7) and (8) as our propagated states, U |ψ0⟩. That is, to make a connection between

the abstract tensor network formalism and qubits:

{∣∣ψA
i

〉}
→

{
|0⟩A ; |1⟩A

}
(24)

and similarly for B. Furthermore,

{U |ψ0⟩} →
{∣∣ψ1

Bell

〉
;
∣∣ψ2

Bell

〉}
(25)
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The measurement basis for phase kickback is chosen as

{∣∣χB
i

〉}
→

{
|+⟩B ; |−⟩B

}
(26)

and therefore dBi,j = ±1/
√
2 for all i, j. (See Eq. (21).) In that case, as per Eq. (23), when

measurement is constructed using
∣∣±B

〉
, one finds,

〈
+B

∣∣ψ1
Bell

〉
=

1√
2
|1⟩A ± 1√

2
|0⟩A (27)

and

〈
−B

∣∣ψ1
Bell

〉
=

1√
2
|1⟩A ∓ 1√

2
|0⟩A (28)

that is, system A is rotated onto the X basis as a result of this measurement, or the phase

angle in
〈
+B

∣∣ is “kicked” into state A, upon measurement. Likewise,

〈
+B

∣∣ψ2
Bell

〉
=

1√
2
|0⟩A ± 1√

2
|1⟩A (29)

and similarly
〈
−B

∣∣ψ2
Bell

〉
.

These features are captured in a general way within Eqs. (22) and (23) where the

appropriate generalization of the phase kickback is in the terms dBk,j′
∗ ≡

〈
χB
k

∣∣ψB
j′

〉
, that

represent the components of the measurement basis of B with respect to the initial basis

and also the additional basis components that are “kicked-back” into system A, as per

Eq. (22), after measurement on B.

The broader implications of Eqs. (22) and (23) are as follows: if we consider a general

system containing two entangled parts, with the degree of entanglement dictated by a unitary

evolution operator and hence an underlying Hamiltonian, a measurement or projection on one

part, chosen as A here, is also noted in B. Thus in some sense, B can “sense” the projection
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∣∣ψA
0

〉
U =

∑
α UA

α UB
α

?? ṽ

∣∣ψB
0

〉
w

1 2 3

Figure 3: Quantum circuit version of bipartite quantum chemical dynamics problems. Be-
yond stage 3, the measurement box “??” signifies the fact that based on different measure-
ments, connections between known quantum algorithms and chemical dynamics problems
can be established.

in A, but the extent of such a sensing process is dictated by the extent of entanglement

present within U |ψ0⟩ in Eq. (16). For the Bell state the information is directly transferred

whereas for the state in Eq. (22), the measurement information is convoluted with the extent

of entanglement.

4 Circuit Model for Multipartite Quantum Dynamics

The development in the previous section can be recast in the circuit model to make the

parallels with Shor’s algorithm more explicit. We begin with Fig. 3 which provides an

instance of the general formalism as a quantum circuit closely relating to the description of

Shor’s algorithm in Sec. 2. Specifically, the initial state in Eq. (12) is chosen to be a direct

product state and represents Stage (1) in Fig. 3. (Compare Eqs. (2) and (12).) It must be

noted that this initial state, depicted at the end of Stage (1) in Fig. 2 was obtained from a

set of Hadamard transforms that essentially provide equal weights to all components of the

computational basis embedded within the first wire stream of Fig. 2.

Thus, equivalently, A in Fig. 3 may be entangled at Stage (1), but importantly, A and

B are uncorrelated at this initial stage and in this sense Eq. (12) resembles the initial state

for all the quantum algorithms shown above. This state is then time-evolved as dictated by

Eq. (14) leading to Eqs. (15) and (16), and represented as Stage (2) in Fig. 3. Similarly,

16



the Uf operator in Fig. 2 plays the same role as the propagator in Fig. 3 and presents a

correlated (or entangled) state, given by Eq. (3) and represented at Stage (2) in Fig. 2.

Following this time-evolution leading to Eqs. (15) and (16) a measurement is constructed

in all scenarios. We have only presented the analogue to Shor in Fig. 3, complemented by

the discussion in Sec. 3.3. The resultant state in Fig. 3, given by Eq. (17), now represents a

general and abstract interpretation of the resultant state of Shor’s algorithm, at Stage (3),

prior to the QFT step.

The next step, as per Figs. 2 and 3, is a Fourier transform of the state of system, A, as

described by Eqs. (19) and (20), which yields the momentum representation of the resultant

state in subsystem A. In a sense this also presents a more abstract form of the output from

the top wire in Fig. 2, and one may be induced to ask if we indeed obtain a similar “momentum

representation” for the states captured in the top wire (natural numbers) in Fig. 2. Thus, at

the end of this process, if the Hamiltonian represented within the propagator in Eq. 14 (or

in Shor’s algorithm) entangles the A and B dimensions, then a measurement of B, projects

it onto a specific state. Following this, a Fourier transform of A yields the momentum

representation, and in fact the power spectrum of A for the specific projection of B.

Such a Fourier transform captures the entanglement within the composite A⊕B super-

system, by probing the Fourier space structure of one part of the super-system, namely

system A, for all possible measurement outcomes of system B (assuming that multiple mea-

surements are done on B). For the specific choice of unitary in the Shor’s algorithm, this

Fourier spectrum of A is always the same for any measurement of B. This may not, of

course, be the case for naturally occurring or physico-chemical systems.

Finally, we note a set of problems that may benefit from the analysis above. We will

explore these connections in detail in future publications. Equation (6) resembles the total

non-adiabatic electron-nuclear wavefunction113–116 for molecular systems and may be written

as an expansion in the complete set of electronic wavefunctions with the coefficients being

functions of nuclear coordinates.114 In multi-dimensional correlation spectroscopy117 vibra-
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tional mode coupling may be studied using similar partitioning schemes as in Eq. (6) where

bath variables influence the dynamics of a chosen system. In fact, the example chosen in

the next section is related to problems in multi-dimensional correlation spectroscopy. 118 In

chemical catalysis, ligands that surround an active site may influence the reactive process.

Such ideas are commonly used in catalyst design.119 In chemical sensing of atmospheric and

biological analytes, a perturbation to part A through a chemical binding process, may re-

sult in a change in the state of B given the extent of correlation in Eq. (6). In all such

cases, one is always interested in the role that, for example, subsystem B in Eq. (6), plays

in influencing the state of the remaining parts that are enclosed within A. The resulting

analysis allows one to probe the correlations between subsystems A and B and has numerous

practical applications in the above listed set of examples.

5 Applications: Protonated Water Wire Systems

We now exploit the formalism presented above to explore parallels between quantum algo-

rithms and natural phenomena in physical, chemical, and biological systems.

(a) (b)

Figure 4: A protonated water wire with shared protons that are treated quantum mechani-
cally along the grid dimensions shown.

Protonated water wires such as those in Figs. 4(a) and 4(b) are encountered in a large

variety of biological ion-channels, catalytic sites, light-harvesting systems, fuel cells, and

form the central part of many condensed-phase chemical processes. Such systems are found

in confined media, such as ion-channels. Quantum effects play a critical role in contributing

to the rate of proton transport120,121 and in determining vibrational properties.89,122
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5.1 Coupled Stretch Modes in Protonated Water Dimer

In this section, we provide a tensor network description of such protonated systems beginning

with the simple case of two protons and extending to a longer water wire chain of multiple

shared protons.

(a) (b) (c)

Figure 5: Figs. (a) and (b) show functions {ψ1
i (x1)} and {ψ2

i (x2)} that form the state in
Eq. (30) where α1=0.9987, α2=0.0502, and α3=0.0022. When measured with ψ2

1(x2), one
obtains Fig. (c), with probability given by Eq. (31).

We begin with an analysis of the two shared proton dimensions marked as R1 and R2 in

Fig. 4(b). Using Schmidt decomposition7 the wavefunction for this two-dimensional system

may be written as

ψ(x1, x2) =
∑
i

αiψ
1
i (x1)ψ

2
i (x2) (30)

Here {ψ1
i (x1)} represents a family of functions that depicts the distribution of dimension

R1; this family is coupled to the family of functions, {ψ2
i (x2)} that depicts the distribution

of dimension R2. Additionally,
〈
ψ1
i

∣∣ψ1
j

〉
=

〈
ψ2
i

∣∣ψ2
j

〉
= δi,j and thus these functions form an

independent orthonormal basis for the two separate dimensions. For a (H2O)3H
+ water wire

sub-system with degrees of freedom R1 and R2, the wavefunction components are calculated

as shown in Figs. 5(a) and 5(b).

Several techniques can be used to interrogate such systems. A basic one is to perform

a measurement on one of the dimensions, say R1. This interrogation could be done by
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projecting the system onto a specific state of R1, say, ψ
1
k(x1). We then obtain,

〈
ψ1
k(x1)

∣∣ψ(x1, x2)〉 = αkψ
2
k(x2) (31)

based on the orthogonality conditions stated above. The associated measurement outcome

is,

|αk|2
∥∥ψ2

k

∥∥2
(32)

and for k = 1, this quantity is close to 1 as indicated by the values of {αi} provided in the

caption for Fig. 5.

More generally, we could also envision a more sophisticated measurement where the

interrogation could be performed using the state χ1(x1) ≡ 1/
√
2 [ψ1

1(x1) + ψ1
2(x1)] leading to

a final state: 〈
χ1(x1)

∣∣ψ(x1, x2)〉 = 1√
2

[
α1ψ

2
1(x2) + α2ψ

2
2(x2)

]
(33)

In this case, the superposition in the interrogation state is transferred to the outcome

1

2

[
|α1|2

∥∥ψ2
1

∥∥2
+ |α2|2

∥∥ψ2
2

∥∥2
]
≈ 0.5. (34)

In both interrogation scenarios, the measurement of one dimension influences the other.

Thus, the form of the state in Eq. (30) has a significant impact on the result of the ob-

servation. If one of the states that are already within the family included in Eq. (30) is

used as the measurement basis, the outcome is the corresponding state within that family.

However, when a combination of states is used as the measurement basis, the phase kickback

mechanism causes the complex phase included in this combination to make its appearance

in the measured outcome.
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Figure 6: A water-wire confined within the Gramicidin ion channel.

5.2 Coupled Stretch Modes in Protonated Water Pentamer

In biological systems, the water wire described above is often partially confined within an

active site or inside an ion-channel as illustrated in Fig. 6. In this section, we analyze an

instance of such a system consisting of four degrees of freedom.

Deferring the confinement modeling for a moment, and focusing on the four degrees of

freedom, the matrix product state for the couple wavefunction has the form,

ψ(x1, x2, x3, x4) =
∑

i1,i2,i3

ψ1
i1
(x1)α

1
i1
ψ2
i1,i2

(x2)α
2
i2
ψ3
i2,i3

(x3)α
3
i3
ψ4
i3
(x4) (35)

The quantities αj
ij
in the equation above represent weights for the bond dimensions.

As done in the previous section, we can model various interrogation scenarios. We show
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R2

U

QFT ṽ

R1 w =Eq. (32)

Stage 1 Stage 2
(Eq. (30))

Stage 3
(Eq. (31))

Figure 7: Quantum circuit version for protonated water-dimer system discussed in Section
5.1.

the result of performing a measurement on dimension R1. This reduces Eq. (35) to produce

〈
ψ1
k(x1)

∣∣ψ(x1, x2, x3, x4)〉 = ∑
i2,i3

α1
kψ

2
k,i2

(x2)α
2
i2
ψ3
i2,i3

(x3)α
3
i3
ψ4
i3
(x4) (36)

and the corresponding measurement outcome is simply the magnitude of the vector in

Eq. (36):

〈
ψ(x1, x2, x3, x4)

∣∣ψ1
k(x1)

〉 〈
ψ1
k(x1)

∣∣ψ(x1, x2, x3, x4)〉 (37)

This simple analysis ignored the fact that in most biological systems (especially ion

channels as well as enzyme active sites), the water molecules that encapsulate dimensions

R2 and R3 have a limited degree of flexibility. This results in a limited degree of projection

of dimensions R2 and R3 into, for example, a subspace given by

χk(x2, x3) ≡
∑
i2,i3

βi2,i3ψ
2
k,i2

(x2)ψ
3
i2,i3

(x3) (38)
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R4

U

QFT ṽ1

R3

Eq.(38) : Phase

w2,3 = ∥Eq. (39)∥2

R2

R1 w4 = Eq. (37)

Stage 1 Stage 2
Eq. (35) Eq. (37)

Stage 3
Eq. (39)
Phase-
kickback

Figure 8: Quantum circuit version for protonated water-pentamer system discussed in Sec-
tion 5.2. A combination of a simple measurement at R1, given by Eqs. (36), (37) and a
rotation for R2, R3, given by Eq. (39) and its norm, result in a composite final outcome at
Stage 3 for R4.

Note that such a state is not dissimilar to the measurement basis state used in the phase

kickback scenario at the end of Sec. 3 and reduces the possible outcomes for x4. Thus, after

projection of Eq. (38) onto Eq. (36), we obtain

∑
i2,i3

(
βi2,i3α

1
kα

2
i2
α3
i3

)
ψ4
i3
(x4) (39)

where the bracketed set acts as a combined coefficient that curtails the set of possibilities for

x4. Thus, based on the extent of flexibility provided by the restrictions to βi2,i3 , there are a

range of possible outcomes at the far end depicted by x4.
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This idea can be generalized for an arbitrary number of degrees of freedom, where, using

Eq. (39), we may write our final result as

∑
i2,··· ,iN−1

(
βi2,··· ,iN−1

α1
kα

2
i2
· · ·αN−1

iN−1

)
ψN
iN−1

(xN) (40)

5.3 Circuit Model for Protonated Water Wire

We now analyze the results from the two sections above using the quantum circuit model.

The quantum circuits thus derived are based on Fig. 3 and are presented in Figs. 7 and 8. As

discussed in Section 4, all parts of both systems are correlated at the end of Stage (2) with

wavefunctions given by Eqs. (30) and (35). In the case of the protonated water dimer, a

measurement along dimension R1 follows, resulting in the projected state given by Eq. (31)

at Stage (3), with measurement probability given by Eq. (32).

The protonated pentamer problem is complicated due to the phase-kickback step resulting

from basis rotations (Eq. (39) on the (R2, R3) degrees of freedom as shown in Fig. 8).

Specifically, the correlated state at Stage (2) given by Eq. (35) undergoes measurements at

R1, with outcome, Eq. (37), where the corresponding resultant state is then projected onto

a rotated basis within dimension R2 and R3, given by Eq. (38) to arrive at Stage (3) at

state given by Eq. (39). Thus Figs. 7 and 8, through the discussion accompanying Fig. 3,

provide a detailed analogue to the Shor algorithm in Fig. 2 by way of an abstract formalism

presented in Sec. 3.

6 Conclusion

In this article, we have developed an abstract formalism of tensor networks based quantum

dynamics applicable broadly for all quantum systems, and we discuss how this general idea

captures the key signatures within the well-known Shor’s algorithm as well as other well-

known quantum algorithms. In essence, for a general bipartite system, unitary evolution
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encodes within the evolved state, a characteristic correlation or entanglement that bears the

signature of the Hamiltonian that defines the evolution operator. Thus, once we interrogate

a specific part of a quantum system, the remaining parts of that system automatically get

projected based on the extent of correlation that resides within the system, and this is borne

out of measurement.

This close resemblance of the general formalism of quantum propagation of multi-partite

systems, and the symmetry of integers as captured by Shor’s algorithm, begs the rather

profound question of whether natural systems exist, or can be designed, that may perform

the operations that we might interpret as prime-factoring. We do not dwell into this general

question in this article, but we ask the opposite question of whether we can exploit this

connection to analyze quantum chemical dynamics. Indeed we find that, when we apply

this concept along with the generalized definition of phase kickback as obtained from the

tensor network description of Shor’s algorithm and quantum dynamics described here, the

coupled dynamics of protons in a protonated water wire naturally lends itself to a projected

transport interpretation. We find that projection of states at one end of a water wire,

along with phase kickback-like constrained operations along the length of the water chain

provide a general description for proton transport that is commensurate with our description

of Shor’s algorithm. Future publications are currently planned to exploit this analogy to

probe electron-nuclear dynamics in the non-adiabatic setting. Furthermore, given that the

surrounding vibrational degrees of freedom may be projected through phase-kickback as

noted here, to tailor the dynamics within one mode (R4 for the protonated pentamer),

perhaps chemical catalysis is another area where these broad ideas may find application.

These aspects will be probed in future work.
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