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Abstract
As control-flow protection techniques are widely deployed, it
is difficult for attackers to modify control data, like function
pointers, to hijack program control flow. Instead, data-only at-
tacks corrupt security-critical non-control data (critical data),
and can bypass all control-flow protections to revive severe at-
tacks. Previous works have explored various methods to help
construct or prevent data-only attacks. However, no solution
can automatically detect program-specific critical data.

In this paper, we identify an important category of critical
data, syscall-guard variables, and propose a set of solutions
to automatically detect such variables in a scalable manner.
Syscall-guard variables determine to invoke security-related
system calls (syscalls), and altering them will allow attackers
to request extra privileges from the operating system. We
propose branch force, which intentionally flips every condi-
tional branch during the execution and checks whether new
security-related syscalls are invoked. If so, we conduct data-
flow analysis to estimate the feasibility to flip such branches
through common memory errors. We build a tool, VIPER, to
implement our ideas. VIPER successfully detects 34 previ-
ously unknown syscall-guard variables from 13 programs.
We build four new data-only attacks on sqlite and v8, which
execute arbitrary command or delete arbitrary file. VIPER
completes its analysis within five minutes for most programs,
showing its practicality for spotting syscall-guard variables.

1 Introduction

Control-flow hijacking is the predominant approach to exploit
memory errors in past decades [5, 61, 78]. Attackers delib-
erately modify control data, like function pointers, to divert
program executions to malicious payloads. To prevent such
attacks, researchers have developed and deployed many solu-
tions [18, 30, 31, 53], like code pointer integrity (CPI) [48, 51]
and control-flow integrity (CFI) [1, 8], to protect or validate
control data. It is challenging to hijack control flow nowadays.

Among remaining hacking vectors, data-only attack shows
great potential to be the next-generation exploit method [13].

Attackers just modify security-critical non-control data (crit-
ical data for short) to bypass control-flow protections and
reach malicious goals. For example, modifying one variable
safemode in Internet Explorer (IE) [87] enables attackers to
execute arbitrary code remotely; stealing sensitive informa-
tion such as password is also feasible by corrupting proper
data [13,39]. For attackers, such data are easy to modify using
mature corruption techniques [23, 81] and countless memory
errors [54,83]; For defenders, protecting these bytes-long data
can significantly reduce system attack surfaces. Therefore,
critical data are becoming the main targets of memory attacks
and defenses in the CFI/CPI era [14, 21, 57, 66, 67, 73, 75, 82].

However, no approach can automatically identify program-
specific critical data, which makes large-scale attacks and
comprehensive defenses debatable. Existing works usually
spend tedious efforts to manually locate critical data, which
can hardly support tremendous applications in a scalable way.
For example, Chen et al. manually inspect the source code
of vulnerable programs to label critical data [13]; To attack
closed-source IE [87], security analyst has to investigate the
code decompiled from binaries to identify the critical data
safemode. Since attackers are eager to build data-only attacks
to bypass control-flow defenses, it is urgent to develop auto-
matic approaches to spot critical data for protection purposes.

Critical data are challenging to identify since they do not
have common low-level properties, but are defined based on
program-specific high-level semantics. Without concrete low-
level properties, existing program analysis techniques can
hardly identify them. For example, code pointers have distinct
types (i.e., PointerType that holds FunctionType elements in
LLVM IR), and we can detect them through type analysis [48].
However, critical data may have any type (e.g., IntegerType
and PointerType) and could be stored in any memory location
(e.g., stack or heap) [13, 39, 42]. This makes general analysis
fail. Further, it is difficult and impractical yet to automatically
infer high-level semantics for all program data, especially
for large applications that contain thousands of variables [12,
35]. For example, given a four-byte variable in IE, we can
hardly tell whether it stores critical security configurations,



represents merely an array index, or is used for other purposes.
Most previous works take ad hoc methods to identify a few
critical data only for demonstration purposes. It is unclear
how many critical data are left unrevealed and unprotected.

In this paper, we aim to address the aforementioned chal-
lenges and achieve automatic scalable critical-data identifi-
cation. We observe two common phenomena from previous
data-only attacks [13, 39, 40, 42]. First, regardless of the pro-
gram, most data-only attacks rely on security-related system
calls (syscall for short) to achieve ultimate goals. Since data-
only attacks have limited capability of manipulating control
flow [42], they must utilize syscalls to request high-privileged
operations or resources from the underlying operating system.
For example, attackers must invoke syscall execve on Linux
to create new processes. Second, security-related syscalls
are commonly guarded by security checks, in the form of
conditional branches. For example, IE checks several bits of
safemode before silently executing untrusted code. We call
such conditional branches syscall-guard branches and define
checked variables as syscall-guard variables. Since syscall-
guard variables determine to invoke security-related syscalls
or not, their values have direct impact on the program security.
This means that they should be considered as critical data.

Based on our observation, we present VIPER, a framework
that automatically spots security-critical syscall-guard vari-
ables for data-only attacks and defenses. Our idea, branch
force, flips every conditional branch triggered during normal
executions, and monitors the execution to detect interesting
syscalls. We define a syscall as interesting if it requests high-
privileged resources or operations (e.g., creating new pro-
cesses) but is not invoked in the original execution. In this
case, the high-privileged resources are obtained merely due to
the flipped conditional branch. We treat such branches as can-
didates of syscall-guard branches. However, not all branches
can be flipped equally. To identify corruptible syscall-guard
branches, we perform dynamic data-flow analysis to iden-
tify syscall-guard variables, and estimate the feasibility of
corrupting them through traditional memory errors. VIPER re-
ports a set of syscall-guard variables and auxiliary information
for each variable, including syscall-guard branches, triggered
syscalls, triggering inputs and corruptibility assessment.

We design and implement VIPER as two components:
BranchForcer and VariableRator. For each given input,
BranchForcer runs the target program and records all trig-
gered conditional branches and security-related syscalls.
Then, BranchForcer runs the program again with the same
input for multiple times. During each re-execution, it flips
one triggered branch and monitors syscalls in the follow-
ing execution. If the execution after the branch-flip invokes
interesting syscalls, we treat this branch as a candidate of
syscall-guard branches. To improve the test efficiency, we
adopt the forkserver mechanism [90] from fuzzing techniques
to reduce the overhead. In our experiments, we search online
to find high-quality test cases, and meanwhile, utilize pop-

ular fuzzers [33, 50, 89] to cover more branches. However,
generating high-quality inputs is out of the scope of this paper.

For each candidate, VariableRator constructs the data-
flow graph for the branch condition. Based on the branch
history, we reversely traverse the program, i.e., starting from
the branch instruction toward the program entry point. Along
the traversal, we collect two attributes of each memory node
for assessing the corruptibility, specifically, the memory lo-
cation of the node (e.g., stack or heap) and the number of
memory-write instructions between a store and the following
load. We use the former to estimate how easily the node can
be corrupted, and take the latter to understand how likely the
program contains a memory error in-between. We rate each
branch based on all memory nodes along the data flow.

We apply VIPER on 20 real-world programs to evaluate
its ability of detecting syscall-guard variables. These pro-
grams are common attacking targets or are well-tested in
fuzzing works. VIPER successfully identifies 36 highly cor-
ruptible syscall-guard variables from 14 tested programs. By
flipping one of these variables, the tested program will in-
voke new security-related syscalls, like execve that runs new
code, unlink that deletes existing files and chmod that changes
file permissions. VariableRator helps identify candidate
branches that cannot be easily flipped, like constant branches
and short-term variables. We check high-rank syscall-guard
variables and confirm that common memory errors can corrupt
them and trigger critical syscalls. We build four new data-only
attacks by corrupting newly identified variables to achieve
arbitrary command execution or arbitrary file deletion. The
result shows that VIPER is practical to automatically identify
syscall-guard variables for data-only attacks and defenses.

In summary, we make the following contributions.

• We identify an important category of program-specific
security-critical non-control data, called syscall-guard
variables. These variables are common targets of data-
only attacks and should be protected properly.

• We design and implement, VIPER, a framework that can
test a large number of programs in efficient ways to
automatically pinpoint triggered syscall-guard variables.

• We apply VIPER on 20 real-world programs and detect
34 previously unknown syscall-guard variables. Altering
these variables have significant security consequences,
like arbitrary command execution and arbitrary file dele-
tion. We build four end-to-end attacks on sqlite and v8.

Open Source. We will release VIPER source code and the
details of detected critical data and constructed exploits at ht
tps://github.com/psu-security-universe/viper.

2 Background and Problem

https://github.com/psu-security-universe/viper
https://github.com/psu-security-universe/viper


1 void do_authentication(char *user, ...) {
2 int authenticated = 0; // non-control data
3 void (*authlog) (char *,...) = verbose; // control data
4 ...
5 while (!authenticated) {
6 /* Get a packet from the client */
7 type = packet_read(); // bug -> write primitive
8 ...
9 if (auth_password(user, password))

10 authenticated = 1;
11 ...
12 authlog(...); // indirect call
13 if (authenticated) break; // check result
14 }
15 /* Perform session preparation. */
16 do_authenticated(pw); // open access
17 } +-> do_authenticated
18 +-> do_exec_pty
19 +-> do_child
20 +-> execve(shell, argv, env); // syscall

Figure 1: Critical authenticated flag in openssh. Given wrong
user name and password, authenticated remains 0 and the execu-
tion stays inside the loop. However, if attackers modify this variable
to 1, they can login any account without correct password.

2.1 Data-Only Attack and Critical Data

Data-only attack is a general method to exploit memory er-
rors. Given a memory error, like buffer overflow, attackers
first manipulate program memory layouts [23,81] to construct
memory-access primitives, like writing an arbitrary value to
an arbitrary location [56]. The previously dominant control-
flow hijacking attack will use the primitive to modify control
data, like function pointers, and divert the execution to mali-
cious payloads. As researchers develop solutions to protect
control data [48, 51] and verify their integrity [1, 8], now it
is challenging to hijack control flow. In contrast, a data-only
attack will use the same primitive to modify security-critical
non-control data for similar goals, like remote code execu-
tion. These attacks do not alter any control data, and thus
can bypass current control-flow protections [1, 48, 51]. Data-
only attack was first demonstrated feasible by Chen et al. in
2005 [13]. In recent years, it is receiving more attention from
the security community [14,21,57,66,67,73,75,82,87] due to
the wide adoption of control-flow protections [18, 30, 31, 53].

Figure 1 shows our motivating example. The code is for
openssh server to authenticate users. A loop at lines 5-14
retrieves user names and passwords from network and veri-
fies their correctness (line 9). If the authentication succeeds,
openssh saves the result in variable authenticated. It also
records every login attempt through an indirect function call
(line 12). Once the loop breaks, do_authenticated assumes
the current user is authenticated and will allow her to access
the server. However, old versions of openssh have an integer-
overflow bug [55] that enables attackers to modify any mem-
ory location to any value in function packet_read (line 7).
A control-flow hijacking attack can use the memory-write
primitive to modify the control data authlog for ret2libc [61]
or ROP attacks [78]. However, such attacks will be prevented
by CFI that checks the validity of authlog or CPI that pro-
tects authlog from corruption. Instead, a data-only attack

utilizes the same primitive to modify the non-control data
authenticated to 1. This will force the loop to break (line
13), and attackers will obtain access to all user resources.

Security-critical non-control data, or critical data, are the
empowering elements of data-only attacks. They are bound
with particular security features of the program. Therefore,
altering them will undermine the system security. These data
usually have similar sizes as control data, like four or eight
bytes. Therefore, attackers can reuse previous mature tech-
niques [23, 81] to corrupt them to revive old exploitations.

Several recent works demonstrate the feasibility of building
data-only attacks without changing any critical data [10, 40,
42]. However, they must repeatedly trigger memory errors to
modify many data, which is more challenging than altering
critical data. For example, to chain enough basic gadgets
for meaningful attacks [40], a data-oriented programming
(DOP) attack sends over 700 network packets to ProFTPD.
The huge number of modifications increase the risk of being
detected [14,75], and exclude memory errors that can only be
triggered once. Therefore, corrupting critical data is still the
most convenient and powerful way to build data-only attacks.

2.2 Critical Data Identification

Critical data are prerequisites for data-only attacks, but it is
nontrivial to identify them. First, critical data do not have com-
mon low-level attributes. For control data, code pointers have
special types (i.e., PointerType pointing to FunctionType in
LLVM IR); return addresses are stored at particular locations
(i.e., bottom of stack frames). In contrast, critical data may
have any type and could exist in any memory location. Second,
data criticalness stems from their high-level semantics and
security impacts, which are difficult to infer through program
analysis [12, 35]. For example, function do_authentication
in Figure 1 has more than 10 local integer variables. It is hard
to tell which one is more critical to openssh’s security. The
whole program may have hundreds to thousands of variables,
which makes manual analysis impractical.

Due to these challenges, most previous works take ad hoc
methods to identify critical data, but no one can automati-
cally detect the authenticated variable in Figure 1. Chen
et al. [13] manually identify critical data to demonstrate the
feasibility of data-only attacks. They believe that “identifying
security-critical non-control data and constructing correspond-
ing attacks require sophisticated knowledge about program
semantics”. FLOWSTITCH [39] uses data-flow analysis to
identify variables from configuration files and syscall argu-
ments, where critical data come from explicit sources or are
consumed in well-defined sinks. However, authenticated is
not associated with any known source or sink, and attackers
have to manually identify this critical data. Recent defense
mechanisms [66,67,73] require users to annotate critical data.
KENALI [79] utilizes error codes to help annotate critical
data within Linux kernel. However, this method only works



Program Critical Data Ref. Type Semantics Security Impact Related Syscall

nginx clcf->root.data [39, 57] u_char * root directory of web server access any server file A send

ctx [42] ngx_exec_ctx_t * execution context, like argv execute arbitrary program A execve

openssh authenticated [13, 39] int authentication succeeds or not login w/ wrong password C execve

original_uid [39] uid_t numerical user ID obtain root-user privilege A setuid

sudo user_details.uid [39] uid_t numerical user ID obtain root-user privilege A setuid

null httpd config.server_cgi_dir [13, 39] char [255] root directory of CGI binaries execute arbitrary program A execve

config.server_htdocs_dir [39] char [255] root directory of web server access any server file A send

ghttpd ptr [13, 39] char * URL request from the client execute arbitrary program C execve

orzhttpd conn->basedir.path [39] char * root directory of web server access any server file A sendfile

wu-ftpd pw->pw_uid [13, 39] uid_t numerical user ID obtain root-user privilege A seteuid

telnet loginprg [13] char * executable for authentication execute arbitrary program A execve

chromium m_universalAccess [44, 75] bool whether to check SOP disable same-origin check C open

httpdx ftps.i["admin"].pass [39] char [255] password of administrator admin login w/o password C -
ftps.i["anon."].flags [39] int permission of anonymous can detele file or directory C remove,rmdir
ftps.i["anon."].root [39] char [255] root directory of anonymous access any file on the server A open, send
handlers[cgi].cmd [39] char [256] root directory of CGI binaries execute arbitrary program A CreateProcess

IE Browser safemode [87] DWORD security config of JS engine execute arbitrary code C CreateProcess

Table 1: Previous data-only attacks of privilege escalation. We study end-to-end attacks in previous works and list corrupted critical data
based on our understanding. Same attacks are reported once. httpdx and IE run on Windows and others run on Linux. IE is closed-source.

for systems with well-defined error codes, and cannot handle
diverse user-space applications. Further, not all error codes
are directly related to the system security, and this method
may introduce many false positives.

2.3 Our Focus: Syscall-Guard Variable

We investigate previous data-only attacks for privilege escala-
tion [13,39,42,57,75,87] to understand how critical data affect
the program security. We leave information leakage attacks to
future work. Table 1 summarizes our findings. When details
are unavailable, we try to find matched critical data based on
our understanding of previous works. For each attack, we list
the buggy program, the critical data, data type, data seman-
tics, and the security impact. We only consider end-to-end
attacks and exclude cases that merely build memory-access
primitives (e.g., several attacks in BOP [42]). We merge the
same attacks used in multiple works and list them only once.

We observe that most attacks utilize security-related
syscalls to achieve privilege escalation, as shown in Table 1.
This is reasonable since data-only attacks must strictly con-
form to the legal control-flow graph and attackers can only
reuse existing mechanisms for privilege escalation. For user-
space programs, syscall is the most convenient method to
prompt the privilege, like execve for creating new processes.
Therefore, syscalls are commonly used in data-only attacks.
The last column of Table 1 lists two common ways for critical
data to affect syscalls. First, the data is used as one syscall
argument (“A” in the table). For example, modifying the
argument of execve enables attackers to run arbitrary pro-
gram. Second, the data determines to invoke the syscall or
not (“C” in the table). As an example, the bottom of Figure 1
shows the execution path from the corruption location (within
packet_read) to the syscall execve. Otherwise, openssh will
run inside the while loop and can never reach execve.

Since it is straightforward to identify syscall arguments
through data-flow analysis [39], next we will focus on under-
standing and detecting critical data in the second category.

Definition 2.1 (Syscall-Guard Branch and Variable). Since
security-related syscalls significantly affect the program secu-
rity, developers usually insert context checks before syscalls
to avoid misuse. These checks are implemented as conditional
branches, like if statements. We define branches that guard
security-related syscalls as syscall-guard branches. Variables
used in these branches determine to invoke security-related
syscalls or not, and hence, are critical to the program se-
curity. We call them syscall-guard variables. Corrupting
syscall-guard variables will change the target of syscall-guard
branches, and finally affect the system security.

Syscall-guard variables are widely used in known data-
only attacks. As shown in the last column of Table 1, except
for syscall arguments (labeled as “A”), all six other critical
data are syscall-guard variables (labeled as “C”). They guard
invocations of critical syscalls such as execve on Linux and
CreateProcess on Windows. Since syscall-guard variables
are more challenging to identify than syscall arguments, it is
not surprising that they are less frequently used than the later.
However, these variables are critical to the program security.
As researchers develop dedicated defenses to protect syscall
arguments [43], the stealthy syscall-guard variables will likely
receive more attention from attackers. We should spend more
effort on identifying and protecting these critical data.

2.4 Challenges

We need to address two challenges to achieve automatic and
scalable detection of syscall-guard branches and variables.
First, to evaluate the criticalness of one variable, we need to
figure out its sole contribution to triggering security-related

http://nginx.org/download/nginx-1.3.9.tar.gz
https://github.com/openssh/openssh-portable/tree/V_2_3_0_P1
https://www.sudo.ws/dist/sudo-1.8.2.tar.gz
https://sourceforge.net/projects/nullhttpd/
https://marc.info/?l=bugtraq&m=99279182704674&q=p3
https://storage.googleapis.com/google-code-archive-source/v2/code.google.com/orzhttpd/source-archive.zip
https://github.com/dellelce/wuftpd
https://github.com/marado/netkit-telnet
https://www.chromium.org/chromium-projects/
https://httpdx.sourceforge.net/downloads/


syscalls. Along the execution path, there are a large num-
ber of variables and branches. It is challenging to eliminate
the impact of others and measure the sole contribution of
a particular variable. For example, symbolic execution can
identify a complete path from the program entry to a security-
related syscall [39, 42]. However, it cannot tell which branch
in the path is more critical than others. Attackers must treat all
branches equally and find an input to satisfy all of them, which
is more difficult than corrupting a syscall-guard variable.

Second, we need an efficient and scalable approach to han-
dle real-world complicated applications. Manual analysis that
requires huge human efforts is impractical, although most
known critical data are identified manually. We also can-
not afford program analyses that require heavy computing
resources, like taint analysis [46, 62, 76] and symbolic exe-
cution [9, 16, 71, 74]. Static analysis can hardly satisfy our
requirement due to its well-known limitations, like predicting
indirect call targets and conducting inter-procedural analysis.
For the example in Figure 1, the latest version of openssh ex-
tensively uses indirect function calls to dispatch various tasks;
it also creates multiple processes to handle different function-
alities, and relies on inter-process communication to achieve
user authentication. In this case, we can hardly use static anal-
ysis to identify the syscall-guard variable authenticated.

3 Approach Overview

We design two steps to identify syscall-guard branches and
variables. First, we propose the idea of branch force to collect
candidates of syscall-guard branches (§3.1). Second, for each
candidate, we use dynamic backward data-flow analysis to
identify syscall-guard variables and measure the feasibility of
corrupting them through common memory errors (§3.2).

3.1 Branch Force
Our insight stems from the definition of syscall-guard
branches (Definition 2.1). Every syscall-guard branch may
jump to two targets, the true target and the false target, but
only one target will invoke the guarded syscall. If we change
the branch condition from true to false or from false to
true, we should observe that the syscall is invoked in one
execution, not both. If both targets trigger the syscall, the
branch is not qualified as a syscall guard; if both targets miss
the syscall, then branch is not critical to the program secu-
rity. For example, in Figure 1, with incorrect user name and
password, variable authenticated remains 0. The branch
at line 13 will jump to the false target, which goes back
to the beginning of while and proceeds to another authen-
tication attempt. If we change the condition to true, like
through memory errors, the execution will break the loop
and call function do_authenticated, which finally invokes
syscall execve. Therefore, the branch at line 13 is a syscall
guard, and authenticated is a syscall-guard variable.
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Figure 2: Demonstrate of branch force. We flip every executed
branch in a brute-force manner. Hollow nodes and edges get exe-
cuted, and gray ones are not. Red nodes indicate flipped branches. All
executions share the same input, but may trigger different syscalls.

Our idea for identifying syscall-guard branches is to flip
one and only one triggered conditional branch during the exe-
cution, and check whether the modified execution triggers new
security-related syscalls. If so, we believe the flipped branch
guards the new syscall, and is a candidate syscall guard; oth-
erwise, we will check the next branch. Since we flip every
branch in a brute-force manner, we call our method branch
force. Figure 2 demonstrates how branch force works. Each
node in the control-flow graph is a conditional branch, while
each edge shows one possible branch target. Only hollow
nodes and black edges get executed given the input I, and the
gray ones are not executed. The red node in each graph is the
only branch we flip during the execution with the same input.
We collect the triggered syscalls for comparison purposes.

Branch force can address the two challenges of identifying
syscall-guard branches discussed in §2.4. First, since we use
the same input for two executions, the only difference is the
target of the selected branch. Even if many branches are af-
fected, all differences are rooted in our initial flip. Therefore,
any newly invoked syscall must be caused by the branch flip.
In this way, we eliminate the impact of other branches and ob-
tain the sole contribution of the selected one on triggering new
syscalls. Second, branch force takes lightweight instrumenta-
tion to dynamically alter branch targets and record execution
contexts. We will discuss the implementation details in §4.
Similar methods have been widely used in popular fuzzers
to test diverse programs, like operating systems [17, 47, 65],
program compilers [34,69] and web browsers [24,29,77], and
successfully detected a large number of vulnerabilities. We
believe branch force can also handle tremendous programs.

3.2 Corruptibility Assessment
For each candidate of syscall-guard branches, we measure the
feasibility of corrupting it through common memory errors
for building data-only attacks. First, we need to find syscall-
guard variables associated with candidate branches. Since
attackers cannot directly flip a branch, they have to corrupt
related condition variables to affect the branch. Second, not
all branches are equally corruptible to attackers. Some could
be easier, but others may require powerful memory-access
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primitives. In the worst cases, branches cannot be flipped at
all if their conditions are completely out of attackers’ control.

To address these problems, we first take dynamic data-flow
analysis to identify all memory locations that contribute to the
branch condition. Previous work [39] demonstrated that all
memory nodes in the data flow could be corrupted by attackers
for exploitation, so we should take all nodes into consideration.
We adopt dynamic data-flow analysis since it provides con-
crete execution contexts, and is free from common challenges
of static analysis, like pointer alias and indirect function calls.

Second, we collect two attributes of each memory node
to assess the corruptibility, specifically, the memory location
and the node lifespan. Memory locations have substantial
impacts on data corruptibility since different locations may
have unique defenses deployed [41, 48, 49]. For example, in
non-PIE programs, heap and stack are randomized but global
data are not [39]; stack canary is placed after stack buffers and
cannot protect other regions [20]. We define three locations,
stack, heap, and global, ranked from unlikely corruptible to
highly corruptible. Further, variables with longer lifespan are
more vulnerable to malicious modification [13, 39]. We take
the number of memory-write instructions between variable
defines and uses to calculate its lifespan. We observe that at-
tackers must use memory-write primitives to corrupt variables.
Without considering specific bugs, we assume every memory-
write instruction could be abused by attackers for corruption
with the same probability. More writes within the lifespan
indicate higher likelihood of being corrupted [19, 28, 85].

Both data-only attackers and defenders can benefit from
our corruptibility assessment. First, we can filter out incorrupt-
ible candidates. For example, if a branch compares getuid()
with a constant, attackers cannot flip this branch since both
operands are out of attackers’ control. Second, we highlight
candidates with high corruptibility. Attackers may corrupt
these variables to quickly build exploits. Defenders can adopt
the most promising (but could be heavy) protection on these
variables. However, we should mention that our measurement
is based on the common features of memory errors. Due to
the diversity of vulnerabilities, the result could be inconsis-
tent with some specific real-world exploitation scenarios. To
exploit a concrete bug, attackers should consider more factors
to find the optimal variable, like when the bug is triggered.

4 Design and Implementation

Figure 3 shows the workflow of VIPER, our framework for
automatically detecting syscall-guard variables. Given the tar-
get program and a set of sample inputs, VIPER reports highly
corruptible syscall-guard variables, with information such
as flipped branches, triggered syscalls, triggering inputs and
corruptibility assessment. VIPER has two main components:
BranchForcer shortlists candidates of syscall-guard branches,
and VariableRator measures the feasibility of corrupting
syscall-guard variables. BranchForcer runs the program with
each input, and records executed branches and syscalls. Then,
it runs the program multiple times with the same input, and
flips the target of one distinct branch for each re-execution. If
the re-execution triggers new security-related syscalls, we add
the current branch to our shortlist. For each candidate branch,
VariableRator runs the program again, to record the com-
plete trace of the execution, including the branch sequences,
all memory-access addresses and the process memory lay-
out. It conducts backward data-flow analysis on program IR
with the help of the recorded trace. VariableRator checks
the memory layout to identify the location of each memory
node, and counts the number of memory-write instructions to
estimate the node lifespan. We use the memory location and
the node lifespan to represent the branch corruptibility.

4.1 Syscall-Guard Branch Identification

BranchForcer flips every conditional branch and checks
whether the execution triggers new security-related syscalls.

4.1.1 Branch Recording

BranchForcer first instruments the program during compila-
tion to general a binary for recording executed conditional
branches, called record binary. There are multiple choices
to record the branches. One way is to record all conditional
branches in the order of execution. However, the method could
record the same branch multiple times, which brings in two
challenges. First, due to the huge number of branches, the
execution will be slow and the trace files will be very large.
Second, flipping a branch in this case emulates an attack that



1 ;----- [0] original conditional branch ---------------
2 ; if (authenticated) break;
3

4 ;----- [1] LLVM IR of the original branch -------------
5 %11 = icmp ne i32 %10, 0, !dbg !50
6 br i1 %11, label %12, label %2, !llvm.loop !52
7

8 ;----- [2] recording unique branch -------------------
9 %11 = icmp ne i32 %10, 0, !dbg !50

10 * call void @record_br_uniq(i16 1122, i1 %11)
11 br i1 %11, label %12, label %2, !llvm.loop !52
12 ;
13 ; char uniq_branch_log[MAX] = {0};
14 ; void record_br_uniq(int branchID, bool value) {
15 ; uniq_branch_log[branchID] |= ((value) ? 2 : 1);
16 ; }
17

18 ;----- [3] flipping one branch -----------------------
19 %11 = icmp ne i32 %10, 0, !dbg !50
20 * %new11 = call i1 @flip_br(i16 1122, i1 %11)
21 * br i1 %new11, label %12, label %2, !llvm.loop !52
22 ;
23 ; int ID_to_flip = atoi(getenv("ID_TO_FLIP"));
24 ; bool flip_br(int branchID, bool value) {
25 ; return (branchID == ID_to_flip) ? (!value) : value;
26 ; }
27

28 ;----- [4] recording all executed branches ------------
29 %11 = icmp ne i32 %10, 0, !dbg !50
30 * call void @record_br_all(i16 1122, i1 %11)
31 br i1 %11, label %12, label %2, !llvm.loop !52
32 ;
33 ; FILE * branch_log_fd = fopen("...", "w");
34 ; void record_br_all(int branchID, bool value) {
35 ; fputc((char) value, branch_log_fd);
36 ; }

Figure 4: Instrumenting target program for various purposes.
BranchForcer performs all instrumentation during compilation.

only changes a branch one time among multiple dynamic uses.
This assumes a very strong threat model where attackers have
adequate ability to accurately control the flip. To avoid the
slow execution, large trace and impractical threat model, we
decide to record only unique executed branches.

In specific, we statically assign each conditional branch a
unique identifier, called branch ID. Before each conditional
branch, we insert an instruction to call a recording function.
The function takes two arguments, a branch ID and a condition
value. It creates a global array to record the branch, with the
branch ID as the array index. We use 1 to represent a false
condition and 2 to represent a true condition, and save the
value to the proper element through bitwise-OR. In this way,
we can tell whether the branch ever goes to the true target,
the false target, or both along the execution. Our method is
similar to block coverage collection in popular fuzzers [33,
50, 89], except that we also record condition values.

Figure 4 shows various instrumentation to the original
code for different purposes. Line 2 shows the original con-
ditional branch (line 13 in Figure 1). Line 5 and line 6 are
the corresponding intermediate representation (IR) in LLVM,
where %10 represents authenticated and %11 holds the re-
sult. Lines 9-11 demonstrate the instrumentation for unique
branch recording, where we insert an instruction to call func-
tion record_br_uniq with the constant branch ID 1122 and
the condition value as arguments. In lines 13-17, the function
simply merges the condition value into the global array.

4.1.2 Branch Flipping

BranchForcer generates flip binary for flipping the se-
lected branch. Similar to the instrumentation for recording,
BranchForcer inserts an instruction to call another function,
which takes a branch ID and a condition value as arguments.
However, this function will check whether the branch ID is
equivalent to the ID of the selected branch (retrieved from
an environment variable). If so, it will return the negation
of the condition value; otherwise, it will return the original
value. We modify the branch instruction to use the return
value as the new condition. Our current design only selects
one branch, and flips all executions of that branch. We discuss
multi-branch flip in §6. Lines 19-21 show the instrumented IR
for branch flipping. Function flip_br is defined in lines 23-
26. Return value %new11 is used as the new condition, which
is flipped if branch 1122 is the currently selected branch.

4.1.3 Designs for Efficiency

BranchForcer re-executes the program once for each ex-
ecuted branch, which may lead to a large number of re-
executions. We adopt two mechanisms from fuzzing, unique
branch flip and forkserver, to improve the system efficiency.
Unique Branch Flip. We identify branches that have never
been flipped from previous experiments, and flip them to
understand their criticalness. In other words, one branch will
be flipped only once. However, one branch has two targets.
As we do not know which target leads to security-related
syscalls, we re-execute the program twice for each branch,
one switching from true to false (if true is triggered), and
another switching from false to true (if false is triggered).
Since we log condition values, we can distinguish two flips.
Forkserver. In every re-execution, the program will process
the same input using the same environment. To reduce the
overhead, we will create a forkserver before the main func-
tion of the program. Every time when we need to re-execute
the program, we just simply fork a new process. Based on
previous fuzzing works, this method can help improve the
throughput “by a factor of two or more” [90].

4.2 Syscall-Guard Variable Assessment

Given a candidate of syscall-guard branches, VariableRator
locates syscall-guard variables through data-flow analysis,
and evaluates their corruptibility. One way for data-flow anal-
ysis would focus on program binary [7, 80], as the runtime
addresses match binary instructions. However, binary drops
plenty of information, like variable types, making it hard to
map variables to source lines. Another approach is to analyze
source code or LLVM IR. However, it is nontrivial to connect
runtime addresses to IR. Instead, we instrument the program
so that the execution records IR-level branches and memory
accesses, and we can conduct IR analysis with IR-level traces.



Algorithm 1: Path Construction
Input :module: program LLVM IR

trace: dynamic execution trace
Output :path: execution path

1 struct { insn; addr; } path[MAX];
2 pIdx← 0
3 WalkFunc(module.getMainFunc())
4 Func WalkFunc(func)
5 block← func.getEntryBlock ()
6 while block ̸= NULL do
7 block← WalkBlock(block);
8 Func WalkBlock(block)
9 for instruction insn ∈ block do

10 idx← pIdx; pIdx← pIdx + 1
11 path[idx].insn← insn
12 switch insn.op do
13 case LOAD || STORE do
14 path[idx].addr← read8B(trace)
15 case direct CALL do
16 WalkFunc(insn.getFunc())
17 case indirect CALL do
18 target← read8B(trace)
19 WalkFunc(mapToFunc(target))
20 case unconditional BRANCH do
21 ret insn.getBlock(0)
22 case conditional BRANCH do
23 ret insn.getBlock(read1B(trace))
24 case SWITCH do
25 ret insn.getBlock(read8B(trace))
26 case RETURN do ret NULL;
27 ...

Algorithm 2: Data-flow Analysis
Input :path: execution path (Algorithm 1)

insn0: a candiate syscall-guard branch
Output :dataflow: dataf flow of variable in insn

1 struct { defIdx; useIdx; } dataflow[MAX];
2 idx← 0; fIdx← 0
3 while path[idx].insn ̸= insn0 do idx← idx+1;
4 S← {tuple<insn0, NULL, idx>}
5 while idx ≥ 0 do
6 (i, a)← path[idx]; ctuple← tuple<i, a, idx>
7 for ptuple ∈ S do
8 (isDef, toDel)← isDef(ctuple, ptuple)
9 if isDef = True

10 dataflow[fIdx]← { ctuple.idx, ptuple.idx }
11 S← S ∪ {ctuple}; fIdx← fIdx + 1
12 if toDel = True S← S – {ptuple};
13 idx← idx - 1;
14 Func isDef(c, p)
15 switch p.insn.op do
16 case LOAD do
17 if c.insn.op = STORE && c.addr = p.addr
18 ret (True, True)
19 case STORE do
20 if c.insn.dstOprnd = p.insn.valueOprnd
21 ret (True, True);
22 otherwise do
23 if c.insn.dstOprnd ∈ p.insn.srcOprnds
24 if all p.insn.srcOprnds have defines
25 ret (True, True)
26 else ret (True, False)
27 ret (False, False)

Algorithm 3: Assessment
Input :path: execution path (Algorithm 1)

dataflow: data flow (Algorithm 2)
Output :assess: variable corruptibility

1 struct { glob; heap; stack; } assess;
2 for (defIdx, useIdx) ∈ dataflow do
3 (defInsn, defAddr)← path[defIdx]
4 if defInsn.op = STORE
5 count← 0
6 for idx ∈ range(defIdx, useIdx) do
7 if path[idx].insn.op = STORE
8 count← count + 1
9 if defAddr ∈ globals

10 assess.glob← assess.glob + count
11 else if defAddr ∈ heap
12 assess.heap← assess.heap + count
13 else if defAddr ∈ stack
14 assess.stack← assess.stack + count

1 void output_reset(ShellState *p) {
2 if (p->doXdgOpen) {
3 char *zCmd = mprintf("xdg-open %s",
4 p->zTempFile);
5 system(zCmd); // invoke execve
6 }...}
7 void clearTempFile(ShellState *p){
8 if (p->zTempFile == 0) return;
9 // shellDeleteFile invokes unlink

10 if (shellDeleteFile(p->zTempFile))
11 return;
12 }

Figure 5: New syscall-guard variables
in sqlite, guarding execve and unlink

4.2.1 Execution Trace Recording

We instrument the program IR to record execution contexts
required for trace-based data-flow analysis, mainly including
control flow and memory access. The control-flow informa-
tion will help build the complete path on IR, including branch
conditions, switch conditions and indirect call targets.

Branch Condition. In LLVM IR, a conditional branch is
defined like br i1 %1, label %2, label %3. When %1 is
true, the program jumps to basic block %2; otherwise, it
jumps to basic block %3. When the execution reaches a con-
ditional branch, we record the condition value. Different from
the unique-branch recording in §4.1.1, now we record every
condition in the execution order. Although this is slower than
tracing unique branches, we only conduct this analysis on
identified candidates of syscall-guard branches. Lines 29-31
in Figure 4 demonstrate the instrumentation. They are sim-
ilar to unique-branch recording (lines 9-11), except that the
function records all condition values sequentially.

Switch Condition. We record condition values of switch in-
structions. During the data-flow analysis, we use the condition
value to determine the correct case or default to proceed.

Indirect Call Target. For a direct call, we get the called func-
tion from the instruction. However, for an indirect call, the
target address is stored in a function pointer. We instrument
the program IR to record all values of function pointers.

Memory Access. During backward data-flow analysis, when

we encounter a load instruction, we need to find the related
store instruction. Therefore, we record addresses and lengths
of all memory access operations to connect load to store in-
structions. We also record addresses and lengths used in com-
mon memory access functions (e.g., memset and memcpy).

4.2.2 Execution Path Construction

We restore the execution path on IR level, with the program
IR and the execution trace. Algorithm 1 shows our algorithm.
We use a flat array path to record all executed IR instructions
and associated memory read/write addresses. The algorithm
starts from the main function (line 3), and walks through all
executed basic blocks. When reaching a new instruction, we
add it into path (line 11). For load and store instructions, we
retrieve memory addresses from the trace and save them into
path (lines 14). For direct calls, we follow the call graph to
step into the called function (line 16). For indirect calls, we
utilize the recorded address to figure out the runtime target
and step into it (lines 18-19). For unconditional branches, we
get the successor from the instruction and proceed to process
the successor (line 21). For conditional branches, we get the
condition value from the trace, and use it to find the proper
successor (line 23). We handle switch instructions in a similar
way, except the condition has 8 bytes (line 25). For a return
instruction, our algorithm will return to the callsite in the
caller and continue the traversal (line 26). The algorithm will
stop once it returns from main or we reach the end of the trace.



4.2.3 Backward Data-Flow Analysis

Based on the execution path, we conduct backward data-flow
analysis to identify instructions that determine the condition
of a syscall-guard branch. Algorithm 2 shows the algorithm.
Given the branch instruction insn0, we scan array path to
locate this instruction (line 3). insn0, together with its array
index, forms the first element of set S (line 4), which contains
all instructions queued for backward data-flow analysis. Next,
we examine instructions in path in reverse order (lines 5-13).
If one instruction defines one element in set S, we add one
edge into the data flow dataflow, and add this instruction
into S. The edge is directional, from the current instruction
and to the element it defines (line 10). isDef checks whether
instruction c defines p. When p is a load instruction, c defines
p if c stores to the same address as that p loads from (lines
16-18). When p is a store instruction, c defines p if c’s output
operand is p’s value operand (lines 19-21). Otherwise, if the
output operand of c is the same as one source operand of p, c
defines p. If we have found definitions for all source operands
of p (lines 18, 21, 25), we should remove p from S (line 12).

4.2.4 Assessment Value Collection

With the variable data flow, we will collect metrics to repre-
sent the feasibility of flipping the guard branch. Algorithm 3
shows the algorithm. From the data flow we search for edges
that start with a store instruction writing to address defAddr
(line 4). Based on Algorithm 2, the other node of this edge will
be a load instruction that retrieves value from the same mem-
ory address. Between these two instructions, if attackers can
corrupt the content at address defAddr, the load instruction
will retrieve the corrupted value for the program execution. To
measure the likelihood of the corruption, we count the num-
ber of store instructions with this range (lines 6-8), assuming
that every store instruction could be abused by attacker for
memory corruption. Then we add this counter to different as-
sessment aspects, based on whether defAddr points to globals,
heap or stack (lines 9-14). Finally, the algorithm returns the
counters as the assessment of the corruptibility.

4.3 Security-Related Syscalls & Test Cases
We need a list of security-related syscalls for identifying
syscall-guard variables. After checking 313 syscalls on Linux
and investigating related works [15, 22, 68, 84], we identify
security-related ones shown in Table 4 (in Appendix). Attack-
ers can modify the arguments of these syscalls to promote
their privileges. For example, by manipulating the arguments
of execve, they can run any program with any options. Based
on the bug nature, attackers may customize the list to priori-
tize particular syscalls. For defense purposes, we consider all
of them to seek maximum syscall-guard variables possible.

VIPER requires a set of test cases to trigger diverse pro-
gram branches. Although obtaining high-quality test cases is

out of the scope, we find multiple practical ways during our
experiments. One method is to collect test cases from online
resources, like project official test sets and third-party bench-
marks. For example, sqlite [37], a popular DBMS, provides
comprehensive test cases that cover almost all branches [36].
Another way is to generate new test cases through fuzzing.
Fuzzing is a popular program-testing technique for detect-
ing memory bugs [6, 89]. It uses code coverage to guide
the generation of test cases, aiming to trigger more bugs. Re-
searchers have made significant progress in fuzzing to achieve
high coverage, which exactly matches our expectation. More-
over, many security research groups release high-coverage
test cases obtained from long-time fuzzing [32, 64].

5 Evaluation

We apply VIPER on real-world programs to evaluate its effec-
tiveness and efficiency in identifying syscall-guard variables.
Q1. Can VIPER identify new syscall-guard variables? (§5.1)
Q2. How does VIPER sieve branches and variables? (§5.2)
Q3. How effective is the corruptibility assessment? (§5.3)
Q4. Can VIPER handle diverse programs efficiently? (§5.4)
Target Programs. We select 20 programs for evaluation
from three benchmarks. (1) FuzzBench [52], a widely adopted
benchmark for evaluating fuzzing techniques. All programs
in FuzzBench are popular targets of attacks. (2) Programs
with known data-only attacks, as listed in Table 1. Although
most known attacks corrupt syscall arguments, our goal is to
detect syscall-guard variables. (3) To include more programs,
we randomly select several programs from a large set [63].
For each program, we inspect the PLT section of the binary
to understand whether it invokes any security-related syscalls
or library calls. If so, we include it for evaluation. We leave
Windows applications to future work. For Chromium, we test
one of its core components, v8, the JavaScript engine. More
details of tested programs are given in Table 5 (in Appendix).
Test Case Collection. Generating high-quality inputs is out
of the scope of this paper. We try to use off-the-shelf test cases
for detecting syscall-guard variables, as discussed in §4.3. For
example, we adopt fuzzing results disclosed by FuzzBench
team to test FuzzBench programs [32]. For programs that
lack high-quality test cases, we use AFL++ [27] to fuzz each
program for six hours and collect test cases that can trigger
new branches. Table 5 (in Appendix) provides more details
about how we collect test cases to evaluate programs.
Evaluation Environment. We conduct all of our experi-
ments on a Ubuntu 20.04 system with two 28-core Intel(R)
Xeon(R) Gold 6258R CPUs and 756GB memory.

5.1 New Syscall-Guard Variables
We identify 36 syscall-guard variables from 14 out of 20
tested programs, where 34 variables are previously unknown.



Program Guard Variable Branch Location Syscall Malicious Goal Rate (S, H, G) CK CVE Type Cap
sqlite mode shell.c:5002 symlink create symlinks to any file (55, 0, 0)

shell.c:5038 chmod change any file to any mode (75, 0, 0)
p->doXdgOpen shell.c:20270 execve execute arbitrary program (181770, 0, 0) 2017-6983 TC AW
p->zTempFile shell.c:20560 unlink delete any file (86907, 0, 0) 2017-6983 TC AW
isDelete sqlite3.c:42939 unlink delete any file (8353, 29276, 0) 2017-6983 TC AW
zPath sqlite3.c:43094 unlink delete any file (57, 15036, 0)
exists sqlite3.c:60294 unlink delete any file (58, 15036, 0)
isWal sqlite3.c:58492 unlink delete any file (61, 15046, 0)

curl tempstore cookie.c:1732 rename overwrite any file (15, 0, 0) 2019-3822 H/SBoF AW
tempstore hsts.c:386 rename overwrite any file (15, 0, 0) 2019-3822 H/SBoF AW
tempstore altsvc.c:359 rename overwrite any file (15, 0, 0) 2019-3822 H/SBoF AW

harfbuzz blob->mode hb-blob.cc:453 mprotect make RO memory writable (31, 352, 0) 2015-8947 HBoF AW
nginx sa_family $_connection.c:631 chmod change file mode (0, 84831, 0)

ngx_terminate $_process_cycle.c:305 unlink delete any file (0, 0, 208640) 2013-2028 SBoF AW
ngx_quit $_process_cycle.c:305 unlink delete any file (0, 0, 208640) 2013-2028 SBoF AW
ft.st_uid ($: ngx) $_file.c:631 chown change owner of any file (350832, 0, 0)
ft.st_mode $_file.c:640 chmod change file mode (175218, 0, 0)

openssh result* auth-passwd.c:128 execve login without password (5, 48153980, 0)
received_sigterm sshd.c:1163 unlink delete any file (0, 0, 1463147)
received_sighup sshd.c:1177 execve execute arbitrary program (0, 0, 1470603)

sudo details->chroot exec.c:173 chroot change root path (0, 0, 2039) 2012-0809 FS AW
info sudo.c:697 chdir change directory path (1702, 253382, 1982) 2012-0809 FS AW

null httpd in_RequestURI main.c:39 execve enable CGI to run programs (0, 525, 0) 2002-1496 HBoF AW
ghttpd filename* protocol.c:127 execve enable CGI to run programs (9, 0, 5912) 2002-1904 SBoF AW
wu-ftpd RootDirectory ftpd.c:1029 chroot change root path of current user (0, 0, 7322)

anonymous ftpd.c:2527 setgroups obtain root privilege (0, 0, 7432)
ftpd.c:2893 chroot change root path of anonymous (0, 0, 8341)

guest ftpd.c:2893 chroot change root path of guest (0, 0, 37715)
rval ftpd.c:2708 setresuid login without password (8, 0, 0)

jhead RegenThumbnail jhead.c:978 execve execute arbitrary program (0, 0, 2856) 2016-3822 IO AW
EditComment jhead.c:1003 execve edit any file using vi (0, 0, 2856) 2016-3822 IO AW
CommentInsertfileName jhead.c:1003 execve edit any file using vi (0, 0, 2856) 2016-3822 IO AW
CommentInsertLiteral jhead.c:1003 execve edit any file using vi (0, 0, 2856) 2016-3822 IO AW

jasper fileobj->flags jas_stream.c:1392 unlink delete any file (0, 219062, 0) 2020-27828 HBoF AW
pdfalto first XRef.cc:240 unlink delete files in specific folders (1952, 214, 0)

offsets[0] XRef.cc:240 unlink delete files in specific folders (92, 117, 0)
gzip fd gzip.c:2111 unlink delete any file (0, 0, 11886) 2010-0001 IO AW
v8 enable_os_system d8-posix.cc:762 execve execute any program (0, 0, 93512607) 2021-30632 TC AW

: exploits constructed with concrete bugs; : exploitability checked with concrete bugs; : primitives emulated with GDB. implies , and implies .
Bug types: type confusion (TC); heap/stack buffer overflow (H/SBoF); format string bug (FS); integer overflow (IO). Capability: write anywhere any value (AW).

Table 2: Syscall-guard variables discovered by VIPER and corruptibility assessment. * means previously known variables.

Table 2 provides program names, variable names, source files,
line numbers, guarded syscalls and high-level security im-
pacts. 10 variables protect execve where corrupting them
allows attackers to run arbitrary program. 15 variables guard
unlink and rename and attackers can alter them to delete any
accessible file. Four variables shield with file permission or
owner syscalls chmod and chown, which can help attackers ob-
tain extra file accesses. Five variables cover chroot or chdir
that changes the root directory of current users, where attack-
ers can abuse it to access more files. One variable secures
symlink, and attackers can create any symlink to any file.
This may allow attackers to replace executables or obtain ac-
cesses to extra files. Two variables are linked to setgroups
or setresuid, where attackers may retain root privileges if
they corrupt proper arguments. One variable takes care of
mprotect, which attackers commonly abuse to create writable
and executable pages. The sum of these numbers is over 36
as some variables (i.e., mode in sqlite and anonymous in wu-

ftpd) guard two security-related syscalls. Attackers can alter
these variables in proper ways to invoke one or two syscalls.
Three variables of jhead are checked in one line before invok-
ing execve. Since different checks are combined through OR
operation, attackers can modify any one to launch attacks.

Our evaluation covers eight out of 11 programs in Table 1.
These eight programs have two known syscall-guard variables.
VIPER successfully identifies both cases, specifically, result
in openssh and filename in ghttpd, although variables have
names different from previously attacked versions. We discuss
the details of the difference of openssh in Appendix A.

Next, we provide case studies of two newly identified
syscall-guard variables in sqlite. These variables guard differ-
ent syscalls and we successfully build end-to-end exploits.

Case Study 1: Arbitrary Command Execution. VIPER
reports a syscall-guard variable p->doXdgOpen that allows at-
tackers to run arbitrary command in sqlite. Figure 5 shows
the related function output_reset, where sqlite opens a tem-



porary file with an editor for users to modify the query result.
In normal executions, p->doXdgOpen is false and sqlite will
not invoke function system. If attackers flip the branch at
line 2, sqlite will call system which internally invokes execve.
Attackers can corrupt p->zTempFile to execute arbitrary pro-
gram, like changing zCmd to a.txt; cat ∼/.ssh/id_rsa to
retrieve the private key. Pointer p points to a stack ShellState
object that maintains database connection states and contains
two members doXdgOpen and zTempFile. sqlite initializes this
object at the early stage of the execution, and only invokes
output_reset before exit. Given an empty query “.exit”,
VariableRator reports 181,770 memory-write instructions
in the lifespan of p->doXdgOpen and 86,907 memory-write
instructions in the lifespan of p->zTempFile.

We build an end-to-end exploit that allows attackers to run
arbitrary command, based on the public tutorial [26]. CVE-
2017-6983 is a type-confusion bug in sqlite, where attackers
can fully control a pointer of an Fts3Cursor object. This bug
has been fixed in version 3.40.1. We modify three lines in
function fts3FunctionArg to reactivate it. Following the tuto-
rial, we turn the bug into an arbitrary-memory-write primitive.
We use the primitive to modify doXdgOpen and zTempFile
for arbitrary command execution. We disable ASLR during
exploit construction, as we can bypass ASLR easily through
other bugs, like CVE-2017-6991 used in the tutorial.
Case Study 2: Arbitrary File Deletion. VIPER reports
that altering p->zTempFile can trigger arbitrary file deletion.
Specifically, sqlite uses temporary files in many ways. As
shown in function clearTempFile of Figure 5, sqlite deletes
any existing temporary files before creating a new one. If
p->zTempFile is NULL (line 8), it will return immediately
since no temporary file exists yet. Otherwise, it will call
shellDeleteFile which internally calls unlink to delete ex-
isting files. An attacker can corrupt p->zTempFile to delete
any sqlite-accessible file. We exploit the same bug as the
previous one to achieve arbitrary file deletion.

5.2 Sieving Branches and Variables
To understand how VIPER identifies syscall-guard variables,
we count the number of branches evaluated in different stages.
Table 3 shows our statistics, including numbers of branches in
each program (T), flipped by BranchForcer (F), whose flips
invoke new syscalls (C), highly corruptible (A) and that con-
firmed by manual analysis (M). Due to different methods of
test-case collection (shown in Table 5), each program is tested
with one to 35,757 inputs, triggering different branch coverage
from 4.0% to 71.4%. VIPER may detect more syscall-guard
variables if we can improve the branch coverage.
BranchForcer. Results in columns F and C show that
BranchForcer can filter out a large number of branches as
they do not invoke new syscalls. After this step, most pro-
grams only have less than 20 branches left, except sqlite
(21 branches) and sudo (26 branches). For five programs,

BranchForcer does not find any branch that triggers new
syscalls, caused by two reasons. First, security-related syscalls
are not triggered by test cases even with flipping. For exam-
ple, with 11,978 test cases, freetype2 does not invoke any
syscalls listed in Table 4 (in Appendix). Adding diverse test
cases [72, 88] could help detect more syscall-guard variables.
Second, security-related syscalls are invoked in given test
cases, and flipping branches does not trigger new ones. For
example, telnet invokes execve with one test case, and flip-
ping one branch will stop invoking this syscall. We can cover
this example by considering flips that disable previously in-
voked syscalls. However, this could introduce false positives
as any crash or timeout will stop invoking previously executed
syscalls, even if the condition is not related to the syscall.
VariableRator. Results in column C and column A show that
VariableRator removes incorruptible branches and reduces
the number of candidates lower than 10 for all except two
programs. VariableRator detects incorruptible branches in
two cases. First, all memory nodes in the data-flow have very
short lifespan, and it is hard for attackers to corrupt such vari-
ables. For example, for variable m at line 37364 of sqlite3.c
in sqlite, there are only five memory-write instructions dur-
ing its lifespan. Second, the new syscall is invoked through
library functions, but attackers can hardly affect syscall argu-
ments. For example, library function getpwnam internally in-
vokes syscall mprotect with hard-coded constant arguments,
where attackers have no way to modify these arguments.
VariableRator currently does not support multi-threaded pro-
grams and fails to analyze systemd.

5.3 Exploitability Investigation
The goal of corruptibility assessment in VIPER is to estimate
the likelihood of corrupting identified syscall-guard variables
by common memory errors. To understand the usefulness of
our estimation, we manually analyze the results through GDB
emulation, CVE investigation and exploit construction.
GDB Emulation. Following the previous practice [42], we
use the debugger GDB to emulate arbitrary memory-write
primitives and check whether each variable guards security-
related exploitable syscalls. Specifically, We launch the pro-
gram with GDB, modify the syscall-guard variable within
its lifespan, alter the syscall arguments and hook security-
related syscalls. Column M of Table 3 shows the emulation
results. Most branches and variables reported by VIPER (col-
umn A) are confirmed to guard likely exploitable security-
related syscalls. We check excluded cases and identify three
common reasons. 1 The syscall has limited security im-
pact, like unlink(strcat(tmpFile, ".tmp")) in sqlite only
deletes files ended with ".tmp". 2 The program enforces
strong constraints on variables. For example, sqlite checks
file size and only changes the mode of empty files. 3 Corrupt-
ing variables has negative side effects. For example, jrnlOpen
in sqlite affects two branches, while triggering syscall unlink

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6983
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6983
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6991


Program Version kLoC #Test Branches/Variables Time Cost StitchT F F/T C A M Record Flip Rate Total Total/A

sqlite 3.40.1 273 35,757 20,653 14,756 71.4% 21 9 7 288" 112" 378" 778" 87"
curl 97f7f66 160 4,286 37,251 2,645 7.1% 13 3 3 23" 32" 689" 744" 248"
harfbuzz 1.3.2 41 10,816 3,878 2,656 68.5% 1 1 1 17" 8" 8" 33" 33"
systemd v252 543 2,851 28,739 2,093 7.3% 5 ✗ ✗ 69" 40" - >109" >109"
mbedtls 10ada35 128 1,078 8,754 1,528 17.5% 0 0 0 2" 6" - >8" >8"
openssl 3.0.7 483 2,515 32,063 5,448 17.0% 0 0 0 13" 61" - >74" >74"
freetype2 cd02d35 119 11,978 10,224 4,159 40.7% 0 0 0 18" 26" - >44" >44"
nginx 1.20.2 141 1,219 12,483 2,408 19.3% 7 5 5 238" 22" 329" 589" 118" 121"
openssh 36b00d3 119 1 11,060 2,316 20.9% 4 3 3 1" 4722" 10624" 15347" 5116" 1110"
sudo 1.9.9 110 329 6,894 2,411 35.0% 26 17 2 16" 16" 260" 292" 18" 393"
null httpd 0.5.1 2 1 224 106 47.3% 1 1 1 1" 10" 31" 42" 42" 358"
ghttpd 1.4.4 1 1 111 43 38.7% 2 2 1 1" 36" 72" 109" 55" 48"
orzhttpd 0.0.6 3 1 191 100 52.4% 0 0 0 1" 32" - >33" >33" 93"
wu-ftpd 2.6.2 18 2 2,918 399 13.7% 9 8 4 1" 533" 189" 723" 91" 200"
telnet 3f35287 11 1 420 147 35.0% 0 0 0 1" 144" - >145" >145"
jhead 3.04 4 72 616 287 46.6% 12 12 4 1" 2" 288" 291" 25"
jasper 4.0.0 34 3,237 4,949 1,777 35.9% 4 1 1 37" 16" 84" 137" 137"
pdfalto 0.4 76 16,954 14,069 4,581 32.6% 5 2 2 342" 116" 107" 565" 282"
gzip 1.12 6 1,558 1,133 374 33.0% 1 1 1 6" 1" 19" 26" 26"
v8 8.5.188 3,586 1 170,232 6,819 4.0% 2 1 1 1" 5833" 874" 6708" 6708"

Table 3: Branches and time costs. We count the numbers of branches in the program (T), flipped by BranchForcer (F), triggering new syscalls
(C), highly corruptible (A) and confirmed by us (M). We measure the time required for recording all test cases (Record), flipping all triggered
branches (Flip) and assessing all candidates (Rate). ✗: pthread not supported. The last column lists the numbers reported in FLOWSTITCH.

requires changing one and only one of them. It is almost in-
feasible to exploit this variable since attackers must corrupt
the same variable twice within a short time window.

CVE Investigation. To measure the feasibility of corrupt-
ing identified variables through concrete bugs, we conduct
investigation using historical vulnerabilities [40,42]. For each
program, we select one representative CVE and manually
study the buggy function and attacker’s capability. Then, we
execute the program to check whether the buggy function
can be triggered during the lifespan of each variable and
whether the attacker’s capability may cover the variable lo-
cation. These two criteria are used by FLOWSTITCH [39]
to automatically build data-only attacks. If we get positive
answers to both, attackers possess a significant opportunity to
corrupt the variable for attacks. Column CK of Table 2 shows
our investigation results ( or ). In total, we investigate 14
historical CVEs (all fixed in the latest version), one for each
program. These CVEs have different types, like type confu-
sion and buffer overflow, and most have been used to build
control-flow or data-only attacks. We find that 20 identified
variables from 11 programs are highly corruptible through
these CVEs. For the other 16 variables, we either cannot find
a path to trigger the selected bug within the variable lifespan,
or the buggy code has been moved to a separate process. How-
ever, this does not mean these variables are completely safe
since we only spend limited time to check one CVE for each
program. Attackers may use other bugs or abuse different
execution paths to corrupt these variables for attacks.

Exploit Construction. We build four new end-to-end data-
only attacks, using two historical CVEs to corrupt four newly
identified syscall-guard variables from two programs, indi-

cated as in Table 2. We choose sqlite and v8 for exploit
generation, where sqlite “is the most used database engine
in the world” [37], while v8 is the JavaScript engine used in
Chromium-based web browsers, like Chrome, Microsoft Edge
and Opera. Three attacks against sqlite enable attackers to run
arbitrary command (see Cast Study 1) or delete any files (see
Case Study 2). The exploit on v8 allows malicious JavaScript
code to run arbitrary command (Appendix B). We will re-
lease the details of these exploits on GitHub, together with
the VIPER source code and identified syscall-guard variables.

5.4 Time Cost of VIPER

We measure the time cost of VIPER of finding syscall-guard
variables. Table 3 shows times for testing all inputs and record-
ing branches, flipping all triggered branches, and assessing
the corruptibility of all candidates. We calculate the total time
and the average time for each highly corruptible variable.

In general, VIPER analyzes programs with diverse costs.
For all programs but openssh and v8, VIPER completes ana-
lyzing all test cases within 13 minutes, and on average, iden-
tifies one highly corruptible variable in five minutes. Testing
openssh requires the most cost, which takes about 4.3 hours to
complete. We identify two reasons of the slow performance.
First, openssh server takes a long time to initialize. We have to
set a large timeout threshold, two seconds, such that openssh
can reach core functionalities. Second, flipping branches in
openssh, introduces a lot of timeouts. One way to reduce the
cost is to move our forkserver after the initialization process.

To understand the performance of VIPER during exploit
generation, we check the cost of FLOWSTITCH, a dedicated



tool for building data-only attacks [39]. FLOWSTITCH was
evaluated on eight programs, including seven on Linux and
one on Windows. We apply VIPER on all Linux programs.
The gray region of Table 3 compares the results of VIPER
and the numbers reported in [39]. Since VIPER and FLOW-
STITCH work on different tasks, it does not make much sense
to compare absolute numbers. Instead, the time required for
VIPER to identify a syscall-guard variable is within the same
or smaller order of magnitude as that for FLOWSTITCH to con-
struct an attack. Therefore, it is practical to combine VIPER
and FLOWSTITCH to generate data-only attacks.

6 Discussion

In this section, we review several design issues of VIPER and
discuss future directions for exploration and improvement.

Multi-Branch Flipping. Our current design flips a single
conditional branch, and therefore, VIPER will miss syscalls
guarded by multiple checks. We can extend VIPER to flip
multiple branches to cover sophisticated checks. However,
we find nontrivial challenges in multi-branch flipping. First,
flipping one branch introduces negative inconsistency to the
program state, which may lead to crash or hang. Flipping
multiple branches will bring more inconsistency, and may
cause more crashes and timeouts before reaching new syscalls.
Second, for exploit generation, attackers must corrupt more
variables to flip multiple branches, which is more difficult than
single-branch flipping. Therefore, a simple extension will not
work well. We may need to reduce results of multi-branch flip
to single-branch flip to identify useful variables.

Multi-Threaded Application. Current version of VIPER
does not support multi-threaded applications. In our eval-
uation, we limit the thread number to one so that VIPER can
record traces and conduct data-flow analysis. To support multi-
threaded programs, we need to extend VariableRator to (1)
save traces of different threads into separate files; (2) hook
and record synchronization primitives (e.g., locks) to restore
execution orders; (3) conduct data-flow analysis across differ-
ent threads. We leave this extension to the future work.

Comparison with Data-Oriented Programming. Data-
oriented programming (DOP) builds data-only attacks with-
out relying on any critical data [40], while VIPER aims to
automatically identify critical data for data-only attacks and
defenses. These two works target different types of data-only
attacks. VIPER can identify available critical data to simplify
the exploitation, but the program does not always contain
security-critical data; DOP can build exploits without critical
data, but the process of exploit construction could be tedious
and challenging. An optimal strategy for exploit generation
could use VIPER to identify corruptible critical data as much
as possible, and use DOP to connect remaining gaps.

7 Related work

Data-Only Attacks. Chen et al. propose non-control data
attacks (i.e., data-only attacks) and demonstrate the feasibility
of this new threat [13]. Follow-up works port this attack to
diverse programs and systems [14], like kernels [4, 21, 86],
browsers [44,75,87] and PDF readers [25]. Data-only attacks
are also used to disable defenses. For example, manipulating
kernel data can disable Linux auditing, AppArmor, ASLR and
NULL-deference defense [86]. Corrupting browser variables
can turn off the same-origin policy (SOP) [44, 75]. Alter-
ing metadata of shared libraries allows attackers to modify
arbitrary code [40]. FLOWSTITCH [39] automatically con-
nects disjoint data-flows for building data-only attacks. Re-
cent works propose to build data-only attacks without corrupt-
ing critical data. Data-oriented programming (DOP) chains
basic operations, like memory read and addition, to orches-
trate expressive (even Turning-complete) attacks [40]. Block-
oriented programming (BOP) automatically finds feasible
paths from program entry to useful sinks such as memory ac-
cesses and syscalls [42]. Printf-oriented programming (POP)
enables data-only Turing-complete attack via self-modified
format strings [10]. However, these attacks require a lot of
memory corruption, like over 700 packets to attack ProFTPD
via DOP [40]. Such heavy memory corruption may attract at-
tention from intrusion detection systems and anti-virus tools.
Critical-Data Identification. Most previous works take
manual analysis to temporarily identify a few critical data
for quick demonstration. Researchers manually check the pro-
gram source [13] or even binary [87] to find useful variables.
Jia et al. adopt debuggers, like GDB, to help identify differ-
ences between privileged and non-privileged executions [44].
However, manual analysis cannot afford large programs that
contain thousands of variables [86]. For critical data com-
ing from known sources (e.g., network socket) or used by
well-defined sinks such as syscalls, previous works perform
trace-based data-flow analysis to identify them [10, 39]. But
they cannot identify critical data without well-recognized
sources or sinks. Several projects build models to describe
how to find particular critical data in memory [57, 75]. These
solutions require predefined targets in order to train the model
offline, and cannot report critical data with unknown patterns.
Defenses against Data-Only Attacks. The most compre-
hensive protection is to enforce data-flow integrity [11, 79]
or full memory safety [2, 45, 58–60] to prevent memory er-
rors in the first place. However, these solutions usually have
unacceptable overhead and can hardly be adopted in produc-
tion environment. A lightweight solution can identify data
invariants through manual specification [38, 70], offline train-
ing [3] or program analysis [86], and enforce their integrity
at runtime. However, they cannot protect data that are fre-
quently updated. Recent works propose to adopt encryption,
virtual machine and combine dynamic and static analysis to
protect high-value critical data, and leave other less-critical



data unprotected [66, 67, 73]. Our work complements these
selective protections by automatically identifying a list of
program-specific security-critical non-control data.

8 Conclusion

In this paper, we propose branch force to automatically detect
program-specific syscall-guard variables. Such variables can
be modified by attackers to build data-only attacks. We design
and implement VIPER, the first tool that can automatically
and efficiently detect syscall-guard variables. With VIPER,
we successfully detect 34 new syscall-guard variables from 13
programs. We build four new end-to-end attacks that enable
arbitrary command execution or arbitrary file deletion.
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1 void Shell::AddOSMethods(Isolate* isolate,
2 Local<ObjectTemplate> os_templ) {
3 if (options.enable_os_system) {
4 os_templ->Set(isolate, "system",
5 FunctionTemplate::New(isolate, System));
6 } ...
7 }

Figure 6: Altering options->enable_os_system will activate
system function in v8

1 // Use CVE-2021-30632 to corrupt options->enable_os_system.
2

3 var workerScript = `os.system("bash")`;
4 var worker = new Worker(workerScript, {type: "string"});

Figure 7: The exploit code to execute arbitrary program in v8
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A Case Study of openssh
We test openssh, the origin of our motivating example, and expect it to report
some syscall-guard variables named authenticated. openssh has evolved
from the vulnerable version 2.2.0 (released in 2000) to version 9.1 (released
in 2022). From the latest version VIPER does not identify any variable named
authenticated, but reports a variable result triggering syscall execve. We
alter this variable using GDB and successfully login with incorrect pass-
word. This confirms that VIPER identifies a new syscall-guard variable. How-

ever, openssh source code contains multiple variables named authenticated,
which makes us wonder whether VIPER fails to identify these variables.

We manually inspect the source code of the latest openssh, and confirm
that VIPER is correct. Among all branches using authenticated variables,
no one can decide to invoke syscall execve. Especially, the latest openssh
adopts mandatory user-privilege separation, and creates two processes for
authentication. The child process runs in a loop to read network packets and
send them to the parent, while the parent executes in another loop to check
whether the child data passes the authentication. If the authentication suc-
ceeds, the parent will share the result with the child. After that, they will break
the loops, synchronize the key state, and create the shell for the client. Both
processes save the result into authenticated variables, but these variables
are local and cannot affect each other. If VIPER only flips an authenticated-
related branch in the parent, the child still has the false result, which fails
the key-state synchronization; if VIPER only flips a such branch in the child,
the parent will stay in the loop and never create the shell. Therefore, VIPER
did not report any such checks. Instead, before sharing the result, the parent
keeps the value in a result variable, and conducts a conditional check on it.
When VIPER flips this check, the parent will update the value to true, and
share it with the child. VIPER captures this check as a syscall-guard branch,
and reports result as the syscall-guard variable.

This example demonstrates the effectiveness of VIPER. Although the
latest design is more complicated and the previously known variable does
not work, it can automatically explore other branches to identify new syscall-
guard variables. Moreover, openssh contains many obstacles that hinder
static analysis, like asynchronous event processing, indirect function call
and inter-process communication. VIPER circumvents these challenges and
successfully spots critical data.

B Case Study of v8 Exploit
VIPER reports a syscall-guard variable options.enable_os_system in v8
JavaScript engine that allows attackers to execute any program. Figure 6
shows the related function Shell::AddOSMethods where v8 prepares avail-
able methods for each isolate thread. When initializing a new worker
thread, v8 checks the value of variable options.enable_os_system to de-
cide whether to enable the system function, while this function invokes
syscall execve internally. By default, users do not turn on this option. There-
fore, options.enable_os_system is false and v8 will not activate system.
However, if attackers flip the branch at line 3, all subsequently created
threads can reactivate system. By corrupting the variable and subsequently
creating new threads using crafted JavaScript code, attackers can obtain
the ability to execute any program, e.g., spawning an interactive shell.
VariableRator reports 93,512,607 memory-write instructions in the lifespan
of options.enable_os_system. It is highly corruptible after breaking ASLR.

We build an end-to-end attack, exploiting a historical type confusion
vulnerability (CVE-2021-30632) caused by improper JIT optimization. v8
mistakenly interprets SMI array as double, enabling attackers to manipu-
late the memory layout and achieve arbitrary memory read and write. Fig-
ure 7 shows a simplified version of our exploit code. We customize the
public proof-of-concept to modify the store address rwxAddr to the address
of options.enable_os_system (retrieved from information leakage through
the same CVE), and alter the value shellcode to 1. Next, we create a new
worker object, which leads v8 to create a new thread internally and specify
the worker to execute os.system("bash"). As a result, the worker thread can
run the command and get a shell eventually.
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Syscall Related Library Call Description

mmap, mremap mmap, mremap, realloc, getpwnam map/remap files or devices into memory
mprotect mprotect, getpwnam, getgrnam, pthread_create change memory access protections
execve execve, execlp, execv, system execute a program
chdir, fchdir, chroot chdir, fchdir, chroot change the working/root directory of the current process
rename rename change the name or location of a file
unlink, unlinkat unlink, remove, unlinkat delete a name and possibly the file it refers to
symlink, symlinkat symlink, symlinkat create a symbolic link
chmod, fchmod chmod, fchmod change file mode bits
chown, fchown, lchown, fchownat chown, fchown, lchown, fchownat change ownership of a file
setuid, setgid, setpgid setuid, setgid, setpgid set the process user/group ID
setreuid, setregid, setresuid setreuid, setregid, setresuid, seteuid set real, effective, saved user/group ID
setgroups setgroups set list of supplementary group IDs
setfsuid, setfsgid setfsuid, setfsgid set user/group identity used for filesystem checks
uselib - load shared library
setrlimit setrlimit set resource limits
init_module, delete_module init_module, delete_module load/unload a kernel module

Table 4: Security-related syscalls and related library calls considered in our evaluation. Attackers can abuse these syscalls to compromise
the vulnerable programs and systems. Red calls represent unexploitable wrappers since attackers have limited control over the syscall arguments.

Source Program Version BranchForcer Evaluation VariableRator Evaluation

FuzzBench sqlite 3.40.1 ✔ (corpus from source code repository) ✔
curl dd486c1e5 ✔ (FuzzBench Dataset [32]) ✔
harfbuzz f73a87d9a ✔ (FuzzBench Dataset [32]) ✔
systemd v252 ✔ (FuzzBench Dataset [32]) ✗ [pthread to be supported]
mbedtls 10ada3501 ✔ (FuzzBench Dataset [32]) ∅ [no syscall-guard branches]
openssl 3.0.7 ✔ (FuzzBench Dataset [32]) ∅ [no syscall-guard branches]
freetype2 cd02d35 ✔ (FuzzBench Dataset [32]) ∅ [no syscall-guard branches]
php 8.1.0 ✗ [failed to get PHP return value]
re2 954656f47 ∅ [no critical syscall/libcall in PLT]
woff 4721483ad ∅ [no critical syscall/libcall in PLT]
bloaty 52948c107 ∅ [no critical syscall/libcall in PLT]
zlib 02a6049eb ∅ [no critical syscall/libcall in PLT]
jsoncpp 8190e061b ∅ [no critical syscall/libcall in PLT]
littlecms f7db22d3e ∅ [no critical syscall/libcall in PLT]
libjpeg-turbo d859232da ∅ [no critical syscall/libcall in PLT]
libpng 9923515ff ∅ [no critical syscall/libcall in PLT]
vorbis c8391c2b2 ∅ [no critical syscall/libcall in PLT]
proj4 d00501750 ∅ [no critical syscall/libcall in PLT]
libpcap 59aab18ee ∅ [no critical syscall/libcall in PLT]
openthread 5b0af03af ∅ [no critical syscall/libcall in PLT]
libxml2 59b336617 ∅ [no critical syscall/libcall in PLT]

Programs nginx 1.20.2 ✔ (one simple file and fuzz for 6 hours) ✔
with openssh 9.1 ✔ (a correct username and a wrong password) ✔
known sudo 1.9.9 ✔ (two simple files and fuzz for 6 hours) ✔
attacks null httpd 1.20.2 ✔ (one command "wget index.html") ✔

ghttpd 1.4.4 ✔ (one command "wget index.html") ✔
orzhttpd 0.0.6 ✔ (one command "wget index.html") ✔
wu-ftpd 2.6.2 ✔ (two packets with correct/incorrect password) ✔
telnet 3f352877e ✔ (one self-generated pcap file ) ∅ (no syscall-guard branches)
chromium ✗ [huge program, to be supported]
⊢ v8 8.5.188 ✔ (one JS statement that run local command) ✔
httpdx ✗ [Windows program, to be supported]
IE browser ✗ [Windows binaries, to be supported]

More [63] jhead 3.04 ✔ (corpus from source code repository) ✔
jasper 4.0.0 ✔ (online corpus [64] and fuzz for 6 hours) ✔
pdfalto 0.4 ✔ (online corpus [64] and fuzz for 6 hours) ✔
gzip v1.12 ✔ (online corpus [64] and fuzz for 6 hours) ✔

Table 5: Programs for evaluation. We select 20 programs from three benchmarks, FuzzBench, programs with known attacks and common
fuzzing targets. For BranchForcer evaluation, we list supported programs (✔) with adopted test cases, and unsupported programs (✗) and
untested programs (∅) with reasons. For VariableRator evaluation, we list supported programs and unsupported programs with reasons.
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