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Abstract. Privacy-preserving data aggregation has been widely recog-
nized as a key enabling functionality in wireless sensor networks to allow
the base station to learn valuable statistics of the sensed data while pro-
tecting individual sensor node’s data privacy. Existing privacy-preserving
data aggregation schemes all target simple statistic functions such as
SUM, COUNT, and MAX/MIN. In contrast, a quantile summary allows
a base station to extract the φ-quantile for any 0 < φ < 1 of all the sensor
readings in the network and can thus provide a more accurate character-
ization of the data distribution. Unfortunately, how to realize privacy-
preserving quantile summary aggregation remains an open challenge.
In this paper, we introduce the design and evaluation of PrivQSA, a
novel privacy-preserving quantile summary aggregation scheme for wire-
less sensor networks, which enables efficient quantile summary aggrega-
tion while guaranteeing ǫ-Local Differential Privacy for individual sen-
sors. Detailed simulation studies confirm the efficacy and efficiency of
the proposed protocol.

Keywords: Data aggregation · Wireless sensor network · Local
differential privacy · Quantile summary

1 Introduction

Data aggregation [16] has been widely recognized as a key technique for reduc-
ing energy consumption and prolonging network lifetime by allowing sensed data
to be aggregated by intermediate nodes along the route to the base station to
eliminate possible redundancy. Data privacy is a key concern in many applica-
tions. For example, data generated by sensor nodes in an IoT-based smart-home
system may contain a variety of sensitive information about users such as appli-
ance usage and home occupancy. Since directly submitting such information to a
base station would reveal sensitive information, there is strong need for privacy-
preserving data aggregation solutions that can allow the base station to learn
valuable statistic of the data generated in the network while ensuring the data
privacy of individual sensor nodes.
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Privacy-preserving data aggregation has received significant attentions over
the past decade. Existing privacy-preserving data aggregation schemes [7,9,11,
14,15,18,21] all target simple statistic functions such as SUM, COUNT, and
MAX/MIN. In contrast, a quantile summary allows a base station to learn a
more accurate distribution of the sensed data than simple statistics functions
[5,6,10,19]. Specifically, a quantile summary allows the base station to retrieve the
φ-quantile for any 0 ≤ φ ≤ 1, which can provide a much better characterization
of the distribution of data generated by a wireless sensor network. Unfortunately,
how to realize privacy-preserving quantile summary aggregation remains an open
challenge.

In this paper, we introduce the design and evaluation of PrivQSA, a novel
privacy-preserving quantile summary aggregation scheme for wireless sensor net-
works. Specifically, we design PrivQSA to satisfy ǫ-Local Differential Privacy
(LDP), which is a model widely considered as the gold standard for data pri-
vacy. Under PrivQSA, every sensor node randomly perturbs its set of readings
to ensure ǫ-LDP. All the nodes then participate in the quantile summary aggre-
gation to allow the base station to obtain a quantile summary of the perturbed
readings. The base station then estimates a quantile summary of the original
sensed data based on the perturbation mechanism followed by individual sensor
nodes. Our contributions in this paper can be summarized as follows.

– We are the first to study privacy-preserving quantile summary aggregation in
wireless sensor networks.

– We introduce PrivQSA, a novel privacy-preserving quantile summary aggre-
gation scheme that can allow the base station to learn a quantile summary
of the sensed data while ensuring ǫ-LDP for individual sensor nodes.

– We confirm the efficacy and efficiency of PrivQSA via both theoretical analy-
sis and detailed simulation studies, which demonstrate significant advantages
over other baseline solutions.

The rest of this paper is structured as follows. Section 2 discusses the related
work. Section 3 introduces the network model and some preliminaries. Section 4
introduces the design of PrivQSA. Section 5 evaluates PrivQSA via both theo-
retical analysis and simulation studies. Section 6 finally concludes this paper.

2 Related Work

In this section, we review some related work in quantile summary aggregation,
privacy preserving data aggregation in WSNs.

Quantile summary aggregation in wireless sensor networks has been discussed
in a number of articles throughout literature. Greenwald et. al. [5] studied quantile
summary aggregation in wireless sensor networks. Shrivastava et al. [19]proposed
a quantile digest summary structure to facilitate quantile aggregation. In [6], the
authors designed a distributed algorithm to realize an ǫ-approximate quantile sum-
mary of all the sensor nodes data. Later, Huang et al. [10] introduced an improve-
ment to the forementioned algorithm with the aim to reduce the maximum per
node communication cost.Also, several efficient gossip distributed algorithmswere
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proposed in [8] to compute the exact and approximate quantiles. However, none of
the discussed quantile aggregation schemes accounts for privacy restrictions and
therefore cannot be adapted to our proposed problem.

Privacy-preserving data aggregation in sensor networks has received a lot of
attention over the past two decades [2–4,9,11,18,20]. Generally speaking, exist-
ing solutions for privacy preserving data aggregation can be classified into two
categories. The first category uses encryption techniques such as homomorphic
encryption [2,3,11,18,20,22], secure multiparty computation [12], and modulo
addition-based encryption [1]. All these solutions target simple statistic func-
tions such as SUM, COUNT, and MAX/MIN and cannot be adopted to support
quantile summary aggregation. The second category uses random perturbation
[4,9,17], in which each sensor node randomly perturbs its data according to a
suitable probability distribution before participating in data aggregation, and
the base station can still infer valuable statistics from the perturbed data. To
the best of our knowledge, there is no prior work tackling privacy-preserving
quantile summary aggregation.

3 Problem Formulation

In this section, we first introduce the network model and a background on quan-
tile summary. We then provide the definition of Local Differential Privacy.

3.1 Network Model

We consider a wireless sensor network model consisting of a base station and n
sensor nodes that form an aggregation tree. Let R = {1, . . . , d} be the range of
possible readings. We assume that every sensor node i has a set of m readings
Vi = {vi,1, . . . , vi,m}, where every reading vi,j ∈ R for all 1 ≤ i ≤ n and 1 ≤
j ≤ m. The set of all the sensed data generated in the sensor network is then
V =

⋃n
i=1 Vi. The base station aims to obtain a quantile summary of V .

3.2 Quantile Summary

A quantitle summary is a subset of readings along with their (estimated) global
ranks which can support value-to-rank query over any v ∈ R as well as φ-quantile
queries for any 0 < φ < 1. Specifically, given a set of N distinct data values with
a total order, the φ-quantile is the value v with rank r(v) = ⌊φN⌋ in the set,
where r(v) is the number of values in the set smaller than v. Since a quantile
summary that can provide the exact quantiles must contain the all N values
in the worst case, an ǫ′-approximate φ-quantile is a value with rank between
(φ − ǫ′)N and (φ + ǫ′)N .

3.3 Local Differential Privacy (LDP)

Local Differential Privacy is a strong privacy notion widely considered as the gold
standard for data privacy, which ensures that an adversary cannot differentiate
two inputs based on the output he observe beyond certain predefined threshold.
We give the definition of ǫ-Local Differential Privacy below.
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Definition 1. (ǫ-Local Differential Privacy). A randomized mechanism M sat-
isfies ǫ-local differential privacy if and only if

Pr[M(x) = y]

Pr[M(x′) = y]
≤ eǫ

for any two inputs x, x′ ∈ X and any output y ⊆ Range(M), where X is the
domain of the input, Range(M) is the domain of the output, and ǫ is commonly
referred to as the privacy budget.

3.4 Design Goals

We seek to design a privacy-preserving quantile summary aggregation scheme
with the following goals in mind.

– Local Differential Privacy. The scheme should satisfy ǫ-LDP for individual
sensor nodes.

– High accuracy. The quantile summary obtained by the base station should
be able to answer value-to-rank queries with high accuracy.

– Communication efficiency. The scheme should incur low communication over-
head.

4 PrivQSA: Quantile Summary Aggregation with LDP

In this section, we first give an overview of PrivQSA and then detail its design.

4.1 Overview

We design PrivQSA by exploring the inherent connection between a quantile
summary and a histogram. Specifically, a quantile summary can be viewed as
an equi-depth histogram in which every bucket has the same number of values,
and all the buckets in a standard histogram have the same width but different
number of values. In addition, a quantile summary can be converted into a
standard histogram under moderate assumptions, and vice versa. Based on this
observation, we first let every sensor node randomly perturb its set of readings to
generate a set of perturbed readings to ensure ǫ-LDP. All the sensor nodes then
participate in quantile summary aggregation to allow the base station to receive a
quantile summary, i.e., an equi-depth histogram, of the perturbed readings. The
base station can then convert the quantile summary of the perturbed readings
into a an equi-width histogram whereby to estimate an equi-width histogram of
the original readings. Finally, the base station can convert the estimated equi-
width histogram of the original readings into a quantile summary of the original
readings whereby to answer any value-to-rank and percentile queries. In what
follows, we detail the design of PrivQSA.
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4.2 Detailed Design

PrivQSA consists of the following six steps.

Perturbation at Individual Sensor Nodes. Each sensor node i randomly
perturbs its set of readings Vi = {vi,1, . . . , vi,m} into a set of n perturbed readings
S′

i via the exponential mechanism to ensure ǫ-LDP. The exponential mechanism
[13] is a classical technique to provide differential privacy via outcome random-
ization. The key idea is to associate every pair of input x and candidate outcome
o with a real-value quality score q(x, o), where a higher quality score indicates
higher utility of the outcome. Given the output space O, a score function q(·, ·),
and the privacy budget ǫ, the exponential mechanism randomly selects an out-
come o ∈ O with probability proportional to exp(ǫq(x, o)).

Here the input is a set Vi ⊆ R of m readings, and the outcome Ṽi of the
exponential mechanism is also a subset of R with m elements. For every pair of
possible input set Vi and output set Ṽi, we define the quality score function as

q(Vi, Ṽi) =
|Vi

⋂

Ṽi|

m
, (1)

which is the ratio of their common elements. For example, if Vi = Ṽi, then the
quality score is one. Under the quality score function q(·, ·), each node i then
randomly chooses an m-element set Ṽi ⊂ R with probability proportional to

exp( ǫ|Vi

⋂
Ṽi|

m
).

Data Augmentation. Since all existing quantile summary aggregation schemes
including Huang et al.’s protocol [10] requires every data value to be distinct,
every sensor node augments its perturbed readings by its node ID. Let Ṽi =
{ṽi,1, . . . , ṽi,m} be node i’s set of perturbed readings. Each node i augments
each perturbed reading ṽi,j as v̂i,j = ṽi,j ||i for all 1 ≤ j ≤ m, where || denotes
concatenation, and node ID i is encoded by γ = ⌈log2 n⌉ bits. Doing so can ensure
that every reading generated in the network is unique. We hereafter denote by
V̂i the set of perturbed and augmented readings of node i for all 1 ≤ i ≤ n.

Quantile Summary Aggregation. Every node first generates a local quantile
summary of V̂i. Specifically, each node i randomly samples each perturbed read-
ing v̂i,j ∈ V̂i independently with probability h to obtain a subset of perturbed

readings Si ⊆ V̂i, where h ∈ (0, 1] is a system parameter. Node i’s local quantile
summary of V̂i is then

Qi = {(v̂i,j , j)|v̂i,j ∈ Si} , (2)

where j is the perturbed reading v̂i,j ’s local rank within V̂i. The set V̂i is com-
monly referred to as the ground set of local quantile summary Qi

All the sensor nodes then participate in quantile summary aggregation
according to Huang et al.’s protocol [10]. During the aggregation process, inter-
mediate nodes may merge multiple local quantile summaries into one via random
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resampling to reduce the maximum per node communication cost. We refer read-
ers to [10] for details of the merging process.

The base station performs value-to-rank query on every possible perturbed
value to learn the distribution of the perturbed readings. Assume that the base
station receive n′ local quantile summaries Q′

1, . . . , Q
′
n′ at the end of the aggre-

gation process, where each Q′
i corresponds to a ground set V̂ ′

i and n′ ≤ n
due to possible merging by intermediate sensor nodes. It is easy to see that
⋃n

i=1 V̂i =
⋃n′

i=1 V̂ ′
i . For every possible augmented and perturbed value v̂ = v||i

where v ∈ R and i ∈ {1, . . . , n}, the base station estimates its global rank within
⋃n

i=1 V̂i as

r̂(v̂) =
n′

∑

i=1

r̂(v̂, V̂ ′
i ) , (3)

where

r̂(v̂, V̂ ′
i ) =

{

r(pred(v̂|Q′
i), V̂

′
i ) + 1/h, if pred(v̂|Q′

i) exists;

0 otherwise,
(4)

where pred(v̂|Qi) denotes the predecessor of value v̂ in Q′
i. It has been shown in

[10] that r̂(v̂) is an unbiased estimator of r(v̂,
⋃n′

i=1 V̂ ′
i ) = r(v̂,

⋃n
i=1 V̂i).

Next, the base station computes the global rank of each possible value v ∈ R
by removing the augmented node ID from the perturbed readings. In particular,
for each pair of perturbed value and estimated rank (v̂, r̂(v̂)), the base station
updates its value as

ṽ = v̂ mod 2γ (5)

and records the pair 〈ṽ, r̂(v̂)〉.
After removing the augmented IDs from all perturbed readings, the base

station obtains one or more estimated global ranks for each possible perturbed
value ṽ ∈ R. Without loss of generality, let r−(ṽ) and r+(ṽ) be the lowest and
highest estimated global ranks, respectively, of value ṽ for all ṽ ∈ R. If value ṽ
has only a unique estimated global rank, then r−(ṽ) = r+(ṽ).

Estimating Histogram of Perturbed Readings. The base station then
constructs a histogram of the perturbed readings from the received quantile
summaries by estimating the frequency of each perturbed value ṽ ∈ R. We
formulate the histogram construction as an optimization problem. In particular,
let fṽ be the frequency of perturbed value ṽ for all ṽ ∈ R. It follows that value 1
is ranked from the 1st to the f1th, and value ṽ is ranked from (

∑ṽ−1
i=1 fi +1)th to

(
∑ṽ

i=1 fi)th for all 1 ≤ ṽ ≤ d. We can then formulate the estimation of f1, . . . , fd
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as the following optimization problem

min
(f1,...,fd)∈Nd

∑

ṽ∈R

(

ṽ−1
∑

i=1

fi + 1 − r−(ṽ))2 + (

ṽ
∑

i=1

fi − r+(ṽ))2,

such that

d
∑

ṽ=1

fṽ = nm,

ṽ−1
∑

i=1

fi + 1 ≤ r−(ṽ),∀ṽ ∈ R,

ṽ
∑

i=1

fi ≥ r+(ṽ),∀ṽ ∈ R,

(6)

where we seek to minimize the total square errors between the two boundaries
and the corresponding lowest and highest estimated global ranks. In the above
optimization problem, the first constraint indicates that the sum of all the values’
frequencies should be nm, the second and third constraints guarantee that the
lowest and highest estimated global ranks of a value ṽ, i.e., r−(ṽ) and r+(ṽ),

should fall in the range [
∑ṽ−1

i=1 fi + 1,
∑ṽ

i=1 fi].
The solution of the above optimization problem is given by

⎧

⎪

⎨

⎪

⎩

f1 = r+(1)+r−(2)−1
2 ,

fi = r+(i)+r−(i+1)−r+(i−1)−r−(i)
2 , ∀2 ≤ i ≤ d − 1,

fd = nm − r+(d−1)+r−(d)−1
2 .

(7)

Estimating Histogram of Original Readings. Given the estimated his-
togram of perturbed readings f1, . . . , fd obtained above, the base station further
estimates the histogram of original readings based on the perturbation mecha-
nism used by individual sensor nodes.

Denote by gv be the frequency of value v among the original readings
⋃n

i=1 Vi

for all v ∈ R. Consider any value v ∈ R and sensor node i’s original reading set
Vi. Under the random perturbation mechanism, if v ∈ Vi, the probability that v
shows up in the perturbed set Ṽi is given by

Pr[v ∈ Ṽi|v ∈ Vi] = Pr[v ∈ Vi

⋂
Ṽi|v ∈ Vi]

=
m∑

k=1

Pr[v ∈ Vi

⋂
Ṽi|v ∈ Vi, |Vi

⋂
Ṽi| = k] · Pr[|Vi

⋂
Ṽi| = k] .

(8)

Moreover, we have Pr[v ∈ Vi

⋂

Ṽi|v ∈ Vi, |Vi

⋂

Ṽi| = k] = k
m

and Pr[|Vi

⋂

Ṽi| =

k] =
ck exp( ǫk

m
)

∑
m
j=0

cj ·exp( ǫj

m
)
, where ck =

(

m
k

)

·
(

d−m
m−k

)

is the number of m-element subsets
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of R that shared k common elements with Vi for all k = 0, . . . , m. It follows that

Pr[v ∈ Ṽi|v ∈ Vi] =
m

∑

k=1

k

m
·

ck exp( ǫk
m

)
∑m

j=0 cj · exp( ǫj
m

)
. (9)

Now let us analyze the probability that v shows up in the perturbed set Ṽi

given that v /∈ Vi. Following the similar analysis, we can derive

Pr[v ∈ Ṽi|v /∈ Vi] = Pr[v ∈ Ṽi \ Vi|v /∈ Vi]

=

m−1
∑

k=0

Pr[v ∈ Ṽi \ Vi|v /∈ Vi, |Vi

⋂

Ṽi| = k] · Pr[|Vi

⋂

Ṽi| = k]

=
m−1
∑

k=0

m − k

d − m
·

ck exp( ǫk
m

)
∑m

j=0 cj · exp( ǫj
m

)
.

(10)
Assume that value v appears in gv sensor nodes’ original reading sets. It

follows that n−gv sets do not contain value v. The expected number of perturbed
sets that include value v can be estimated as

E[fv] = gv · Pr[v ∈ Ṽi|v ∈ Vi] + (n − gv) · Pr[v ∈ Ṽi|v /∈ Vi] . (11)

We therefore estimate the number of copies of v in
⋃n

i=1 Vi as

ĝv =
fv − n · Pr[v ∈ Ṽi|v /∈ Vi]

Pr[v ∈ Ṽi|v ∈ Vi] − Pr[v ∈ Ṽi|v /∈ Vi]
, (12)

where Pr[v ∈ Ṽi|v ∈ Vi] and Pr[v ∈ Ṽi|v /∈ Vi] are given in Eqs. (9) and (10),
respectively.

Final Quantile Summary Construction. Given the estimated histogram of
the original readings, the base station then constructs a final quantile summary
of

⋃n
i=1 Vi, which is equivalent to estimating the rank for every value v ∈ R and

answering φ-quantile query for all 0 < φ < 1.
To answer a value-to-rank query over value v ∈ R, the base station can simply

return the median rank of value v as

r(v) = ⌊
r−(v) + r+(v)

2
⌋ , (13)

where r−(v) =
∑v−1

i=0 ĝi + 1 and r+(v) =
∑v

i=0 ĝi. Moreover, to answer a φ-
quantile query where 0 < φ < 1, the base station returns value v such that
r−(v) ≤ nmφ ≤ r+(v).
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5 Performance Evaluation

5.1 Theoretical Analysis

We first have the following theorem regarding the privacy guarantee of PrivQSA.

Theorem 1. PrivQSA satisfies ǫ-LDP.

Proof. Let Vi and Vj be two arbitrary sets of readings such that |Vi| = |Vj | = m.
Let M denote the randomized perturbation mechanism used by each individual
sensor node. Consider any possible output Ṽ of M. Since 0 ≤ |Ṽ ∩ Vi| ≤ m and
0 ≤ |Ṽ ∩ Vj | ≤ m for any Vi and Vj , we have

Pr[M(Vi) = Ṽ ]

Pr[M(Vj) = Ṽ ]
=

exp(ǫ · |Ṽ ∩Vi|
m

)

exp(ǫ ·
|Ṽ ∩Vj |

m
)

≤
exp(ǫ · m

m
)

exp(ǫ · 0
m

)
≤ exp(ǫ). (14)

The theorem is thus proved. ⊓⊔

5.2 Simulation Settings

We simulate a wireless sensor network consisting of n = 1022 sensor nodes.
We assume that each node has m = 10 readings and every original reading is
in the range R = {1, . . . , 100}. Table 1 summarizes our default settings unless
mentioned otherwise.

Table 1. Default simulation settings

Para. Val. Description.

ǫ 50 The privacy budget

h 0.5 The sampling probability

n 1022 The number of sensor nodes

m 10 The size of user value set

d 100 The maximum number in the range of user values

Since there is no prior solution for private quantile summary aggregation, we
compare PrivQSA with the following two baseline schemes.

– Baseline 1 : Every node randomly perturbs its reading set as in PrivQSA
and independently samples its perturbed readings with probability h. It then
submits only the sampled perturbed readings without rank information to
the base station. The base station estimates the original distribution and
the final quantile summary using the same method as in the last two steps
of PrivQSA. Baseline 1 satisfies ǫ-LDP and does not involve any quantile
summary aggregation.

– Baseline 2 : Every node participates in quantile summary aggregation accord-
ing to Huang et al. [10] without any privacy guarantee.



LDP Quantile Summary Aggregation in WSNs 373

We use two metrics to measure the accuracy of the final quantile summary
at the base station. Let r(v) and r̂(v) be the true rank and estimated rank of a
value v, respectively, for all v ∈ {1, . . . , d}. Also let rmax = nm be the maximum
global rank in the network which is the total number of readings in the network.
The normalized average rank error (ARE) is defined as

ARE =

∑d
v=1 |r̂(v) − r(v)|

rmaxd
, (15)

and the maximum rank error (MRE) is defined as

MRE =
maxv={1,...,d}(|r̂(v) − r(v)|)

rmax
. (16)

In addition, we also use total communication cost to compare PrivQSA and the
two baseline solutions.

5.3 Simulation Results

Impact of Sampling Probability h. Figs. 1a to 1c compare the ARE, MRE,
and total communication cost of PrivQSA and the two baseline solutions, respec-
tively, with sampling probability varying from 0.1 to 1.0. We can see from Fig. 1a
and 1b that both the ARE and MRE decrease as the sampling probability h
increases under all three schemes. This is expected as the more readings we
sample, the more accurate the value-to-rank query results, and vice versa. More-
over, we can see that the ARE and MRE of Baseline 2 is the lowest among
the three because it does not involve any random perturbation. PrivQSA comes
in the second place with a small difference compared to Baseline 2 which is
the cost of providing ǫ-LDP. Finally, Baseline 1 incurs the largest rank errors
because its does not make use of any rank information in estimating the original
distribution. On the other hand, Fig. 1c shows that the total communication cost
increases as the sampling probability increases under all three schemes, which is
anticipated. Moreover, we can see that PrivQSA and Baseline 2 have the same
communication cost, which is larger than Baseline 1’s communication cost. This
is because under both PrivQSA and Baseline 2 every sensor node needs to send
the rank information besides the sampled values whereas under Baseline 1 only
sampled readings need to be sent.

Impact of Privacy Budget ǫ. Figures 2a and 2b compare the ARE and MRE
under PrivQSA and Baseline 2 with the privacy budget ǫ varying from 10 to
100, where those under Baseline 2 are plotted for reference only. We can see
from both figures that both ARE and MRE decrease as the privacy budget ǫ
increases both under PrivQSA and Baseline 1. This is because the larger the ǫ,
the closer the perturbed reading set to the original reading set, the more accurate
the estimated original distribution, the more accurate the value-to-rank query
results, and vice versa. In addition, PrivQSA achieves significantly lower ARE
and MRE than Baseline 1 due to the rank information included in the quantile
summary aggregation.
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Fig. 1. Sampling probability h varying from 0.1 to 1.0.

Fig. 2. Privacy budget ǫ varying from 10 to 100.

Impact of m. Figures 3a to 3c compare the ARE, MRE, and total communi-
cation cost of the three schemes with m varying from 10 to 100. As we can see
from Figs. 3a and 3b, both ARE and MRE decrease as the number of reading
per node increases under Baseline 2. The reason is that the more readings each
node has, the more sampled readings, the more accurate the value-to-rank query
results, and vice versa. In contrast, both ARE and MRE increase as the number
of values per node increases under PrivQSA and Baseline 1. This is because
perturbing a larger set of readings with the same privacy budget results in more
noise added to the perturbed reading set and thus larger rank errors. Again,
Baseline 2 has the lowest ARE and MRE, which is followed by PrivQSA and
Baseline 1 for the same reasons mentioned earlier. Moreover, Fig. 3c shows that
the total communication cost under all three schemes increase as m increases,
which is expected. Moreover, Baseline 1 incurs the lowest communication cost,
and PrivQSA and Baseline 2 incur the same communication cost.

Impact of d. Figures 4a and 4b compare the ARE and MRE of all three
schemes with the size of reading domain d varying from 100 to 500. As we can
see, Baseline 2 shows a slight increase in both ARE and MRE as d increases.
This is expected as the larger the domain range, the more values that need to
have their ranks estimated, the higher the ARE and MRE under a fixed sampling
probability. For the same reason, we can see that PrivQSA and Baseline 1 incur
higher ARE and MRE which also increase faster in comparison with Basline 2
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Fig. 3. Number of readings per node varying from 10 to 100.

Fig. 4. Size of reading domain d varying from 100 to 500.

as the size of domain range increases. The reason is that the larger the value
domain, the fewer common elements between the original reading set and the
perturbed reading set after perturbation, and the larger the rank estimation
errors, and vice versa.

6 Conclusion

In this paper, we have introduced the design of PrivQSA, the first locally dif-
ferentially private quantile summary aggregation protocol for wireless sensor
networks, which can guarantee ǫ-LDP for individual sensor node’s readings. We
have confirmed the significant advantages of PrivQSA over baseline solutions via
detailed simulation studies.
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