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Abstract—Location Based Services (LBSs) have become in-
creasingly popular in the past decade, allowing mobile users to
access location-dependent information and services. To protect
user privacy while using LBSs, various Location Privacy Protec-
tion Mechanisms (LPPMs) have been proposed that obfuscate
users’ true locations through random perturbation. However,
adversaries can still exploit the temporal correlation between
a user’s locations in multiple LBS queries to improve inference
accuracy. In this paper, we introduce a novel location inference
attack that strikes a good balance between inference accuracy
and computational complexity by effectively exploiting temporal
correlation. Simulation studies using synthetic and real datasets
confirm the advantages of our proposed attack.

Index Terms—Location privacy, inference attack, temporal
correlation

I. INTRODUCTION

In recent years, significant efforts have been made to-

wards developing Location Privacy-Preserving Mechanisms

(LPPMs) [1]–[4] that enable users to enjoy Location Based

Services (LBSs) while safeguarding their location privacy.

This is achieved by having users report an obfuscated location

to the Location-Based Service Providers (LBSP). Previous

studies on location privacy protection have typically consid-

ered two models: the sporadic model, where users access

LBSs infrequently, and the continuous model, where users

access LBSs periodically, and the real locations of the user

in adjacent LBS queries commonly exhibit a certain degree of

temporal correlation. This paper focuses on the continuous

model, which includes LBSs such as continuous location

sharing in social networks and periodically point-of-interest

recommendation.

Although various LPPMs have been developed to address

temporal correlation [5]–[9], the understanding of location

inference attacks under temporal correlation is still limited.

These attacks aim to uncover a user’s actual trace from

perturbed locations generated by an LPPM. While it is well-

known that an attacker can leverage the temporal correlation

among a user’s locations to enhance inference accuracy, it

is unclear how to fully exploit this correlation because the

computational complexity of inferring a user’s location trace

from multiple queries grows exponentially with the length of

location trace. Therefore, previous works [3], [4], [9], [10]

assume that the adversary performs snapshot location inference

attacks by independently estimating a user’s true location.

Efficiently utilizing temporal correlation to improve inference

accuracy is still an open question.

This paper addresses the question of efficiently exploiting

the temporal correlation among a user’s adjacent LBS queries

to improve location inference accuracy. We propose a nov-

el generalized location inference attack based on three key

ideas. Firstly, we leverage a recurrent relationship between

inference results at two consecutive times to efficiently infer

the user’s location. Secondly, we only consider the user’s

recent perturbed locations within a fixed time window, reduc-

ing computational complexity. Thirdly, we limit our search

to a small subset of candidate traces that are most likely

to contain the user’s true location trace. Our contributions

include a significant reduction in computational complexity

from exponential to polynomial with only a slight decrease

in inference accuracy. Our contributions in this paper can be

summarized as follows.

• To the best of our knowledge, we are the first to study

efficient location inference under temporal correlations.

• We introduce a novel generalized inference attack for

efficiently exploiting the temporal correlation among a

user’s adjacent LBS queries to strike a good balance

between inference accuracy and computation cost.

• We conduct detailed simulation studies using synthetic

and real location trace datasets to confirm the efficacy

and efficiency of the proposed inference attack.

The rest of this paper is structured as follows. Section II intro-

duces the system and adversary models. Section III presents

the proposed generalized inference attack. Section IV reports

the simulation results. Section V discusses the related work.

We finally conclude this paper in Section VI.

II. PROBLEM FORMULATION

In this section, we introduce the system and adversary

models as well as our design goals.

A. System Model

We study an LBSP providing an LBS in a service area con-

sisting of n discrete locations X = x1, . . . , xn. User submit

LBS requests containing his/her current location to the LBSP

periodically at each discrete time t = 1, 2, . . . . We denote the

user’s real location at time t by rt ∈ X and the real location

trace from time i to j by ri,j = (ri, . . . , rj) ∈ X j−i+1.



We model the user’s mobility pattern as a memoryless

Markov chain with an initial probability distribution π and a

transition probability matrix M . The probability of the user’s

initial location being xj is given by πj for all j = 1, . . . , n.

The transition matrix M is an n×n matrix where each element

mi,j is a conditional probability p(rt+1 = xj |rt = xi) that

the user moves to location xj at time t+1 given that they are

at location xi at time t. The probability of the user producing

a trace rt is given by p(rt) = π(r1) ·∏t
i=2 p(r

i|ri−1).
To protect the location privacy, every user employs an LPP-

M to obfuscate the true location at each time t. We assume that

the set of possible obfuscated locations is the same as X . The

LPPM ft at time t maps a real location rt to an obfuscated lo-

cation ot with probability ft(o
t|rt) for all rt, ot ∈ X . The ex-

pected loss in Quality of Service (QoS) caused by an LPPM is

measured by Q(ft) =
∑

rt∈X
∑

ot∈X π(rt)ft(o
t|rt)d(rt, ot),

where d(·, ·) is a distance metric. We denote the obfuscated

location trace from time i to j and from time 1 to j by

oi,j = (oi, . . . , oj) ∈ X j−i+1 and oj = (o1, . . . , oj) ∈ X j ,

respectively. The probability of the user producing an obfus-

cated trace ot given the real trace rt is given by p(ot|rt) =∏t
i=1 fi(o

i|ri).
B. Adversary Model

We consider a passive adversary which may be either the

LBSP itself or an external eavesdropper who can observe the

obfuscated location in every LBS request from the target user.

We assume that the adversary knows the initial probability

distribution π, the transition probability matrix M , and the

LPPM ft employed at time t for all t = 1, 2, . . . . The goal of

the adversary is to infer user’s location trace rt from received

ot. More specifically, the adversary carries out an inference

attack, which can be viewed as a deterministic function h(·)
that takes obfuscated location trace ot, LPPMs f1, . . . , ft, the

probability distribution of initial location π, and the transition

probability matrix M as input and outputs an estimated loca-

tion trace r̂t = (r̂1, . . . , r̂t), i.e., h(ot, f1, . . . , ft, π,M) = r̂t.

C. Design Goals

We design the location inference attack to achieve the

following two goals.

• High inference accuracy: The inference attack should

infer user’s true location trace with high accuracy.

• High efficiency: The inference attack should incur low

computation cost.

We use the expected adversary error to measure the inference

accuracy. Let d(rt, r̂t) be a function that measures the distance

between the user’s true location rt and the adversary’s estimate

r̂t = h(ot). The expected adversary error is defined as

E(d(rt, r̂t)) =
∑

xt∈X t

∑

ot∈X t

p(xt)p(ot|xt)d(rt, r̂t) , (1)

where

d(rt, r̂t) =
t∑

i=1

d(ri, r̂i) . (2)

III. A GENERALIZED INFERENCE ATTACK

In this section, we first present an optimal inference attack

that can achieve the highest inference accuracy but incur high

computational complexity as our baseline. We then give an

overview of the proposed generalized inference attack and

present its detailed operations.

A. An Optimal Inference Attack

In the optimal inference attack, the adversary estimates

the user’s location trace as a whole from all the obfuscated

locations received so far at each time.

Specifically, at each time t = 1, 2, . . . , the prior probability

distribution of the user’s location trace is given by

p(rt = yt) = π(y1) ·
t∏

i=2

p(yi|yi−1) . (3)

where p(yi|yi−1) is given by the transition matrix M .

Given LPPMs f1, . . . , ft, the conditional probability of

producing an obfuscated location trace ot = (o1, . . . , ot) from

a true location trace rt = (r1, . . . , rt) is given by

p(ot|rt = yt) =
t∏

i=1

fi(o
i|yi) . (4)

Given the obfuscated location trace ot = (o1, . . . , ot), the

adversary computes the posterior distribution of the user’s true

location trace as

p(rt = yt|ot) =
p(ot|rt = yt)p(rt = yt)∑

yt∈X t p(ot|rt = yt)p(rt = yt)
. (5)

Next, the adversary infers user’s true location trace as the one

with the minimal expected error. Specifically, if the adversary

believes that the user’s trace is xt ∈ X t, the expected error

between the estimated trace and the real trace is given

E(xt|ot) =
∑

yt∈X t

p(rt = yt|ot)d(yt,xt) (6)

The adversary estimates the user’s trace as the one with the

minimal expected error, which is given by

r̂t = argmin
xt∈X t

E(xt|ot) (7)

The optimal inference attack achieves the highest estimation

accuracy as the adversary leverages all the available informa-

tion to infer the user’s true location trace. However, it also

incurs the highest computational complexity. Specifically, the

computational complexity comes from four steps of computa-

tion. First, we need to compute prior probability p(rt = yt)
for each yt ∈ X t according to Eq. (3). There are total nt

terms, and computing each term takes O(t) time, leading

to a computational complexity of O(tnt). Second, we need

to compute the conditional probability p(ot|rt = yt) for

each yt ∈ X t. There are total nt terms, each takes O(t)
time. This also requires O(tnt). Third, we need to compute

posterior probability p(rt = yt|ot) for each yt ∈ X t, which

requires O(nt). Finally, we need to compute E(xt) according



to Eq. (6). There are nt possible yt and nt possible xt.

Both the multiplication and summation need O(t). Thus, the

overall complexity is O(tn2t). In summary, the computational

complexity of the optimal inference attack is O(tn2t), which

is exponential to time t and quickly becomes infeasible even

for moderate n and t.

B. Overview

We design a generalized inference attack to greatly reduce

the computational complexity of the optimal inference attack

based on three key ideas.

First, we discover a recurrent relationship that can be

exploited to reduce the computational complexity at each time

t. Specifically, since

p(rt = yt|ot) =
p(rt = yt,ot)

p(ot)
,

we can rewrite Eq. (7) as

r̂t = argmin
xt∈X t

∑

yt∈X t

p(rt = yt|ot)d(yt,xt)

= argmin
xt∈X t

∑

yt∈X t

p(rt = yt,ot) · d(yt,xt)

p(ot)

= argmin
xt∈X t

∑

yt∈X t

p(rt = yt,ot) · d(yt,xt) ,

(8)

where the last equation holds because p(ot) is the same for

all xt ∈ X t. Let E(xt) =
∑

yt∈X t p(rt = yt,ot) · d(yt,xt)
for all xt ∈ X t. We can further simplify Eq. (8) as

r̂t = argmin
xt∈X t

E(xt). (9)

We now show how to compute E(xt) efficiently by ex-

ploiting a recurrent relationship. Since yt can be viewed

as the concatenation of yt−1 and yt, we can write it as

yt = 〈yt−1, yt〉. We then have

E(xt) =
∑

yt∈X t

p(rt = yt,ot) · d(yt,xt)

=
∑

yt∈X

∑

yt−1∈X t−1

p(rt−1 = yt−1, rt = yt,ot)

· d(〈yt−1, yt〉,xt) .

(10)

Let us define

E(xt, yt) =
∑

yt−1∈X t−1

p(rt−1 = yt−1, rt = yt,ot)

· d(〈yt−1, yt〉,xt)

(11)

for all xt ∈ X t and yt ∈ X . It follows that

E(xt) =
∑

yt∈X
E(xt, yt) . (12)

Since d(yt,xt) = d(yt−1,xt−1) + d(yt, xt), we can rewrite

Eq. (11) as

E(xt, yt)

=
∑

yt−1∈X t−1

p(rt−1 = yt−1, rt = yt,ot)d(〈yt−1, yt〉,xt)

=
∑

yt−1∈X t−1

p(rt−1 = yt−1, rt = yt,ot) · d(yt−1,xt−1)

+
∑

yt−1∈X t−1

p(rt−1 = yt−1, rt = yt,ot) · d(yt, xt)

(13)

Moreover, since

p(rt−1 = yt−1, rt = yt,ot)

= p(rt−1 = yt−1,ot−1) · p(ot, rt = yt|rt−1 = yt−1)

= p(rt−1 = yt−1,ot−1) · ft(ot|yt) · p(yt|yt−1) ,

(14)

we can rewrite the first term of Eq. (13) as

∑

yt−1∈X t−1

p(rt−1 = yt−1, rt = yt,ot) · d(yt−1,xt−1)

=
∑

yt−1∈X t−1

p(rt−1 = yt−1,ot−1) · ft(ot|yt) · p(yt|yt−1)

· d(yt−1,xt−1)

= ft(o
t|yt)

∑

yt−1∈X
p(yt|yt−1)

·
∑

yt−2∈X t−2

p(rt−2 = yt−2, rt−1 = yt−1,ot−1)

· d(yt−1,xt−1)

= ft(o
t|yt)

∑

yt−1∈X
p(yt|yt−1) · E(xt−1, yt−1) .

(15)

Let us further define

F (t− 1, yt) =
∑

yt−1∈X t−1

p(rt−1 = yt−1, rt = yt,ot) (16)

for all yt ∈ X and t = 2, . . . Therefore, the second term in

Eq. (13) can be written as

∑

yt−1∈X t−1

p(rt−1 = yt−1, rt = yt,ot) · d(yt, xt)

= F (t− 1, yt) · d(yt, xt) .

(17)

Furthermore, since p(rt−1 = yt−1, rt = yt,ot) = p(rt−1 =
yt−1,ot−1) · ft(ot|yt) · p(yt|yt−1) according to Eq. (14), we



have

F (t− 1, yt) =
∑

yt−1∈X t−1

p(rt−1 = yt−1, rt = yt,ot)

=
∑

yt−1∈X t−1

p(ot, yt|yt−1)p(rt−1 = yt−1,ot−1)

=
∑

yt−1∈X
ft(o

t|yt)p(yt|yt−1)

·
∑

yt−2∈X t−2

p(rt−2 = yt−2, rt−1 = yt−1,ot−1)

= ft(o
t|yt)

∑

yt−1∈X
p(yt|yt−1) · F (t− 2, yt−1) .

(18)

Finally, substituting Eq. (15) and (17) into Eq. (13), we get

E(xt, yt) = ft(o
t|yt)

∑

yt−1∈X
p(yt|yt−1)E(xt−1, yt−1)

+ d(yt, xt) · F (t− 1, yt) .

(19)

The recurrent relationship between F (t− 1, yt) and F (t−
2, yt−1) shown in Eq. (18) and the recurrent relationship

between E(xt, yt) and E(xt−1, yt−1) shown in Eq. (19) allow

us to design a dynamic programming algorithm to compute

{E(xt, yt)|xt ∈ X t, yt ∈ X} efficiently.

Second, we can further reduce the computational complex-

ity of the optimal inference attack by limiting the number

of past locations being considered. Intuitively, the temporal

correlation between the user’s two locations at different times

decreases as more time has elapsed from the earlier location.

It is thus reasonable to only consider up to a limited number

of most recent obfuscated locations when inferring rt.
Moreover, instead of examining every xt ∈ X t in Eq. (8)

to find the trace r̂t with the smallest expected error, we

find that many traces with larger errors can be ruled out

early. Therefore, we maintain a set of top k most likely

candidate traces at every time for some positive constant k
and only consider the candidate traces extended from the top

k candidate traces obtained from the previous time.

Built upon the above three ideas, the general inference

attack can achieve high inference accuracy with significantly

lower computational complexity.

C. Detailed Procedures

We now introduce the detailed operations of the proposed

inference attack at each time t = 1, 2, . . . . Let w ≥ 1 be a

system parameter for the window size, i.e., only up to w most

recent obfuscated locations will be used to infer user’s current

location.

1) At Time t = 1.: On receiving the obfuscated location o1

from the user, the adversary infers the user’s true location as

in the optimal inference attack.

First, for each y1 ∈ X , the adversary computes

p(r1 = y1, o1) = p(o1|r1 = y1)p(r1 = y1)

= f1(o
1|y1)π−

1 (y
1) ,

(20)

where π−
1 = π denotes the initial prior distribution of user at

each location.

Second, for each x1, y1 ∈ X , the adversary computes

F (1, y1) = p(r1 = y1, o1)

E(x1, y1) = p(r1 = y1, o1) · d(y1, x1)
(21)

Third, for each x1 ∈ X , the adversary computes the

corresponding average adversary error as

E(x1) =
∑

y1∈X
E(x1, y1) (22)

and estimates the user’s location as

r̂1 = argmin
x1∈X

E(x1) . (23)

In addition, the adversary computes the posterior distribu-

tion of user’s location after observing o1 as

p(r1 = y1|o1) = p(o1|r1 = y1)p(r1 = y1)∑
y1∈X p(o1|r1 = y1)p(r1 = y1)

=
f1(o

1|y1)π−
1 (y

1)∑
y1∈X f1(o1|y1)π−

1 (y
1)

,

(24)

for all y1 ∈ X . Denote such posterior distribution as π+
1 , the

updated prior probability can be calculated as

π−
2 = π+

1 M . (25)

Finally, the adversary finds the set of k′ = min(k, n)
locations in X that have the smallest average adversary error,

denoted by P1,1, and records {(y1, F (1, y1))|y1 ∈ X}, and

{〈x1, y1, E(x1, y1)〉|x1 ∈ P1,1, y1 ∈ X} to facilitate infer-

ence at subsequent times, where k is a system parameter.

2) At Time t = 2, . . . , w−1.: At each time t = 2, . . . , w−1,

the adversary carries out t concurrent and overlapping infer-

ence attacks. For each j ∈ [1, t], the jth inference attack

extends the inference attack from time j to t − 1 to infer

rj,t based on Pj,t−1 and newly observed ot, and initiates the

tth inference attack to infer rt based on π−
t and ot.

Consider the jth inference attack as an example, where 1 ≤
j ≤ t. The adversary first constructs a candidate trace set Cj,t

from trace set Pj,t−1 stored at time t− 1 as

Cj,t = {(xj , . . . , xt−1, xt)|(xj , . . . , xt−1) ∈ Pj,t−1, xt ∈ X} .
(26)

Since |Pj,t−1| = k′ = min(k, nt−j) and |X | = n, we have

|Cj,t| ≤ kn.

Second, for each xj,t ∈ Cj,t, the adversary computes

E(xj,t) from {(yt−1, F (t − j − 1, yt−1))|yt−1 ∈ X} and

{〈xj,t−1, yt−1, E(xj,t−1, yt−1)〉|xj,t−1 ∈ Pj,t−1, yt−1 ∈ X}
based on the recurrent relationship. Specifically, for each

yt ∈ X , it computes F (t− j, yt) according to Eq. (18) as

F (t− j, yt) = ft(o
t|yt)

∑

yt−1∈X
p(yt|yt−1) ·F (t− j− 1, yt−1)

(27)



For every pair of xj,t ∈ Cj,t and yt ∈ X , it further computes

E(xj,t, yt) according to Eq. (19).

E(xj,t, yt) = ft(o
t|yt)

∑

yt−1∈X
p(yt|yt−1) · E(xj,t−1, yt−1)

+ d(yt, xt)F (t− j, yt)
(28)

Moreover, for every xj,t ∈ Cj,t, the adversary computes

E(xj,t) =
∑

yt∈X
E(xj,t, yt) . (29)

Third, the adversary finds the set of k′ = min(k, |Cj,t|)
location traces in Cj,t with the smallest average adversary error

and stores them as Pj,t. The adversary also stores {(yt, F (t−
j, yt))|yt ∈ X} and {〈xj,t, yt, E(xj,t, yt)〉|xj,t ∈ Pj,t, yt ∈
X} to facilitate the inference attack at time t+ 1.

After performing the t inference attacks, the adversary ob-

tains t sets of most likely traces P1,t, . . . ,Pt,t. The adversary

uses P1,t to estimate the user’s trace as

r̂t = argmin
rt∈P1,t

E(x1,t) . (30)

Let r̂t = {r̂1, . . . , r̂t}. The user’s location at time t is

estimated as r̂t. Note that P2,t, . . . ,Pt,t will be used to

infer locations r̂w+1, . . . , r̂w+t−1 at times tw+1, . . . , tw+t−1,

respectively.

In addition, the adversary can update the prior distribution

by computing the posterior probability as

p(rt = yt|ot) = p(ot|rt = yt)p(rt = yt)∑
yt∈X p(ot|rt = yt)p(rt = yt)

=
ft(o

t|rt = yt)π−
t (y

t)∑
yt∈X ft(ot|rt = yt)π−

t (y
t)

,

(31)

Denote such posterior distribution as π+
t , the updated prior

probability can be calculated as

π−
t+1 = π+

t M . (32)

3) At Time t ≥ w.: At each time t ≥ w, the adversary

carries out w concurrent and overlapping inference attacks in

a similar way to time 1 < t < w. For each j ∈ [1, w], the

jth inference attack extends the inference attack from time

t − w + j to t − 1 to infer rt−w+j,t based on Pt−w+j,t−1

and newly observed obfuscated location ot and initiates the

jth inference attack to infer rt based on π−
t and ot.

Consider the jth inference attack as an example, where 1 ≤
j ≤ w. The adversary first constructs a candidate trace set

Ct−w+j,t from trace set Pt−w+j,t−1 stored at time t− 1 as

Ct−w+j,t = {(xt−w+j , . . . , xt−1, xt)|(xt−w+j , . . . , xt−1)

∈ Pt−w+j,t−1, xt ∈ X} .
(33)

Since |Pt−w+j,t−1| = k′ = min(k, nw−j) and |X | = n, we

have |Ct−w+j,t| ≤ kn.

Second, for each candidate trace xt−w+j,t ∈
Ct−w+j,t, the adversary computes E(xt−w+j,t)

from {(yt−1, F (w − j − 1, yt−1))|yt−1 ∈ X} and

{〈xt−w+j,t−1, yt−1, E(xt−w+j,t−1, yt−1)〉|xt−w+j,t−1 ∈
Pt−w+j,t−1, yt−1 ∈ X} based on the recurrent relationship.

Specifically, for each yt ∈ X , it computes F (w − j, yt)
according to Eq. (18) as

F (w−j, yt) = ft(o
t|yt)

∑

yt−1∈X
p(yt|yt−1)·F (w−j−1, yt−1)

(34)

For every pair of xj,t ∈ Ct−w+j,t and yt ∈ X , it further

computes E(xt−w+j,t, yt) according to Eq. (19).

E(xt−w+j,t, yt) = ft(o
t|yt)

∑

yt−1∈X
p(yt|yt−1) · E(xt−w+j,t−1, yt−1)

+ d(yt, xt)F (w − j, yt)
(35)

Moreover, for every xt−w+j,t ∈ Ct−w+j,t, the adversary

computes

E(xt−w+j,t) =
∑

yt∈X
E(xt−w+j,t, yt) . (36)

Third, for each j ∈ [1, w], the adversary finds the set of

k′ = min(k, |Ct−w+j,t|) location traces in Ct−w+j,t with the

smallest average adversary errors and store them as Pt−w+j,t.

After performing the w inference attacks, the adversary

obtains w sets of most likely traces Pt−w+1,t, . . . ,Pt,t. The

adversary uses Pt−w+1,t to estimate the user’s trace as

r̂t−w+1,t = argmin
rt−w+1∈Pt−w+1,t

E(xt−w+1,t) . (37)

Let r̂t−w+1 = {r̂t−w+1, . . . , r̂t}. The user’s location at time t
is estimated as r̂t. Note that Pt−w+2,t, . . . ,Pt,t will be used

to infer locations r̂t+1, . . . , r̂t+w−1 at times t+1, . . . , t+w−1,

respectively.

Finally, the adversary updates the prior distribution by

computing the posterior probability according to Eq. (31) and

computes the updated prior probability according to Eq. (32).

D. computational complexity

We now analyze the computational complexity of the pro-

posed generalized inference attack. 1) At time t = 1, there

are n possible x1 and y1, thus computing E(x1) requires

O(n2) complexity. 2) At each time t ≥ 2, there are at most w
concurrent and overlapping attack. For each attack j, we need

to first construct candidate trace set C, which requires O(n)
time. Second, we compute F (w−j, yt), which requires O(n2)
complexity as there are n possible yt and yt−1. Then, we

need to compute E(xt−w+j , yt). Since there are at most kn
possible xt and n possible yt, each combination takes O(n)
time, this process requires O(kn3) time. Finally, we compute

E(xt−w+j,t), which requires O(kn2) time. In summary, the

computational complexity for each inference attack is O(kn3).
Since there are at most w inference attack, the complexity at

each time is O(kwn3). Compared with the optimal attack, the

computational complexity of generalized inference attack is

greatly reduced.



TABLE I: Default Settings

Parameter Value Description
n 100 # of locations

10 The length of the user’s location trace
w 3 The size of sliding window
k 10
H̄ 0.2 The normalized entropy rate of M
α 0.4 The privacy parameter of LH
ε 1 The privacy parameter of Exp
nr 10 # of real traces
no 40 # of obfuscated traces

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-

posed location attacks via extensive simulation studies using

both synthetic and real datasets. All simulations are done in

MATLAB on a PC with 2.90 GHz Intel i5 CPU and 8 GB

memory.

A. Datasets

1) Synthetic Dataset: We generate several synthetic dataset-

s with n = 100 locations and uniform prior distributions but

different Markov transition matrices that represent different

temporal correlations among the user’s locations at different

times. Specifically, since the Markov transition matrix charac-

terizes the mobility pattern of users, i.e., how a user moves

from one location to another between different times, the

temporal correlation of the mobility pattern can be measured

by the entropy rate [11] of the Markov chain defined by

the transition matrix M , which is a well known metric. In

particular, the entropy rate of a Markov chain is defined by

H(M) = −
∑

i

μi

∑

j

mij log(mij) , (38)

where mij is the probability of a user moves from loca-

tion xi to xj , μi is the stationary distribution satisfying

μi =
∑

j μjmji, and
∑n

i=1 μi = 1. We further adopt a

normalization process to enforce the entropy rate in the range

of [0, 1]. The normalized entropy rate is calculated as

H̄(M) = H(M)/ log2(n) . (39)
The smaller the normalized entropy rate of the transition

matrix, the larger the temporal correlation among the user’s

different locations, and vice versa. For example, if mi,j = 1
n

for all 1 ≤ i, j ≤ n, then the normalized entropy rate of

M is 1, which indicates that there is no temporal correlation

between any two locations of a user. As another example, if for

every row i ∈ [1, n], there exist ij ∈ [1, n] such that mi,ij = 1
and mi,j = 0 for all j �= ij , then the normalized entropy

rate of M is 0, which indicates the location at the next time is

completely determined by the current one. For a given entropy

rate, we generate the transition matrix M using the algorithm

in [12].

2) Real Dataset: Gowalla [13] is a location-based social

networking website where users share their locations by

checking-in. We take the data covering most of San Fran-

cisco region with latitude (37.5500, 37.8010) and longitude

(-122.5153, -122.3789). For simplicity, we further split the

area into 15×10 cells and choose the centers of these cells as

the set of locations. We count the number of transitions from

xi to xj for any two locations in the dataset and normalize

it to compute the mij for the Markov transition matrix. The

normalized entropy rate of the transition matrix for this dataset

is 0.1365. For the prior distribution π, we count the number

of user’s check-ins at each cell and normalize the resulting

histogram.

B. Simulation Settings

We evaluate the performance of the proposed location

inference attacks on two LPPM instantiations.

• Local Hashing (LH) [9]: For a user at location xi, the

user reports the true location r = xi with probability

α or one of the eight neighboring locations of xi with

probability (1− α)/8.

• Exponential LPPM (Exp) [14]: For a user at location

xi, he reports an obfuscated location o with probability

proportional to exp(−d(xi, o) · ε), where ε the privacy

budget indicating the level of privacy protection. We

also consider the same domain of original locations

and obfuscated locations and 8-connected neighboring

locations as in LH.

Given a dataset with prior distribution π and transition

matrix M , we first randomly generate nr = 10 real traces.

For each real trace rt, we randomly generate no = 40
obfuscated traces using LH or Exp. Given an obfuscated trace

ot, the attack infers the real trace using a specific inference

mechanism, h(·), i.e., r̂t = h(ot). Table I summarizes the

default setting unless mentioned otherwise.

We compare the performance of the proposed inference

attack with three other inference attacks.

• Optimal inference attack (Optimal): As mentioned in

Sec. III-A, the optimal inference attack considers all

received obfuscated locations to infer the user’s true lo-

cation trace as a whole. The inference accuracy achieved

by Optimal can be viewed as the upper bound of any

inference attacks.

• Sliding window attack (Sliding): It considers w most

recent obfuscated locations for inference without limiting

the search space at each time, which is a special case of

the proposed inference attack with k → ∞.

• Snapshot attack (Snapshot): It is another special case of

the proposed inference attack with window size w = 1.

We use two metrics to evaluate the performance of attacks:

average adversary error (AE) and average running time
(ART ). We define AE as the average distance between a real

trace and the estimated trace, which is given by

AE =
1

tnrno
·
∑

rt

∑

h(ot)

d(rt, h(ot)) . (40)

Moreover, we measure the computation cost of an inference

attack by ART , which is defined as the average execution

time needed to infer the user’s location trace from a reported

obfuscated trace.
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Fig. 1: AE and ART vs. t under LH .
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Fig. 2: AE and ART vs. t under Exp.

1 2 3 4 5 6 7 8 9 10
w

0

0.2

0.4

0.6

0.8

1

AE

Snapshot
Sliding
Ours
Optimal

(a) AE vs. w

1 2 3 4 5 6 7 8 9 10
 w

0

5

10

15

20

25

30

AR
T 

(s
)

Snapshot
Sliding
Ours
Optimal

(b) ART vs. w

Fig. 3: AE and ART vs. w under LH .
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Fig. 4: AE and ART vs. w under Exp.

C. Simulation Results on Synthetic Datasets

We first report the results on synethic datasets.

1) Impact of t: Fig. 1(a) compares four location inference

attacks, namely Optimal, Sliding, Snapshot, and Ours, against

LH as the trace length t increases from 1 to 10. All attack

mechanisms exhibit a decrease in the adversary error (AE)

as the trace length increases because longer traces provide

more information for the adversary to infer the user’s moving

behavior accurately. Among the four attacks, Snapshot has

the highest AE since it disregards the temporal correlation

between the locations in a trace and infers each location

independently based on the corresponding obfuscated location.

In contrast, Optimal estimates the entire user’s location trace

from all the obfuscated locations received so far at each time,

resulting in the smallest AE. Our proposed Ours outperforms

Snapshot by utilizing the temporal correlation among the

most recent w obfuscated locations to estimate each location

in the trace, resulting in a much smaller AE close to the

one under Optimal, especially for short traces. The inference

accuracy of Ours is slightly lower than that of Optimal because

considering only the most recent w obfuscated locations to

infer each location may not capture the temporal correlation

between locations beyond the w time slots. Additionally, the

AE of Ours is slightly higher than that of Sliding since Ours
only considers the k location traces with the smallest AEs

during the most recent w time slots.

Fig. 1(b) illustrates the impact of trace length on compu-

tation cost, measured by ART s, for four location inference

attacks against LH . The ART of Snapshot is independent of

trace length, remaining at approximately 0.003s. However, the

ART s of the other three attacks increase with trace length,

as expected, since longer traces require more time to infer all

locations. The ART of Optimal grows exponentially due to

the exponentially increasing search space, whereas the ART s

of Sliding and Ours increase linearly with t. However, Ours
has a significantly lower ART than Sliding since it has a much

smaller search space.

Overall, compared with Optimal and Sliding, Ours can

significantly reduce computation cost while sacrificing a slight

amount of inference accuracy. In comparison with Snapshot,
Ours can greatly improve inference accuracy, resulting in

a much smaller AE, with a slight increase in computation

cost. These results demonstrate that Ours can achieve a better

balance between inference accuracy and computation cost than

other attack mechanisms. Fig. 2 shows the AEs and ART s

under Snapshot, Optimal, Sliding, and Ours against the Exp
mechanism, confirming the cost-effectiveness of the proposed

attack against various LPPMs.

2) Impact of w: Fig.3 compares the AEs and ART s of

different attack mechanisms against LH mechanism with

sliding window size w varying from 1 to 10. The AEs and

ART s of Snapshot and Optimal are not affected by w and

are plotted for reference only. From Fig.3(a), we observe that

the AEs of Sliding and Ours first decrease sharply and then

gradually decrease until approaching that of Optimal. Initially,

using more reported locations for each location estimation

allows the adversary to leverage the temporal correlations

among more locations for improved inference accuracy, i.e.,

a smaller AE. As w increases further, the additional past

locations used for inference have limited effect on improving

the inference accuracy, resulting in a slightly decreased or

stable AE. Although Ours has a slightly higher AE than

Sliding due to the limited search space, it outperforms Sliding
in terms of ART by a large margin, especially when w is

large, as shown in Fig. 3(b).
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Fig. 5: AE and ART vs. k under LH .
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Fig. 6: AE and ART vs. k under Exp.

These results indicate that a relatively small sliding window

size is good enough to have a high inference accuracy while

maintaining a small computation cost. For example, when

w = 3, the AE of Ours is about 0.02 higher than the one

under Optimal, but the computation cost of Ours is only about

4s, which is much smaller than 28s introduced by Optimal
and quite affordable in practice. Fig. 4 shows the impact of

the sliding window size under the four attack mechanisms

against the Exp mechanism. The performances of the four

attack mechanisms are almost the same as the ones in Fig. 3,

which confirm that Ours can not only achieve a better trade-

off between inference accuracy and computation cost but also

be practical in reality.

3) Impact of k: Fig. 5 and Fig. 6 compare the AEs and

ART s under Snapshot, Optimal, Sliding, and Ours with k
increasing from 2 to 20, when the LPPM is LH and Exp,

respectively. The AE and ART of Snapshot, Optimal, and

Sliding are not affected by k and plotted as reference only.

As we can see from Fig. 5(a) and Fig. 6(a), the AE of Ours
initially decreases fast as k increases from 2 to 10 and then

becomes stable or decreases slightly as the k increases from

10 to 20. The reason for the initial decrease is that when k
is larger, the more candidate traces with the smallest AEs are

considered, the more likely that the candidates contain user’s

true location, resulting in a smaller AE. As k further increases,

it is very likely that the current candidate traces already include

the user’s true trace, which results in a lower chance to further

decrease the AE by considering more candidate traces and

thus have a slightly decreased or stable AE. From Fig. 5(b)

and Fig. 6(b), we can see that the ART of Ours increases

linearly as k increases, which is expected as the computational

complexity O(kwn3) is linear to k. Moreover, considering

Figs. 5(a) and 5(b) together, we can see that when k is large

enough, e.g., k = 8, the AE of Ours is 0.276, which is almost

the same with 0.258 under Sliding, but Ours can reduce the

ART of Sliding by about 70%. These results demonstrate

that Ours can dramatically reduce the computation cost while

maintaining high inference accuracy by limiting the search

within a small subset of candidate traces.

4) Impact of H̄: Fig. 7(a) compares the AEs of four attack

mechanisms with the normalized entropy rate varying from 0
to 1. As we can see, the AE increases as H̄ increases for

all attack mechanisms, which is anticipated as the larger the

H̄ of the Markov transition matrix, the weaker the temporal

correlation between two adjacent locations, the more difficult

to predict the next location based on the previous locations

he observes, resulting in an increased AE. Moreover, Ours
outperforms Snapshot with smaller AE, especially when H̄
is very small, e.g., H̄ = 0.2, which indicates that Ours can

take advantage of the temporal correlations among the user’s

locations to improve the inference accuracy. In particular, the

four attack mechanisms have the same AEs when H̄ = 1,

which is also anticipated. The reason is that when H = 1,

the user moves totally at random, and there is no temporal

correlation between the users two locations. Thus considering

a large window size or even all observed locations cannot

improve the inference accuracy resulting in the same AE.

From Fig. 7(b), we can see that the ART s of the four attack

mechanisms are not affected by H̄ , which is also anticipated

as the user’s behavior does not affect the inference procedures.

We can also see that Ours has a very low ART , which is very

close to the ideal one achieved by Snapshot but outperforms

Optimal and Sliding with a large margin. From Fig. 8, we can

see that the four attack mechanisms have similar performance

with the one in Fig. 7, which indicates that Ours can achieve

a better trade-off between inference accuracy and computation

cost against different LPPMs.

These results indicate that the user’s moving behavior has

a great impact on the adversary’s inference accuracy. The

smaller the normalized entropy rate, the stronger the tem-

poral correlations among the locations in a trace, the higher

inference accuracy can be achieved by the advanced attack

considering temporal correlation, and vice versa.

5) Impact of α and ε: We now study the performance of the

attacks under different LPPMs. Fig. 9(a) compares the AEs

and ART s of the four attack mechanisms against LHs with

α varying from 0 to 1. As we can see, the AEs of all attack

mechanisms decrease as α increases. The reason is that under

a LH with large α, the user would report the real location with

a higher probability, i.e., a lower level of privacy protection,

and thus the adversary can infer the true location with higher

accuracy. In particular, when α = 1, the user would directly

report his/her true location without any privacy protection,

and the adversary could infer the true location completely

accurately, i.e., AE = 0. In addition, even when α is small,

e.g., α = 0.2, the AE of Ours is still small. From Fig. 10(a),

we can see that the AEs of four attack mechanisms decrease

as ε increases, which is expected as the higher the ε, the lower
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Fig. 7: AE and ART vs. H̄ under LH .
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Fig. 8: AE and ART vs. H̄ under Exp.
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Fig. 9: AE and ART vs. α under LH .
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Fig. 10: AE and ART vs. ε under Exp.
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Fig. 11: AE and ART vs. t under LH over Gowalla dataset.
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Fig. 12: AE and ART vs. t under Exp over Gowalla dataset.

privacy protection provided by Exp, the higher the inference

accuracy. More importantly, the AE of Ours is always close

to the ideal one achieved by Optimal, which confirms the

effectiveness of Ours again. Fig. 9(b) and Fig. 10(b) show that

the ART s of different attack mechanisms are not affected by

specific LPPM, which is anticipated. These results indicate that

Ours could infer the user’s true locations with high accuracy

but low computation cost under different LPPMs.

D. Simulation Results on Real Dataset

Figs. 11 and 12 compare the AEs and ART s of Snapshot,
Sliding, Optimal, and Ours over the real dataset with trace

length, t, varying from 1 to 10. We can see that as t
increases, the AEs of four attack mechanisms all decrease but

their ART s increase, which is consistent with what we have

observed from the synthetic datasets due to the same reason.

Moreover, the AE of Ours is very close to that of Optimal,
and the ART of Ours is only slightly higher than that under

the Snapshot. The results on the real Gowalla dataset confirm

the advantage of Ours over the other three attack mechanisms

in achieving a better trade-off between inference accuracy and

computation cost.

V. RELATED WORK

Our work is most related to location inference attacks.

Several inference attacks have been proposed in the literature.

Shorkri et al. [15] introduced a Bayesian inference attack on

an LPPM that estimates user’s true location with the highest

posterior probability. They also introduced another inference

attack based on expected adversary error with respect to a

distance function [3], [4]. Following their works, Theodor-

akopoulos et al. [16] and Yang et al. [17] studied a Stackelberg

game between a user’s defense and an adversary’s inference

attack which allows the adversary to obtain the optimal attack

strategy. Niu et al. [18] introduced a long-term observation

attack, which inferred user’s location with all the received

obfuscated locations generated from the same location to

improve the inference accuracy. However, these attacks do not

consider the temporal correlation among user’s location, which

could result in a low inference accuracy.

There are several inference attacks that consider the tem-

poral correlation between the user’s two adjacent locations.

Shorkri et al. [15] modelled the user’s mobility and moving

behavior using a hidden Markov model and introduced a

tracking attack to compute the distribution of user’s trace based

on the obfuscated trace. Oya et al. [9] also leveraged such



correlation to infer user’s location by minimizing expected

adversary error. Gambs et al. [19] predicted the next location

of a user with the temporal correlation and the observed

locations. Instead of using the Markov model, Ma et al.
[20] leveraged the Conditional Random Fields to describe

the temporal correlations. While they achieve higher inference

accuracy, they incur high computation costs that grow expo-

nentially as the number of obfuscated locations increases.

Since location inference attacks pose a serious threat to

users’ location privacy, many LPPMs [2]–[4], [20]–[24] have

been proposed under the assumption that the adversary infers

a user’s location based on a single obfuscated location one

at a time. Common to existing LPPMs is to perturb a user’s

true location to a noisy location used for LBS requests. For

example, some LPPMs [1], [2], [21] perturbed a user’s location

to ensure geo-indistinguishability. As another example, several

LPPMs [3], [4], [22] intended to maximize the adversary’s

estimation error under the Bayesian inference attack. In the

continuous model, user frequently accesses an LBS [25], [26]

and the reported locations usually exhibit temporal correlation,

which can be exploited by the adversary to improve its

inference accuracy [19], [27]. To defend such attacks, some

works proposed new notion of location privacy [5], [6], [20],

[23], [24], [28], [29] or adapted existing solutions designed

for the sporadic model [7]–[9], [16], [30]. All these works are

orthogonal to our work in this paper.

VI. CONCLUSIONS

In this paper, we have introduced a novel generalized infer-

ence attack for efficiently exploiting the temporal correlation

among a user’s adjacent location queries, which can strike a

good balance between inference accuracy and computational

complexity. Our simulation studies using both synthetic and

real datasets have confirmed the advantages of the proposed

attack over exiting attacks.
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