
Triangle Search: An Anytime Beam Search

Sofia Lemons,1, 2 Wheeler Ruml,1 Robert C. Holte,3 Carlos Linares López,4

1 University of New Hampshire
2 Earlham College

3 University of Alberta, Alberta Machine Intelligence Institute (Amii)
4 Computer Science and Engineering Department, Universidad Carlos III de Madrid

sofia.lemons@earlham.edu, ruml@cs.unh.edu, rholte@ualberta.ca, carlos.linares@uc3m.es

Abstract

Anytime heuristic search algorithms try to find a (potentially
suboptimal) solution as quickly as possible and then work to
find better and better solutions until an optimal solution is ob-
tained or time is exhausted. The most widely-known anytime
search algorithms are based on best-first search. In this paper,
we propose a new algorithm, triangle search, that is based
on beam search. Experimental results on a suite of popular
search benchmarks suggest that it is competitive with fixed-
width beam search and often performs better than the previ-
ous best anytime search algorithms.

Introduction
In many applications of planning, it is convenient to have
a heuristic search algorithm that can flexibly make use of
however much time is available. The search can be termi-
nated whenever desired and returns the best plan found so
far. Dean and Boddy (1988) termed these anytime algo-
rithms. Russell and Zilberstein (1991) further differentiated
between interruptible algorithms, which quickly find a solu-
tion and then find better solutions as time passes, eventually
finding an optimal plan if given sufficient time, and contract
algorithms, which are informed of the termination time in
advance and thus need only find a single solution before that
time. Anytime algorithms have been proposed as a useful
tool for building intelligent systems (Zilberstein 1996; Zil-
berstein and Russell 1996). While only a few contract search
algorithms have been proposed (Dionne, Thayer, and Ruml
2011), interruptible algorithms have been widely investi-
gated and applied. They have proven particularly useful in
robotics applications, including self-driving cars (Likhachev
and Ferguson 2009).

As we review below, the most well-known interruptible
anytime heuristic search algorithms are based on best-first
search. Best-first search is attractive as it is the basis for
the optimally-efficient optimal search algorithm A* (Hart,
Nilsson, and Raphael 1968) and it is well understood. How-
ever, because anytime algorithms are intended for use cases
in which the solutions found do not need to be proven op-
timal, and are not even expected to be optimal, it is not ob-
vious that best-first search is the most appropriate choice of
algorithmic architecture.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we propose an interruptible algorithm called
triangle search that is inspired by beam search, which is
based on breadth-first search. Triangle search is based on
an incrementally widening beam search and is simple to
implement. We study triangle’s performance experimentally
on several popular heuristic search benchmarks. We find
that triangle search outperforms previously-proposed any-
time search algorithms in the majority of cases tested. Fur-
thermore, it tends to find solutions of comparable cost at
similar times when compared to fixed-width beam search,
implying that it can also serve as a convenient substitute for
conventional beam search that just happens to be anytime.

Background

Before presenting triangle search, we first review relevant
prior work in anytime search and beam search.

Anytime Search

Most previous anytime heuristic searches are based on
weighted A* (Pohl 1973). For example, anytime weighted
A* (AWA*) (Hansen and Zhou 2007) uses f ′(n) = g(n) +
w × h(n). It retains a current incumbent solution and con-
tinues searching for better solutions until there are no open
nodes with f(n) = g(n) + h(n) < g(incumbent), thus
proving that the incumbent is optimal.

Anytime Repairing A* (ARA*) (Likhachev, Gordon, and
Thrun 2004) also uses a weighted heuristic, but applies a
schedule of decreasing weights ending with a weight of 1.
When a solution is found, it decreases the weight according
to the schedule and reorders the open list. It terminates after
finding a solution with w = 1 or after exhausting all nodes
with f(n) < g(incumbent).

Thayer, Benton, and Helmert (2012) present the Anytime
EES (AEES) algorithm which requires no weighting param-
eter and explicitly works to minimize the time between find-
ing new solutions by using distance-to-go estimates d(n).
d(n) estimates the distance to a goal state in terms of the
number of state transitions, without regard for cost. Often
this can simply be a unit cost heuristic. AEES maintains an
open list ordered on an error-adjusted evalutation function

f̂(n), a focal list ordered on an error-adjusted distance-to-

go measurement d̂(n), and a cleanup list ordered on f(n). It
compares the current incumbent solution’s cost to the lowest





come empty. These open lists can only be filled by children
of nodes in the open list for the depth above. Therefore,
when the shallowest depth open lists become empty, they
will never be filled again and no longer need to be iterated
over for the search to proceed. Likewise, if a sequence of
depths’ open lists become empty at the deepest levels, none
of these need to be iterated over until the open list above
them has nodes in it again. Therefore, openlists can be
made to track the highest and lowest occupied depth-levels
at a given time and iterate only these active open lists (line
24).

While our discussion so far has assumed only one new
depth level explored per iteration, the slope parameter (line
8) makes it possible for triangle search to explore more than
one new depth level per iteration. This adjusts the algo-
rithm’s balance between deeper versus wider exploration.

The Behavior of Triangle Search

Triangle search is complete and optimal when given an ad-
missible heuristic. It only prunes nodes whose f -value is
greater than or equal to the f -value of the incumbent, so
given infinite time and memory it will search the entire
reachable portion of the state space, returning a solution if
one exists. By the same argument, it will eventually return
an optimal solution if one exists.

Triangle search is related to monobead, in the sense that
both algorithms select nodes for expansion at a given level
one at a time, preventing nodes from later slots of the beam
from affecting the search order in earlier slots. One dif-
ference between the search order of triangle search versus
monobead is that in triangle search the children of the node
expanded at the previous level can be selected at the next
level, allowing the node expanded from slot i + 1 to influ-
ence slot i at the next level. This should tend to be benefi-
cial to triangle search because it can make a more informed
selection at each level, but violates the monotonicity prin-
ciples of monobead and possibly leads to a different search
order. Because we do not care about monotonicity across
beam widths and because bead search tends to outperform
monobead (Lemons et al. 2022), we use the algorithm as
presented in Algorithm 1 in the experiments below. How-
ever, for ease of theoretical analysis, we introduce a more
constrained version of the triangle search algorithm that we
call StrictTriangle.

The primary difference between triangle search and
StrictTriangle is that a node to be expanded from the next
level is selected before any children from the current level
are added to the open list (moving lines 10–12 after line 14
and pre-selecting a value for n before the loop at 9). This
limits the selection of nodes for expansion to only nodes
which came from the same slot or earlier. The slope of Strict-
Triangle is limited to a value of 1 (removing the loop around
line 8). It also tracks the width at which a node was ex-
panded in order to only prune duplicate nodes when they
were previously encountered at the same width or less (only
counting a node as duplicate at line 22 if widthseen(dup) ≤
widthseen(child)).

StrictTriangle’s overhead relative to monobead is
bounded. The right panel of Figure 1 illustrates. The

rectangle represents the work done by a monobead search
with beam width b that finds a goal as the child of a node
at depth d, i.e. after expanding db nodes (or slightly fewer
if not enough nodes exist at the top of the tree). Strict-
Triangle search will find that goal by expanding at most
db+ (d2 − d)/2+ (b2 − b)/2 nodes, where the second term
is the ‘righthand triangle’ due to unnecessary broadening
at the top of the search tree and the third term is the ‘lower
triangle’ due to unnecessary deepening at the bottom of the
tree. It is possible that StrictTriangle may perform fewer
expansions than this if it finds a solution that monobead
would not and uses that solution’s cost for pruning.

Theorem 1. If monobead would discover a goal as a child
of a node at depth d in a particular beam slot b, then Strict-
Triangle will perform at most (d2 − d)/2+ (b2 − b)/2 more
expansions to find that goal or a better one.

Proof. With each increase in depth, StrictTriangle expands
one more node at each previous level, if enough nodes exist
at those levels. In order for there to have been b nodes ex-
panded at depth d, the algorithm must have explored b − 1
more depth levels and the current maximum depth must be
d + b − 1. To have reached depth d + b − 1, the maximum
allowed expansions at the top level must be d+b−1. There-
fore, to reach depth d, StrictTriangle will expand a number
of nodes no greater than

d+b−1∑

n=1

n = d · b+
d2 − d

2
+

b2 − b

2

Monobead will discover the given goal after d ·b expansions.
Therefore, StrictTriangle will perform at most (d2 − d)/2+
(b2 − b)/2 more expansions than monobead to find it.

The ratio between the depth of a solution, d, and the beam
width at which it would be found, b, determines how much
additional work will be required by StrictTriangle, as op-
posed to monobead.

As we will see in our experimental evaluation, triangle
search with slope=1 is not well-suited for domains in which
the heuristic is very accurate and solutions are very deep
(e.g., d ≫ b). Triangle search must do O(d2) work to reach
depth d, whereas a best-first search might only need to do
O(d) if the heuristic is accurate. In this sense, triangle search
with slope=1 errs too much on the side of exploration in
such domains. Using a larger slope may help to reach deeper
regions of the search space earlier, but will still require some
extraneous exploration at higher levels.

On the other hand, triangle search is not obliged to ex-
pand nodes in order of their heuristic evaluation value (be
it f , h, or d), meaning that it does not need to expand all
nodes in a heuristic ‘local minimum’ or ‘depression’ before
expanding a node with a higher value. We conjecture that
triangle’s similarity to monotonic beam search may aid in
retaining diverse nodes during the search, preventing a large
local minimum from displacing all other nodes in the beam
and dominating the search.














