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Abstract
To avoid overwhelming users, many interactive PBE systems only show the highest-ranked programs, even
when the system generates tens or hundreds of programs that satisfy the provided examples. Although this
approach can significantly reduce the number of candidate programs that a user must consider, it limits
their ability to fully understand the solution space and choose the best program for their specific needs. We
hypothesize that offering users an overview of the entire space of solutions will help them identify the desired
program, even if it is not among the highest ranked ones; identify other, potentially better programs that
satisfy the specification; and provide insight into how the synthesizer behaves based on the provided examples,
which may help users provide better examples in the future. In this paper, we introduce reverse sketching, a
novel algorithm that uses anti-unification to generate a set of sketches, or partially-complete programs with
’holes’, that capture the syntactic structure of multiple programs in the solution space.
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1 Introduction
Programming can be a challenging task for novice programmers due to the complex nature of program-
ming languages and the various tools required to develop, test, and deploy programs. Programming-
by-Example (PBE) is the task of automatically generating a computer program that satisfies a set of
examples. The examples describe the desired program behavior, and they can take a variety of forms,
including input-output pairs [1]–[3], partially-complete programs [4], [5], and natural language instruc-
tions [6]. The mass market success of inductive-synthesis-powered tools, such as FlashFill [7] and
FlashExtract [8], suggests that PBE has the potential to allow people with little or no programming
experience to author their own programs by example.

While relatively easy to provide, examples are only a partial specification of the user’s intent. As
a result, many PBE engines can generate tens, hundreds, and sometimes hundreds of thousands of
candidate programs that meet this partial specification [9]. For example, the FlashFill system generates
over a million candidate programs from the input-output example “John Doe” -> “J. Doe” [7]. Several
interactive PBE systems only show the highest-ranked candidate programs [1], [3], [10], [11]. The
ranks of the candidates are determined by a ranking function, which can be based on a variety of
factors, such as hand-crafted heuristics [7], hard-coded distributions [12], and probabilistic models
trained on large code corpora [13]. Although this approach can significantly reduce the number of
candidate programs a user must consider, it limits their ability to fully understand the solution space
and choose the best program for their specific needs.

This paper introduces reverse sketching, a novel algorithm that uses anti-unification to generate
a set of sketches, or partially complete programs with ‘holes’. Each sketch captures the syntactic
structure of a subset of programs in the solution space, and the holes signify the syntactic locations
where the programs in the subset vary. We demonstrate the effectiveness of this technique on string
manipulation tasks, a popular task domain for PBE synthesizers [7]. In future work, we plan to develop
an interface that allows users to interact with the sketches. Additionally, we will conduct a user study
to test the following hypotheses: We hypothesize that offering users an overview of the entire space
of solutions will help them identify the desired program, even if it’s not among the highest ranked
programs; identify other potentially better e.g.,more robust, programs that satisfy the specification
that have not yet been synthesized; and provide insight into how the synthesizer behaves based on
the provided examples, which may help users provide better examples in the future.
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Figure 1. A subset of the candidate programs partitioned by root node type.

2 Related Work
Programming by example (PBE) is a subfield of program synthesis that automatically generates
computer programs that satisfy a set of examples. Traditionally, PBE tools for textual languages
operate using “sketches,” which are partially completed program with ”holes” [4]. The term “sketch”
comes from the notion of program sketching, where the user provides a partially-complete program that
outlines the desired implementation strategy and delegates the low-level details to a synthesizer [4].
In recent years, sketches have proven to be a versatile tool; for example, Galenson et al. leverage
user-provided sketches to refine the list of synthesized programs [14], and Zhang et al. use sketches
to summarize programs generated by the synthesizer at a specific point in the search process [15].

The mass market success of tools powered by inductive synthesis, such as FlashFill [7] and FlashEx-
tract [8], shows that PBE can allow people in the real world to author programs in specific domains
by example rather than by directly writing code. Yet, despite this initial commercial success, PBE
systems present at least three usability challenges: First, there is a “user-synthesizer gap,” or a mis-
match between the user’s mental model of the synthesizer’s capabilities and its actual capabilities [2].
Mental models influence a users’ perception of a system, their ability to understand whether and how
a system can be used for particular use cases, and even their decision to adopt it [16]. Second, provid-
ing examples that are unambiguous and completely describe the desired program behavior is difficult,
which is exacerbated by the observation that PBE users are often reluctant to provide more than a
few illustrative examples [9], [17]. Third, evaluating the system’s output can be challenging, as a
PBE system can generate zero, tens, hundreds, and sometimes thousands of candidate programs that
satisfy the user’s partial specification [9]. In fact, for common programming languages such as Python
and C++, the space of consistent programs can be extremely large, even infinite [9]. To address this
challenge, many PBE systems adopt a ‘top-K’ approach, where only the K highest-ranked candidate
programs are presented to the user [3], [10]. Recent ML-powered systems like GitHub CoPilot go
further, only presenting the single most highly ranked program and eliminating user choice entirely.
Top-k approaches can be effective in reducing the solution space that the user can consider but they
may also exacerbate the user-synthesizer gap and the example refinement processes mentioned above,
limiting the user’s ability to fully explore the solution space and choose the best program for their
specific needs.

There are few interfaces that facilitate user exploration of the solution space beyond the top-K.
Mayer et al. proposed a novel interaction model called Program Navigation, which allows users to
look beyond the top-K-ranked solutions and explore the possible sub-expressions of the top-ranked
program [11]. The navigational interface accomplishes this by taking advantage of the fact that
candidate programs share common sub-expressions. The approach, however, fails to take advantage
of the fact that candidate programs often share more than common sub-expressions; they often share
common high-level syntactic structures [11]. In this paper, we use program sketches to exploit this
commonality. Our tool operates by partitioning the set of solutions into subsets of syntactically similar
programs and capturing the shared syntactic structure of each subset with a sketch.

3 Reverse Sketching Algorithm
In this section, we introduce reverse sketching, an algorithm that uses anti-unification to generate
a collection of sketches, each of which captures the syntactic structure of multiple programs. More
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Figure 2. The sketches for extracting the area code from a U.S. phone
number from 70 synthesis-generated programs.

precisely, anti-unification is the task of creating the most specific generalization, or anti-unifier, of a
set of terms. For a set of terms t1, t2, . . . , tn, the anti-unifier t is a pattern from which the terms
t1, t2, . . . , tn can be obtained by substitution of t’s variables. A substitution is a mapping σ : V → T
from variables to terms, where {x1 → t1, . . . , xk → tk} represents the substitutions for each variable
xi to the term ti , for i = 1, . . . , k . Applying the substitution to a term t replaces every occurrence of
each variable xi in the term t with ti .

The algorithm accepts a set T of abstract syntax trees (ASTs) of all candidate programs. It
then employs anti-unification to generate a set of sketches. Even though anti-unifying every T ⊆ T
computes the entire space of sketches, there are 2T such subsets, making this method impractical in
terms of memory and compute time. Our approach overcomes this challenge by dividing the algorithm
into four stages. First, we partition T into sets Tr such that two trees are in the same partition if
they both have the root node r . For example, both 1 + arg and arg + 3 will be in T+. Partitioning
is based on the intuition that ASTs with similar root nodes are likely to have similar structures and
perform similar operations, and it also reduces the space for anti-unification as the anti-unification of
each Tr will have r as its root, whereas Tr1 ∪ Tr2 will have a new variable at its root.

In the second stage, the algorithm generates sketches for each Tr . The resulting sketch captures
the common structure and operations performed by the ASTs in Tr , and will serve as a representation
of the ASTs in each cluster. In the third stage, the algorithm further groups the ASTs in each Tr by
the types of their substitution values. A substitution value is a value that replaces a variable in the
sketch. By grouping the ASTs based on substitution values, we can further reduce the search space for
anti-unification, as we only need to consider sketches with the same substitution values, and generate
more specific sketches. Finally, the members of the groups produced in step 3 are anti-unified. These
are the final sketches shown to the user.

In summary, the algorithm starts with a set of programs, divides them into groups based on their
syntax, performs anti-unification to generate sketches for each group, partitions them further based
on their substitution mappings, and finally generates more specific sketches.

Consider the set of programs presented in Figure 1. The algorithm partitions these programs
into two groups. The first set includes all programs with a blue background, while the second set
contains a single program with a yellow background. In the next stage, the algorithm performs
anti-unification on both groups, producing two sketches. The sketch for the first set, denoted as
G1, is __[__:__], which represents a prettified view of their anti-unifier x1[x2 : x3], with every
variable xi replaced with '__'. The substitution mappings σ1, σ2, and so on, are defined such that
σ1 = {x1 → number, x2 → 0, x3 → 3}, σ2 = {x1 → number[0:4], x2 → 0, x3 → 3}, and so forth.

Figure 3. The sketches for extracting email name from an excel-sheet-like row
containing 3 columns: [First name, Last name, Email].
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On the other hand, the second set G2 consists of a single program, and so its anti-unification has
no substitutions and is simply the full program number.split(‘-’)[0]. In the third stage, the
sets generated in the previous step are partitioned based on the types and placement of constants
in their substitution mappings. For example, G1 is divided into two subsets: {number[0:3]} and
{number[0:4][0:3], (number + '-')[0:4][0:3]}. Finally, the algorithm anti-unifies these new
sets, resulting in the generation of two more specific sketches: number[0:3] and _[0:4][0:3].

The results of this algorithm are shown in Figures 4 and 5 on two string manipulation tasks:
area code extraction and email name extraction. Although this paper targets the Python language,
we believe that it can be used to generate reverse sketches for other programming languages since
anti-unification operates on a syntactic level. One of the main benefits of anti-unification is that it
allows for the identification of common structures or patterns across different programs, even when
they have different variable names or are expressed in different ways.

4 Future Work
The next step of this work is to develop an interface that allows the user to easily explore and compare
the concrete programs that fall under the sketches generated by our reverse sketching algorithm. To
evaluate the performance and usability of our proposed model, we will conduct a within-subjects
controlled lab study to examine participants’ ability to synthesize the correct program with a PBE-
powered interface that shows the top-k candidate programs compared to a PBE-powered interface
that shows the entire space of solutions organized by reverse sketches.

4.1 Participants
We will recruit 15-25 participants who have a minimum of 1 year of experience programming in
Python, with varying levels of expertise in writing, debugging, and testing programs that perform
string manipulation tasks. The participants will be recruited from a computer science department of
at least one research university in the United States, and we will ensure that they represent a diverse
range of programming experience, age, gender, and ethnicity. For example, some participants may be
experienced in using string methods like split(), join(), and replace(), while others may be
less experienced in these tasks. All participants will receive compensation for their time, in the form
of a $25 gift card.

4.2 Protocol
Prior to the study, the participants will complete a pre-study survey, which will gather information
on their programming experience, familiarity with Python, and previous exposure to PBE systems.
They will also be provided with a study consent form to grant or deny permission for audio and video
recording of the session. To introduce the system, we will provide participants with a brief tutorial
on the PBE-powered interface, including how to use the interface to generate and refine programs.
The tutorial will also cover the basics of string manipulation tasks in Python, including the relevant
syntax and commonly used functions. Participants will be randomly assigned to complete two string
manipulation tasks using the PBE-powered interface, one using the top-K candidate program display
and the other using the entire space of programs display. The tasks will be designed to require
participants to use a variety of string manipulation techniques and functions. During each task,
participants will be given a prompt and asked to write a program that fulfills the prompt using the
PBE-powered interface. Each task will have a time limit of 30 minutes to ensure that participants
are able to complete the tasks within a reasonable timeframe. Participants will be asked to “think
aloud” as they carry out the tasks. After completing each task, participants will be asked to (i)
complete a survey to reflect on the effectiveness and usability of the interface they used and (ii) take
part in a semi-structured interview in which they will discuss their thoughts on the interface. We will
record the participants’ interactions with the interface to analyze their programming behavior and
performance. At the end of the experiment, we will compare the participants’ ability to synthesize
the correct program using the two different display methods, as well as their subjective experience
and feedback. The within-subjects design ensures that each participant will experience both interface
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display methods, reducing the impact of individual differences on the study results. By comparing the
performance and feedback of participants across both methods, we can evaluate the effectiveness of
each display method for PBE-powered interfaces and gain insights into how to improve the design of
such interfaces in the future.

4.3 Tasks

Figure 4. Input-output examples for area code extraction.

Figure 5. Input-output examples for email name extraction.

The participants will be tasked with completing two string-manipulation tasks using the Python
programming language. Examples of such tasks are area code and email name extraction, as shown
in Figure 4 and Figure 5. Tasks will be taken from Leetcode, a popular Question Pool website (QP)
that includes a variety of coding questions on different topics, such as dynamic programming, sorting,
and searching.

5 Discussion
In this paper, we introduced reverse sketching, a novel algorithm that generates a set of sketches that
capture the syntactic structure of multiple programs in the solution space. As the next step, we will
develop an interface that allows users to explore the solution space by interacting with the sketches
and evaluate its effectiveness through user studies. Future work may involve extending and gener-
alizing the algorithm to handle different programming languages, data structures, and programming
paradigms. Another potential avenue for future research is exploring the algorithm’s effectiveness in
various domains and contexts. However, it should be noted that adapting the algorithm to differ-
ent contexts may pose challenges, particularly in more complex and abstract domains that require
additional knowledge or expertise. Furthermore, future work could investigate integrating machine
learning and natural language processing techniques into reverse sketching to enhance its adaptability
and user experience.
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