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Abstract

Supervised Continual learning involves updating a deep

neural network (DNN) from an ever-growing stream of la-

beled data. While most work has focused on overcoming

catastrophic forgetting, one of the major motivations be-

hind continual learning is being able to efficiently update a

network with new information, rather than retraining from

scratch on the training dataset as it grows over time. De-

spite recent continual learning methods largely solving the

catastrophic forgetting problem, there has been little atten-

tion paid to the efficiency of these algorithms. Here, we

study recent methods for incremental class learning and il-

lustrate that many are highly inefficient in terms of com-

pute, memory, and storage. Some methods even require

more compute than training from scratch! We argue that for

continual learning to have real-world applicability, the re-

search community cannot ignore the resources used by these

algorithms. There is more to continual learning than miti-

gating catastrophic forgetting.

1. Introduction

In many real-world scenarios, the dataset used to train a

deep neural network (DNN) grows over time. In industry

settings, this is typically handled by periodically re-training

the DNN from scratch after the dataset has grown (i.e., of-

fline training); however, this is highly sub-optimal. In con-

trast, continual learning (CL) systems have the ability to

update on novel inputs over time [18]. CL has the potential

to yield significant computational benefits over periodically

re-training from scratch. The vast majority of CL research

has focused on solving catastrophic forgetting, which oc-

curs when updating a DNN only on new data with non-CL

methods. Thus, many CL algorithms have been designed

for class incremental learning, since it is a problem where

severe catastrophic forgetting occurs [12]. In this setting,

the learner incrementally learns batches of mutually exclu-

sive subsets of classes, rather than learning them all at once
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Figure 1. We use NetScore to evaluate CL methods based on their

accuracy, parameter count, amount of memory used, and number

of backpropagation updates (compute).

as in the offline setting. While state-of-the-art algorithms,

e.g., DyTox [4] and DER [26], excel at class incremental

learning under a limited replay memory budget, they ig-

nore other critical factors such as model size, compute, to-

tal memory usage, data efficiency, and training time. We

argue that these factors cannot be ignored. Here, we study

the efficiency of existing CL methods for class incremental

learning on ImageNet, which reveals that many of them are

impractical for real-world CL applications.

Most CL methods for incremental class learning on Ima-

geNet perform a very large number of updates to the DNN,

where we define an update as backpropagation on a single

input. In opposition to one of the major goals of CL, com-

putational efficiency, some models have become more com-

putationally expensive than an offline model trained on all

data. For example, on ImageNet, DER was used to incre-

mentally train a ResNet18 model, but this required more

updates (213.17 Million) than training ResNet18 offline

(115.31 Million). They also use many more parameters than

the offline DNN, e.g., DER [26] combines multiple feature

extraction networks (i.e., one network per task for each 100

class increment) to learn a unified classifier that expands the

total number of parameters to 10× the offline DNN.

Another shortcoming of existing systems is that they do

not fully account for the amount of memory or storage used

during incremental training. State-of-the-art systems for in-
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cremental class learning on ImageNet use replay to mitigate

catastrophic forgetting, where past data, which is stored in

a limited buffer, is mixed (i.e., replayed) with new incom-

ing data. However, many of them, including iCaRL [20],

End-to-End [1], BiC [25], WA [28], and DER [26], also

keep new data temporarily in memory (or disk storage) dur-

ing each batch, which is unaccounted for. Each incremental

learning batch typically consists of around 100,000 images

(100 classes). While smaller batches could be used to re-

duce memory overhead, it has been shown that many meth-

ods suffer from severe catastrophic forgetting unless large

batches are used [7]. Additional memory is also used for

the DNN parameters.

Ideally, a model should adapt to a growing training

dataset without increasing the computational or memory

budget. However, most CL methods lack this ability. While

memory and storage may not be a concern for training in

industry settings, it does matter for on-device learning ap-

plications, including autonomous robots, smart appliances,

mobile phones, virtual/ augmented reality (VR/AR) head-

sets, and other wearable devices, which typically have very

limited storage. For on-device learning, a CL system must

adapt to new information quickly despite limited computa-

tion and memory.

Our contributions can be summarized as follows:

1. We use the NetScore metric [8] for evaluating state-

of-the-art methods for incremental class learning on

ImageNet-1K to summarize their properties in terms

of accuracy, memory, parameters, and compute needed

for training.

2. We find that most methods are grossly inefficient.

Multiple methods use more compute than an offline

learner, defeating one of the major reasons for study-

ing CL.

3. We discuss the criteria needed for CL to be useful

for real-world applications, and we call for the CL

research community to focus on issues beyond catas-

trophic forgetting.

2. Methodology

2.1. Evaluation Criteria

We evaluate a model’s efficiency in terms of four cri-

teria: accuracy, model size, computational overhead (up-

dates), and memory overhead. We adopt a modified variant

of the NetScore metric from [8] that combines these criteria.

For a model G, the NetScore metric Ω(G) is defined as:

Ω(G) = s log (
a(G)α

p(G)βu(G)γm(G)ζ
) , (1)

where a(G) is the final top-5 accuracy, p(G) is number of

parameters, u(G) is the number of backpropagation up-

dates, and m(G) is the total memory usage. The coeffi-

cients α, β, γ, and ζ control the contribution of each fac-

tor. Following [8], we set α = 2 and s = 20. We set

β = γ = ζ = 0.125 to avoid having a negative Ω(G).

2.2. Algorithms Studied

We evaluate the following CL methods, which have all

been shown to perform well on ImageNet-1K:

• iCaRL [20] learns representations using a distillation

loss and makes predictions using a nearest class mean

classifier in feature space. During each incremental

learning step, iCaRL trains the entire network.

• End-to-End [1] upgrades iCaRL using augmentations

and fine-tunes the CNN’s output layer on a balanced

set rather than using a nearest class mean classi-

fier. The augmentations applied in End-to-End include

brightness enhancement, contrast normalization, ran-

dom crops, and mirror flips.

• BiC [25] upgrades iCaRL by re-adjusting the logits of

new classes by training a linear model on a validation

set. For this, two bias correction parameters on the

final layer are optimized.

• WA [28] upgrades iCaRL by aligning the norms of new

class parameters to those of old class parameters.

• DER [26] augments previously learned representations

with representations for the new classes. It has a sep-

arate feature extractor per incremental batch and ap-

plies pruning to reduce number of parameters. It also

employs an auxiliary classifier to discriminate between

past and present observations. We compare three vari-

ants of DER: DER without pruning, DER with prun-

ing, and Simple-DER [13].

• REMIND [7] uses compressed feature replay where

mid-level CNN features are quantized to reduce mem-

ory overhead. In contrast, the other methods use re-

play of stored images. REMIND freezes earlier CNN

layers and trains the remaining layers on reconstructed

features. To do this, REMIND uses the first batch to

initialize the CNN.

For our analysis, except REMIND, we use the numbers

as reported in each method’s paper on ImageNet and the

settings they describe in their work. Since the data order-

ing used in the REMIND paper [7] is different, we imple-

ment REMIND with the same data ordering used by the

compared methods in Table 1. For replay, REMIND uses
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(a) Accuracy vs. Backprop Updates (b) Accuracy vs. Memory (c) Accuracy vs. Parameter Count

Figure 2. Comparison of methods in terms of top-5 accuracy and backprop updates, memory, and parameter count. In all sub-figures,

REMIND uses the fewest resources and provides competitive accuracy. In contrast, DER w/o P uses the most resources, but achieves the

highest accuracy compared to other CL methods. In (a), several methods such as BiC, WA, DER w/o P, DER w/ P, and Simple-DER require

more computation than offline ResNet18. In (c), DER w/ P is not included since it does not report total number of parameters.

2 GB of storage when storing compressed mid-level fea-

tures, whereas all the remaining methods use 3 GB of stor-

age that corresponds to 20000 raw images (224×224 uint8).

Except for REMIND, these methods also store the current

data corresponding to 100 classes during each learning step.

Hence, their total memory usage is much more than the re-

play memory budget (at least 7× more). All methods use

ResNet18 [9].

3. Results

3.1. Evaluation on ImageNet-1K

Following the common CL practice for ImageNet-

1K [21], each method was incrementally trained on 10

batches, where each batch has images from 100 classes that

are only seen in that batch. The first batch serves as the base

initialization phase, and the subsequent 9 batches serve as

the CL phase. We measure efficiency only for the CL phase.

For all CL methods and the offline ResNet18 model, we

compare the top-5 accuracy, number of parameters, amount

of memory used, number of backpropagation updates used

for training, and NetScore.

Results are summarized in Table 1, Fig. 1, and Fig. 2.

Simple-DER and End-to-End are abbreviated as Sim-DER

and E2E respectively in Fig. 1. In terms of NetScore, both

REMIND and WA outperform the offline model. REMIND

uses 10× less memory and the least amount of compute.

Shockingly, several methods use roughly as much or more

compute than the offline model, including BiC, WA, and

DER variants. While DER without pruning achieves the

closest accuracy to the offline model, this comes at a cost of

requiring 10× more parameters and almost twice the com-

pute as the offline ResNet18. Except for REMIND, all other

systems require storing the entire batch in a storage.

Table 1. Comparison of CL methods evaluated on ImageNet-1K.

#P indicates total number of parameters in Millions. Ω refers

to NetScore which is calculated based on top-5 final accuracy

(%), number of parameters, amount of memory and compute (up-

dates). Acc. is top-5 final accuracy (%). Mem. is the total mem-

ory/storage used in Gigabytes. Comp. denotes compute in terms of

total number of backprop updates in Millions. DER without prun-

ing and DER with pruning are abbreviated as DER w/o P and DER

w/ P, respectively. Total #P used by DER w/ P is unknown. All

methods except End-to-End and Simple-DER follow same data or-

dering from [26]. Best values are indicated in bold.

Methods #P Acc. Mem. Comp. Ω
Offline 11.68 89.08 192.89 115.31 27.53
iCaRL 11.68 44.00 22.32 79.94 5.62
End-to-End 11.68 52.29 22.32 93.26 12.14
BiC 11.68 73.20 22.32 119.91 24.97
WA 11.68 81.10 22.32 133.23 28.80
Simple-DER 28.00 80.76 22.39 213.17 25.27
DER w/o P 116.89 82.86 22.74 213.17 22.68
DER w/ P Ð 81.89 22.32 213.17 Ð

REMIND 11.68 79.43 2.05 58.78 35.99

4. Discussion

In this paper, we have argued that there is more to CL

than catastrophic forgetting, and that the research commu-

nity is ignoring critical factors e.g., model size, computa-

tional overhead, training time that are essential to address

for CL to have real-world impact. We illustrated that mul-

tiple recent methods use as much or more compute than an

offline learner, which is in opposition to one of the major

goals of CL: efficient learning.

We believe CL can help to reduce the economic and en-

vironmental costs of deep learning, but this will only oc-
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cur if CL algorithms are computationally efficient. Large

DNNs require massive amounts of electricity to train, which

greatly contribute to the growing amount of carbon emis-

sion worldwide. For example, the 176-billion parameter

language model BLOOM has been estimated to emit 50.5
tonnes carbon in its life cycle [14]. In [19], training GPT-

3 was estimated to require as much energy as the annual

consumption of 120 U.S. homes. CL models can help ad-

dress this issue and offer additional functionality, but only

if they are computationally cheaper than periodic retraining

of offline models as the dataset grows.

Focusing on incremental class learning has led to many

systems to be designed to only handle this scenario, which

we consider an extreme edge case. They have bespoke

features for this problem that are only appropriate if each

batch contains unique classes, and their algorithms without

major modifications break when this assumption does not

hold. This assumption is invalid for almost all real-world

applications, where we cannot make any assumptions about

the distribution of new data. Ideally, a good CL system

should learn from data in any order, including independent

and identically distributed (iid) data or data that has tem-

poral correlations. Of the methods we compared, only RE-

MIND [7] has been designed to handle data with arbitrary

orderings and to allow classes to be revisited.

We focused on CL methods that have been demonstrated

to perform well on ImageNet-1K because it is much more

closely aligned with real-world applications for DNNs than

many of the tasks studied in the CL community. CL on

ImageNet is just supervised learning, except we are pro-

gressively updating the DNN. In contrast, many CL sys-

tems are only evaluated on small-scale problems where

they make additional assumptions beyond simply that the

training data arrives incrementally. For example, many

works still focus on tasks such as permuted MNIST and

split-CIFAR100 [2, 3, 11, 15, 17, 23, 24, 27], which do not

align with real-world supervised learning tasks where CL

could be a drop-in alternative to periodically retraining from

scratch. Many recent CL systems also assume task labels

are available during training and/or evaluation [5, 6, 10, 22],

which is also not aligned with typical real-world applica-

tions of supervised learning.

For CL to have real-world impact, we make the follow-

ing recommendations to the CL research community:

1. CL researchers need to focus on more than catas-

trophic forgetting. We argue that computational ef-

ficiency is the most critical factor, but other factors

such as the number of additional parameters or mem-

ory used need to be taken into account. A CL system

that uses more computation than an offline learner is

hard to justify.

2. Researchers should aim toward scaling up dataset sizes

and the scope of the CL problems studied. While other

areas of machine learning, e.g., generative methods,

rapidly advanced such that reporting results on only

toy datasets is unacceptable, much of the CL research

community continues to focus on problems where CL

is unnecessary.

3. Papers should clearly justify the CL paradigm they are

studying and the limitations of their algorithm. Sys-

tems should be aligned toward real-world CL appli-

cations, unless trying to test a specific hypothesis re-

garding CL. For example, to enhance transparency in

interpretation of experimental results a metric such as

CLEVA [16] could be used.

4. Papers proposing new CL algorithms should report

what an offline learner achieves and they should report

the amount of compute needed to train the CL system

relative to an offline learner.

5. CL systems should be tested robustly across multiple

orders and should not be designed only for extreme

edge-cases, e.g., only being capable of incremental

class learning. For real-world CL applications, we typ-

ically cannot make any strong assumptions about the

distribution of the training data stream.

6. Ideally, CL systems should be designed to be updated

online, where if batches are used the system’s robust-

ness is assessed across multiple batch sizes. Many sys-

tems require extremely large batches to learn [4, 26],

which may be acceptable for some applications but

makes the system unacceptable for others, e.g., on-

device learning.

5. Conclusion

In this paper, we studied the efficiency of recent CL

methods in terms of compute, memory, and accuracy. We

found that some state-of-the-art techniques use more com-

pute than the equivalent offline learner, which for many

industrial applications makes them irrelevant even if they

avoid catastrophic forgetting. We urge the research com-

munity to take factors beyond catastrophic forgetting into

consideration. Systems must be tested to work across data

orderings, in addition to being efficient in terms of com-

pute, and for many applications, e.g., on-device learning,

must also take into account the number of parameters and

memory/storage that they use for training. We believe CL

can play a critical role in reducing the global energy expen-

diture resulting from training DNNs, but this requires the

community to align their work with the needs of industry.
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