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Abstract

FSS (Few-shot segmentation) aims to segment a target
class using a small number of labeled images (support set).
To extract information relevant to the target class, a dom-
inant approach in best performing FSS methods removes
background features using a support mask. We observe that
this feature excision through a limiting support mask in-
troduces an information bottleneck in several challenging
FSS cases, e.g., for small targets and/or inaccurate target
boundaries. To this end, we present a novel method (MSI),
which maximizes the support-set information by exploit-
ing two complementary sources of features to generate su-
per correlation maps. We validate the effectiveness of our
approach by instantiating it into three recent and strong
FSS methods. Experimental results on several publicly
available FSS benchmarks show that our proposed method
consistently improves performance by visible margins and
leads to faster convergence. Our code and trained mod-
els are available at: https://github.com/moonsh/
MSI-Maximize-Support-Set-Information

1. Introduction
Deep convolutional neural networks (DCNNs) have

achieved state-of-the-art results across several mainstream
computer vision (CV) problems, including object detection
[26, 27] and semantic segmentation [18, 2, 38]. An im-
portant factor underlying the success of DCNNs is large-
scale annotated datasets, which are costly and cumbersome
to acquire in many dense prediction tasks, such as seman-
tic segmentation. Moreover, these models struggle to seg-
ment novel objects when only a few annotated examples are

Figure 1. Recent FSS baseline (VAT[9]) struggles to accurately
segment the target object in several challenging scenarios in PAS-
CAL [5] and COCOi [15]: (a) the same instance of the target class
is not masked, e.g., the sofa on the right, (b) the support mask
is very small compared to the entire image, e.g., flowers in the
pot, (c) support mask is missing some target boundary informa-
tion, e.g., the front and chimney of the train, and (d) the back-
ground contains some important contextual information, unavail-
able in the support mask, e.g., shoes and grass. Our method (MSI)
is capable of accurately segmenting target objects. It maximizes
the support set information to compensate for the limited support
mask information and can exploit relevant contextual information
from the background.

available. Many existing few-shot segmentation (FSS) ap-
proaches [25, 30, 34, 23, 31, 33, 35, 13, 32, 16, 37, 19, 21,
11, 12, 9, 22] aim to address this shortcoming. The problem
settings in FSS require accurate segmentation of a target ob-
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Figure 2. (a) Many FSS methods use support mask to remove back-
ground features [34, 33, 31, 23, 35, 13, 36, 21, 9, 11, 12], denoted
as feature masking (FM), and so rely only on target object fea-
tures. (b) Recent work, HM [22], merges both image masking and
feature masking to achieve hybrid masking for improving target
information. (c) We propose to maximize the support set informa-
tion (MSI) to compensate for the limited support mask information
and exploit relevant contextual information from the background.

ject in a query image, given few annotated images, termed
the support set, from the target class.

Shaban et al.’s work [28] introduced the first FSS model,
in which a masked support image was used to extract only
the target features. Using the target features, both segmen-
tation and conditioning branches are trained to segment an
object of the target class. Later, Zhang et al. [37] show
that extracting target features using masked average pool-
ing (MAP) is more beneficial for network learning than ob-
taining features by masking images. Since then, many FSS
models [34, 33, 31, 23, 35, 13, 36, 21, 9, 11, 12] have con-
sidered MAP as the de facto technique for obtaining target
features and focus on improving the encoder/decoder net-
work. Recently, HSNet [21] proposed to utilize more effec-
tive target features extracted from multiple layers of a deep
backbone network. Likewise, ASNet [11] and VAT [9] pro-
posed different network architectures to harness deep fea-
tures.

Despite promising results, many recent methods, includ-
ing HSNet [21], ASNet [11], and VAT [9], systematically
struggle with few challenging FSS cases (Fig. 1): (a) When
the support mask does not mask all instances of the same
target class; (b) The support mask is unable to faithfully
capture object boundaries; (c) The support mask is too

small, carrying limited object information; and (d) The
background contains some important contextual informa-
tion, unavailable in the support mask, for accurately seg-
menting the target object. We conjecture that this happens
because many current SOTA methods rely on support masks
to completely remove the background (Fig. 2), which limits
the useful information in several challenging FSS cases.

In this paper, we propose a new method to overcome the
limited information bottleneck from the support mask. It is
based on the intuition that upon maximizing the information
from the masked support set images (MSI), it is possible
to compensate for the limited support mask information by
utilizing the important contextual information available in
the typically discarded background (Fig. 2). MSI jointly
exploits two complementary sources of features. The first
set of features is obtained by using masked support images,
which only activate the target-related features in the query
image. The second set of features is generated from the full
support images, which activate the features of all similar
objects shared between the support and query images. The
former features act as an anchor for the latter in localizing
a certain target class while supplementing it with the target
boundary information. We summarize our key contributions
as follows:

• We propose MSI, an efficient and effective plug-and-
play module for FSS methods. MSI harnesses masked
support images to capture the delineated target infor-
mation and exploits the entire support image for com-
plete target information.

• We perform extensive experiments and analysis on
three challenging FSS benchmarks: PASCAL-5i [5],
COCO-20i [15], and FSS-1000 [14]. Results show that
MSI consistently improves mIoU in the one-shot set-
ting over all strong baselines, including HSNet [21],
ASNet [11], and VAT [9].

• MSI improves the training speed of recent baseline
models on PASCAL-5i [5], with 3.3x average speed-
up on VAT [8] and 4.5x on HSNet [21].

2. Related Works
Few-shot segmentation: OSLSM [28] is considered to be
the first work introducing FSS problem. OSLSM proposed
a model consisting of a condition branch and a segmen-
tation branch. Since OSLSM, various methods have been
proposed to solve the FSS problem [25, 30, 34, 23, 31, 33,
35, 13, 32, 16, 37, 19, 21, 11, 12, 9, 22].
MAP (Masked Average Pooling): Zhang et al. [37] pro-
posed the MAP to collect target information from the sup-
port set. MAP masks features instead of masking sup-
port images and uses average pooling to extract target
information. They argued that (1) removing the back-
ground from support images increases the variance of the
input data for a unified network and (2) masking the im-



age will make the network biased toward the target im-
age. For these reasons, MAP was recommended to get
target features. Since Zhang et al. [37], many few shot
works [34, 33, 31, 23, 35, 13, 36, 21, 9, 11, 12] are follow-
ing MAP to extract target features. However, by performing
average pooling, spatial information is inevitably lost [10].
In this work, we utilized the masked support image to gen-
erate target features without using MAP. Therefore, we can
retrieve fine-detail texture information and preserve spatial
information.
Multi-layer features: Instead of using MAP, HSNet [21]
proposed to use deep features extracted from multiple lay-
ers and designed an effective convolution to process the
features. To process the deep features effectively and effi-
ciently, VAT [8] proposed a model based on the swin trans-
former [17] and ASNet [11] proposed the attentive squeeze
network. HM [22] proposed hybrid masking to compensate
for the lost details in feature masking. Although the spa-
tial information that MAP lost was preserved, these works
extracted target features counting on support masks. There-
fore, when the support masks give limited information, lim-
ited target information is extracted. In this paper, not only is
information loss minimized when the target features are ex-
tracted by relying on the support mask, but also more mean-
ingful target features are extracted by utilizing both the en-
tire support image and the masked support image.
Utilizing background information: There have been sev-
eral attempts to improve FSS accuracy by using background
information [34, 12]. PMM [34] proposed a method of de-
activating the background and activating the target object
using a duplex manner. Negative learning was carried out
with objects in the background, and on the other hand, pos-
itive learning was conducted using the foreground object.
Afterward, the two learning results were used to segment
the target object accurately. Similarly, BAM [12] also pro-
posed to use two learners. The base learner was trained us-
ing objects in the background and a meta learner was trained
with the foreground object. These two learners were inte-
grated to predict segmentation accurately. However, they
assumed that the background lacks meaningful target in-
formation. Therefore, they missed target information that
might exist in the background. We obtain even more tar-
get information from the background and simultaneously
utilize background information to avoid segmenting wrong
objects.
Cross attention: Both CyCTR [36] and DCAMA [29] uti-
lize the transformer architecture to achieve cross-attention
between the support and query features. This cross-
attention allows the identification of target information be-
yond the mask area. Despite this, both methods rely on an
unmasked support image to extract target information, lead-
ing to the loss of delineated detailed target information. On
the contrary, MSI proposes to directly provide the model

with features from the masked support image and the full
support image, thereby introducing a strong inductive bias
that ultimately leads to better performance. MSI computes
the cosine similarity between these two complementary sets
of features and concatenates them. Therefore, MSI can re-
tain detailed target information. It is more intuitive and sim-
pler and can be plugged seamlessly into various FSS base-
lines, as validated in our experiments.

3. Overall Method
Fig. 3 displays the overall architecture of our method.

Following recent works [21, 11, 9], it consists of a backbone
network (ResNet-50 [7] or ResNet-101 [7]) pre-trained on
ImageNet [4] to obtain multi-layer features, and an en-
coder/decoder network to predict the segmentation mask.
We propose a new plug-and-play module to maximize the
support set information (MSI), which compensates for lim-
ited support mask information by exploiting relevant con-
textual information from the background. MSI extracts sup-
port target features (STF), containing delineated target class
information from the support images, and support image
features (SIF), accounting for the information in the entire
support image. Next, STF and SIF are leveraged to obtain
their respective correlation maps by computing the cosine
similarity with respect to the query features (QF) obtained
from the query image. Then, the correlation maps corre-
sponding to STF and SIF are utilized to get super corre-
lation maps (SCM). Finally, this SCM is used as the input
to the encoder and decoder which can be from recent FSS
methods (e.g., [21], [9], and [11]).

3.1. Preliminaries

The goal of few-shot segmentation is to train a model
that can segment the target object in a query image when
provided with a few annotated example images from the
target class. Following prior work in FSS [21, 11, 9], we
utilize the episodic scheme for training our model.

Specifically, we assume the availability of two disjoint
sets, Ctrain and Ctest as training and testing classes, respec-
tively. The training data Dtrain is sampled from Ctrain and
the testing data Dtest is from Ctest. We then construct mul-
tiple episodes from Dtrain and Dtest. An episode is com-
prised of a support set, S = (Is,Ms), and a query set, Q =
(Iq,Mq), where I∗ and M∗ denote an image and its cor-
responding mask. Furthermore, Dtrain = {(Si, Qi)}Ntrain

i=1

and Dtest = {(Si, Qi)}Ntest
i=1 , where Ntrain represents the

number of episodes for training and Ntest is the number of
episodes for testing. During training, we iteratively sample
episodes from Dtrain to train a model that learns a mapping
from (Is,Ms, Iq) to query mask Mq . The learned model
is used without further optimization by randomly sampling
episodes from the testing data Dtest in the same manner and
comparing the predicted query masks to the ground truth.



Figure 3. Overall architecture. To maximize the usability of the support set, first we extract support image features (SIF) and support target
features (STF) through the backbone. SIF branch creates features using the entire support image, and STF branch extracts the features
after removing background pixels. The query features (QF) are obtained from the query. We obtain correlation maps by calculating the
cosine similarity (CS) of the STF and SIF with the QF, respectively, and these correlation maps are concatenated to make super correlation
maps (SCM). CS2 represents the cosine similarity between the target object and the query image. Therefore, only target-related information
in the query image will be activated. CS1, on the other hand, assesses the cosine similarity between the entire support image and the query
image. Consequently, all the similar objects between the support image and the query image are activated.

3.2. Maximizing Support-Set Information: MSI

An important question for the FSS pipeline is where in
a network it is most suitable to use masking to provide tar-
get information to the network. Earlier attempts, such as
the work of Shaban et al. [28] suggested masking the back-
ground in the input image so that only target features are
obtained. The rationale was that the network would suppos-
edly be biased toward large objects, so removing the back-
ground would decrease the variance of the output parame-
ters. Later, Zhang et al. [37] proposed to mask the back-
ground after extracting features because masking the input
image makes a network biased towards the target image and
changes the statistical distribution of the support image set.
Many recent state-of-the-art methods have conformed to
this approach [34, 33, 31, 23, 35, 16, 13, 36, 21, 9, 11, 12].
Motivation: Although these methods report promising per-
formance, we note that many recent methods, including
HSNet [21], ASNet [11], and VAT [9], struggle to accu-
rately predict the segmentation mask in several challeng-
ing scenarios (Fig. 1). We believe that this occurs because
many recent FSS methods fully rely on the support mask
to remove the background features (Fig. 2). These support
masks likely present an information bottleneck in such chal-
lenging cases. For instance, when they are very small, they
fail to properly encapsulate target object boundaries or do
not capture all instances of the target object.

We put forth a new approach (MSI) to alleviate the afore-
mentioned limitations of support masks. We believe that
by maximizing the information from support images, it be-
comes possible to compensate for the limited information
in the support mask and also leverage important contextual
information available in the background. Specifically, we

extract support target features (STF), which contain delin-
eated target class information in the support image, and sup-
port image features (SIF), which contain contextualized in-
formation from the entire support image. This is because
the STF enables the acquisition of more focused and fine-
grained target information, and compared to feature mask-
ing (Fig. 2) STF captures more accurate object boundaries
because the receptive field can cover even the area beyond
target object at deep features [20, 22]. On the other hand,
SIF utilizes the full support image to capture relevant and
useful target information that exists in the background. This
allows us to obtain both detailed and complete information
about the target class to avoid segmenting wrong objects.
We leverage STF and SIF to obtain their respective corre-
lation maps by computing their cosine similarity with the
query features (QF), which are obtained from the query im-
age. The correlation maps corresponding to STF and SIF
are then combined into Super Correlation Maps (SCM),
which are inputted to the encoder and decoder.
Formalizing STF and SIF: Support image fea-
tures (SIF), αN

i=1, where N is the number of features, refer
to the features of the entire support image, IS ∈ R3×w×h,
where w is the width and h is the height of the image.
Support target features (STF), βN

i=1, are the features from
the target image, IT ∈ R3×w×h, which is a masked support
image using support mask MS ∈ {0, 1}w×h. Formally,

  \label {eq:2} I^{T} & = I^S \odot \zeta (M^S),     (1)

where ζ(·) resizes the mask MS to fit the dimension of the
image IS and ⊙ denotes the Hadamard product. Query
features (QF), κN

i=1, are obtained from the query image,
IQ ∈ R3×w×h.



For each image (IS , IT , and IQ), the backbone network,
◁, produces N number of features (αN

i=1, βN
i=1, and κN

i=1

respectively) from its intermediate layers.

  \label {eq:3} {\alpha }^N_{i=1} = \lhd (I^S),~ {\beta }^N_{i=1} = \lhd (I^T),~ {\kappa }^N_{i=1} = \lhd (I^Q),
  

   
   (2)

where features, αi, βi, κi ∈ Rci×wi×hi , have different sizes
of channel and spatial dimensions. Features extracted from
deeper layers have a large number of channels with smaller
width and height dimensions.
Super Correlation Maps (SCM): We calculate the cosine
similarities of αN

i=1 and βN
i=1 with respect to κN

i=1 using the
Eq. 3 to get correlation maps Ci ∈ R1×wi×hi×wi×hi and
Si ∈ R1×wi×hi×wi×hi . To perform multiplication between
features, we reshape and transpose the features, αN

i=1, βN
i=1,

and κN
i=1 into α′N

i=1 ∈ R(wi·hi)×ci , β′N
i=1 ∈ R(wi·hi)×ci ,

and κ′N
i=1 ∈ Rci×(wi·hi).

  \begin {aligned} \label {eq:4} CS_{1}={C}^N_{i=1} & = \mathrm {ReLU} \bigg (\frac {{\alpha '}^N_{i=1}\cdot {\kappa '}^N_{i=1}}{ \Vert {\alpha '}^N_{i=1} \Vert \Vert {\kappa '}^N_{i=1} \Vert } \bigg ),\\ CS_{2}={S}^N_{i=1} & = \mathrm {ReLU} \bigg (\frac {{\beta '}^N_{i=1}\cdot {\kappa '}^N_{i=1}}{ \Vert {\beta '}^N_{i=1} \Vert \Vert {\kappa '}^N_{i=1} \Vert } \bigg ), \end {aligned}  
 




 










 
 




 










(3)

where N the is number of features and ReLU [6] removes
inactivated and noisy values in the correlation map Ci and
Si. Correlation maps CN

i=1 and SN
i=1 are concatenated along

the first dimension to obtain the Super Correlation Maps
(SCM), PN

i=1 ∈ R2×wi×hi×wi×hi (Eq. 4).

  \label {eq:5} SCM = {P}^N_{i=1} = [{C}^N_{i=1} \oplus {S}^N_{i=1}], 
 

 
 (4)

where ⊕ denotes the concatenation.

3.3. Encoder and Decoder Architecture

SCM can be fed as input to any encoder and decoder
architecture of FSS methods. In order to validate our pro-
posed method, we experiment with feeding SCM as input to
three recent and strong encoder-decoder based FSS meth-
ods: HSNet [21], ASNet [11], and VAT [8]. For HSNet and
VAT, the input channel size of the encoder in the models
was doubled. For ASNet, SCM is merged using depth-wise
attention based on Attention U-Net [24] instead of changing
the input channel size. Otherwise, the architectures of the
models were unchanged.

4. Experiments
Datasets: We use three widely used and publicly avail-
able datasets for evaluating our method (MSI): PASCAL-
5i [5], COCO-20i [15] and FSS-1000 [14]. PASCAL-5i

consists of 20 classes, whereas COCO-20i has 100 classes
and FSS-1000 contains 1000 classes. Following previ-
ous works [21, 11, 9], we cross-validate using 4 folds for
PASCAL-5i and COCO-20i and we divide the classes into 4

groups for training and testing. Therefore, 5 and 20 classes
are used for each fold testing on PASCAL-5i and COCO-
20i, respectively. Other remaining classes are used for train-
ing. For FSS-1000, 1000 classes are divided into 520, 240
and 240 for the training, validation and testing. Lastly, in or-
der to evaluate the generalizability of our method, COCO-
20i is used for training, and PASCAL-5i for testing. To
avoid class overlapping between training and testing, fol-
lowing previous works [21, 31], we change the PASCAL-5i

class order for each fold.
Implementation details: We incorporate MSI into three
baseline models, HSNet [21], VAT [8], and ASNet [11],
and refer to them as HSNet + MSI, ASNet + MS and
VAT + MSI. The backbone networks, ResNet50 [7] and
ResNet101 [7], are pre-trained on ImageNet [4], and are
used to extract deep features following HSNet, ASNet, and
VAT (features from conv3 x to conv5 x before the ReLU [6]
activation of each layer stacked to form the deep features).
No fine-tuning of backbones was performed. For a fair com-
parison with the existing models, we keep their default hy-
perparameters, as listed in their codebases. For VAT train-
ing, CATs data augmentation [3] was used and the batch
size was reduced due to GPU memory limitations. Specif-
ically, the batch sizes 4, 8, and 4 were used for PASCAL-
5i [5], COCO-20i [15], and FSS-1000 [14] respectively. No
data augmentation was employed for training HSNet + MSI
and ASNet + MSI.
Super-correlation maps for K-Shots>1: Given a query
image and K support-set images, we compute SCM for each
query-support pair, resulting in K SCMs and K correspond-
ing mask predictions from the model. All predictions are
summed and normalized by the highest score [21, 11, 9].
Evaluation metrics: We report FSS performance using
mean Intersection-over-Union (mIoU) and Foreground and
Background IoU (FB-IoU), which are widely used by exist-
ing methods [16, 31, 13, 21, 11, 9, 22]. We calculate mIoU
= 1

n

∑n
1 IoU where n is the number of test cases and FB-

IoU= 1
2 (IoUF + IoUB) where F is foreground and B is

background without considering classes.

4.1. Results

PASCAL-5i [5]: Tab. 1 compares the results of the pro-
posed method (MSI) with baseline models on PASCAL-5i.
MSI allowed almost all experiments to set a new SOTA
record. We observed that VAT + MSI provided the most
noticeable gains. In the 1-shot test, VAT + MSI provided a
3.0% gain with ResNet50 and a 2.5% gain with ResNet101.
COCO-20i [15]: Tab. 2 reports results on the COCO-20i

dataset. Our method delivered consistent improvement in
almost all experiments. VAT + MSI provided a gain of 5.5%
with ResNet50 [7] and 7.2% with ResNet101 [7] in mIoU
in the 1-shot test, and delivered gains of 5.8% and 5.6% in
the 5-shot test.



Backbone Methods 1-shot 5-shot
50 51 52 53 mIoU FB-IoU 50 51 52 53 mIoU FB-IoU

ResNet50 [7]

CWT [19] 56.3 62.0 59.9 47.2 56.4 - 61.3 68.5 68.5 56.6 63.7 -
RePRI [1] 59.8 68.3 62.1 48.5 59.7 - 64.6 71.4 71.1 59.3 66.6 -

CyCTR [36] 67.8 72.8 58.0 58.0 64.2 - 71.1 73.2 60.5 57.5 65.6 -
BAM [12] 69.0 73.6 67.6 61.1 67.8 - 70.6 75.1 70.8 67.2 70.9 -

DCAMA [29] 67.5 72.3 59.6 59.0 64.6 76.7 70.3 73.2 67.4 67.1 69.5 80.6
HSNet [21] 64.3 70.7 60.3 60.5 64.0 76.7 70.3 73.2 67.4 67.1 69.5 80.6
ASNet [11] 68.9 71.7 61.1 62.7 66.1 77.7 72.6 74.3 65.3 67.1 70.8 80.4

VAT [8] 67.6 71.2 62.3 60.1 65.3 77.4 72.4 73.6 68.6 65.7 70.0 80.9

HSNet + MSI 68.1 71.5 58.2 62.9 65.2 76.5 70.7 72.8 61.5 66.6 67.9 78.2
ASNet + MSI 69.2 71.7 59.7 64.4 66.3 77.9 72.0 73.2 64.0 68.0 69.3 80.2
VAT + MSI 71.0 72.5 63.8 65.9 68.3 79.1 73.0 74.2 66.6 70.5 71.1 81.2

CWT [19] 56.9 65.2 61.2 48.8 58.0 - 62.6 70.2 68.8 57.2 64.7 -
RePRI [1] 59.6 68.6 62.2 47.2 59.4 - 66.2 71.4 67.0 57.7 65.6 -

CyCTR [36] 69.3 72.7 56.5 58.6 64.3 72.9 73.5 74.0 58.6 60.2 66.6 75.0
DCAMA [29] 65.4 71.4 63.2 58.3 64.6 77.6 70.7 73.7 66.8 61.9 68.3 80.8

ResNet101 [7]

HSNet [21] 67.3 72.3 62.0 63.1 66.2 77.6 71.8 74.4 67.0 68.3 70.4 80.6
ASNet [11] 69.0 73.1 62.0 63.6 66.9 78.0 73.1 75.6 65.7 69.9 71.1 81.0

VAT [8] 68.4 72.5 64.8 64.2 67.5 78.8 73.3 75.2 68.4 69.5 71.6 82.0

HSNet + MSI 70.5 72.9 60.6 64.3 67.1 77.8 71.9 74.9 64.1 67.7 69.7 79.5
ASNet + MSI 70.5 73.8 61.3 65.5 67.8 78.8 73.4 75.5 66.2 71.0 71.5 81.3
VAT + MSI 73.1 73.9 64.7 68.8 70.1 82.3 73.6 76.1 68.0 71.3 72.2 82.3

Table 1. Performance evaluation on Pascal-5i [5]. Best results are shown in bold.

Backbone Methods 1-shot 5-shot
200 201 202 203 mIoU 200 201 202 203 mIoU

ResNet50 [7]

RePRI [1] 32.0 38.7 32.7 33.1 34.1 39.3 45.4 39.7 41.8 41.6
CyCTR [36] 38.9 43.0 39.6 39.8 40.3 41.1 48.9 45.2 47.0 45.6
BAM [12] 43.4 50.6 47.5 43.4 46.2 49.3 54.2 51.6 49.6 51.2

DCAMA [29] 41.9 45.1 44.4 41.7 43.3 45.9 50.5 50.7 46.0 48.3
HSNet [21] 36.3 43.1 38.7 38.7 39.2 43.3 51.3 48.2 45.0 46.9
ASNet [11] 41.5 44.1 42.8 40.6 42.2 47.6 50.1 47.7 46.4 47.9

VAT [8] 39.0 43.8 42.6 39.7 41.3 44.1 51.1 50.2 46.1 47.9

HSNet + MSI 40.9 46.9 48.8 45.3 45.5 45.3 53.5 53.1 49.3 50.3
ASNet + MSI 41.5 46.3 43.5 42.1 43.4 46.0 50.7 47.5 46.9 47.8
VAT + MSI 42.4 49.2 49.4 46.1 46.8 47.1 54.9 54.1 51.9 52.0

ResNet101 [7]

DCAMA [29] 41.5 46.2 45.2 41.3 43.5 48.0 58.0 54.3 47.1 51.9
HSNet [21] 37.2 44.1 42.4 41.3 41.2 45.9 53.0 51.8 47.1 49.5
ASNet [11] 41.8 45.4 43.2 41.9 43.1 48.0 52.1 49.7 48.2 49.5

VAT [8] 39.5 44.4 46.1 40.4 42.6 45.2 54.1 51.1 47.1 49.4

HSNet + MSI 42.4 50.1 49.5 48.3 47.6 48.0 57.3 52.6 52.6 52.6
ASNet + MSI 42.9 45.2 44.3 43.4 44.0 47.7 49.9 49.0 48.8 48.9
VAT + MSI 44.8 54.2 52.3 48.0 49.8 49.3 58.0 56.1 52.7 54.0

Table 2. Performance evaluation on COCO-20i [15]. Best results are shown in bold.

Backbone Methods mIoU
1-shot 5-shot

ResNet50 [7]

HSNet [21] 85.5 87.8
VAT [8] 89.5 90.3

HSNet + MSI 87.5 88.4
VAT + MSI 90.0 90.6

ResNet101 [7]

HSNet [21] 86.5 88.5
VAT [8] 90.0 90.6

HSNet + MSI 88.1 89.2
VAT + MSI 90.6 91.0

Table 3. Performance evaluation on
FSS-1000 [14].

Backbone Methods 1-shot 5-shot
mIoU mIoU

ResNet50 [7]

HSNet [21] 61.6 68.7
VAT [8] 64.5 69.7

HSNet + MSI 66.0 70.8
VAT + MSI 67.8 72.6

ResNet101 [7]

HSNet [21] 64.1 70.3
VAT [8] 66.8 71.4

HSNet + MSI 67.3 72.3
VAT + MSI 69.2 74.1

Table 4. Generalizability performance evaluation on PASCAL-
5i [5] after training with COCO-20i [15]. Best results are shown
in bold.

FSS-1000 [14]: Tab. 3 compares the performance of our
MSI on FSS-1000 using two baselines: HSNet [21] and
VAT [8]. HSNet + MSI delivered 2.0% and 0.6% mIoU
improvements on 1-shot and 5-shot tests, respectively, with

ResNet50 [7]. HSNet + MSI with ResNet101 [7] showed
1.6% and 0.7% gains in mIoU. VAT + MSI showed gains
of 0.5% and 0.3% in mIou with ResNet50 [7] and gains of
0.3% and 0.2% in mIoU with ResNet101 [7].

Generalization Test: We tested the generalizability of
trained models in Tab. 4. HSNet [21] and VAT [8] were
compared with HSNet + MSI and VAT + MSI, respectively.
Both HSNet + MSI and VAT + MSI delivered significant
mIoU gains on 1-shot and 5-shot tests. HSNet + MSI with
ResNet50 [7] provided 4.4% and 2.1% improvements and
VAT + MSI showed 3.4% and 2.7% gains.

Qualitative Results: According to the visual comparison,
MSI allows VAT to capture, detailed, accurate, and com-
plete object information, and thus lead to an improved per-
formance and avoid segmenting the wrong object (Fig. 4).



Method & Backbone FM STF SIF mIoU FB-IoU
✓ 60.7 72.0

✓ 65.3 (Baseline [8]) 77.4
✓ 65.2 77.4

VAT (ResNet50) ✓ ✓ 66.3 (HM [22]) 78.0
✓ ✓ 68.3 (Ours) 79.1

✓ ✓ 65.7 77.5
✓ ✓ ✓ 67.1 78.8

Table 5. Ablation study of the different combination of features
with VAT [8] (ResNet50 [7]) on PASCAL-5i [5]). ✓denotes
that these features are utilized to generate super correlation
maps (SCM). The best results are shown in bold.

Backbone Methods 1-shot
200 201 202 203 mIoU

ResNet50 [7]

VAT [8] (Baseline) 67.6 71.2 62.3 60.1 65.3
VAT+MSI (Feature Add.) 68.5 71.0 60.8 62.0 65.6

VAT+MSI (Correlation Add.) 67.0 68.2 53.5 56.0 61.2
VAT+MSI (Attention) 69.9 72.5 63.4 63.8 67.4

VAT+MSI (Ours) 71.0 72.5 63.8 65.9 68.3

Table 6. Different methods of generating super correlation
maps (SCM) on PASCAL-5i [5]. Best results are shown in bold.

Backbone Methods 1-shot
200 201 202 203 mIoU

ResNet50 (PASCAL-5i) VAT [8] 59.9 42.4 42.0 45.5 47.5
VAT + MSI 68.1 46.6 43.6 47.1 51.4

ResNet50 (COCO-20i) VAT [8] 29.7 32.4 36.0 29.0 31.8
VAT + MSI 30.7 37.9 40.9 33.9 35.9

Table 7. Performance comparison on PASCAL-5i [5] and COCO-
20i [15] for cases where support masks occupy below 5% of the
support images. Best results are shown in bold.

Backbone Methods 1-shot
200 201 202 203 mIoU

ResNet50 [7]

VAT (w/o person in BG) 67.7 70.9 61.3 61.6 65.2
VAT (w/ person in BG) 67.6 71.2 62.3 60.1 65.3

VAT + MSI (w/o person in BG) 69.4 71.4 60.5 64.1 66.3
VAT + MSI (w/ person in BG) 71.0 72.5 63.8 65.9 68.3

Table 8. Training VAT + MSI on PASCAL-5i[5] without the per-
son class existing as background of the support image.

Small improvement with ASNet/HSNet: Performance
drop in 5-shot is observed on PASCAL with HSNet and
ASNet. There could be two reasons. First, both HSNet
and ASNet models are limited in fully harnessing MSI’s
potential. Particularly, ASNet downsamples support fea-
tures by pooling which loses target information and hence
limits the capability of both support target features (STF)
and support image features (SIF) in MSI. HSNet lacks self-
attention, which would aid MSI by facilitating the network
in finding target information from the entire SIF by lever-
aging STF. Second, ASNet, HSNet, VAT, and their MSI-
empowered counterparts are trained for the one-shot setting,
which might prevent MSI from specializing in 5-shot test-
ing (Tab 1).

4.2. When is MSI useful?

As MSI can better capture target object information, it
is more capable of handling challenging FSS scenarios.
Fig. 1 draws visual comparisons between VAT + MSI and
the baseline VAT [8] on four challenging FSS cases where
MSI is particularly effective. We discuss these cases below.
When an instance of the target class is not masked:
Fig. 5 visualizes different kinds of features in SIF using
VAT + MSI on PASCAL-5i [5] (ResNet50 [7]). We ob-
serve that the support mask fails to mask an instance of
the same class, i.e., the sofa on the right side. Therefore,
SIF with target features is generated only from the upper
sofa. Next, SIF with background features is not very effec-
tive overall, even though they better segment the magnified
part in the cyan box. Finally, SIF with the entire image’s
features (ours), which incorporate both the former and the
latter features, allows accurate segmentation of the target
object, both inside and outside the cyan box. This indicates
that background features have target information and utiliz-
ing the features improves the performance of FSS.
Support mask is very small: In PASCAL-5 and COCO-
20, there are several cases where the support masks are very
small because the target object only occupies a small part of
the support image. We compare the mIoU for cases when
the support mask occupies less than 5% of the support im-
age (Tab. 7). Compared to VAT [8], VAT + MSI displays no-
ticeable gains of 3.9% and 4.1% (in mIOU) for PASCAL-5i

and COCO-20i, respectively. These results show that MSI
is more effective than the existing methods on very small
target objects in both PASCAL-5i [5] and COCO-20i [15].
Support mask is missing some of the target boundary:
We observe that in PASCAL-5i [5], COCO-20i [15], and
even FSS-1000 [14], the masks around boundaries can be
imperfect (Fig. 6). By masking the features with an inac-
curate mask, the boundary information of the target disap-
pears inadvertently (Fig. 6). Therefore, compared to ours,
previous methods face difficulties in finding the target in the
query image with only limited target information.
When some background is helpful: In some FSS cases,
the background offers relevant context that is unavailable
in the support mask, for accurate segmentation. However,
many recent methods depend on support masks to com-
pletely remove the background. We notice the person class
frequently exists in the background of the support image in
PASCAL-5i [5]. Therefore, in order to empirically validate
the importance of leveraging relevant background informa-
tion, we train VAT+MSI and VAT [8] by removing the seg-
mentation mask of the person class when the person exists
in the background of the support image. We compare with
or without the person class existing in the background of
the support image in Tab. 8 and Fig. 7. After excluding the
person class, the performance drop for VAT+MSI was much
larger than VAT [8].



Figure 4. Visual comparison of VAT [8] and VAT + MSI with ResNet50 [7] on PASCAL-5i [5] and COCO-20i [15].

Figure 5. Comparison of VAT + MSI on PASCAL-5i [5] with
ResNet50 [7] using different kinds of features in SIF: SIF with
only target features, SIF with only background features, and SIF
with the entire image’s features.

Figure 6. Missing information around boundary on PASCAL-
5i [5]. The mask is not perfect to cover entire target object.

Figure 7. Comparison of performance when background informa-
tion of support set is relevant to the background in the query im-
age. Note that the person is in the background of the support image
(target object is the ball). VAT failed to segment the ball correctly,
while VAT + MSI was able to differentiate the ball and people.

4.3. Ablation Study and Analysis

Why the masked support image is helpful: (1) Feature
masking (FM) is utilized by several existing FSS mod-
els [34, 33, 31, 23, 35, 13, 36, 21, 9, 11, 12], obtained by
masking background features. The target features in FM are
not merely targeted object features. When extracting target

Figure 8. Feature map comparison between support target fea-
tures (STF) and feature masking (FM). The cyan circles show
that STF captures more fine-grained features near the target ob-
ject boundary, however, FM struggles to capture the same. In
deeper layers, the advantage of STF becomes more apparent (e.g.
Block 3).

Figure 9. Feature masking (FM) overlooks the impact of the grow-
ing receptive field. Background deep features could contain target
object information. FM thus loses the detailed target information
by masking all features using a support mask. This becomes se-
vere when the support mask is small/inaccurate.

features in FM, the features corresponding to background
objects could also be present because of the enlarging recep-
tive fields [20]. These background features interfere with
obtaining target information. However, this interference can
be eliminated by masking the background at the input image
level in our MSI. (2) STF holds more target features such as
the texture and boundary of the target object than FM. In
contrast, FM loses such information by masking features to
remove the background (Fig. 8) [22].



How MSI helps for each case: FM is utilized in most FSS
works to remove the background in support features [34,
33, 31, 23, 35]. (a) When the support mask fails to mask
the same target class in a different location, unlike FM,
SIF in MSI can still retain the target information (Fig. 5).
(b) When the target class is minuscule, FM features retain
minimal target information from masking downstream fea-
tures (Fig. 9). However, in MSI, we mask support images
at the input level. As such, we can retain fine-grained infor-
mation in STF. Also, SIF could hold the target information
missed by STF due to a small mask (Tab. 8). (c) FM loses
target boundary information (Fig. 6) when removing back-
ground features with an inaccurate mask. However, MSI
can overcome this by exploiting additional target informa-
tion in SIF and it facilitates a network in recovering fine-
grained target details through the encoder/decoder. (d) FM
cannot utilize the contextual features from the background.
For example, if the support and query images have the same
non-target object in the background, MSI uses CS1 to learn
contextual features and recognizes the same objects in QF
and SIF, and CS2 to find the similarity between STF and
QF to learn target-specific features to locate the target ob-
ject (Fig. 3, Eq. 3). Both CS1 and CS2 allow the network
to recognize non-targets (Fig. 7, Tab. 8) and leverage such
information.
Best features for SCM: In Tab. 5, we show results when
using various combinations of features to obtain SCM. For
this purpose, VAT [8] with ResNet50 backbone is used as
a baseline and PASCAL-5i is chosen for training and test-
ing the model. The ablation study reveals that harnessing
both SIF and STF via concatenation achieves the best mIoU.
Please see the supplementary text for visualizations of the
correlation value distributions for SIF and STF.
On different ways of fusing SIF and STF: The proposed
method, MSI, calculates cosine similarity between ⟨STF,
QF⟩ and ⟨SIF, QF⟩, and concatenates the two generated cor-
relation maps. To see the effectiveness of this method, we
experimented with different approaches to fuse SIF and STF
to obtain SCM (see Tab. 6). Feature addition refers to the
element-wise addition of features before calculating the co-
sine similarity to get the correlation map. Correlation ad-
dition means simply adding two correlation maps element-
wise. The attention method merges two correlation maps
through 1x1 depth-wise attention based on Attention U-
Net [24]. Among all design choices for fusion, concatenat-
ing the two correlation maps showed the best performance.
Fast training convergence: We notice that MSI with
VAT [8] and ResNet50 on PASCAL-5i, VAT + MSI, pro-
vides 3.3x faster convergence (i.e. to reach mIoU of 60%)
on average than VAT (Fig. 10), along with a remark-
able improvement in performance. Similarly with HSNet,
HSNet+MSI allows faster convergence by 4.5x on average.
See supplementary for plots.

Figure 10. Train. and val. profiles of VAT [8] and VAT + MSI
on PASCAL-5i with ResNet50. VAT + MSI provides 3.3x faster
convergence (to reach 60% in mIoU) on average than VAT. Red
circles indicate when the training accuracy reaches 60% in mIoU.

5. Conclusion
We proposed a new method, MSI, maximizing the in-

formation of the support set, deviating from the masking
method [37] widely used in many FSS models [34, 33,
31, 23, 35, 13, 36, 21, 9, 11, 12]. The joint exploitation
of SIF and STF develops a synergy between them, which
allows handling several challenging FSS cases. The re-
sults show significant performance improvements across all
benchmarks on recent, strong FSS baselines (HSNet [21],
ASNet [11], and VAT [8]).
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